WorldWideScience

Sample records for geiger mode apd

  1. Optical Communications With A Geiger Mode APD Array

    Science.gov (United States)

    2016-02-09

    practical performance of a Geiger mode avalanche photodiode ( GM -APD, or Geiger mode APD) array for use in optical com- munications systems. I designed and...signal quality in the first half of the frame. These shorter reset times also did not offer any advantage in the maximum number of counts able to be...pattern was advantageous for the modifications being made in post-processing on the benchmark data. In particular, this allowed post-processing results

  2. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  3. Geiger mode avalanche photodiodes for microarray systems

    Science.gov (United States)

    Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan

    2002-06-01

    New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.

  4. Study and realization of pixelated APD Geiger photodetectors of very high sensitivity for Very High Energy gamma astronomy

    International Nuclear Information System (INIS)

    Jradi, K.

    2010-07-01

    Very High Energy gamma ray astronomy uses till now exclusively as detector the Photomultiplier Tube (PMT) to collect weak light flux of atmospheric showers. But an alternative is now emerging: Avalanche Photodiodes polarized in Geiger mode called 'Geiger-APD'. The PMT is a detector designed in the 70's which presents many advantages but also suffers from several drawbacks: size, weight, cost, sensitivity to magnetic field but especially difficulty to realize its pixelation in matrix. Geiger-APDs are semi-conductor devices made of PN junction integrated in a special technology to detect very low light flux, thanks to the polarization beyond the avalanche voltage. Geiger-APD presents very high photoelectron gain (∼106) strongly dependant on the polarization voltage beyond avalanche. These photodiodes present many advantages with respect to PMT, mainly as concerns miniaturization for applications based on imaging, such as the detection of Cerenkov flashes in gamma ray astronomy. In this thesis, we present the study, the design and the realization of a technological structure, based on Silicon. This structure has shown reliability to detect weak luminous flux with breakdown voltage at 12 V and dark current below 10 pA at breakdown. We also developed several models, physical and electrical, necessary to the technological optimization, as well to the development of control and readout circuits, i.e. the basis of any imaging technology. The work presented here consists in the study, the design and the realization of a matrix of high sensitivity pixels. A project of a Cerenkov telescope based on this innovative technology is also presented. (author)

  5. Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems

    Science.gov (United States)

    Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu

    2018-02-01

    Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.

  6. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Britvitch, I. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland)]. E-mail: Ilia.britvitch@psi.ch; Johnson, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Renker, D. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stoykov, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lorenz, E. [Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Max Planck Institute for Physics, 80805 Munich (Germany)

    2007-02-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.

  7. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    International Nuclear Information System (INIS)

    Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.

    2007-01-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate

  8. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W; Backes, M; Neise, D; Bretz, T; Mannheim, K

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  9. Study of multi-pixel Geiger-mode avalanche photodiodes as a read-out for PET

    CERN Document Server

    Musienko, Yuri; Lecoq, Paul; Reucroft, Stephen; Swain, John; Trummer, Julia

    2007-01-01

    We have studied the performance of two multi-pixel Geiger-mode APDs (recently developed by the Centre of Perspective Technologies and Apparatus (CPTA) in Moscow) with 1×1 mm2 and 3×3 mm2 sensitive area as a readout for LSO and LYSO scintillator crystals. Energy and timing spectra were measured using a 22Na γ-source. The results of this study allow us to conclude that this photodetector is a very promising candidate for PET applications.

  10. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    Science.gov (United States)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  11. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    Science.gov (United States)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  12. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  13. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    Science.gov (United States)

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  14. Readout electronics for low dark count pixel detectors based on Geiger mode avalanche photodiodes fabricated in conventional CMOS technologies for future linear colliders

    International Nuclear Information System (INIS)

    Vilella, E.; Arbat, A.; Comerma, A.; Trenado, J.; Alonso, O.; Gascon, D.; Vila, A.; Garrido, L.; Dieguez, A.

    2011-01-01

    High sensitivity and excellent timing accuracy of the Geiger mode avalanche photodiodes make them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase in the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 μm and a high integration 0.13 μm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.

  15. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.

    2011-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  16. G-APDs in Cherenkov astronomy: The FACT camera

    International Nuclear Information System (INIS)

    Krähenbühl, T.; Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krumm, B.

    2012-01-01

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  17. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  18. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program

    Science.gov (United States)

    Stoker, Jason M.; Abdullah, Qassim; Nayegandhi, Amar; Winehouse, Jayna

    2016-01-01

    Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™ sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground control to assess the suitability of these new technologies for the 3DEP. While not able to collect data currently to meet USGS lidar base specification, this is partially due to the fact that the specification was written for linear-mode systems specifically. With little effort on part of the manufacturers of the new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to have been corrected or improved upon in the next generation sensors.

  19. Multipixel geiger-mode photon detectors for ultra-weak light sources

    International Nuclear Information System (INIS)

    Campisi, A.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.; Musumeci, F.; Privitera, S.; Scordino, A.; Tudisco, S.; Fallica, G.; Sanfilippo, D.; Mazzillo, M.; Condorelli, G.; Piazza, A.; Valvo, G.; Lombardo, S.; Sciacca, E.; Bonanno, G.; Belluso, M.

    2007-01-01

    Arrays of Single Photon Avalanche Detectors (SPAD) are considered today as a possible alternative to PMTs and other semiconductor devices in several applications, like physics research, bioluminescence, Positron Emission Tomography (PET) systems, etc. We have developed and characterized a first prototype array produced by STMicroelectronics in silicon planar technology and working at low voltage (30-40 V) in Geiger mode operation. The single cell structure (size down to 20 μm) and the geometrical arrangement give rise to appealing intrinsic characteristics of the device, such as photon detection efficiency, dark count map, cross-talk effects, timing and energy resolution. New prototypes are under construction with a higher number of pixels that have a common output signal to obtain a so-called SiPM (Silicon PhotoMultiplier) configuration

  20. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-01-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined. (letter)

  1. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  2. Progress in low light-level InAs detectors- towards Geiger-mode detection

    Science.gov (United States)

    Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey

    2017-05-01

    InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.

  3. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Bielejec, E; Seamons, J A; Carroll, M S

    2010-01-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  4. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, V; Djambazov, L; Dorner, D; Gendotti, A; Grimm, O; Gunten, H P von; Hildebrand, D; Horisberger, U; Huber, B; Kim, K-S; Krähenbühl, T; Backes, M; Köhne, J-H; Krumm, B; Bretz, T; Farnier, C

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  5. Radiation damage of multipixel Geiger-mode avalanche photodiodes irradiated with low-energy γ's and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y.; Yun, Y. B. [Yonsei University, Seoul (Korea, Republic of); Ha, J. M. [Yonsei University, Seoul (Korea, Republic of); Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Lee, J. S.; Yoon, Y. S. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Eun, J. W. [Namseoul University, Cheonan (Korea, Republic of)

    2012-05-15

    A few types of multipipixel Geiger-mode avalanche photodiodes (also referred to as silicon photomultipliers SiPMs) are irradiated with 1 to 2.5 MeV γ's and electrons. We characterize radiation damage effects appearing in the reverse bias current, the dark current and count rate, the pixel gain, and the photon detection efficiency of the devices. An interesting observation on the dark current and count rate is made and linked to the specific damage caused by the irradiation.

  6. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  7. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications; Modelisation, fabrication et evaluation des photodiodes a avalanche polarisees en mode Geiger pour la detection du photon unique dans les applications Astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D

    2008-12-15

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology

  8. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications

    International Nuclear Information System (INIS)

    Pellion, D.

    2008-12-01

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology. (author)

  9. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  10. A discrete model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode

    International Nuclear Information System (INIS)

    Vanyushin, I. V.; Gergel, V. A.; Gontar', V. M.; Zimoglyad, V. A.; Tishin, Yu. I.; Kholodnov, V. A.; Shcheleva, I. M.

    2007-01-01

    A new discrete theoretical model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode is developed. It is shown that the spreading resistance in the substrate profoundly affects both the amplitude of a single-photon electrical pulse and the possibility of attaining the steady-state form of the avalanche breakdown excluding the Geiger mode of the photodiode's operation. The model is employed to interpret the experimental data obtained using test single-photon cells of avalanche photodiodes fabricated on the basis of the 0.25-μm silicon technology with the use of deep implantation to form the region of avalanche multiplication for the charge carriers. Excellent functional properties of the studied type of the single-photon (Geiger) cell are noted. A typical amplitude characteristic of the cell for optical radiation with the wavelength λ = 0.56 μm in the irradiance range of 10 -3 -10 2 lx is presented; this characteristic indicates that the quantum efficiency of photoconversion is extremely high

  11. Characterization of new hexagonal large area Geiger Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Boccone, V.; Aguilar, J.A.; Della Volpe, D.; Christov, A.; Montaruli, T.; Rameez, M.; Basili, A.

    2013-06-01

    Photomultipliers (PMTs) are the standard detector for construction of the current generation of imaging Atmospheric Cherenkov Telescopes (IACTs). Despite impressive improvements in QE and reliability in the last years, these devices suffer from the limitation of being unable to operate in the partially illuminated sky (during full or partial moon periods) as the excess light leads to a significant increase in the rate of ageing of the devices themselves and consequently limit the life of the camera. A viable alternative is the large area Geiger-mode avalanche photodiodes (G-APDs also known as Silicon Photomultipliers or SiPMs) that are commercially available from different producers in various types and dimensions. The sufficiency of the maturity of this technology for application to Cherenkov Astronomy has already been demonstrated by the FACT telescope. One of the camera designs under study for the 4 m Davies Cotton Telescope foresees the utilization of a large area G-APDs coupled to non imaging light concentrators. In collaboration with Hamamatsu and deriving from their current technology, we have designed a new hexagonal shaped large area G-APD HEX S12516 which when coupled to a Winston cone of 24 degrees cutting angle allows for a pixel angular resolution of 0.25 degrees for a f/D 1.4 telescope with a diameter of 4 m. The device, available in 2 different cell size configurations (50 μm and 100 μm), is divided into 4 different channels powered in common cathode mode. A temperature sensor was included for a better temperature evaluation in the characterization phase. The first 3 prototypes were fully characterized and the results are compared to the larger area devices commercially available such as the S10985-050C (2x2 array of 3x3 mm 2 G-APDs). The photo-detection efficiency is measured applying the Poisson statistics method using pulsed LED at 7 different wavelengths from 355 to 670 nm and for different bias over-voltages (V ov ). Optical crosstalk and

  12. A method to stabilize the temperature dependent performance of G-APD arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yoonsuk [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Choi, Yong; Ho Jung, Jin; Jung, Jiwoong [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-02-01

    This paper presents a compensation method to stabilize the temperature dependent performance of Geiger-mode Avalanche Photodiode (G-APD) arrays for Positron Emission Tomography (PET). The compensation method is used to identify the bias voltage range that provides stable performance even at different temperatures using the G-APD’s characteristics, and to control the photo-peak variation as a function of temperature using the preamplifier gain within the identified bias voltage range. A pair of G-APD detectors and temperature sensors were located in the temperature chamber and the preamplifiers which can control the gain of the detectors using the digital potentiometer were positioned outside the chamber. The performance of the G-APD detector, especially energy resolution and coincidence timing resolution, was characterized as a function of bias voltage at different temperatures from 20 °C to 40 °C at 5 °C increments; the energy resolution, coincidence timing resolution, and photo-peak position of all channels of G-APD PET detectors before and after the preamplifier gain correction were then measured and compared. The results of this study demonstrated that the optimal bias voltage range providing the good energy and coincidence timing resolution, 12.1±1.2% and 1.30±0.09 ns, respectively, could be identified at the temperature range and the photo-peak variation and the performance at different temperatures could be stabilized by adjusting the preamplifier gain within the identified bias voltage range. We concluded the proposed method to be reliable and useful for the development of the PET system using G-APD arrays.

  13. FACT - Status and experience from five years of operation of the first G-APD Cherenkov Telescope

    Science.gov (United States)

    Neise, D.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Brügge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Müller, S.; Neronov, A.; Nöthe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2017-12-01

    The First G-APD Cherenkov Telescope (FACT) demonstrates the usability of novel Geiger-mode operated Avalanche Photo Diodes (G-APD, often called SiPM) for Imaging Atmospheric Cherenkov Telescopes (IACT). The camera consists of 1440 pixels with dedicated electronics operating at 2 Giga samples per second. It is installed on the refurbished HEGRA telescope with a mirror area of ≈ 9.5m2 on the Canary Island La Palma. FACT is taking data almost every night since the camera was installed in October 2011. It was possible to improve the data taking efficiency to very high values due to the very stable and reliable operation. This also allows to operate FACT remotely without any need for operators on site. Even remote human intervention became less and less frequent over the years, allowing operation to become mostly automatic. FACT is monitoring the long-term behavior of some very-high energy variable extra-galactic sources with unparalleled sampling density as well as testing the behavior of the sensors under severe weather conditions. Due to the long exposure of FACT's G-APDs under strong moonlight conditions it was possible to evaluate the aging effects of G-APDs due to collected charge. No indication of aging was found. No external calibration device is needed to operate FACT since the properties of the sensors themselves allow for a high precision self-calibration of the camera.

  14. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  15. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

    Science.gov (United States)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-08-01

    ×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).

  16. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    Science.gov (United States)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  17. AX-PET: A novel PET concept with G-APD readout

    CERN Document Server

    Heller, M; Casella, C; Chesi, E; De Leo, R; Dissertori, G; Fanti, V; Gillam, J E; Joram, C; Lustermann, W; Nappi, E; Oliver, J F; Pauss, F; Rafecas, M; Rudge, A; Ruotsalainen, U; Schinzel, D; Schneider, T; Seguinot, J; Solevi, P; Stapnes, S; Tuna, U; Weilhammer, P

    2012-01-01

    The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-...

  18. PEP-4 geiger-mode hexagonal calorimeter

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1982-01-01

    The design and performance of the calorimeter are briefly described. Design aspects include illustrations of the active volume of the detector, edge connections, module assembly and analog electronics. Performance data for cosmic rays and radiation sources, including efficiency and channel sensitivity are discussed

  19. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  20. Geiger-mueller radiation detector with means for detecting and indicating the existence of radiation overload

    International Nuclear Information System (INIS)

    Kovacs, T.; Mills, A.P.; Pfeiffer, L.N.

    1981-01-01

    When subjected to radiation overload existing geiger-mueller counters may give an erroneously low reading, resulting in possible hazard to personnel. The instant invention discloses simple and inexpensive apparatus to remedy this dangerous shortcoming. Depending on the geometry of the detector tube, two possible failure modes have been identified, and circuitry is disclosed to detect the existence of these respective failure modes. The disclosed apparatus indicates the absence of an overload condition, in addition to signaling, by both visible and audible means, the existence of excessive radiation that might result in erroneously low reading of the geiger-mueller counter

  1. An Inexpensive Coincidence Circuit for the Pasco Geiger Sensors

    CERN Document Server

    Fichera, F; Librizzi, F; Riggi, F

    2005-01-01

    A simple coincidence circuit was devised to carry out educational coincidence experiments involving the use of Geiger counters. The system was tested by commercially available Geiger sensors from PASCO, and is intended to be used in collaboration with high school students and teachers

  2. APD arrays and large-area APDs via a new planar process

    CERN Document Server

    Farrell, R; Vanderpuye, K; Grazioso, R; Myers, R; Entine, G

    2000-01-01

    A fabrication process has been developed which allows the beveled-edge-type of avalanche photodiode (APD) to be made without the need for the artful bevel formation steps. This new process, applicable to both APD arrays and to discrete detectors, greatly simplifies manufacture and should lead to significant cost reduction for such photodetectors. This is achieved through a simple innovation that allows isolation around the device or array pixel to be brought into the plane of the surface of the silicon wafer, hence a planar process. A description of the new process is presented along with performance data for a variety of APD device and array configurations. APD array pixel gains in excess of 10 000 have been measured. Array pixel coincidence timing resolution of less than 5 ns has been demonstrated. An energy resolution of 6% for 662 keV gamma-rays using a CsI(T1) scintillator on a planar processed large-area APD has been recorded. Discrete APDs with active areas up to 13 cm sup 2 have been operated.

  3. APD Properties and Recovery from Radiation Damage

    CERN Document Server

    Baccaro, Stefania; Caruso, S; Cavallari, Francesca; Dafinei, Ioan; Diemoz, Marcella; Emeliantchik, Igor; Festinesi, Armando; Longo, Egidio; Montecchi, Marco; Organtini, Giovanni; Rosi, G

    1997-01-01

    Avalanche photodiodes will be used to detect scintillation light from PWO crystals in the CMS electromagnetic calorimeter. Properties of Hamamatsu APD are reported special attention has been devoted to the study of radiation hardness and room temperature annealing. We found a fast recovery with a time constant of 1.3 days a medium fast recovery with a lifetime of the order of 10 days and indication of a third component with very long time constant of the order of 300 days.

  4. A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications

    Science.gov (United States)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-01-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  5. A Novel Time-Based Readout Scheme for a Combined PET-CT Detector Using APDs

    CERN Document Server

    Powolny, F; Hillemanns, H; Jarron, P; Lecoq, P; Meyer, T C; Moraes, D

    2008-01-01

    This paper summarizes CERN R&D work done in the framework of the European Commission's FP6 BioCare Project. The objective was to develop a novel "time-based" signal processing technique to read out LSO-APD photodetectors for medical imaging. An important aspect was to employ the technique in a combined scenario for both computer tomography (CT) and positron emission tomography (PET) with effectively no tradeoffs in efficiency and resolution compared to traditional single mode machines. This made the use of low noise and yet very high-speed monolithic front-end electronics essential so as to assure the required timing characteristics together with a high signal-to-noise ratio. Using APDs for photon detection, two chips, traditionally employed for particle physics, could be identified to meet the above criteria. Although both were not optimized for their intended new medical application, excellent performance in conjunction with LSO-APD sensors could be derived. Whereas a measured energy resolution of 16% (...

  6. APD detectors for biological fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Mazeres, S.; Borrel, V.; Magenc, C.; Courrech, J.L.; Bazer-Bachi, R.

    2006-01-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salome, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cezanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here

  7. General Roy S. Geiger, USMC: Marine Aviator, Joint Force Commander

    Science.gov (United States)

    2007-06-01

    This is a strong assertion, given the significant and better-known contributions of great Marines such as John Lejeune, Smedley Butler, Alexander...While stationed in Panama, Geiger made a favorable impression on Major Smedley Butler, who later earned the Medal of Honor twice and became a...fifth Naval Aviator. 43 Johnson, 5. 44 Robert Sherrod, History of Marine Corps Aviation in World War II (Baltimore, MD: The Nautical and Aviation

  8. Testing limits to airflow perturbation device (APD measurements

    Directory of Open Access Journals (Sweden)

    Jamshidi Shaya

    2008-10-01

    Full Text Available Abstract Background The Airflow Perturbation Device (APD is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Method Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. Results All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O·sec/L for control and 3.9 cm H2O·sec/L for the leak. This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O·sec/L, respectively. Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O·sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O·sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O·sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O·sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O·sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD

  9. DOI resolution measurement and error analysis with LYSO and APDs

    International Nuclear Information System (INIS)

    Lee, Chae-hun; Cho, Gyuseong

    2008-01-01

    Spatial resolution degradation in PET occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and several methods for DOI positioning were proposed. In this paper, a DOI-PET detector module using two 8x4 array avalanche photodiodes (APDs) (Hamamatsu, S8550) and a 2 cm long LYSO scintillation crystal was proposed and its DOI characteristics were investigated experimentally. In order to measure DOI positions, signals from two APDs were compared. Energy resolution was obtained from the sum of two APDs' signals and DOI positioning error was calculated. Finally, an optimum DOI step size in a 2 cm long LYSO were suggested to help to design a DOI-PET

  10. As the crack in the Geiger counter came. Historical scientific analysis and didactic aspects of the Geiger-Mueller counting tube; Wie das Knacken in den Geigerzaehler kam. Wissenschaftshistorische Analyse und fachdidaktische Aspekte des Geiger-Mueller Zaehlrohrs

    Energy Technology Data Exchange (ETDEWEB)

    Korff, Sebastian

    2014-11-10

    This thesis studies the creation and establishment history of this instrument called first electron counting tube in the years 1928 and 1929. It deals thereby with the last two years of the common work of Hans Geiger and Walter Mueller, from which the measuring instrument later renamed to Geiger-Mueller counting tube. The results of this scientific case study are didactically worked out and made usable for the teaching of physics in the school.

  11. Geiger counters of gamma rays with a bismuth cathode

    International Nuclear Information System (INIS)

    Meunier, R.; Legrand, J.P.

    1953-01-01

    Geiger Muller counters present a lake of efficiency of some per cent, for the γ radiations. In the region 0,3 - 1 MeV, a substantial growth of their output can be obtained by a special construction of their cathode. In accordance with previous works, we constructed some counter of formed cathode by a pleated copper wire fencing covered of Bi by electrolysis. The successive modifications brought to a cylindrical conventional cathode in sheet metal of copper, that succeeds to this type of cathode, drive to an improvement of the output. (M.B.) [fr

  12. A simple model of EG and G reverse reach-through APDs

    CERN Document Server

    Musienko, Y; Swain, J D

    2000-01-01

    A simple model of reverse reach-through APDs is described. APD parameters including the dependence of the electric field and gain on the bias voltage, dependence of gain on wavelength are calculated using the McIntyre approach and an assumed doping profile of the APD.

  13. A simple model of EG and G reverse reach-through APDs

    Energy Technology Data Exchange (ETDEWEB)

    Musienko, Y. E-mail: iouri.moussienko@cern.ch; Reucroft, S.; Swain, J

    2000-03-11

    A simple model of reverse reach-through APDs is described. APD parameters including the dependence of the electric field and gain on the bias voltage, dependence of gain on wavelength are calculated using the McIntyre approach and an assumed doping profile of the APD.

  14. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  15. Optimization of single photon detection model based on GM-APD

    Science.gov (United States)

    Chen, Yu; Yang, Yi; Hao, Peiyu

    2017-11-01

    One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.

  16. As the crack in the Geiger counter came. Historical scientific analysis and didactic aspects of the Geiger-Mueller counting tube

    International Nuclear Information System (INIS)

    Korff, Sebastian

    2014-01-01

    This thesis studies the creation and establishment history of this instrument called first electron counting tube in the years 1928 and 1929. It deals thereby with the last two years of the common work of Hans Geiger and Walter Mueller, from which the measuring instrument later renamed to Geiger-Mueller counting tube. The results of this scientific case study are didactically worked out and made usable for the teaching of physics in the school.

  17. Geiger counters of gamma rays with a bismuth cathode; Compteurs de geiger a rayons gamma a cathode de bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, R; Legrand, J P [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    Geiger Muller counters present a lake of efficiency of some per cent, for the {gamma} radiations. In the region 0,3 - 1 MeV, a substantial growth of their output can be obtained by a special construction of their cathode. In accordance with previous works, we constructed some counter of formed cathode by a pleated copper wire fencing covered of Bi by electrolysis. The successive modifications brought to a cylindrical conventional cathode in sheet metal of copper, that succeeds to this type of cathode, drive to an improvement of the output. (M.B.) [French] Les compteurs de Geiger Muller presentent une efficacite assez faible de l'ordre de quelques pour cent, pour les rayonnements {gamma}. Dans la region 0,3 - 1 MeV, un accroissement substantiel de leur rendement peut etre obtenu par une construction speciale de leur cathode. Conformement a des travaux anterieurs, nous avons construit des compteurs a cathode formee par un grillage de cuivre plisse recouvert de Bi par electrolyse. Les modifications successives apportees a une cathode conventionnelle cylindrique en tole de cuivre, qui aboutissent a ce type de cathode, conduisent a une amelioration du rendement. (M.B.)

  18. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  19. Characterization of irradiated APDs for picosecond time measurements

    Science.gov (United States)

    Centis Vignali, M.; Dalal, R.; Gallinaro, M.; Harrop, B.; Jain, G.; Lu, C.; McClish, M.; McDonald, K. T.; Moll, M.; Newcomer, F. M.; Ugobono, S. Otero; White, S.

    2018-01-01

    For their operation at the CERN High Luminosity Large Hadron Collider (HL-LHC), the ATLAS and CMS experiments are planning to implement dedicated systems to measure the time of arrival of minimum ionizing particles with an accuracy of about 30 ps. The timing detectors will be subjected to radiation levels corresponding up to a 1-MeV neutrons fluence (Φeq) of 1015 cm-2 for the goal integrated luminosity of HL-LHC of 3000 fb-1. In this paper, deep-diffused Avalanche Photo Diodes (APDs) produced by Radiation Monitoring Devices are examined as candidate timing detectors for HL-LHC applications. These APDs are operated at 1.8 kV, resulting in a gain of up to 500. The timing performance of the detectors is evaluated using a pulsed laser. The effects of radiation damage on current, signal amplitude, noise, and timing performance of the APDs are evaluated using detectors irradiated with neutrons up to Φeq = 1015 cm-2.

  20. Geiger Muller (GM) detector as online monitor: an experimental study

    International Nuclear Information System (INIS)

    Jayan, M.P.; Pawar, V.J.; Krishnakumar, P.; Sureshkumar, M.

    2014-01-01

    Monitoring the inadvertent release of radioactivity into otherwise inactive liquid streams is a common requirement in nuclear industry. In addition to conventional off-line sampling and measurement methods, nuclear facilities usually uses online methods to get real-time detection of activity contents in process cooling water lines and steam condensate lines. Due to its simplicity, ruggedness and cost effectiveness, Geiger Muller counter is obviously the first choice for online application. Though GM based monitors for such online application were in industrial use for a long time, practical data on the response of the detector with respect low level activities in the effluents is scarce in literature. This work was carried out to fill this information gap. The data generated in these experiments may be useful in giving a realistic interpretation of the response of the existing monitors and setting up their alarm limits

  1. Wolfgang Geiger (17 July 1921 - 3 July 2000

    Directory of Open Access Journals (Sweden)

    Renata Boucher-Rodoni

    2000-08-01

    Full Text Available Wolfgang Geiger died on the 3rd July 2000, at the age of 79. He was born on July 17th 1921 in Biel; his mother died at his birth. His childhood was spent with his father, a well-known artist, partly in Ligerz, on Lake Biel, and partly in Porto Ronco in Ticino, on Lago Maggiore. After high school in Biel, he began his University studies, first at the Swiss Federal Institute of Technology in Zürich, then in Basel, where he studied under Professor A. Portmann. During his PhD a grant from the Janggen-Pöhn foundation enabled him to work for some months at the Institut des Pêches maritimes du Maroc, in Casablanca, with Dr. J .Furnestin. In 1953 he completed his PhD on teleost fish brain. His career as a biologist began in Bern at the Eidgenossische Inspektion für Fortwesen, Jagd und Fischerei. In 1962 he was appointed head assistant (chef des travaux at the University of Geneva, in the comparative anatomy and physiology laboratory (Dr H. J. Huggel, where he discovered the joys and the limitations of teaching. He was highly regarded as a lecturer and taught in a relaxed atmosphere of mutual respect and trust, much appreciated by his students. Professor Geiger was also the main organiser of field trips to Sète, on the French Mediterranean coast, where he was in his element living on the water. He went out on the trawlers with the students and introduced them enthusiastically to the marvels of sea fauna. He was happy during those field trips and had the knack of communicating his happiness to the students.

  2. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  3. Statistical analysis of natural radiation levels inside the UNICAMP campus through the use of Geiger-Muller counter; Analise estatistica dos niveis de radiacao natural dentro da UNICAMP atraves do uso de contador Geiger-Muller

    Energy Technology Data Exchange (ETDEWEB)

    Fontolan, Juliana A.; Biral, Antonio Renato P., E-mail: fontolanjuliana@gmail.com.br, E-mail: biral@ceb.unicamp.br [Hospital das Clinicas (CEB/UNICAMP), Campinas, SP (Brazil). Centro de Engenharia Biomedica

    2013-07-01

    It is known that the distribution at time intervals of random and unrelated events leads to the Poisson distribution . This work aims to study the distribution in time intervals of events resulting from radioactive decay of atoms present in the UNICAMP where activities involving the use of ionizing radiation are performed environments . The proposal is that the distribution surveys at intervals of these events in different locations of the university are carried out through the use of a Geiger-Mueller tube . In a next step , the evaluation of distributions obtained by using non- parametric statistics (Chi- square and Kolmogorov Smirnoff) will be taken . For analyzes involving correlations we intend to use the ANOVA (Analysis of Variance) statistical tool . Measured in six different places within the Campinas , with the use of Geiger- Muller its count mode and a time window of 20 seconds was performed . Through statistical tools chi- square and Kolmogorov Smirnoff tests, using the EXCEL program , it was observed that the distributions actually refer to a Poisson distribution. Finally, the next step is to perform analyzes involving correlations using the statistical tool ANOVA.

  4. Statistical analysis of natural radiation levels inside the UNICAMP campus through the use of Geiger-Muller counter

    International Nuclear Information System (INIS)

    Fontolan, Juliana A.; Biral, Antonio Renato P.

    2013-01-01

    It is known that the distribution at time intervals of random and unrelated events leads to the Poisson distribution . This work aims to study the distribution in time intervals of events resulting from radioactive decay of atoms present in the UNICAMP where activities involving the use of ionizing radiation are performed environments . The proposal is that the distribution surveys at intervals of these events in different locations of the university are carried out through the use of a Geiger-Mueller tube . In a next step , the evaluation of distributions obtained by using non- parametric statistics (Chi- square and Kolmogorov Smirnoff) will be taken . For analyzes involving correlations we intend to use the ANOVA (Analysis of Variance) statistical tool . Measured in six different places within the Campinas , with the use of Geiger- Muller its count mode and a time window of 20 seconds was performed . Through statistical tools chi- square and Kolmogorov Smirnoff tests, using the EXCEL program , it was observed that the distributions actually refer to a Poisson distribution. Finally, the next step is to perform analyzes involving correlations using the statistical tool ANOVA

  5. Novel method of using 99mTc-APD (pamidronate) to monitor delivery of bisphosphonates to bone without renal burden

    International Nuclear Information System (INIS)

    Kumar, V.; Wong, E.; Kumar, D.; Howman-Giles, R.; Little, D.G.

    2004-01-01

    Purpose: Bisphosphonates (BP) were first used in the 1960's when their ability to bind to bone mineral hydroxyapatite made them a useful tool for studying orthopaedic bone repair processes. From being an experimental agent, now BP have become the treatment of choice for clinical disorders associated with increased bone resorption, such as osteoporosis, myeloma and bone metastasis. While the effectiveness of BP in managing these disorders is commendable, they have certain undesirable side effects. For example, intravenous injection of Pamidronate may be associated with nephrocalcinosis of the kidneys. Therefore there is a need to develop a novel technique to demonstrate the localisation of the compound, which can be visualized within hours of administering into the patients. The Objective of the study is to develop 99mTc-labelled APD (Pamidronate) as a new tool and monitor its biodistribution by gamma imaging modality. This approach has not been reported elsewhere in the literature and has the potential to improve the quality of treatment currently available. Methods: Pamidronate (APD) was labelled with 99mTc-pertechnetate in the presence of Stannous Chloride as the reducing agent. The radiochemical purity (RCP) of the compound was determined by ITLC-SG/Acetone and found to be >99%. Rats were injected with 99mTc-APD intravenously (IV) subcutaneously (SC) and by direct application (Local) on surgically exposed femur. The animals were sacrificed at 2hr or 24hr post-injection and various organs were harvested and counted for radioactivity with a view to establish the biodistribution of 99mTc-APD. Results: 99mTc-APD was injected by three different modes as indicated in the Methods section. Planar and SPECT images were obtained at 2 hr and 24 hr post-injection. Intravenous injection (IV): When 99mTc-APD was administered IV, the labelled compound appeared instantly in the blood pool. The 2 hr and 24 hr images clearly showed that the labelled compound accumulated

  6. Construction and operating characteristics of flexible Geiger counters; Caracteristiques de construction et d'utilisation de compteurs Geiger flexibles; Konstruktsionnaya i operativnaya kharakteristiki gibkikh schetchikov Gejgera; Construccion y caracteristicas de funcionamiento de contadores Geiger flexibles

    Energy Technology Data Exchange (ETDEWEB)

    Richter, H G; Ballard, L F [Research Triangle Institute, Durham, NC (United States)

    1962-04-15

    point une methode de construction de compteurs Geiger flexibles ayant des dimensions tres variees. Les compteurs sont tres flexibles : un compteur de 3 cm de diametre peut etre plie avec un rayon de courbure de 5 cm. En utilisant du gaz Q (98,3% d'helium et 1,7% de n-butane) comme milieu de comptage, les paliers ont une longueur de plusieurs centaines de volts avec une pente de 3% et sont independants de la configuration geometrique du compteur. Les compteurs sont construits avec des tubes en chlorure de polyvinyle (PVC-744 - Alpha Wire Corp.). De courts segments du tube (longueur egale a environ 3 fois le diametre) sont glisses sur un mandrin d'aluminium grossierement filete et entoures d'un fil fortement serre. Le tout est place dans un four a 110{sup o}C pendant 20 minutes. Apres refroidissement, le segment de matiere plastique ainsi cannele est degage du mandrin. Ce traitement du tube empeche sa rupture lorsqu'il est enroule. Un disque de polystyrene, perfore de trous relativement grands a la peripherie pour l'ecoulement du gaz et d'un trou central de 0,6 mm pour le passage de l'anode, est attache a une extremite de chaque segment. En enfilant les segments ainsi prepares sur une anode en tungstene de 3 mm, en glissant une extremite de chaque segment sur le segment adjacent et en les fixant solidement avec un adhesif, on peut construire un compteur d'une longueur quelconque. On attache aux extremites des pieces en verre pour la fixation de l'anode et pour l'admission et l'evacuation du gaz. Un fil de cuivre nu, entoure en spirale dans les cannelures du compteur, donne une cathode externe satisfaisante, qui fonctionne suivant le mode observe par Maze. Un compteur de 3 cm de diametre et de 1 metre de longueur, lineaire ou enroule, possede un palier commencant a 1400 volts et allant jusqu'a 1700 volts avec une pente de 2,9%. On a enregistre des taux de comptage de plus de 300000 coups par minute, avec peu de pertes par coincidences. Comme le compteur est en fait une

  7. Performances of a HGCDTE APD based direct detection lidar at 2 μm. Application to dial measurements

    Science.gov (United States)

    Gibert, Fabien; Dumas, Arnaud; Rothman, Johan; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica

    2018-04-01

    A lidar receiver with a direct detection chain adapted to a HgCdTe APD based detector with electric cooling is associated to a 2.05 μm Ho :YLF pulsed dual wavelength single mode transmitter to provide the first atmospheric lidar measurements using this technology. Experiments confirm the outstanding sensitivity of the detector and hightligth its huge potential for DIAL measurements of trace gas (CO2 and H2O) in this spectral domain. Performances of coherent vs direct detection at 2.05 μm is assessed.

  8. Performances of a HGCDTE APD based direct detection lidar at 2 μm. Application to dial measurements

    Directory of Open Access Journals (Sweden)

    Gibert Fabien

    2018-01-01

    Full Text Available A lidar receiver with a direct detection chain adapted to a HgCdTe APD based detector with electric cooling is associated to a 2.05 μm Ho :YLF pulsed dual wavelength single mode transmitter to provide the first atmospheric lidar measurements using this technology. Experiments confirm the outstanding sensitivity of the detector and hightligth its huge potential for DIAL measurements of trace gas (CO2 and H2O in this spectral domain. Performances of coherent vs direct detection at 2.05 μm is assessed.

  9. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    Science.gov (United States)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  10. The New APD Based Readout for the Crystal Barrel Calorimeter

    International Nuclear Information System (INIS)

    Urban, M; Honisch, Ch; Steinacher, M

    2015-01-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds

  11. A prospective, randomized multicenter study comparing APD and CAPD treatment

    DEFF Research Database (Denmark)

    Bro, S; Bjorner, J B; Tofte-Jensen, P

    2000-01-01

    , dialysis-related complications, dialysis-related expenses. RESULTS: The quality-of-life studies showed that significantly more time for work, family, and social activities was available to patients on APD compared to those on CAPD (p ...) treatment with respect to quality of life and clinical outcomes in relation to therapy costs. DESIGN: A prospective, randomized multicenter study. SETTING: Three Danish CAPD units. PATIENTS: Thirty-four adequately dialyzed patients with high or high-average peritoneal transport characteristics were included...... were assessed at baseline and after 6 months by the self-administered short-form SF-36 generic health survey questionnaire supplemented with disease- and treatment-specific questions. Therapy costs were compared by evaluating dialysis-related expenses. MAIN OUTCOME MEASURES: Quality-of-life parameters...

  12. APD Response Time Measurements for Future TOF-E Systems

    Science.gov (United States)

    Starkey, M. J.; Ogasawara, K.; Dayeh, M. A.; Desai, M. I.

    2017-12-01

    In space physics, the ability to detect ions is crucial to understanding plasma distributions in the solar wind. This usually typically requires the determination of the particle's mass, charge, and total energy. Current ion detection schemes are implemented in three sequential parts; an electrostatic analyzer for energy per charge (E/Q) measurements, a time-of-flight (TOF) for mass per charge (M/Q) measurements, and a solid-state detector (SSD) for total energy (E) measurements. Recent work has suggested the use of avalanche photodiode detectors (APD) for a simultaneous TOF and total energy (TOF-E) measurement system, which would replace traditional SSDs, simplify design, and reduce costs. Although TOF based ion spectrometry typically requires timing resolution of systems.

  13. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  14. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  15. Geiger-Mueller counter for mixed neutron-gamma beam dosimetry

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.-C.

    1978-01-01

    A Geiger-Mueller (G-M) dosimeter has been constructed and employed to measure the gamma-ray component of absorbed dose in a cyclotron produced fast neutron field. This instrument is waterproof for measurements in a liquid medium, and read-out is accompanied with any standard scaler. (Auth.)

  16. Updated world map of the Köppen-Geiger climate classification

    Directory of Open Access Journals (Sweden)

    M. C. Peel

    2007-10-01

    Full Text Available Although now over 100 years old, the classification of climate originally formulated by Wladimir Köppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Köppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Köppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Köppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert followed by Aw (11.5%, Tropical savannah. The updated world Köppen-Geiger climate map is freely available electronically in the Supplementary Material Section.

  17. Multiple benefits of personal FM system use by children with auditory processing disorder (APD).

    Science.gov (United States)

    Johnston, Kristin N; John, Andrew B; Kreisman, Nicole V; Hall, James W; Crandell, Carl C

    2009-01-01

    Children with auditory processing disorders (APD) were fitted with Phonak EduLink FM devices for home and classroom use. Baseline measures of the children with APD, prior to FM use, documented significantly lower speech-perception scores, evidence of decreased academic performance, and psychosocial problems in comparison to an age- and gender-matched control group. Repeated measures during the school year demonstrated speech-perception improvement in noisy classroom environments as well as significant academic and psychosocial benefits. Compared with the control group, the children with APD showed greater speech-perception advantage with FM technology. Notably, after prolonged FM use, even unaided (no FM device) speech-perception performance was improved in the children with APD, suggesting the possibility of fundamentally enhanced auditory system function.

  18. An advanced APD-based spectroscopic radiation monitor. Final Technical Report

    International Nuclear Information System (INIS)

    Mitchell Woodring, PhD; James Christian, PhD

    2007-01-01

    A highly sensitized radiation imager is under development through DOE SBIR contract DE-FG02-99ER 82866. This imager will be extraordinarily useful to the DOE in its decontamination and decommissioning activities. The basis for this advanced, state-of-the-art radiation imager is a new type of photon detector, an avalanche photodiode (APD). Only recently has APD technology advanced to the point where it is useful for applications like the radiation imager. To date, the major drawback in the use of avalanche photodiodes was the inability to use many of them in a single application because of the need for many channels of readout, complicated device holders, and dead space between detectors. RMD has solved this dilemma through the development of compact arrays of APDs. Additionally, the fabrication technique has been refined to the point were the bulk production of large quantities of arrays is now feasible. These new APD arrays have excellent application flexibility. The capability to tailor the detector properties; such as size, sensitivity, pixellation, and pitch make APD arrays excellent candidates for a variety of photosensing schemes previously dominated by photomultiplier tubes (PMT). In fact, at RMD it is currently possible to make APD arrays with 2-mm 2 detectors (pixels) in monolithic square arrays 14 pixels on a side (196 detectors). As proposed in Phase II work, paneling 9 of these arrays (as the basis of a highly sensitive radiation imager) would make a photodetector that was 100 cm 2 in sensitive area. This results in approximately 1800 individual detectors that require data sampling and control. This is an enormous electronics load. To reduce the electronics complexity for the readout scheme of APD arrays (one of the major aspects of the proposed Phase II research) individual detectors (in the array) will be grouped together on common readout lines by rows and columns. This row-column-addressing scheme reduces the readout complexity from 1800 to 90 if 42

  19. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    Science.gov (United States)

    2016-01-20

    important in photon‐starved applications, such as night vision or high‐temporal‐resolution imaging. Interest in such scenarios lead to Lincoln’s...information of interest. Lincoln Laboratory’s long-term vision is to merge these functions, so that the work of information extraction is carried...M. Boroson, David O. Caplan, Constantine J. Digenis, David R. Hearn, and Ryan C. Shoup, "Design of an Optical Photon Counting Array Receiver System

  20. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    Science.gov (United States)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 meV valance band offset with InAlAs, which is high enough to hinder the transport of the already cooled holes. Being stopped by the energy barrier, holes are accumulated at the junctions to shield the electric field, resulting in a decrease of the electric field in the multiplication region. Because the impact ionization rate is extremely sensitive to the magnitude of the electric field, the field-screening effect drastically reduces the impact ionization rate and quenches the output signals. After the avalanche pulse signal is self-quenched, the accumulated holes at the InGaAsP/ InAlAs interface escape the energy barrier through thermal excitation and tunneling and finally leave the device. The device is thus reset and ready for subsequent photon detection. This recovery time is controlled by the height of the energy barrier and the hole-cooling rate.

  1. Real Time Coincidence Processing Algorithm for Geiger Mode LADAR using FPGAs

    Science.gov (United States)

    2017-01-09

    current operating parameters and extrapo- lated for future system upgrades. Simulated ladar data is processed using the FPGA and compared to the Matlab ...high-level description of each processing step as well as implemented modules . This paper explores the implementation of a modified “base- line... Simulation Data. The data set ran through the original Matlab code as well as a Modelsim simulation and the output images were compared using Matlab’s

  2. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  3. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    International Nuclear Information System (INIS)

    Bergeron, Mélanie; Cadorette, Jules; Beaudoin, Jean-François; Lecomte, Roger; Tétrault, Marc-André; Leroux, Jean-Daniel; Fontaine, Réjean

    2014-01-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm 3 ), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250–650 keV) and a high-resolution mode (350–650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250–650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250–650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml −1 . With the same phantom, the scatter fraction for all scanners is about

  4. Geiger-Muller with a mica window halogen quenched counters aspects

    International Nuclear Information System (INIS)

    Gorski, M.S.; Bruzinga, W.A.

    1990-09-01

    We present the development of a model of a Geiger-Muller with likeness the model ZP 1410 Phillips. The prototype has a cylindrical shape with 37mm of effective length and a mica window of 1,5 to 2,0mg/cm sup(2) thickness with a useful diam of 19,8mm. For the window preparation and special cutting technique was developed Basically two types of quenching agents, bromine and chlorine were studied. Due to the high corrosive nature of these gases, we work with treatment of surface of the cathode through electropolishment, chemical passiveness, hard chrome and nickel coating. Out main objective was to get a Geiger-Muller detector with an operational plateau over 200V, working voltage above 600V and a sensivity of 320 counts/sec at 10 sup(-1) m Gy/h. (author)

  5. Geiger-Muller (GM) counters. Associated circuits and counting techniques; Les compteurs de Geiger-Muller (GM). Les circuits associes et techniques de comptage

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, A.; Picard, E. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay (France)

    1954-07-01

    This article presents the Geiger-Muller counters which present the great benefit of being simple and steady in comparison with other known sensors. The authors propose an overview of problems related to the use of Geiger-Muller counters (GM counters). They first describe their operation (discharge initiation, discharge propagation, collection of positive ions and current in the counter). They discuss their limitations which are related to the migration delay of primary electrons and positive ions. They describe the operation circuit for counters with organic vapour, and for counters associated with counters using halogens. They address the main properties of GM counters, and the different factors to be taken into account when using them to count radioactive sources. The main types of GM counters are then described (they are used to measure different types of radiation). Measurement techniques are discussed for beta radiation (relationship between the number of disintegrations and the noticed counting rate, case of backscattering, absorption and diffusion in the counter window and in the air, influence of absorption and backscattering in the source), for alpha radiation, and for gamma radiation.

  6. Epstein–Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Jean-Marie Carpier

    2018-01-01

    Full Text Available Activated PI3Kδ Syndrome (APDS is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.

  7. Development of a 32-channel ASIC for an X-ray APD detector onboard the ISS

    Science.gov (United States)

    Arimoto, Makoto; Harita, Shohei; Sugita, Satoshi; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Tomida, Hiroshi; Isobe, Naoki; Ueno, Shiro; Mihara, Tatehiro; Serino, Motoko; Kohmura, Takayoshi; Sakamoto, Takanori; Yoshida, Atsumasa; Tsunemi, Hiroshi; Hatori, Satoshi; Kume, Kyo; Hasegawa, Takashi

    2018-02-01

    We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 μm CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e- + 1.5 e-/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 °C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.

  8. Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: Francesco.Riggi@ct.infn.it

    2009-07-15

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive air showers induced by high-energy primary protons in the atmosphere were also carried out, involving undergraduate and graduate teaching levels.

  9. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  10. Construction techniques and working principles of external cathode Geiger-Mueller counters

    International Nuclear Information System (INIS)

    Sevegnani, Francisco Xavier

    1996-01-01

    In this paper, the construction technique and working principles of the external cathode Geiger-Mueller counter are described in detail. During the analysis of the behavior of these counters a new phenomena was observed, related to an increase int he background rate with the applied voltage. The experiments have also shown that the pulse amplitude of those counters decreases exponentially with the counting rate. The counters built with the techniques described in this paper has shown plateaus of about 1400 V with slope of 0,8%/100 V. (author)

  11. Study on APD real time compensation methods of laser Detection system

    International Nuclear Information System (INIS)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun

    2011-01-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained by analyzing

  12. Study on APD real time compensation methods of laser Detection system

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ying; Zhang He; Zhang Xiangjin; Liu Kun, E-mail: fy_caimi@163.com [ZNDY of Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-02-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained

  13. Study on APD real time compensation methods of laser Detection system

    Science.gov (United States)

    Ying, Feng; He, Zhang; Xiangjin, Zhang; Kun, Liu

    2011-02-01

    With the monochromatic and the directional capability of the laser, laser detection system is confidential in anti-jamming. Detection accuracy is improved significantly as the result of laser's good orientation ability. Sensitivity is enhanced as laser's high-brightness characteristic. With the development of laser technology and laser devices, laser detections are developed both in civilian and military areas. In the military field, laser detection system has been widely applied in various types of tactical missiles, the technique is more mature. Because photo detectors receive the backscattering echo signal of target in laser detection system, they are required sensitive enough to weak signal. With APD's salient features of high sensitivity, rapid response speed, high response frequency and low noise equivalent power, etc.; PIN is replaced by APD to improve sensitivity of laser detection system in recent years. The signal magnification is inadequate in laser detection system, the detector output is usually amplified by multistage amplifiers. And then the system noise includes detector noise and latter amplifiers noise. With its high internal gain, APD becomes the primary noise source of receiving system. This point can be attested by analyzing the transfer function of laser detection system receiver. To ensure the system detecting ability, APD noise must be mitigated as low as possible. According to a large number of experiments, the power signal-to-noise (SNR) and the best multiplication factor of APD are mostly affected by background radiation and temperature. In order to make APD operate at state of the best multiplication factor, the optimum bias must be selected due to the actual operating circumstance. Therefore, APD realtime compensation must be adopted. The existing APD compensation includes the constant false alarm rate compensation, the noise compensation and the temperature compensation. The features of these compensations are obtained by analyzing

  14. Application of a background-compensated Geiger-Mueller counter to a survey meter

    International Nuclear Information System (INIS)

    Mori, C.; Kumanomido, H.; Watanabe, T.

    1984-01-01

    A background-compensated Geiger-Mueller counter was used as a probe for a GM survey meter to obtain a net count rate of β-rays from a radioactive source in a quick survey. Although a background counting ratio between the two parts in the counter, front and rear, varied somewhat depending on the incident direction of background γ-rays, it was possible to compensate the background counts by subtracting a part of the rear counts, which were background counts, from the front counts, which contained β-ray counts and background counts. Undesirable small pulses generated during the recovering time after a full Geiger discharge were eliminated by an anticoincidence gating method. The survey meter with this counter and a differential ratemeter is useful for obtaining a net count rate of β-rays emitted from a surface radioactive-contamination or from a source being put near the window of the counter with nearly the same accuracy in half the measuring time as compared with conventional GM counters. (orig.)

  15. Amplitude and timing properties of a Geiger discharge in a SiPM cell

    Energy Technology Data Exchange (ETDEWEB)

    Popova, E., E-mail: elenap73@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Kashirskoe Shosse 31 (Russian Federation); Buzhan, P.; Pleshko, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Kashirskoe Shosse 31 (Russian Federation); Vinogradov, S. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD, Cheshire (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, Moscow 119991 (Russian Federation); Stifutkin, A.; Ilyin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Kashirskoe Shosse 31 (Russian Federation); Besson, D. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Kashirskoe Shosse 31 (Russian Federation); Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-2151 (United States); Mirzoyan, R. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 München (Germany)

    2015-07-01

    The amplitude and timing properties of a Geiger discharge in a stand-alone SiPM cell have been investigated in detail. Use of a single stand-alone SiPM cell allows us to perform measurements with better accuracy than the multicell structure of conventional SiPMs. We have studied the dependence of the output charge and amplitude from an SiPM cell illuminated by focused light vs the number of primary photoelectrons. We propose a SPICE model which explains the amplitude over saturation (when the SiPM's amplitude is greater than the sum over all cells) characteristics of SiPM signals for more than one initial photoelectrons. The time resolutions of a SiPM cell have been measured for the case of single (SPTR) and multiphoton light pulses. The Full Width Half Max (FWHM) for SPTR has been found to be at the level of 30 ps for focused and 40 ps for unfocused light (100 μm cell size). - Highlights: • A stand-alone SiPM cell has been investigated in detail. • Amplitude and time properties have been measured with femtosecond 660 nm laser. • SPICE model for a Geiger discharge development has been proposed. • SPTR for a stand-alone 100 μm size SiPM cell has been found to be 40 ps FWHM.

  16. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi; Blinnikov, Sergei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow (Russian Federation); Kozyreva, Alexandra, E-mail: alexey.tolstov@ipmu.jp [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  17. Radiological manifestations of biphosphonate treatment with APD in a child suffering from osteogenesis imperfecta

    International Nuclear Information System (INIS)

    Devogelaer, J.P.; Deuxchaisnes, C.N. de; Malghem, J.; Maldague, B.

    1987-01-01

    A 12-year-old female suffering fromosteogenesis imperfecta (OI) was treated with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APD) orally, 250 mg daily, for periods of 2 months, alternating with periods of 2 months of abstinence. Total duration of therapy was 1 year. Radiological and clinical improvement was striking. Furthermore, X-rays of the bones showed large, parallel radio-opaque striae, corresponding exactly to the periods of therapy. These were present in all metaphyses. (orig.)

  18. Radiological manifestations of biphosphonate treatment with APD in a child suffering from osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Devogelaer, J.P.; Deuxchaisnes, C.N. de; Malghem, J.; Maldague, B.

    1987-07-01

    A 12-year-old female suffering fromosteogenesis imperfecta (OI) was treated with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APD) orally, 250 mg daily, for periods of 2 months, alternating with periods of 2 months of abstinence. Total duration of therapy was 1 year. Radiological and clinical improvement was striking. Furthermore, X-rays of the bones showed large, parallel radio-opaque striae, corresponding exactly to the periods of therapy. These were present in all metaphyses.

  19. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  20. Performance Analysis of OCDMA Based on AND Detection in FTTH Access Network Using PIN & APD Photodiodes

    Science.gov (United States)

    Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.

    2011-06-01

    In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.

  1. Radiation level measured by a portable Geiger-Mueller counter at the altitude of commercial air routes

    International Nuclear Information System (INIS)

    Araki, Takashi

    1995-01-01

    The background intensities of naturally occurring radiation were measured aboard scheduled commercial airplanes using a newly developed Geiger-Mueller counter with a pocket computer. The preliminary results show that the radiation at the cruising altitude of a commercial airplane on a transcontinental flight is 40 times higher than the ground-level. (author)

  2. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    International Nuclear Information System (INIS)

    Gavin, Gerard; Amberny, Philippe.

    1977-01-01

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference [fr

  3. Construction techniques and operation principles of Geiger-Mueller counters using external cathode (Mazetype)

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1988-01-01

    The construction techniques for external cathode (Maze) and internal cathode Geiger-Muller counters are described, showing the operation principles and the used material nature. More than 200 counter types were evaluated analysing their characteristics. The influence of several types of guard-rings was studied, for optimizing counter operation conditions. Plateaus of the order of 700 V with slope of 0,3%/100 V for the net counting rate, and 1400 V with a slope of 0,8/100 V for total counts using total pressure of 10 cmHg, were obtained. A counter for β detection, using blown glass window in one of the edges of the cylinder was constructed. Counters of long life using materials such as, mica, adhesive glues, etc., were obtained. The results shown that the best counter operation occurs when it is empty in a vacuum of 10 -5 mmHg. (M.C.K.) [pt

  4. Geiger-Mueller haloid counter dead time dependence on counting rate

    International Nuclear Information System (INIS)

    Onishchenko, A.M.; Tsvetkov, A.A.

    1980-01-01

    The experimental dependences of the dead time of Geiger counters (SBM-19, SBM-20, SBM-21 and SGM-19) on the loading, are presented. The method of two sources has been used to determine the dead time counters of increased stability. The counters are switched on according to the usually used circuit of discrete counting with loading resistance of 50 MOhm and the separating capacity of 10 pF. Voltage pulses are given to the counting device with the time of resolution of 100 ns, discrimenation threshold 3 V, input resistance 3.6 Ω and the input capacity-15 pF. The time constant of the counter RC-circuit is 50 μs

  5. Potassium analysis by beta counting using a Geiger-Mueller system

    International Nuclear Information System (INIS)

    Espana, E.; Beneitez, P.; Calderon, T.

    1993-01-01

    A technique for quantitative analysis of different soils, ceramics, feldspars and natural halide samples is presented, based on the measurement of β-activities using a Geiger-Mueller system. The system was calibrated with KCl, KC 8 H 5 O 4 , KNO 3 and K 2 SO 4 standards and a potassium content of 1% yields a net β-count rate (background subtracted) of about 55 cph. Precision values of less than ±0.4% K can be achieved in counting times of about 4 hours. The results agree with those obtained by means of other more common analytical methods such as flame photometry, atomic absorption and γ-spectrometry. In comparison with these methods, this approach is direct, precise and non-destructive, because the samples do not require prior treatment. (author) 16 refs.; 2 figs.; 6 tabs

  6. Improvements to the power supply and control systems of Geiger-Mueller counter tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, G; Amberny, P

    1977-10-19

    This invention aims to provide a power supply and control system for Geiger-Mueller counter tubes requiring only one high voltage output, corresponding to the 'active' phase voltage. With this in view, the invention proposes, inter alia, a system comprising a high voltage source connected to the anode of the GM tube whose cathode is connected to a determination and counting circuit, featuring a cathode connected to the source via an electronic switch and to earth by a component for holding the potential difference at a given level and by another electronic switch, placed in series. The switches are controlled in turn so as alternately to bring the cathode to a first voltage, enabling the tube to function, and to a second voltage, causing the blocking of the tube, this second voltage being set by the component creating the voltage difference.

  7. Time over threshold based multi-channel LuAG-APD PET detector

    International Nuclear Information System (INIS)

    Shimazoe, Kenji; Orita, Tadashi; Nakamura, Yasuaki; Takahashi, Hiroyuki

    2013-01-01

    To achieve efficient signal processing, several time-based positron emission tomography (PET) systems using a large number of granulated gamma-ray detectors have recently been proposed. In this work described here, a 144-channel Pr:LuAG avalanche photodiode (APD) PET detector that uses time over threshold (ToT) and pulse train methods was designed and fabricated. The detector is composed of 12×12 Pr:LuAG crystals, each of which produces a 2 mm×2 mm×10 mm pixel individually coupled to a 12×12 APD array, which in turn is connected pixel-by-pixel with one channel of a time over threshold based application-specific integrated circuit (ToT-ASIC) that was designed and fabricated using a 0.25 μm 3.3 V Taiwan Semiconductor Company complementary metal oxide semiconductor (TSMC CMOS) process. The ToT outputs are connected through a field-programmable gate array (FPGA) to a data acquisition (DAQ) system. Three front-end ASIC boards—each incorporating a ToT-ASIC chip, threshold control digital-to-analog converters (DACs), and connectors, and dissipating power at about 230 mW per board—are used to read from the 144-channel LuAG-APD detector. All three boards are connected through an FPGA board that is programmed to calibrate the individual thresholds of the ToT circuits to allow digital multiplexing to form an integrated PET module with a measured timing resolution of 4.2 ns. Images transmitted by this PET system can be successfully acquired through collimation masks. As a further implementation of this technology, an animal PET system consisting of eight gamma pixel modules forming a ring is planned

  8. Hydrological Climate Classification: Can We Improve on Köppen-Geiger?

    Science.gov (United States)

    Knoben, W.; Woods, R. A.; Freer, J. E.

    2017-12-01

    Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which

  9. Current 2-μm dial measurements of atmospheric CO2 and expected results from space using new MCT APDS

    Science.gov (United States)

    Dumas, A.; Gibert, F.; Rothman, J.; Édouart, D.; Le Mounier, F.; Cénac, C.

    2017-11-01

    In the framework of CO2 monitoring in the Atmospheric Boundary Layer (ABL), a ground-based 2-μm Differential Absorption Lidar (DIAL) has been developed at the Laboratoire de Météorologie Dynamique (LMD) in Palaiseau. In order to derive flux information, this system has been set up with coherent detection, which allows to combine CO2 density measurements with wind velocity measurements. On the other hand, new advances in the field of Mercury Cadmium Tellure (MCT) Avalanche Photodiodes (APDs) open the way for high-precision measurements in direct detection ultimately from space. In this study, we first report on state of the art measurements obtained with the current coherent DIAL system before presenting expected results for a similar laser transmitter equipped with MCT APDs. For this latter part, we use a numerical model which relies on APDs performance data provided by the Laboratoire d'Électronique et de Technologie de l'Information (LETI).

  10. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunjun; Kim, Chankyu; Kim, Yewon; Kim, Giyoon; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information.

  11. In-situ stabilization of the Geiger (C and M Oil) Superfund Site

    International Nuclear Information System (INIS)

    Andromalos, K.B.; Ameel, M.E.

    1994-01-01

    The Geiger (C and M Oil) Superfund Site is the first US Army Corps of Engineers managed soil remediation project which utilized the in-situ stabilization/solidification technique to remediate the soil. This project involved the remediation of approximately 23,000 cubic yards of contaminated soil. Contaminants of concern included chromium, lead, PCB'S, toluene, benzene, and other organic compounds. Clean-up criteria for the stabilized material was equal to the National Primary Drinking Water Regulations, when tested using the TCLP leachate extraction method. Chromium, lead, and toluene were the main contaminants of concern, with TCLP clean-up goals of 150, 15 and 1,000 parts per billion (ppb), respectively. This National Priorities List (NPL) site is located near Charleston, SC and was an abandoned old waste oil facility that utilized unlined shallow trenches for the storage of waste oil. This paper summarizes the initial testing programs and the final production work at the site. Extensive testing was performed throughout all phases of the project. This testing was performed for the purpose of mix optimization, quality assurance, and verification testing. Specific parameters tested included: TCLP testing of organics, metals and PCBs, permeability testing, and unconfirmed compression strength

  12. Stability or instability in avoidant personality disorder:Mode fluctuations within schema therapy sessions.

    Science.gov (United States)

    Peled, Ofer; Bar-Kalifa, Eran; Rafaeli, Eshkol

    2017-12-01

    Avoidant personality disorder (APD) is among the most prevalent personality disorders, but has received relatively little empirical attention. This study aims to characterize the frequency, intensity, and fluctuation patterns seen in the modes (self-states) of APD clients over the course of schema therapy (ST), a psychotherapy approach developed especially for personality disorders. The newly-developed client mode rating scale (CMRS) was used to code every 5-min segment (n = 645) of 60 ST sessions. Each segment was coded by two independent raters, achieving adequate reliability. The avoidant/detached mode was present in 74% of therapy segments and was the most intense and unstable mode; the vulnerable child mode was present in 58% of segments and was the second most intense and unstable mode; the dysfunctional parent mode was present in 40% of segments, and was the third most intense and unstable mode; the over-compensator, compliant-surrenderer, and healthy adult modes were present in around 33% of segments, but the healthy adult mode was significantly more stable than all others. Although 645 segments were coded, they were drawn from only 15 APD clients with no control group. Further studies are needed to established specificity to APD. This study demonstrates the utility of the mode concept as a lexicon for capturing personality states and their instability. It highlights the use of in-session segment-by-segment ratings to assess client change within psychotherapy. Although DSM5 fails to address instability as a criterion for avoidant personality disorder, the APD clients in the current study were characterized by considerable mode instability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Low-Level Geiger-Counter for Tritium; Compteur Geiger a faible mouvement propre pour le tritium; Schetchik Gejgera s nizkim urovnem dlya tritiya; Contador Geiger de baja actividad de fondo para tritio

    Energy Technology Data Exchange (ETDEWEB)

    Von Buttlar, H; Stahl, W [Technische Hochschule, Darmstadt (Germany)

    1962-01-15

    pour controler la stabilite a long terme du systeme. (author) [Spanish] Contador Geiger de baja actividad de fondo para tritio. Los autores construyeron un tubo contador cilindrico de 11 l que contiene una serie de conductores de anticoincidencia en torno a un contador central de 2,9 l de volumen efectivo. La seccion de anticoincidencia esta separada del contador central por una delgada hoja de Hostaphan aluminizada. En el trabajo figura una serie de detalles constructivos. El gas que llena el contador consiste en una mezcla de etileno a 30 mm, de argon a 40 mm y la muestra de hidrogeno hasta 700 mm. Un circuito de extincion externo, cuyo tiempo muerto es de 7 ms, elimina eficazmente todos los impulsos demorados. Con un blindaje de hierro de 30 cm, el indice de recuento del contador central con hidrogeno gaseoso inerte es de 350 impulsos/min cuando el circuito de anticoincidencia no funciona y de unos 3 impulsos/min en el caso contrario. Suponiendo que un valor de 1 impulso/min por encima de la actividad de fondo sea significativo, resulta posible medir razones T/H muy pequenas, hasta 10{sup -16}, sin necesidad de proceder a un enriquecimiento isotopico. Se siguen realizando experimentos para verificar la estabilidad a largo plazo del dispositivo. (author) [Russian] Byla skonstruirovan a tsilindricheskaya trubka s ob{sup e}mom v 11 litrov, kotoraya soderzhit ryad provodov antisovpadeniya, okhvatyvayushchikh tsentral'nuyu chast' schetchika emkost'yu v 2,9 litra. TSentral'naya chast' schetchika otdelena ot sektsii antisovpadeniya tonkoj alyuminirovannoj Gostafanovoj fol'goj. Privodyatsya podrobnye dannye konstruktsii. Gaz dlya napolneniya schetchika sostoit iz 30 torr ehtilena, 40 torr argona i do 700 torr obraztsa vodoroda. Vneshnyaya tsep' gasheniya s mertvym vremenem v 7 msek. uspeshno ustranyaet posleduyushchie impul'sy. V 30 cm zheleznom ehkrane skorost' otcheta tsentral'noj chasti schetchika s ''mertvym'' vodorodnym gazom sostavlyaet 350 otschetov v minutu bez

  14. Predictors of Percutaneous Catheter Drainage (PCD) after Abdominal Paracentesis Drainage (APD) in Patients with Moderately Severe or Severe Acute Pancreatitis along with Fluid Collections

    Science.gov (United States)

    Liu, Wei-hui; Wang, Tao; Yan, Hong-tao; Chen, Tao; Xu, Chuan; Ye, Ping; Zhang, Ning; Liu, Zheng-cai; Tang, Li-jun

    2015-01-01

    Aims Although we previously demonstrated abdominal paracentesis drainage (APD) preceding percutaneous catheter drainage (PCD) as the central step for treating patients with moderately severe (MSAP) or severe acute pancreatitis (SAP), the predictors leading to PCD after APD have not been studied. Methods Consecutive patients with MSAP or SAP were recruited between June 2011 and June 2013. As a step-up approach, all patients initially received medical management, later underwent ultrasound-guided APD before PCD, if necessary, followed by endoscopic necrosectomy through the path formed by PCD. APD primarily targeted fluid in the abdominal or pelvic cavities, whereas PCD aimed at (peri)pancreatic fluid. Results Of the 92 enrolled patients, 40 were managed with APD alone and 52 received PCD after APD (14 required necrosectomy after initial PCD). The overall mortality was 6.5%. Univariate analysis showed that among the 20 selected parameters, 13 factors significantly affected PCD intervention after APD. Multivariate analysis revealed that infected (peri)pancreatic collections (P = -0.001), maximum extent of necrosis of more than 30% of the pancreas (P = -0.024), size of the largest necrotic peri(pancreatic) collection (P = -0.007), and reduction of (peri)pancreatic fluid collections by collections, a largest necrotic peri(pancreatic) collection of more than 100 ml, and reduction of (peri)pancreatic fluid collections by <50% after APD could effectively predict the need for PCD in the early course of the disease. PMID:25659143

  15. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Milisavljevic, D.; Challis, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Metzger, B. D. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Chornock, R., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States)

    2017-01-20

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.

  16. Sci-Sat AM(1): Imaging-08: Small animal APD PET detector with submillimetric resolution for molecular imaging.

    Science.gov (United States)

    Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R

    2008-07-01

    Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.

  17. Penyusunan Perencanaan Keberlangsungan Bisnis PT PLN (Persero APD Jateng dan DIY dengan ISO 22301 dan Metode OCTAVE

    Directory of Open Access Journals (Sweden)

    Azmi Afifah Zahra

    2017-01-01

    Full Text Available Abstrak— Penelitian dalam tugas akhir ini adalah melakukan penyusunan perencanaan keberlangsungan bisnis teknologi informasi pada PT PLN (Persero APD Jateng dan DIY dengan berbasis risiko sebagai bentuk kesiapan perusahaan dalam menangani risiko dan dampak bisnis yang mengancam perusahaan. PT PLN (Persero APD Jateng dan DIY menggunakan sistem dan layanan TI sebagai daya dukung perusahaan dalam mencapai tujuannya. Penggunaan sistem dan layanan TI tersebut tidak terlepas dari adanya ancaman pada risiko sistem dan layanan TI serta dampak dari proses bisnis yang dijalankan oleh tiap fungsi bisnis perusahaan. Dalam proses penyusunan untuk perencanaan keberlangsungan bisnis akan dibuat terlebih dahulu alur kerja untuk kegiatan pengelolaan keberlangsungan bisnis (Business Continuity Management untuk PT PLN (Persero APD Jateng dan DIY dengan menggunakan acuan ISO 22301: 2012 dan alur kerja yang telah diterapkan oleh perusahaan lain yaitu dari Perusahaan Chubu Electric Power Company Group dan DHS Electricity dengan tetap memberikan prosedur praktis yang dapat disesuaikan oleh PT PLN (Persero APD Jateng dan DIY. Hasil akhir dari penelitian ini adalah berupa rekomendasi penerapan alur kerja dan strategi keberlangsungan bisnis untuk PT PLN (Persero berdasarkan pada risiko aset TI yang menjadi tanggung jawab tim SCADA dan Telekomunikasi.

  18. Das Thema “Altern” in Arno Geigers Roman «Alles über Sally»

    Directory of Open Access Journals (Sweden)

    Meike Dackweiler

    2013-11-01

    Full Text Available Alles über Sally (All about Sally is the fifth novel of the successful Austrian author Arno Geiger. While it was both praised and criticized for being a contemporary adaption of the adultery novel, little importance was attached to the theme of ageing, which pervades the whole novel. Moreover, adulterous female characters over fifty are rare in contemporary German literature. Given these premises, this essay examines the composition of the ageing characters in the novel and provides a discussion of the social construction of images of ageing.

  19. Use of Fall-Risk Inducing Drugs in Patients Using Anti-Parkinson Drugs (APD: A Swedish Register-Based Study.

    Directory of Open Access Journals (Sweden)

    Ylva Haasum

    Full Text Available Many drugs increase the risk of falls in old age. Although persons with Parkinson's disease (PD are at increased risk of experiencing falls and fractures, the use of fall-risk inducing drugs (FRIDs in this population has not previously been investigated. The objective of this study was to investigate the burden of use of FRIDs in older persons treated with anti-Parkinson drugs (APD; used as a proxy for PD, compared to persons without APD.We analyzed individual data on age, sex, type of housing and drug use in 1 346 709 persons aged ≥ 65 years in the Swedish Prescribed Drug Register on the date of 30 September 2008. Main outcome measure was the use of FRIDs.FRIDs were used by 79% of persons with APD and 75% of persons without APD. Persons with APD were more likely to use ≥ 1 FRIDs compared to persons without APD (adjusted OR: 1.09; 95% CI: 1.06-1-12. The association was stronger for concomitant use of ≥ 5 FRIDS (adjusted OR: 1.49; 95% CI: 1.44-1.55.The high use of FRIDs among persons with APD indicates that these patients may be at increased risk of drug-induced falls. Further studies are needed to investigate how these drugs affect the risk of falling in persons with PD.

  20. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  1. Analysis of surface dark current dependent upon surface passivation in APD based on GaAs

    International Nuclear Information System (INIS)

    Song, Hong Joo; Roh, Cheong Hyun; Lee, Jun Ho; Choi, Hong Goo; Hahn, Cheol-Koo; Kim, Dong Ho; Park, Jung Ho

    2009-01-01

    In this paper, we investigated the dependence of reverse dark current on two types of surface passivation, one of which is polyimide and the other is SiN x , for InAs quantum dots/GaAs separate absorption, charge, multiplication avalanche photodiode (SACM APD). From the experimental results, we found that dark current was dominated by surface current, and not bulk current. It was also noted that SiN x passivation has a surface current that is lower by three to nine times in magnitude than that in polyimide passivation in the whole range of bias. To analyze the difference in dark current due to the passivation types, we propose the theoretical current components. This shows that the dark current of both passivation types is mainly composed of generation–recombination (G–R) and tunneling components, originating from the surface. However, each component has a different magnitude for passivation types, which can be explained by carrier concentration and trap density. The dependence of dark current on temperature shows the different behaviors between passivation types and supports a theoretical description of current components

  2. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    International Nuclear Information System (INIS)

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  3. Studies on an automated gain stabilisation for the new APD read-out of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, Peter [HISKP Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    For the investigation of the nucleon spectrum it is not enough to measure only cross sections because of the large overlap of resonances. To disentangle these resonances, a partial wave analysis is needed. To find unambiguous solutions it is necessary to measure (double) polarisation observables. The CBELSA/TAPS experiment is an important tool to measure these observables in meson photoproduction off nucleons. To achieve a high efficiency in purely neutral reactions it is important to implement the main calorimeter into the first level trigger. To do so it is necessary to replace the current PIN photo diodes with new avalanche photo diodes (APDs). The new read-out is able to provide a timing signal that is fast enough to use it as a trigger while it does not impair the energy resolution of the calorimeter compared to the previous system. A drawback of APDs is their temperature dependency. To provide a stable gain throughout varying running conditions it is vital to monitor the temperature change and correct it if necessary. The poster shows an approach to ensure temperature stability where the temperature is monitored via a temperature sensitive NTC thermistor and the gain is adjusted via changes of the high voltage supply of the APDs. This method proved successful while it is easy to implement in all 1320 CsI(Tl) crystals of the calorimeter.

  4. A method to quench and recharge avalanche photo diodes for use in high rate situations

    International Nuclear Information System (INIS)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI

  5. An application of high vacuum technique: fabrication of Geiger - Mueller counters and measurements of fallout radioactivity in Rio de Janeiro, Brazil, between 1950 and 1960

    International Nuclear Information System (INIS)

    Gross, B.

    1986-01-01

    The initial development of vacuum technology, in Brazil, is described. Special attention is given to the fabrication of Geiger-Mueller counters in the period between 1950-1960, abd the results obtained by its use in measurements of radioactivity produced by hydrogen weapons explosions in the atmosphere. (M.C.K.) [pt

  6. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  7. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Directory of Open Access Journals (Sweden)

    Dumas A.

    2016-01-01

    Full Text Available In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm. This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA. A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  8. Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y., E-mail: jin@hep.phys.s.u-tokyo.ac.jp [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Borshchev, O.V. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation); Epifanov, D.A. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Ponomarenko, S.A.; Surin, N.M. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation)

    2016-07-11

    A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes (Hamamatsu APD S8664-55 and S8664-1010) has been studied for the upgrade of the end cap electromagnetic calorimeter of Belle II detector. An essential increase of the light output was achieved with wavelength shifters based on nanostructured organosilicon luminophores. - Highlights: • A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes has been studied. • The equivalent noise charge and equivalent noise energy of the counter have been measured. • An essential increase of the light output was achieved with wavelength shifters.

  9. The roles played by the Canadian General Electric Company's Atomic Power Department in Canada's nuclear power program: work, organization and success in APD, 1955-1995

    International Nuclear Information System (INIS)

    Cantello, G.W.

    2003-01-01

    This thesis explores the roles played by the Canadian General Electric Company's Atomic Power Department (APD) in Canada's distinctive nuclear power program. From the establishment of APD in 1955 until the completion of the KANUPP project in Pakistan in 1972, the company's strategy encompassed the design, manufacture, and commissioning of entire nuclear power projects in Canada and abroad. APD then developed a specialized role in the design and supply of complete nuclear fuel handling systems, nuclear fuel bundles, and service work, that sustained a thriving workplace. Five key factors are identified as the reasons behind the long and successful history of the department: (1) Strong, capable and efficient management from the start, (2) Flexible organizational structure, (3) Extremely competent design group, (4) Excellent manufacturing, test, commissioning and service capabilities, (5) Correctly identifying, at the right time, the best fields in which to specialize. (author)

  10. Propagation velocity of an avalanche along the anode wire in a Geiger-Mueller counter filled with Q-gas at 1 ATM

    International Nuclear Information System (INIS)

    Matsuda, Kazunori; Sanada, Junpei

    1990-01-01

    Simple methods were applied to investigate the characteristics of a Geiger-Mueller counter with Q-gas flowing at 1 atm. The propagation velocity of the photon-aided avalanche along the anode wire depends linearly on the strength of the electric field in the counter. Its fluctuation (FWHM) as a function of distance between the source position and the end point is discussed. (orig.)

  11. Kepatuhan Menggunakan Alat Pelindung Diri (APD Ditinjau dari Pengetahuan dan Perilaku pada Petugas Instalasi Pemeliharaan Sarana Dan Prasarana Rumah Sakit (IPSRS.

    Directory of Open Access Journals (Sweden)

    Rizka Ayu Zahara

    2017-12-01

    Full Text Available Abstrak: Alat Pelindung Diri (APD berfungsi untuk melindungi tubuh terhadap bahaya-bahaya kecelakaan kerja dan mengurangi tingkat keparahan dari kecelakaan kerja yang terjadi. Penelitian ini bertujuan untuk mengetahui korelasi antara pengetahuan dan perilaku petugas Instalasi Pemeliharaan Sarana dan Prasarana Rumah Sakit (IPSRS dengan kepatuhan terhadap penggunaan Alat Pelindung Diri (APD. Desain penelitian ini adalah Cross Sectional. Populasi adalah seluruh petugas IPSRS di RSUD Siti Aisyah Kota Lubuklinggau sebanyak 64 orang. Penelitian dilaksanakan pada bulan Agustus 2017. Analisis data menggunakan uji statistik chi-Square. Hasil penelitian menunjukkan adanya korelasi antara kepatuhan menggunakan Alat Pelindung Diri APD pengetahuan (p value = 0, 001, dan perilaku (p value = 0, 006. Pihak RSUD diharapkan dapat menerapkan Standar Prosedur Operasional (SPO yang lebih tegas, melakukan pelatihan tentang penggunaan APD, dan meningkatkan pengawasan terhadap kepatuhan petugas dalam menggunakan APD. Kata Kunci : Pengetahuan, Perilaku, Kepatuhan Alat Pelindung Diri (APD. ADHERENCE USING PERSONAL PROTECTIVE EQUIPMENT (PPE IN TERMS OF THE KNOWLEDGE AND BEHAVIOR OF OFFICER INSTALLATION MAINTENANCE FACILITIES AND INFRASTRUCTURE HOSPITAL (IPSRS Abstract: Personal Protective Equipment (PPE serves to protect the body against occupational injuries and reduce the severity of work accidents that occur. This study aims to determine the correlation between the knowledge and behavior of the officer of the Installation of Hospital Facilities and Infrastructure Maintenance (IPSRS with the adherence to the use of Personal Protective Equipment (PPE. The design of this study was Cross Sectional. The population is all IPSRS officers in RSUD Siti Aisyah Lubuklinggau City as many as 64 people. The study was conducted in August 2017. The data analysis used chi-square statistical test. The results showed that there was a correlation between adherence using Personal

  12. Using Deep Learning for Gamma Ray Source Detection at the First G-APD Cherenkov Telescope (FACT)

    Science.gov (United States)

    Bieker, Jacob

    2018-06-01

    Finding gamma-ray sources is of paramount importance for Imaging Air Cherenkov Telescopes (IACT). This study looks at using deep neural networks on data from the First G-APD Cherenkov Telescope (FACT) as a proof-of-concept of finding gamma-ray sources with deep learning for the upcoming Cherenkov Telescope Array (CTA). In this study, FACT’s individual photon level observation data from the last 5 years was used with convolutional neural networks to determine if one or more sources were present. The neural networks used various architectures to determine which architectures were most successful in finding sources. Neural networks offer a promising method for finding faint and extended gamma-ray sources for IACTs. With further improvement and modifications, they offer a compelling method for source detection for the next generation of IACTs.

  13. Poster - 01: LabPET II Pixelated APD-Based PET Scanner for High-Resolution Preclinical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-François; Bergeron, Mélanie; Bouchard, Jonathan; Bouziri, Haithem; Cadorette, Jules; Gaudin, Émilie; Jürgensen, Nadia; Koua, Konin Calliste; Trépanier, Pierre-Yves Lauzier; Leroux, Jean-Daniel; Loignon-Houle, Francis; Njejimana, Larissa; Paillé, Maxime; Paulin, Caroline; Pepin, Catherine; Pratte, Jean-François; Samson, Arnaud; Thibaudeau, Christian [Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke, Novalgo Inc., Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, 3IT, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke (Canada); and others

    2016-08-15

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time and energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.

  14. Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer.

    Science.gov (United States)

    Yoshimatsu, Toshihide; Nada, Masahiro; Oguma, Manabu; Yokoyama, Haruki; Ohno, Tetsuichiro; Doi, Yoshiyuki; Ogawa, Ikuo; Takahashi, Hiroshi; Yoshida, Eiji

    2012-12-10

    We demonstrate an integrated 100 GbE receiver optical sub-assembly (ROSA) that incorporates a monolithic four-channel avalanche photodiode (APD) array and a planer lightwave circuit (PLC) based LAN-WDM demultiplexer. A record minimum receiver sensitivity of -20 dBm and 50-km error-free SMF transmission without an optical amplifier have been achieved.

  15. Implementation of human thermal comfort information in Köppen-Geiger climate classification—the example of China

    Science.gov (United States)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  16. Implementation of human thermal comfort information in Köppen-Geiger climate classification-the example of China.

    Science.gov (United States)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-11-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  17. Development of a measurement device, using a Geiger-Mueller type detector, for the determination of the activity in a 99mTc generator prototype

    International Nuclear Information System (INIS)

    Urquizo, Rafael; Gago, Javier; Mendoza, Pablo; Cruz-Saco, Cesar; Rojas, Jorge

    2014-01-01

    This article presents the implementation of a measurement system using a Geiger-Mueller detector (GM) in order to adapt it into a 99m Tc generator prototype. The response signal of the measurement system designed in terms of count rate is linearly proportional to the variation of the activity measured between 280 and 170 mCi of 99m Tc with a relative error of ± 2,8 %. However, further tests are needed to evaluate the correlation for an activity level lower than 20 mCi in order to obtain an adequate range of use. (authors).

  18. Experimental characterization of the 192 channel Clear-PEM frontend ASIC coupled to a multi-pixel APD readout of LYSO:Ce crystals

    International Nuclear Information System (INIS)

    Albuquerque, Edgar; Bexiga, Vasco; Bugalho, Ricardo; Carrico, Bruno; Ferreira, Claudia S.; Ferreira, Miguel; Godinho, Joaquim; Goncalves, Fernando; Leong, Carlos; Lousa, Pedro; Machado, Pedro; Moura, Rui; Neves, Pedro; Ortigao, Catarina; Piedade, Fernando; Pinheiro, Joao F.; Rego, Joel; Rivetti, Angelo; Rodrigues, Pedro; Silva, Jose C.

    2009-01-01

    In the framework of the Clear-PEM project for the construction of a high-resolution scanner for breast cancer imaging, a very compact and dense frontend electronics system has been developed for readout of multi-pixel S8550 Hamamatsu APDs. The frontend electronics are instrumented with a mixed-signal Application-Specific Integrated Circuit (ASIC), which incorporates 192 low-noise charge pre-amplifiers, shapers, analog memory cells and digital control blocks. Pulses are continuously stored in memory cells at clock frequency. Channels above a common threshold voltage are readout for digitization by off-chip free-sampling ADCs. The ASIC has a size of 7.3x9.8mm 2 and was implemented in a AMS 0.35μm CMOS technology. In this paper the experimental characterization of the Clear-PEM frontend ASIC, reading out multi-pixel APDs coupled to LYSO:Ce crystal matrices, is presented. The chips were mounted on a custom test board connected to six APD arrays and to the data acquisition system. Six 32-pixel LYSO:Ce crystal matrices coupled on both sides to APD arrays were readout by two test boards. All 384 channels were operational. The chip power consumption is 660 mW (3.4 mW per channel). A very stable behavior of the chip was observed, with an estimated ENC of 1200-1300e - at APD gain 100. The inter-channel noise dispersion and mean baseline variation is less than 8% and 0.5%, respectively. The spread in the gain between different channels is found to be 1.5%. Energy resolution of 16.5% at 511 keV and 12.8% at 662 keV has been measured. Timing measurements between the two APDs that readout the same crystal is extracted and compared with detailed Monte Carlo simulations. At 511 keV the measured single photon time RMS resolution is 1.30 ns, in very good agreement with the expected value of 1.34 ns.

  19. A vegetal Geiger counter

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    In order to study the Chernobyl accident impact on ecosystems, Ukrainian and Swiss scientists have used a plant: the Arabidopsis thaliana. They have introduced in its genome a gene coding an enzyme called β-glucuronidase. This substance, when it is expressed, colours vegetal cells blue. In fact the introduced gene is divided between 2 paired chromosomes. When the plant is placed on a nuclear contaminated soil, radiation damaged chromosomes exchange fragments and the 2 parts of the enzyme gene may recombine, the enzyme can then be expressed. For low and medium contamination ( 2 ) biologists have found a correlation between the number of blue spots on the plant and the irradiation rate. (A.C.)

  20. Geiger Counter Technique

    Science.gov (United States)

    1942-01-01

    ONLY; ADMINISTRATIVE/OPERATIONAL USE; 03 MAR 1999. OTHER REQUESTS SHALL BE REFERRED THROUGH COMMANDING OFFICER, NAVAL RESEARCH LAB , WASHINGTON, DC 20375...Used as Glow Tube Voltage + " -- -+a...... .-..... . .... . . . . . .. . . Plate 41. Tar of aCotrolust Voltaep with Gas Pressure lab A-gtarator of’ Plate...construation cf vapor comatera. Acst Lay metal wll menru as cathode aterial, but oxidiste copper Lad bras han given beest res-ts. fe ride choice of

  1. CARE-HHH-APD Workshop on Finalizing the Roadmap for the Upgrade of the CERN and GSI Accelerator Complex

    CERN Document Server

    Zimmermann, Frank; BEAM'07; BEAM 2007; Finalizing the Roadmap for the Upgrade of the LHC and GSI Accelerator Complex

    2008-01-01

    This report contains the Proceedings of the CARE-HHH-APD Event BEAM’07, “Finalizing the Roadmap for the Upgrade of the CERN & GSI Accelerator Complex,” which was held at CERN in Geneva, Switzerland, from 1 to 5 October 2007. BEAM’07 was primarily devoted to beam dynamics limitations for the two, or three, alternative baseline scenarios of the LHC luminosity upgrade and to critical design choices for the upgrade of the LHC injector complex at CERN and for the FAIR complex at GSI. It comprised five parts: (1) a Mini-Workshop on LHC+ Beam Performance, (2) a CERN-GSI Meeting on Collective Effects, (3) the Francesco Ruggiero Memorial Symposium, (4) a Mini-Workshop on the LHC Injectors Upgrade, and (5) the BEAM’07 Summaries. Topics addressed in the first mini-workshop of BEAM’07 ranged from the luminosity performance reach of the upgraded LHC in different scenarios, over the generation and stability of the future LHC beams, the turnaround time, beam–beam effects, luminosity levelling methods, and ...

  2. Joint CARE-ELAN, CARE-HHH-APD, and EUROTEV-WP3 Workshop on Electron Cloud Clearing

    CERN Document Server

    Scandale, Walter; Schulte, D; Zimmermann, F; Electron Cloud Effects and Technological Consequences; ECL2

    2007-01-01

    This report contains the Proceedings of the joint CARE-HHH-APD, CARE-ELAN, and EUROTEV-WP3 Mini-Workshop on 'Electron Cloud Clearing - Electron Cloud and Technical Consequences', "ECL2", held at CERN in Geneva, Switzerland, 1-2 March 2007). The ECL2 workshop explored novel technological remedies against electron-cloud formation in an accelerator beam pipe. A primary motivation for the workshop was the expected harmful electron-cloud effects in the upgraded LHC injectors and in future linear colliders, as well as recent beam observations in operating facilities like ANKA, CESR, KEKB, RHIC, and SPS. The solutions discussed at ECL2 included enamel-based clearing electrodes, slotted vacuum chambers, NEG coating, and grooves. Several of the proposed cures were assessed in terms of their clearing efficiency and the associated beam impedance. The workshop also reviewed new simulation tools like the 3D electron-ion build-up 'Faktor', modeling assumptions, analytical calculations, beam experiments, and laboratory meas...

  3. Characteristics and fabrication of Geiger-Mueller counters with thin walls made of treated magnesium - Note about the use of araldite

    International Nuclear Information System (INIS)

    Charbonnel, A.

    1949-03-01

    This report describes, first, the advantage of magnesium for the manufacturing of Geiger-Mueller counters: suitable for machining and polishing, but strong reactivity with the counter atmosphere in the case of magnesium-rich alloys. Thus, the inside wall of the counter (cylinder of 20 mm diameter and 6 cm length) requires a non-reactive protective coating with excellent sealing properties. The synthetic resin 'araldite' fulfills all these conditions. The second part of the report describes the different steps of the fabrication of magnesium wall counters: lathe work, machining down and chemical polishing of hulls, assembly, tight sealing, pumping, filling-up and control tests. The average service life of these counters is of about 4 months. A note about the use and properties (hardening, mechanical properties, resistance..) of araldite is given in appendix. (J.S.)

  4. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    Science.gov (United States)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  5. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang [School of Electronic Science and Engineering, Nanjing University, Nanjing 210046 (China)

    2016-03-15

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.

  6. Wavelength shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules

    CERN Document Server

    Braem, André; Joram, C; Rudge, A; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2008-01-01

    The measurements presented in this paper are related to the development of a PET camera based on a 3-D axial geometry with excellent 3-D spatial, timing and energy resolution. The detector modules consist of matrices of long axially oriented scintillation crystal bars, which are individually coupled to photodetectors. The axial coordinate is derived from wavelength shifting (WLS) plastic strips orthogonally interleaved between the crystal bars and readout by G-APD arrays. We report on results from measurements with two LYSO crystal bars, read with PMTs, and two WLS strips readout with G-APD devices from Hamamatsu (called MPPC). The WLS strips are positioned orthogonally underneath the LYSO bars. Yields of about 80 photoelectrons from the WLS strips for an energy deposition in the LYSO crystals equivalent to the absorption of 511 keV photons are observed. The axial coordinate in the LYSO bars is reconstructed with a precision of about 1.9 mm (FWHM) using a digital reconstruction method. The resolution of an an...

  7. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  8. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    International Nuclear Information System (INIS)

    Schneider, Florian R.; Mann, Alexander B.; Technische Univ. Muenchen, Klinikum rechts der Isar; Konorov, Igor; Paul, Stephan; Delso, Gaspar; Ziegler, Sibylle I.

    2012-01-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a 22 Na point source and reconstruct different source geometries filled with 18 F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  9. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Florian R.; Mann, Alexander B. [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik; Konorov, Igor; Paul, Stephan [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Delso, Gaspar; Ziegler, Sibylle I. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik

    2012-07-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a {sup 22}Na point source and reconstruct different source geometries filled with {sup 18}F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  10. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products

    Science.gov (United States)

    Villadsen, Nikolaj L.; Jacobsen, Kristian M.; Keiding, Ulrik B.; Weibel, Esben T.; Christiansen, Bjørn; Vosegaard, Thomas; Bjerring, Morten; Jensen, Frank; Johannsen, Mogens; Tørring, Thomas; Poulsen, Thomas B.

    2017-03-01

    Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.

  11. Characteristics and fabrication of Geiger-Mueller counters with thin walls made of treated magnesium - Note about the use of araldite; Caracteristiques et fabrication des compteurs Geiger-Muller a paroi mince en magnesium traite - Note sur l'utilisation de l'araldite

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, A

    1949-03-01

    This report describes, first, the advantage of magnesium for the manufacturing of Geiger-Mueller counters: suitable for machining and polishing, but strong reactivity with the counter atmosphere in the case of magnesium-rich alloys. Thus, the inside wall of the counter (cylinder of 20 mm diameter and 6 cm length) requires a non-reactive protective coating with excellent sealing properties. The synthetic resin 'araldite' fulfills all these conditions. The second part of the report describes the different steps of the fabrication of magnesium wall counters: lathe work, machining down and chemical polishing of hulls, assembly, tight sealing, pumping, filling-up and control tests. The average service life of these counters is of about 4 months. A note about the use and properties (hardening, mechanical properties, resistance..) of araldite is given in appendix. (J.S.)

  12. Characteristics and fabrication of Geiger-Mueller counters with thin walls made of treated magnesium - Note about the use of araldite; Caracteristiques et fabrication des compteurs Geiger-Muller a paroi mince en magnesium traite - Note sur l'utilisation de l'araldite

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, A

    1949-03-01

    This report describes, first, the advantage of magnesium for the manufacturing of Geiger-Mueller counters: suitable for machining and polishing, but strong reactivity with the counter atmosphere in the case of magnesium-rich alloys. Thus, the inside wall of the counter (cylinder of 20 mm diameter and 6 cm length) requires a non-reactive protective coating with excellent sealing properties. The synthetic resin 'araldite' fulfills all these conditions. The second part of the report describes the different steps of the fabrication of magnesium wall counters: lathe work, machining down and chemical polishing of hulls, assembly, tight sealing, pumping, filling-up and control tests. The average service life of these counters is of about 4 months. A note about the use and properties (hardening, mechanical properties, resistance..) of araldite is given in appendix. (J.S.)

  13. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  14. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  15. Free-running InGaAs/InP single photon detector with feedback quenching IC

    International Nuclear Information System (INIS)

    Zheng, Fu; Wang, Feilong; Wang, Chao; Sun, Zhibin; Zhai, Guangjie

    2015-01-01

    InGaAs/InP avalanche photodiodes (APD) are usually employed as Geiger-mode single photon detector at near-infrared wavelength between 1.0 μm and 1.7 μm. In order to work in the free-running regime rather than gated regime, we demonstrate a feedback quenching integrated circuit to rapidly quench the avalanche and reset the APD. Because this IC is close to the APD, parasitic capacitance is largely reduced, thus reducing the quench-time, reset-time and also the afterpulsing probability. We investigated the free-running single photon detector's afterpulsing effect, de-trapping time, dark count rate and detection efficiency and also compared with gated regime operation. After corrected for deadtime and afterpulse, we found the free-running detector performance is comparable with gated regime

  16. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  17. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  18. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  19. Reduction of the duration of the natural dead time of a 4 {pi} gas ionization counter operating in geiger-muller; Reduction de la duree de l'etat d'insensibilite naturelle d'un compteur a ionisation gazeuse de geometrie 4 {pi} travaillant en regime de Geiger-Muller

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement d' Electronique Generale, Laboratoire de Mesure des Radioelements

    1967-07-01

    It Is only possible to benefit from the 100 per cent efficiency of a 4 {pi} gas-ionisation detector operating in the Geiger-Muller regime (an efficiency which always appears difficult to attain in other detectors) if, one is able: - on the one hand to reduce considerably - on the other hand to fix very precisely the length at the real dead time of the system operating in the above conditions. Taking into account both the phenomena characteristic of the discharge in the regime under consideration, phenomena whose properties are described, and the geometrical conditions depending on the operation over a solid angle of 4 {pi}, it is shown that with an exterior electronic system for cutting off the discharge for example in 30 nanoseconds, absolute 4 {pi} G.M. measurements would become competitive with those now carried out almost in proportional conditions. Measurement results on sources of 5 x 10{sup 3} emissions per second maximum obtained by the use of a system for which the interval between the passage of a particle and the moment when the device has been made insensitive is still 60 nanoseconds have made it possible to confirm these statements. (author) [French] De l'efficacite de 100 pour cent du detecteur a ionisation gazeuse travaillant en regime de Geiger-Muller en geometrie 4 {pi} (efficacite toujours difficile a atteindre par d'autres detecteurs semble-t-il) on ne peut cependant beneficier que si l'on est capable: - d'une part, de reduire considerablement - d'autre part, de fixer de maniere tres precise la duree d'insensibilite reelle du systeme travaillant dans les conditions ci-dessus. Tenant compte des phenomenes propres a la decharge, dans le regime en question, phenomenes dont on rappeUto quelques caracteristiques, et des conditions geometriques propres a une detection dans un angle solide de 4 {pi} on montre qu'avec un systeme electronique de coupure externe de la decharge qui arreterait cette derniere en 30 nanosecondes par exemple, des mesures

  20. Reduction of the duration of the natural dead time of a 4 {pi} gas ionization counter operating in geiger-muller; Reduction de la duree de l'etat d'insensibilite naturelle d'un compteur a ionisation gazeuse de geometrie 4 {pi} travaillant en regime de Geiger-Muller

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement d' Electronique Generale, Laboratoire de Mesure des Radioelements

    1967-07-01

    It Is only possible to benefit from the 100 per cent efficiency of a 4 {pi} gas-ionisation detector operating in the Geiger-Muller regime (an efficiency which always appears difficult to attain in other detectors) if, one is able: - on the one hand to reduce considerably - on the other hand to fix very precisely the length at the real dead time of the system operating in the above conditions. Taking into account both the phenomena characteristic of the discharge in the regime under consideration, phenomena whose properties are described, and the geometrical conditions depending on the operation over a solid angle of 4 {pi}, it is shown that with an exterior electronic system for cutting off the discharge for example in 30 nanoseconds, absolute 4 {pi} G.M. measurements would become competitive with those now carried out almost in proportional conditions. Measurement results on sources of 5 x 10{sup 3} emissions per second maximum obtained by the use of a system for which the interval between the passage of a particle and the moment when the device has been made insensitive is still 60 nanoseconds have made it possible to confirm these statements. (author) [French] De l'efficacite de 100 pour cent du detecteur a ionisation gazeuse travaillant en regime de Geiger-Muller en geometrie 4 {pi} (efficacite toujours difficile a atteindre par d'autres detecteurs semble-t-il) on ne peut cependant beneficier que si l'on est capable: - d'une part, de reduire considerablement - d'autre part, de fixer de maniere tres precise la duree d'insensibilite reelle du systeme travaillant dans les conditions ci-dessus. Tenant compte des phenomenes propres a la decharge, dans le regime en question, phenomenes dont on rappeUto quelques caracteristiques, et des conditions geometriques propres a une detection dans un angle solide de 4 {pi} on montre qu'avec un systeme electronique de coupure externe de la decharge qui arreterait cette derniere en 30

  1. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  2. Microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  3. Determination of some fundamental characteristics of Geiger-Mueller counters. Applications to the study of delayed particles from cosmic-ray shower; Sur la determination de quelques caracteristiques fondamentales de compteurs de geiger-muller applications a l'etude des particules retardees des gerbes atmospheriques du rayonnement cosmique

    Energy Technology Data Exchange (ETDEWEB)

    Picard, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1954-06-15

    After some historic recalls, the different phases of discharge of a Geiger-Mueller counter is studied. It measures, by oscillograph method, the time between the flow of a particle through a determined area of the counter and the response of the associated amplifier. This time length is composed by the latency period and the delay itself which depends on the amplifier sensitivity. The selection of particles which generate a discharge in the studied counter is obtained with a two coincidence counters telescope in which the aperture is limited by four counters in anticoincidence with the first two counters. The measures have been done with different distance values and an overvoltage V{sub s} which was applied to the counter. The dead time of a GM counter is also measured with a delayed coincidences method. The counter pulses which supply the coincidence circuit are delivered directly or with a known and variable delay. This method allows also to study the spurious pulses which are due to the positive ions impact on the counter cathode. Results for counters working in different conditions are given. It describes the system to limit the discharge which induces the increase of the life working of a counter, the decrease of its dead time and the reduction of the number of spurious pulses. In a second part, it describes the system to study the time correlation between different particles of the cosmic ray. An experiment concerning the presence of delayed particles in cosmic showers has permitted to specify the superior limit of this phenomena which is directly connected to the presence of heavy nuclear particles in the cosmic shower. (M.P.)

  4. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  5. C-RED One and C-RED2: SWIR high-performance cameras using Saphira e-APD and Snake InGaAs detectors

    Science.gov (United States)

    Gach, Jean-Luc; Feautrier, Philippe; Stadler, Eric; Clop, Fabien; Lemarchand, Stephane; Carmignani, Thomas; Wanwanscappel, Yann; Boutolleau, David

    2018-02-01

    After the development of the OCAM2 EMCCD fast visible camera dedicated to advanced adaptive optics wavefront sensing, First Light Imaging moved to the SWIR fast cameras with the development of the C-RED One and the C-RED 2 cameras. First Light Imaging's C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise and very low background. C-RED One is based on the last version of the SAPHIRA detector developed by Leonardo UK. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features. In addition to this project, First Light Imaging developed an InGaAs 640x512 fast camera with unprecedented performances in terms of noise, dark and readout speed based on the SNAKE SWIR detector from Sofradir. The camera was called C-RED 2. The C-RED 2 characteristics and performances will be described. The C-RED One project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944. The C-RED 2 development is supported by the "Investments for the future" program and the Provence Alpes Côte d'Azur Region, in the frame of the CPER.

  6. Low energy γ- γ and e{sup −}- γ PAC measurements using APDs and the probe nuclei {sup 83}Rb({sup 83}Kr) and {sup 83m}Kr({sup 83}Kr)

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M., E-mail: arenz@hiskp.uni-bonn.de; Vianden, R., E-mail: vianden@hiskp.uni-bonn.de [Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Germany)

    2016-12-15

    In the field of Perturbed Angular Correlation (PAC) measurements Avalanche Photo Diodes (APD) are rarely used, despite their favourable properties for fast counting purposes at low energies. This work demonstrates their application in combination with a simple and cheap custom build voltage sensitive preamplifier module. Using the PAC nuclei {sup 83}Rb({sup 83}Kr) and {sup 83m}Kr({sup 83}Kr), the time resolution of the set-up is analysed and the feasibility of precise timing measurements is shown.

  7. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  8. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    Science.gov (United States)

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  9. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    Science.gov (United States)

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  10. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  11. Studies of avalanche photodiodes for scintillating fibre tracking readout

    International Nuclear Information System (INIS)

    Fenker, H.; Thomas, J.

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ''Geiger Mode'' have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed

  12. Study of SiPM as a potential photodetector for scintillator readout

    International Nuclear Information System (INIS)

    Herbert, D.J.; D'Ascenzo, N.; Belcari, N.; Del Guerra, A.; Morsani, F.; Saveliev, V.

    2006-01-01

    The Silicon PhotoMultiplier (SiPM) APD represents an interesting advance in photodetection and could soon be a rival to traditional PMTs in many applications. The SiPM is effectively a densely packed 2D array of Geiger-mode APD microcells, each having individual resistive quenching and multiplexed outputs. In this way the SiPM acts as a linear, high-gain photodetector for moderate photon flux (N photon cells ). The Metal-Resistor-Silicon (MRS) structure SiPM, produced by CPTA Russia, has been characterised and tested for scintillator light detection in medical applications such as PET. We present a summary of measurements of the device's primary operating characteristics and results of the application to scintillator readout

  13. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  14. Interaction of tearing modes

    International Nuclear Information System (INIS)

    Satya, Y.; Schmidt, G.

    1979-01-01

    A fully developed tearing mode modifies the magnetic field profile. The effect of this profile modification on the linear growth rate of a different tearing mode in a slab and cylindrical geometry is investigated

  15. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  16. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  17. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    Science.gov (United States)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  18. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  19. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  20. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  1. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  2. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  3. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  4. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  5. Excursions through KK modes

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India)

    2016-07-07

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  6. Excursions through KK modes

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki

    2016-01-01

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  7. Effect of modes interaction on the resistive wall mode stability

    International Nuclear Information System (INIS)

    Chen Longxi; Wu Bin

    2013-01-01

    Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)

  8. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  9. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  10. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  11. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  12. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions

    Directory of Open Access Journals (Sweden)

    Loewe Axel

    2015-09-01

    Full Text Available Vernakalant is a new antiarrhythmic agent for the treatment of atrial fibrillation. While it has proven to be effective in a large share of patients in clinical studies, its underlying mode of action is not fully understood. In this work, we aim to link experimental data from the subcellular, tissue, and system level using an in-silico approach. A Hill’s equation-based drug model was extended to cover the frequency dependence of sodium channel block. Two model variants were investigated: M1 based on subcellular data and M2 based on tissue level data. 6 action potential (AP markers were evaluated regarding their dose, frequency and substrate dependence. M1 comprising potassium, sodium, and calcium channel block reproduced the reported prolongation of the refractory period. M2 not including the effects on potassium channels reproduced reported AP morphology changes on the other hand. The experimentally observed increase of ERP accompanied by a shortening of APD90 was not reproduced. Thus, explanations for the drug-induced changes are provided while none of the models can explain the effects in their entirety. These results foster the understanding of vernakalant’s cellular mode of action and point out relevant gaps in our current knowledge to be addressed in future in-silico and experimental research on this aspiring antiarrhythmic agent.

  13. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  14. Collective Lyapunov modes

    International Nuclear Information System (INIS)

    Takeuchi, Kazumasa A; Chaté, Hugues

    2013-01-01

    We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  15. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  16. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  17. Magnetic modes in superlattices

    International Nuclear Information System (INIS)

    Oliveira, F.A.

    1990-04-01

    A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt

  18. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  19. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  20. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  1. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  2. Boosting Majorana Zero Modes

    Directory of Open Access Journals (Sweden)

    Torsten Karzig

    2013-11-01

    Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.

  3. Guaranteed performance in reaching mode of sliding mode ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.

  4. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  5. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  6. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  7. Raman amplification of OAM modes

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    The set of fibre modes carrying orbital angular momentum (OAM) is a possible basis for mode division multiplexing. In this regard, fibres supporting OAM modes have been fabricated [1], and optical communication using these fibres, has been demonstrated [2]. A vital part of any long range...

  8. ACCA College English Teaching Mode

    Science.gov (United States)

    Ding, Renlun

    2008-01-01

    This paper elucidates a new college English teaching mode--"ACCA" (Autonomous Cooperative Class-teaching All-round College English Teaching Mode). Integrated theories such as autonomous learning and cooperative learning into one teaching mode, "ACCA", which is being developed and advanced in practice as well, is the achievement…

  9. Fluxon modes in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2004-01-01

    We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...

  10. Standardization of Keyword Search Mode

    Science.gov (United States)

    Su, Di

    2010-01-01

    In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…

  11. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  12. Modes of fossil preservation

    Science.gov (United States)

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  13. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  14. The Integrated Mode Management Interface

    Science.gov (United States)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  15. Estimating accidental coincidences for pixelated PET detectors and singles list-mode acquisition

    International Nuclear Information System (INIS)

    Rafecas, M.; Torres, I.; Spanoudaki, V.; McElroy, D.P.; Ziegler, S.I.

    2007-01-01

    We have studied the validity of random estimation techniques for various low energy thresholds (LETs) and single list-mode data sets in small animal PET. While a LET below 255 keV helps to increase the sensitivity, it also results in an increase of random coincidences and inter-crystal scatter (ICS). The study is carried out for MADPET-II, a dual-layer positron emission tomography (PET) scanner prototype consisting of LSO crystals read out individually by APDs. The data are acquired in singles list-mode format, and coincidences are computed post-acquisition. To estimate randoms, we have used the delayed coincidence window method (DW), and the singles rate model (SR). Various phantoms were simulated using GATE. For LETs under 255 keV, the number of random events R, estimated using the SR and the DW methods, is larger than the number of randoms which was directly computed from GATE simulations, and R(SR)>R(DW)>R(GATE). The higher the LET, the smaller the overestimation. For LETs >255 keV, R(DW)/R(GATE) ∼1. If scattered singles were excluded from the file, this discrepancy between R(DW or SR) and R(GATE) significantly diminished. This fact points out to ICS as the effect responsible for the mismatch, since for LETs lower than 255 keV, all singles related to an ICS event can be detected independently, thus altering the singles rate. Therefore, if low LETs are used, random estimation techniques should account for ICS

  16. Linear stability of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive

  17. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  18. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  19. Audit mode change, corporate governance

    OpenAIRE

    Limei Cao; Wanfu Li; Limin Zhang

    2015-01-01

    This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the ri...

  20. Zero modes and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-04-26

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  1. Normal modes of Bardeen discs

    International Nuclear Information System (INIS)

    Verdaguer, E.

    1983-01-01

    The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)

  2. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  3. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  4. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  5. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  6. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  7. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  8. Homogeneous modes of cosmological instantons

    Energy Technology Data Exchange (ETDEWEB)

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  9. Homogeneous modes of cosmological instantons

    International Nuclear Information System (INIS)

    Gratton, Steven; Turok, Neil

    2001-01-01

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe

  10. Intelligence and musical mode preference

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2016-01-01

    The relationship between fluid intelligence and preference for major–minor musical mode was investigated in a sample of 80 university students. Intelligence was assessed by the Raven’s Advanced Progressive Matrices. Musical mode preference was assessed by presenting 14 pairs of musical stimuli...... differences at the cognitive and personality level related to the enjoyment of sad music....

  11. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface

  12. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  13. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  14. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  15. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    Science.gov (United States)

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  16. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  17. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  18. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  19. Common mode and coupled failure

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1975-10-01

    Based on examples and data from Abnormal Occurence Reports for nuclear reactors, a classification of common mode or coupled failures is given, and some simple statistical models are investigated. (author)

  20. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  1. Peeling mode relaxation ELM model

    International Nuclear Information System (INIS)

    Gimblett, C. G.

    2006-01-01

    This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made

  2. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  3. Evidence of the wobbling mode

    International Nuclear Information System (INIS)

    Odegaard, S.W.; Tjoem, P.O.; Hagemann, G.B.; Jensen, D.R.; Bergstroem, M.; Herskind, B.; Sletten, G.; Toermaenen, S.; Wilson, J.N.; Hamamoto, I.; Spohr, K.; Huebel, H.; Goergen, A.; Schoenwasser, G.; Bracco, A.; Leoni, S.; Maj, A.; Petrache, C.M.; Bednarczyk, P.; Curien, D.

    2002-01-01

    The wobbling mode is a direct consequence of rotational motion of a triaxial body. The wobbling degree of freedom introduces sequences of bands with increasing number of wobbling quanta and a characteristic ΔI=1 decay pattern between the bands in competition with the in-band decay. A favorable candidate for establishing this exotic excitation mode is found for the first time in one of the Lu-isotopes for which stable triaxial superdeformed shapes are expected

  4. The evolution of transmission mode

    Science.gov (United States)

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  5. Packaged mode multiplexer based on silicon photonics

    NARCIS (Netherlands)

    Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.

    2012-01-01

    A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.

  6. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    International Nuclear Information System (INIS)

    Oide, H.; Murase, T.; Otono, H.; Yamashita, S.

    2010-01-01

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  7. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    Energy Technology Data Exchange (ETDEWEB)

    Oide, H., E-mail: oide@icepp.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Murase, T.; Otono, H. [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Yamashita, S. [ICEPP, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan)

    2010-01-21

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  8. Studies on multiplication effect of noises of PPD, and a proposal of a new structure to improve the performance

    Energy Technology Data Exchange (ETDEWEB)

    Oide, H., E-mail: oide@icepp.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Murase, T.; Otono, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Yamashita, S. [ICEPP, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan)

    2010-11-01

    Pixelated photon detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-pixel photon counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. We performed measurement of total noise rate, random noise rate, after-pulsing, crosstalk, and relative photon detection efficiency for a 1600 px MPPC. The explosive increase of total noise rate to over-voltage is able to be understood of multiplication effect of after-pulsing and crosstalk. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are all able to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  9. Studies on multiplication effect of noises of PPD, and a proposal of a new structure to improve the performance

    International Nuclear Information System (INIS)

    Oide, H.; Murase, T.; Otono, H.; Yamashita, S.

    2010-01-01

    Pixelated photon detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-pixel photon counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. We performed measurement of total noise rate, random noise rate, after-pulsing, crosstalk, and relative photon detection efficiency for a 1600 px MPPC. The explosive increase of total noise rate to over-voltage is able to be understood of multiplication effect of after-pulsing and crosstalk. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are all able to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  10. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  11. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  12. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  13. Boundary methods for mode estimation

    Science.gov (United States)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  14. Audit mode change, corporate governance

    Directory of Open Access Journals (Sweden)

    Limei Cao

    2015-12-01

    Full Text Available This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the risk-based mode required by the new auditing standards has significantly enhanced the relationship between audit effort and corporate governance. Since the change in audit mode, the Big Ten have demonstrated a significantly better grasp of governance risk and allocated their audit effort accordingly, relative to smaller firms. The empirical evidence indicates that auditors have adjusted their audit strategy to meet the regulations, risk-based auditing is being achieved to a degree, reasonable and effective corporate governance helps to optimize audit resource allocation, and smaller auditing firms in particular should urgently strengthen their risk-based auditing capability. Overall, our findings imply that the mandatory switch to risk-based auditing has optimized audit effort in China.

  15. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  16. Reconfigurable Mixed Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    Neelofer Afzal

    2014-01-01

    Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.

  17. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  18. Macroscopic (and microscopic massless modes

    Directory of Open Access Journals (Sweden)

    Michael C. Abbott

    2015-05-01

    Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.

  19. Physics of resistive wall modes

    International Nuclear Information System (INIS)

    Igochine, V.

    2012-01-01

    The advanced tokamak regime is a promising candidate for steady-state tokamak operation which is desirable for a fusion reactor. This regime is characterized by a high bootstrap current fraction and a flat or reversed safety factor profile, which leads to operation close to the pressure limit. At this limit, an external kink mode becomes unstable. This external kink is converted into the slowly growing resistive wall mode (RWM) by the presence of a conducting wall. Reduction of the growth rate allows one to act on the mode and to stabilize it. There are two main factors which determine the stability of the RWM. The first factor comes from external magnetic perturbations (error fields, resistive wall, feedback coils, etc). This part of RWM physics is the same for tokamaks and reversed field pinch configurations. The physics of this interaction is relatively well understood and based on classical electrodynamics. The second ingredient of RWM physics is the interaction of the mode with plasma flow and fast particles. These interactions are particularly important for tokamaks, which have higher plasma flow and stronger trapped particle effects. The influence of the fast particles will also be increasingly more important in ITER and DEMO which will have a large fraction of fusion born alpha particles. These interactions have kinetic origins which make the computations challenging since not only particles influence the mode, but also the mode acts on the particles. Correct prediction of the ‘plasma–RWM’ interaction is an important ingredient which has to be combined with external field's influence (resistive wall, error fields and feedback) to make reliable predictions for RWM behaviour in tokamaks. All these issues are reviewed in this paper. (special topic)

  20. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  1. Transformation and Modes of Production

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    modes of production and examine the ways of life that are enabled by the two modes of production. The central questions are around how market-based fisheries management transforms the principal preconditions for the self-employed fishers; and, in turn, why capitalist organized large-scale fisheries......The introduction of private and individual transferable quotas is widely considered to have a negative impact on small- and medium-sized fishing operations. In this chapter, I set out to explore this in a theoretical manner. I discuss the differences in the fishing operations as two contrasting...

  2. Soft mode of lead zirconate

    International Nuclear Information System (INIS)

    Pan'ko, G.F.; Prisedskij, V.V.; Klimov, V.V.

    1983-01-01

    Anisotropic diffusional scattering of electrons on PbZrO 3 crystal in the temperature range of phase transition has been recorded. As a result of its analysis it has been established that in lead zirconate the rotational vibrational mode G 25 plays the role of soft mode. The experiment is carried out using PbZrO 3 monocrystals in translucent electron microscope EhM-200, operating in the regime of microdiffraction at accelerating voltage of 150 kV and beam current 50 μA; sample preparation is realized using the method of shearing and fragmentation

  3. Mode

    DEFF Research Database (Denmark)

    Mackinney-Valentin, Maria

    A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes.......A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes....

  4. AX-PET A novel PET detector concept with full 3D reconstruction

    CERN Document Server

    Braem, A; Séguinot, J; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Schinzel, D; Solevi, P; Lacasta, C; Oliver, J F; Rafecas, M; De Leo, R; Nappi, E; Vilardi, I; Chesi, E; Cochran, E; Honscheid, K; Kagan, H; Rudge, A; Smith, S; Weilhammer, P; Johnson, I; Renker, D; Clinthorne, N; Huh, S; Bolle, E; Stapnes, S; Meddi, F

    2009-01-01

    We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The achievable resolution along the three axes is mainly driven by the dimensions of the LYSO crystals and WLS strips. This concept is inherently free of parallax errors. Furthermore, it will allow identification of Compton interactions in the detector and for reconstruction of a fraction of them, which is expected to enhance imag...

  5. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  6. Theory of Modes and Impulses

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  7. News on the Scissors Mode

    Science.gov (United States)

    Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.

    2014-09-01

    We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.

  8. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  9. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  10. Mode structure of active resonators

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  11. Energy balance in tearing modes

    International Nuclear Information System (INIS)

    Wesson, J.A.

    1993-01-01

    The energy balance in tearing modes is described in terms of exact separate energy balance equations. Each of these equations describes identified physical processes, and their sum gives the conservation of total energy. One of the energy balance equations corresponds to Furth's description. (Author)

  12. Quantum Accelerator Modes from the Farey Tree

    International Nuclear Information System (INIS)

    Buchleitner, A.; D'Arcy, M.B.; Fishman, S.; Gardiner, S.A.; Guarneri, I.; Ma, Z.-Y.; Rebuzzini, L.; Summy, G.S.

    2006-01-01

    We show that mode locking finds a purely quantum nondissipative counterpart in atom-optical quantum accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of the gravitational field. They are anchored to generalized Arnol'd tongues, parameter regions where driven nonlinear classical systems exhibit mode locking. A hierarchy for the rational numbers known as the Farey tree provides an ordering of the Arnol'd tongues and hence of experimentally observed accelerator modes

  13. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  14. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  15. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  16. Toroidal Trivelpiece-Gould modes

    International Nuclear Information System (INIS)

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  17. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  18. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  19. Wobbling mode in 167Ta

    International Nuclear Information System (INIS)

    Hartley, D. J.; Ludington, A.; Pifer, R.; Seyfried, E. P.; Vanhoy, J. R.; Janssens, R. V. F.; Carpenter, M. P.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Riedinger, L. L.; Darby, I. G.; Riley, M. A.; Aguilar, A.; Wang, X.; Chiara, C. J.; Chowdhury, P.; Lakshmi, S.; Tandel, S. K.; Tandel, U.

    2009-01-01

    The collective wobbling mode, the strongest signature for the rotation of a triaxial nucleus, has previously been seen only in a few Lu isotopes in spite of extensive searches in nearby isotopes. A sequence of transitions in the N=94 167 Ta nucleus exhibiting features similar to those attributed to the wobbling bands in the Lu nuclei has now been found. This band feeds into the πi 13/2 band at a relative energy similar to that seen in the established wobbling bands and its dynamic moment of inertia and alignment properties are nearly identical to the i 13/2 structure over a significant frequency range. Given these characteristics, it is likely that the wobbling mode has been observed for the first time in a nucleus other than Lu, making this collective motion a more general phenomenon.

  20. Fracture modes in human teeth.

    Science.gov (United States)

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  1. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm

    International Nuclear Information System (INIS)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-01-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  2. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  3. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  4. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  5. A History of Emerging Modes?

    Directory of Open Access Journals (Sweden)

    Schmitz Michael

    2016-03-01

    Full Text Available In this paper I first introduce Tomasello’s notion of thought and his account of its emergence and development through differentiation, arguing that it calls into question the theory bias of the philosophical tradition on thought as well as its frequent atomism. I then raise some worries that he may be overextending the concept of thought, arguing that we should recognize an area of intentionality intermediate between action and perception on the one hand and thought on the other. After that I argue that the co-operative nature of humans is reflected in the very structure of their intentionality and thought: in co-operative modes such as the mode of joint attention and action and the we-mode, they experience and represent others as co-subjects of joint relations to situations in the world rather than as mere objects. In conclusion, I briefly comment on what Tomasello refers to as one of two big open questions in the theory of collective intentionality, namely that of the irreducibility of jointness.

  6. Mode pumping experiments on biomolecules

    International Nuclear Information System (INIS)

    Austin, R.H.; Erramilli, S.; Xie, A.; Schramm, A.

    1995-01-01

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T 1 and T 2 relaxation measurements at 1650 cm -1 . (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm -1 . A form of action spectrum using FEL excitation will be used to probe this state

  7. Predicting the Diversity of Foreign Entry Modes

    DEFF Research Database (Denmark)

    Hashai, Niron; Geisler Asmussen, Christian; Benito, Gabriel

    2007-01-01

    diversity across value chain activities and host markets. Analyzing a sample of Israeli based firms we show that larger firms exhibit a higher degree of entry mode diversity both across value chain activities and across host markets. Higher levels of knowledge intensity are also associated with more......This paper expands entry mode literature by referring to multiple modes exerted in different value chain activities within and across host markets, rather than to a single entry mode at the host market level. Scale of operations and knowledge intensity are argued to affect firms' entry mode...... diversity in firms' entry modes across both dimensions....

  8. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  9. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  10. Mixed-Mode Crack Growth in Wood

    Directory of Open Access Journals (Sweden)

    Octavian POP

    2012-09-01

    Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.

  11. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  12. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  13. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  14. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  15. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    Science.gov (United States)

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  16. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  17. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  18. Management modes for iodine-129

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.

    1984-01-01

    This study completes a two-stage programme, supported by the Commission of the European Communities, on management modes for iodine-129. The models for the radiological assessment of iodine-129 management modes have been reviewed and, where necessary, revised, and a generic radiological assessment has been carried out using these models. Cost benefit analysis has been demonstrated for a variety of iodine-129 management modes; for a wide range of assumptions, the costs of abatement of atmospheric discharges would be outweighed by the radiological benefits. The cost benefit analysis thus complements and confirms the preliminary conclusion of the previous study: iodine-129 should be trapped to a large extent from the off-gases of a large reprocessing plant and disposed of by other suitable means, in order to ensure that all exposures from this radionuclide are as low as reasonably achievable. Once the major fraction of the iodine-129 throughput of a reprocessing plant has been trapped from the dissolver off-gases, there are unlikely to be strong radiation protection incentives either for further trapping from the dissolver off-gases or for trapping from the vessel off-gases. In a generic study it is not possible to state an optimum choice of process(es) for abatement of atmospheric discharges of iodine-129. This choice must be determined by assessments in the specific context of a particular reprocessing plant, its site, the waste disposal routes that are actually available, and also in the wider context of the management plans for all radioactive wastes at the plant in question

  19. Language Differences and Operation Mode

    DEFF Research Database (Denmark)

    Dasi, Angels; Pedersen, Torben

    2013-01-01

    Language serves different purposes depending on the international activity in question. Language has many dimensions and firms’ communicative requirements vary by operational platform. We argue that different dimensions of language vary in their importance depending on the operation mode chosen...... for a foreign market, so that language distance matters in the case of a home-based sales force, while language incidence is key when operating through a local agent. The hypotheses are tested on a large data set encompassing 462 multinational corporations headquartered in Finland, South Korea, New Zealand......, and Sweden that have undertaken a business operation in a foreign country....

  20. Psaltic Modes - Meanings and Symbolics

    Directory of Open Access Journals (Sweden)

    Domin Adam

    2015-10-01

    Full Text Available The Universe of Byzantine music is a profound one, that is why every side should be analysed for getting to the essence of psaltical soul of the singing. Every sign has a certain meaning, every mode has a certain composition and every singing genre is interpreted in a certain way. It is important to search and analyse the historical evolution of every of the mentioned categories for being able to form a holistic image about what Byzantine music meant and means.

  1. Applications of sliding mode control

    CERN Document Server

    Ghommam, Jawhar; Zhu, Quanmin

    2017-01-01

    This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .

  2. Normal modes and continuous spectra

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Morrison, P.J.

    1994-12-01

    The authors consider stability problems arising in fluids, plasmas and stellar systems that contain singularities resulting from wave-mean flow or wave-particle resonances. Such resonances lead to singularities in the differential equations determining the normal modes at the so-called critical points or layers. The locations of the singularities are determined by the eigenvalue of the problem, and as a result, the spectrum of eigenvalues forms a continuum. They outline a method to construct the singular eigenfunctions comprising the continuum for a variety of problems

  3. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  4. Mode damping in a commensurate monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter; Hansen, Flemming Yssing

    1997-01-01

    with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... of substrate modes with strong anomalous dispersion, and enables a semiquantitative account of observed avoided crossings of the adlayer perpendicular vibration mode and the substrate Rayleigh mode....

  5. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  6. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  7. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  8. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  9. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control...

  10. A time averaged background compensator for Geiger-Mueller counters

    International Nuclear Information System (INIS)

    Bhattacharya, R.C.; Ghosh, P.K.

    1983-01-01

    The GM tube compensator described stores background counts to cancel an equal number of pulses from the measuring channel providing time averaged compensation. The method suits portable instruments. (orig.)

  11. Didactic counter unit with Geiger-Muller tubes

    International Nuclear Information System (INIS)

    Campos, A.

    1981-01-01

    At this paper a prototype of these instruments is search for a didactic application. A block diagram to instrument, well as an operation process of it, is developed. A description of each one blocks, mentioning the characteristics, advantages and, to compare some possible solutions, is also presented. (author)

  12. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  13. Demountable 4 {pi} Geiger Counters for Standardization and the Assay of Low-Activity Samples; Compteurs 4 {pi} GM demontables pour l'etalonnage et l'essai d'echantillons de faible activite; S'emnye schetchiki Gejgera na 4 {pi} dlya standartizatsii i otsenki prob nizkoj aktivnosti; Condatores GM 4 {pi} para la normalizacion de patrones radiactivos con baja actividad

    Energy Technology Data Exchange (ETDEWEB)

    Trott, N G; Bentley, R E; Burton, L K [Physics Department, Institute of Cancer Research, Royal Cancer Hospital, London, S. W. 3 (United Kingdom)

    1960-06-15

    propre, du premier. Construit en acier inoxidable, il a ete initialement concu pour l'essai de faibles activites dans les materiaux biologiques. Il peut cependant etre adapte a la mesure absolue de sources de faible niveau d'activite ( {<=} 100 cpm) car, avec une gaine de compteurs cosmiques en anticoincidence son mouvement propre s'abaisse jusqu'a 1-2 cpm. (author) [Spanish] Los autores dan cuenta de algunos perfeccionamiento s introducidos en la construccion de contadores Geiger-Mueller 4 {pi} y estudian las aplicaciones de estos aparatos en la medicion de patrones radiactivos utilizados en trabajos de radiologia. En los dos modelos de contadores Geiger-Mueller 4 {pi} que los autores describen los alambres anodicos pueden desmontarse facilmente, lo cual facilita su limpieza. Uno de los modelos de contadores se viene utilizando con exito desde hace varios anos para normalizar radionuclidos {beta}; se exponen algunos resultados de las comparaciones efectuadas con los patrones de otros laboratorios. Estos contadores tambien se han empleado, en combinacion con un dispositivo de ionizacion {gamma}, para determinar la emision {gamma} especifica (factor k) del Fe{sup 59}, Cs{sup 137} y Ir{sup 192}. El segundo modelo, de acero inoxidable, es una copia del primero, en menor escala; esta disenado para trabajar con bajas actividades ambiente y se destina principalmente a la determinacion cuantitativa de pequenas cantidades de substancias radiactivas contenidas en materiales biologicos. Tambien puede adaptarse para la medicion absoluta de fuentes radiactivas de bajo indice de recuento ({<=} 100 impulsos por minuto), pues si se le rodea de contadores de rayos cosmicos, montados en anticoincidencia , es posible estabilizar la actividad de fondo en 1 a 2 impulsos por minuto. (author) [Russian] Izlagayutsya nekotorye rezul'taty raboty po konstruirovani yu schetchikov Gejgera-Myuller a na 4 {pi}, a takzhe voprosa ikh ispol'zovaniya dlya izmereniya standartov radioaktivnost i v rabote s

  14. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  15. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  16. 'Snowflake' H Mode in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-01-01

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  17. Nonlinear coupling of kink modes in Tokamaks

    International Nuclear Information System (INIS)

    Dagazian, R.Y.

    1975-07-01

    The m = 2, n = 1 kink mode is shown to be capable of destabilizing the m = 1, n = 1 internal kink. A nonlinear Lagrangian theory is developed for the coupling of modes of different pitch, and it is applied to the interaction of these modes. The coupling to the m = 2 mode provides sufficient additional destabilization to the internal mode to permit it to account even quantitatively (where it had failed when considered by itself) for many of the features of the disruptive instability. (U.S.)

  18. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  19. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  20. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  1. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...

  2. Tearing mode instability due to anomalous resistivity

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Itoh, Sanae I.; Yagi, Masatoshi

    2000-01-01

    Tearing mode instability in the presence of microscopic truculence is investigates. The effects of microscopic turbulence on tearing mode are taken as drags which are calculated by one-point renormalization method and mean-field approximation. These effects are reduced to effective diffusivities in reduced MHD equations. Using these equations, the stability analyses of the tearing mode are performed. It is shown that a finite amplitude of fluctuation enhances the growth rate of tearing mode. For very high values of turbulent diffusivities, marginally stable state exists. The effects of each turbulent diffusivity on mode stability are examined near marginal stability boundary. Parameter dependence of the resistive ballooning mode turbulence on tearing mode is analyzed as an example. (author)

  3. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  4. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  5. GATS Mode 4 Negotiation and Policy Options

    Directory of Open Access Journals (Sweden)

    Kil-Sang Yoo

    2004-06-01

    Full Text Available This study reviews the characteristics and issues of GATS Mode 4 and guesses the effects of Mode 4 liberalization on Korean economy and labor market to suggest policy options to Korea. Mode 4 negotiation started from the trade perspective, however, since Mode 4 involves international labor migration, it also has migration perspective. Thus developed countries, that have competitiveness in service sector, are interested in free movement of skilled workers such as intra-company transferees and business visitors. On the other hand, developing countries, that have little competitiveness in service sector, are interested in free movement of low-skilled workers. Empirical studies predict that the benefits of Mode 4 liberalization will be focused on developed countries rather than developing countries. The latter may suffer from brain drain and reduction of labor supply. Nevertheless developed countries are reluctant to Mode 4 negotiation because they can utilize skilled workers from developing countries by use of their own temporary visa programs. They are interested in Mode 4 related with Mode 3 in order to ease direct investment and movement of natural persons to developing countries. Regardless of the direction of a single undertaking of Mode 4 negotiation, the net effects of Mode 4 liberalization on Korean economy and labor market may be negative. The Korean initial offer on Mode 4 is the same as the UR offer. Since Korean position on Mode 4 is most defensive, it is hard to expect that Korean position will be accepted as the single undertaking of Mode 4 negotiation. Thus Korea has to prepare strategic package measures to minimize the costs of Mode 4 liberalization and improve competitiveness of service sector.

  6. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  7. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  8. Circular waveguide mode converters at 140 GHz

    International Nuclear Information System (INIS)

    Trulsen, J.; Woskoboinikow, P.; Temkin, R.J.

    1986-01-01

    A unified derivation of the coupled mode equations for circular waveguide is presented. Also, approximate design criteria for TE/sub 0n/ to TE/sub 0n'/ axisymmetric, TE 01 to TE 11 wriggle, and TE 01 to TM 11 bend converters are reviewed. Numerically solving the coupled mode equations, an optimized set of mode converters has been designed for conversion of a 2 millimeter wave TE 03 mode into TE 11 . This set consists of axisymmetric TE 03 to TE 02 and TE 02 to TE 01 converters followed by a wriggle TE 01 to TE 11 converter. This mode converter set was fabricated and tested using a 3 kW, 137 GHz gyrotron. A TE 11 mode purity of better than 97% was achieved. The TE 01 to TE 11 wriggle converter was experimentally optimized for a measured conversion efficiency of better than 99% not including ohmic losses

  9. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  10. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  11. OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES

    International Nuclear Information System (INIS)

    Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.

    2011-01-01

    We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

  12. Tearing mode analysis in tokamaks, revisited

    International Nuclear Information System (INIS)

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new Δ' shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε ≤ 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease Δ', are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low β regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m ≥ 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code

  13. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern.

    Science.gov (United States)

    Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph

    2014-12-15

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

  14. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    Science.gov (United States)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  15. Effects of multiple modes interaction on the resistive wall mode instability

    International Nuclear Information System (INIS)

    Chen, Longxi; Lei, Wenqing; Ma, Zhiwei; Wu, Bin

    2013-01-01

    The effects of multiple modes interaction on the resistive wall mode (RWM) are studied in a slab geometry with and without plasma flow. The modes interaction can have a large effect on both the linear growth rate and the nonlinear saturation level of the RWM. We found that modes interaction can suppress the linear growth rate for the most unstable mode. The plasma flow can also help to control the growth of the RWM. The RWM can be stabilized completely by a plasma flow when considering the modes interaction. The effect of modes interaction on the RWM is stronger for the mode rational surface in the vacuum than that in the plasma. The modes interaction results in a substantially lowered saturation level for the most unstable RWM. (paper)

  16. A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities

    Science.gov (United States)

    Kruse, Sebastian; Hoffmann, Norbert

    2010-09-01

    The phenomenon of mode-coupling instability is one of the most frequently explored mechanisms to explain self-excited oscillation in sliding systems with friction. A mode coupling instability is usually due to the coupling of two modes. However, further modes can have an important influence on the coupling of two modes. This work extends a well-known minimal model to describe mode-coupling instabilities in order to explore the influence of a distant mode on the classical mode-coupling pattern. This work suggests a new minimal model. The model is explored and it is shown that a third mode can have significant influence on the classical mode-coupling instabilities where two modes are coupling. Different phenomena are analysed and it is pointed out that distant modes can only be ignored in very special cases and that the onset friction-induced oscillations can even be very sensitive to minimal variation of a distant mode. Due to the chosen academic minimal-model and the abandonment of a complex Finite-Element model the insight stays rather phenomenological but a better understanding of the mode-coupling mechnanism can be gained.

  17. Quantum random walks using quantum accelerator modes

    International Nuclear Information System (INIS)

    Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.

    2006-01-01

    We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes

  18. A simple theory of linear mode conversion

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.; Woods, A.M.

    1984-01-01

    A summary is given of the basic theory of linear mode conversion involving the construction of differential equations for the mode amplitudes based on the properties of the dispersion relation in the neighbourhood of the mode conversion point. As an example the transmission coefficient for tunneling from the upper hybrid resonance through the evanescent region to the adjacent cut-off is treated. 7 refs, 3 figs

  19. Ponderomotive modification of drift tearing modes

    International Nuclear Information System (INIS)

    Urquijo, G.; Singh, R.; Sen, A.

    1997-01-01

    The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)

  20. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  1. Majorana Zero Modes in Graphene

    Directory of Open Access Journals (Sweden)

    P. San-Jose

    2015-12-01

    Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  2. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  3. Theory of tokamak resistive fishbone modes

    International Nuclear Information System (INIS)

    Shi Bingren; Sui Guofang

    1995-12-01

    A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasmas. Theoretical analyses of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exists. One is the Chen-White branch with ω∼ω-bar dm , corresponding to a higher threshold in β h ; the other is the Coppis branch with ω∼ω *i , and a much lower threshold in β h . The latter mode would put a rather unfavourable restriction on heating efficiency and on plasma confinement. However. It is found that the resistivity effect is essential for this mode. In this paper, a new resistive fishbone mode analysis is carried out. In the (γ mhd ,β H ) space, the stability diagram shows complicate structure, the Coppis branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate of this mode varies with β h , its peak value is still very low compared to other internal modes. The implications of these results to future tokamak experiments are discussed. (8 figs.)

  4. Suspensions with reduced violin string modes

    International Nuclear Information System (INIS)

    Lee, B H; Ju, L; Blair, D G

    2006-01-01

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz

  5. Suspensions with reduced violin string modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  6. H-mode study in CHS

    International Nuclear Information System (INIS)

    Toi, K.; Morisaki, T.; Sakakibara, S.

    1995-02-01

    In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)

  7. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  8. Mode coupling in spin torque oscillators

    International Nuclear Information System (INIS)

    Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle

    2016-01-01

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  9. Turbulence and Solar p-Mode Oscillations

    Science.gov (United States)

    Bi, S. L.; Xu, H. Y.

    The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction.

  10. Failure Modes of thin supported Membranes

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette

    2007-01-01

    Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....

  11. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  12. Mode coupling in spin torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  13. Spatial mode discriminator based on leaky waveguides

    Science.gov (United States)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  14. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  15. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  16. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  17. Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    International Nuclear Information System (INIS)

    Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.

    2002-01-01

    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden

  18. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  19. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  20. Mode Contributions to the Casimir Effect

    Science.gov (United States)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  1. Line-mode browser development days

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.

  2. Simultaneous Emotions: Entwining Modes in Children's Books

    Science.gov (United States)

    Cadden, Mike

    2005-01-01

    Critics and teachers tend to pay attention to genre and ignore mode as an area of consideration. This study examines three novels for young readers that are comparable in terms of their entwining opposing modes (irony and romance, comedy and tragedy) as a successful crossover strategy for appeal to readers young and old. I share implications for…

  3. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  4. Innovation of University Teaching Faculty Management Mode

    Science.gov (United States)

    Han, Yuzheng; Wang, Boyu

    2015-01-01

    With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…

  5. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  6. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  7. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  8. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  9. Connection between adiabaticity and the mirror mode

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  10. Confinement mechanisms in the radiatively improved mode

    NARCIS (Netherlands)

    Tokar, M. Z.; R. Jaspers,; Koslowski, H. R.; Kramer-Flecken, A.; Messiaen, A. M.; Ongena, J.; Rogister, A. A.; Unterberg, B.; Weynants, R. R.

    1999-01-01

    The characteristics of the toroidal ion temperature gradient (ITG) instability, considered as the main source of anomalous transport in the low (L) confinement mode of tokamaks, are analysed for the conditions of the radiatively improved (RI) mode triggered by seeding of impurities. Based on

  11. Viscoresistive g-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Paris, R.B.

    1980-01-01

    The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability

  12. HgCdTe APDS for space applications

    Science.gov (United States)

    Rothman, Johan; de Broniol, Eric; Foubert, Kevin; Mollard, Laurent; Péré-Laperne, Nicolas; Salvetti, Frederic; Kerlain, Alexandre; Reibel, Yann

    2017-11-01

    HgCdTe avalanche photodiode focal plane arrays (FPAs) and single element detectors have been developed for a large scope of photon starved applications. The present communication present the characteristics of our most recent detector developments that opens the horizon for low infrared (IR) photon number detection with high information conservation for imaging, atmospheric lidar and free space telecommunications. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz.

  13. 75 FR 66319 - State Systems Advance Planning Document (APD) Process

    Science.gov (United States)

    2010-10-28

    ... program and information technology managers, and welfare researchers. The working seminar met eight times.... This final rule reduces the submission requirements for lower-risk information technology (IT) projects... submitted by States, counties, and territories for approval of their Information Technology plans and...

  14. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  15. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  16. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  17. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  18. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  19. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-07-01

    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  20. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  1. Transportation Modes Classification Using Sensors on Smartphones

    Directory of Open Access Journals (Sweden)

    Shih-Hau Fang

    2016-08-01

    Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  2. Alfven frequency modes and global Alfven eigenmodes

    International Nuclear Information System (INIS)

    Villard, L.; Vaclavik, J.

    1996-07-01

    The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs

  3. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  4. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  5. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control

    NARCIS (Netherlands)

    Lopez-Galmiche, G.; Eznaveh, Z. Sanjabi; Antonio-Lopez, J.E.; Benitez, A. M. Velazquez; Rodriguez-Asomoza, Jorge; Mondragon, J. J. Sanchez; Gonnet, C.; Sillard, P.; Li, G.; Schülzgen, A.; Okonkwo, C.M.; Amezcua Correa, R.

    2016-01-01

    We demonstrate a few-mode erbium-doped fiber amplifier employing a mode-selective photonic lantern for controlling the modal content of the pump light. Amplification of six spatial modes in a 5 m long erbium-doped fiber to x223C;6.2x2009;x2009;dBm average power is obtained while maintaining high

  6. Exploiting selective excitation of strongly coupled modes to reduce DMGD in multi-mode transmission systems

    NARCIS (Netherlands)

    van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.

    2016-01-01

    By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.

  7. Informed Design of Mixed-Mode Surveys : Evaluating mode effects on measurement and selection error

    NARCIS (Netherlands)

    Klausch, Thomas|info:eu-repo/dai/nl/341427306

    2014-01-01

    “Mixed-mode designs” are innovative types of surveys which combine more than one mode of administration in the same project, such as surveys administered partly on the web (online), on paper, by telephone, or face-to-face. Mixed-mode designs have become increasingly popular in international survey

  8. Experimental verification of microbending theory using mode coupling to discrete cladding modes

    DEFF Research Database (Denmark)

    Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.

    1989-01-01

    a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum...

  9. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  10. Limiter H-mode experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C [Oak Ridge National Lab., TN (USA); Bretz, N L; Fredrickson, E D; McGuire, K M; Nazikian, R; Park, H K; Schivell, J; Taylor, G; Bitter, B; Budny, R; Cohen, S A; Kilpatrick, S J; LeBlanc, B; Manos, D M; Meade, D; Paul, S F; Scott, S D; Stratton, B C; Synakowski, E J; Towner, H H; Weiland, R M; Arunasalam, V; Bateman, G; Bell, M G; Bell, R; Boivin, R; Cavallo, A; Cheng, C Z; Chu, T K; Cowl,

    1990-12-15

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bi-directional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, >2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The TRANSP analysis shows that transport in these H-modes is similar to that of supershots within the inner 60 cm of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering near the edge shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time beam emission spectroscopy shows a coherent mode near the boundary with m = 15--20 at 20--30 kHz which is propagating in the ion direction. During an ELM event these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz increase in intensity.

  11. Completeness of non-normalizable modes

    International Nuclear Information System (INIS)

    Mannheim, Philip D; Simbotin, Ionel

    2006-01-01

    We establish the completeness of some characteristic sets of non-normalizable modes by constructing fully localized square steps out of them, with each such construction expressly displaying the Gibbs phenomenon associated with trying to use a complete basis of modes to fit functions with discontinuous edges. As well as being of interest in and of itself, our study is also of interest to the recently introduced large extra dimension brane-localized gravity program of Randall and Sundrum, since the particular non-normalizable mode bases that we consider (specifically the irregular Bessel functions and the associated Legendre functions of the second kind) are associated with the tensor gravitational fluctuations which occur in those specific brane worlds in which the embedding of a maximally four-symmetric brane in a five-dimensional anti-de Sitter bulk leads to a warp factor which is divergent. Since the brane-world massless four-dimensional graviton has a divergent wavefunction in these particular cases, its resulting lack of normalizability is thus not seen to be any impediment to its belonging to a complete basis of modes, and consequently its lack of normalizability should not be seen as a criterion for not including it in the spectrum of observable modes. Moreover, because the divergent modes we consider form complete bases, we can even construct propagators out of them in which these modes appear as poles with residues which are expressly finite. Thus, even though normalizable modes appear in propagators with residues which are given as their finite normalization constants, non-normalizable modes can just as equally appear in propagators with finite residues too-it is just that such residues will not be associated with bilinear integrals of the modes

  12. Even nanomechanical modes transduced by integrated photonics

    Energy Technology Data Exchange (ETDEWEB)

    Westwood-Bachman, J. N.; Diao, Z.; Sauer, V. T. K.; Hiebert, W. K., E-mail: wayne.hiebert@nrc-cnrc.gc.ca [Department of Physics, University of Alberta, Edmonton T6G 2E1 (Canada); National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Bachman, D. [Department of Electrical Engineering, University of Alberta, Edmonton T6G 2V4 (Canada)

    2016-02-08

    We demonstrate the actuation and detection of even flexural vibrational modes of a doubly clamped nanomechanical resonator using an integrated photonics transduction scheme. The doubly clamped beam is formed by releasing a straight section of an optical racetrack resonator from the underlying silicon dioxide layer, and a step is fabricated in the substrate beneath the beam. The step causes uneven force and responsivity distribution along the device length, permitting excitation and detection of even modes of vibration. This is achieved while retaining transduction capability for odd modes. The devices are actuated via optical force applied with a pump laser. The displacement sensitivities of the first through third modes, as obtained from the thermomechanical noise floor, are 228 fm Hz{sup −1/2}, 153 fm Hz{sup −1/2}, and 112 fm Hz{sup −1/2}, respectively. The excitation efficiency for these modes is compared and modeled based on integration of the uneven forces over the mode shapes. While the excitation efficiency for the first three modes is approximately the same when the step occurs at about 38% of the beam length, the ability to tune the modal efficiency of transduction by choosing the step position is discussed. The overall optical force on each mode is approximately 0.4 pN μm{sup −1} mW{sup −1}, for an applied optical power of 0.07 mW. We show a potential application that uses the resonant frequencies of the first two vibrational modes of a buckled beam to measure the stress in the silicon device layer, estimated to be 106 MPa. We anticipate that the observation of the second mode of vibration using our integrated photonics approach will be useful in future mass sensing experiments.

  13. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  14. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  15. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  16. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  17. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  18. Mode structure of a quantum cascade laser

    Science.gov (United States)

    Bogdanov, A. A.; Suris, R. A.

    2011-03-01

    We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.

  19. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  20. Generation of compressible modes in MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)

    2005-05-01

    Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)

  1. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  2. Tensor B mode and stochastic Faraday mixing

    CERN Document Server

    Giovannini, Massimo

    2014-01-01

    This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...

  3. On Mode Correlation of Solar Acoustic Oscillations

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2009-09-01

    Full Text Available In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al.~(2000 looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001 reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001, and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.

  4. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  5. Digital holograms for laser mode multiplexing

    CSIR Research Space (South Africa)

    Mhlanga, T

    2014-10-02

    Full Text Available multiplexing Thandeka Mhlangaa, b, Abderrahmen Trichilic, Angela Dudleya, Darryl Naidooa, b, Mourad Zghalc and Andrew Forbesa, b aCSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa bSchool of Physics, University of KwaZulu-Natal, Private Bag... problems. In this context, we demonstrate a method of multiplexing laser modes using spatial light modulators (SLMs). In our proposed technique, we use Laguerre Gaussian (LG) modes, which form a complete basis set; hence multi-mode masks can be created...

  6. Quasinormal modes in pure de Sitter spacetimes

    International Nuclear Information System (INIS)

    Du Daping; Wang Bin; Su Ruheng

    2004-01-01

    We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations

  7. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  8. Interacting collective modes in a laser cavity

    International Nuclear Information System (INIS)

    Graca, E.L.; Brito, A.L. de; Baseia, B.

    1985-01-01

    Collective operators are defined for the quantized radiation field in a one-dimensional laser cavity coupled to a semi-infinite outside region and the overlaps of neighbouring collective modes are considered to show how they modify, in the linear appoximation, the time evolution of the radiation field below threshold. The model and procedure work directly within a continuous spectrum of modes and allow us to get an improved insight on the prescription for the laser field in single-mode operation. (Author) [pt

  9. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  10. Effect of survey mode on response patterns

    DEFF Research Database (Denmark)

    Christensen, Anne Illemann; Ekholm, Ola; Glümer, Charlotte

    2014-01-01

    .7%). Marital status, ethnic background and highest completed education were associated with non-response in both modes. Furthermore, sex and age were associated with non-response in the self-administered mode. No significant mode effects were observed for indicators related to use of health services......BACKGROUND: While face-to-face interviews are considered the gold standard of survey modes, self-administered questionnaires are often preferred for cost and convenience. This article examines response patterns in two general population health surveys carried out by face-to-face interview and self......-administered questionnaire, respectively. METHOD: Data derives from a health interview survey in the Region of Southern Denmark (face-to-face interview) and The Danish Health and Morbidity Survey 2010 (self-administered questionnaire). Identical questions were used in both surveys. Data on all individuals were obtained from...

  11. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  12. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  13. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  14. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  15. Rotary Mode Core Sample System availability improvement

    International Nuclear Information System (INIS)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-01-01

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2

  16. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  17. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  18. Electrostatic effect for the collisionless tearing mode

    International Nuclear Information System (INIS)

    Hoshino, M.

    1987-01-01

    Electron dynamics has not been self-consistently considered in collisionless tearing mode theories to date because of the mathematical complexity of the Vlasov-Maxwell equations. We have found using computer simulations that electrostatic fields play an important role in the tearing mode. Vlasov theory, including the electrostatic field, is investigated for topologies with both antiparallel and nonantiparallel magnetic field lines. The electrostatic field influences the resonant current in the neutral sheet which is a non-MHD effect, and modifies the linear growth rate. At the magnetopause, where the field lines are not antiparallel, the electrostatic effect acts to raise the linear growth rate of the tearing mode. On the other hand, in the magnetotail, where magnetic field lines are antiparallel, the electrostatic effect reduces the tearing mode growth rate. copyright American Geophysical Union 1987

  19. Anomalous neutron scattering and feroelectric modes

    International Nuclear Information System (INIS)

    Viswanathan, K.S.

    1977-01-01

    It is suggested that anomalous neutron scattering could prove a powerful experimental tool in studying ferroelectric phase transition, the sublattice displacements of the soft modes as well as their symmetry characteristics. (author)

  20. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  1. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  2. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  3. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions...... in the modelling of coupled torsion and distortion. However, if the distortional displacement modes are chosen as those which decouple the differential equations as in non proportionally damped modal dynamic analysis then it may be possible to use exact shape functions and perform analysis on a reduced problem....... In the recently developed generalized beam theory (GBT) the natural distortional displacement modes are determined on the basis of a quadratic eigenvalue problem. However, as in linear modal dynamic analysis of proportionally damped structures this problem has been solved approximately using linear eigenvalue...

  4. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    National Research Council Canada - National Science Library

    Kobold, Michael C

    2006-01-01

    Simulated cross - spectral covariance (CSC) from optical return from simulated surface vibration indicates CW phase modulation may be an appropriate phenomenology for adequate classification of vehicles by structural mode...

  5. Surface Loving and Surface Avoiding modes

    OpenAIRE

    Combe, Nicolas; Huntzinger, Jean Roch; Morillo, Joseph

    2008-01-01

    International audience; We theoretically study the propagation of sound waves in GaAs/AlAs superlattices focussing on periodic modes in the vicinity of the band gaps. Based on analytical and numerical calculations, we show that these modes are the product of a quickly oscillating function times a slowly varying envelope function. We carefully study the phase of the envelope function compared to the surface of a semi-infinite superlattice. Especially, the dephasing of the superlattice compared...

  6. Enhanced Sleep Mode MAC Control for EPON

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler.......This paper introduces sleep mode operations for EPON. New MAC control functions are proposed to schedule sleep periods. Traffic profiles are considered to optimize energy efficiency and network performances. Simulation results are analyzed in OPNET modeler....

  7. Entry Mode Choice in Emerging Markets

    OpenAIRE

    Gundersen, Anne Kathrine Navestad

    2012-01-01

    As the mature markets of developed economies have become increasingly saturated, firms are turning their attention towards emerging markets for further enterprise growth. However, these countries often present significant challenges for foreign entrants, forcing firms to adapt their strategies to the new context. While MNEs? entry mode choice is an extensively studied field, there is a deficit in the entry mode research on SMEs, and even more so when it comes to entry into emerging markets in...

  8. Kinetic stability of internal kink mode

    International Nuclear Information System (INIS)

    Romanelli, F.; Fogaccia, G.

    1993-01-01

    With reference to studies of the attainment of ignited operations on devices like ITER (International Thermonuclear Experimental Reactor), the stability of the internal kink mode is re-investigated by taking into account the contribution of perpendicular compressibility, obtained by solving the drift kinetic equation. The resulting stability condition yields threshold values typically larger than the conventional Bussac criterion. For the case of ultra-flat safety factor profiles, the mode can be stable also in the absence of line-bending

  9. Chaos control using sliding-mode theory

    International Nuclear Information System (INIS)

    Nazzal, Jamal M.; Natsheh, Ammar N.

    2007-01-01

    Chaos control means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, a nonlinear Sliding-Mode Controller (SMC) is presented. Two nonlinear chaotic systems are chosen to be our case study in this paper, the well known Chua's circuit and Lorenz system. The study shows the effectiveness of the designed nonlinear Sliding-Mode Controller

  10. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at v=1 to 0.001 cm/sup -1/ at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  11. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at theta=1 to 0.001 cm/sup -1/ at theta=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  12. Local-mode vibrations of water

    International Nuclear Information System (INIS)

    Lawton, R.T.; Child, M.S.

    1981-01-01

    Quantum-mechanical eigenvalues for the stretching vibrations of H 2 O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm - 1 at v=1 to 0.001 cm - 1 at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode. (author)

  13. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  14. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  15. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  16. Active control of multiple resistive wall modes

    International Nuclear Information System (INIS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Partin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, S.; Zanca, P.

    2005-01-01

    Active magnetic feedback suppression of resistive wall modes is of common interest for several fusion concepts relying on close conducting walls for stabilization of ideal magnetohydrodynamic (MHD) modes. In the advanced tokamak without plasma rotation the kink mode is not completely stabilized, but rather converted into an unstable resistive wall mode (RWM) with a growth time comparable to the wall magnetic flux penetration time. The reversed field pinch (RFP) is similar to the advanced tokamak in the sense that it uses a conducting wall for kink mode stabilization. Also both configurations are susceptible to resonant field error amplification of marginally stable modes. However, the RFP has a different RWM spectrum and, in general, a range of modes is unstable. Hence, the requirement for simultaneous feedback stabilization of multiple independent RWMs arises for the RFP configuration. Recent experiments on RWM feedback stabilization, performed in the RFP device EXTRAP T2R [1], are presented. The experimental results obtained are the first demonstration of simultaneous feedback control of multiple independent RWMs [2]. Using an array of active magnetic coils, a reproducible suppression of several RWMs is achieved for the duration of the discharge, 3-5 wall times, through feedback action. An array with 64 active saddle coils at 4 poloidal times 16 toroidal positions is used. The important issues of side band generation by the active coil array and the accompanying coupling of different unstable modes through the feedback action are addressed in this study. Open loop control experiments have been carried out to quantitatively study resonant field error amplification. (Author)

  17. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  18. Mode group specific amplification length in an asymmetric LPG assisted few-mode EDFA

    Science.gov (United States)

    Rastogi, Vipul; Gaur, Ankita; Aschieri, Pierre; Dussardier, Bernard

    2017-01-01

    This article presents a scheme for few-mode EDFA, which allows to choose independent amplification lengths for different mode groups. The EDF is a dual concentric core fiber, where the central core is connected to the line FMF and the ring core is doped with erbium to provide amplification. The modes of FMF are launched into the central core of the EDF, are converted into ring modes using LPG for amplification and then converted back into central core modes using another LPG. The distance between the LPGs determines the amplification length. The amplification length, can thus, be chosen for a given mode group. We demonstrate the working of this concept by choosing LP11 and LP21 mode groups of the FMF and show that a suitable choice of amplification lengths for the two mode groups can tailor the differential modal gain (DMG) to any desired value. We demonstrate achieving zero DMG among all the mode of LP11 and LP21 mode groups using this concept while having gain in excess of 20 dB. The study should be useful for optical fiber communication system employing space-division multiplexing (SDM).

  19. The H-mode of ASDEX

    International Nuclear Information System (INIS)

    1989-01-01

    The paper is a review of investigations of the H-mode on ASDEX performed since its discovery in 1982. The topics discussed are: (1) the development of the plasma profiles, with steep gradients in the edge region and flat profiles in the bulk plasma, (2) the MHD properties resulting from the profile changes, including an extensive stability analysis, (3) the impurity development, with special emphasis on the MHD aspects and on neoclassical impurity transport effects in quiescent H-phases, and (4) the properties of the edge plasma, including the evidence of three-dimensional distortions at the edge. The part on confinement includes scaling studies and the results of transport analysis. The power threshold of the H-mode is found to depend weakly on the density, but there is probably no dependence on the toroidal field or the current. For the operational range of the H-mode, new results for the limiter H-mode on ASDEX and the development of the H-mode under beam current drive conditions are included. A number of experiments are described which demonstrate the crucial role of the edge electron temperature in the L-H transition. New results of magnetic and density fluctuation studies at the plasma edge within the edge transport barrier are presented. Finally, the findings on ASDEX are compared with results obtained on other machines and are used to test various H-mode theories. (author). 131 refs, 103 figs, 1 tab

  20. Excitation mechanisms for Jovian seismic modes

    Science.gov (United States)

    Markham, Steve; Stevenson, Dave

    2018-05-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.

  1. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  2. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  3. Rotational modes of a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.

    2017-12-01

    We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.

  4. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  5. Geometrical effects in X-mode scattering

    International Nuclear Information System (INIS)

    Bretz, N.

    1986-10-01

    One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density

  6. Discrete mode lasers for communications applications

    Science.gov (United States)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  7. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  8. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  9. Boundary modes in quasiperiodic elastic structures

    Science.gov (United States)

    Rosa, Matheus I. N.; Pal, Raj K.; Arruda, José R. F.; Ruzzene, Massimo

    2018-03-01

    Topological metamaterials are a new class of materials that support topological modes such as edge modes and interface modes, which are commonly immune to scattering and imperfections. This novelty has been the subject of extensive research in many branches of physics such as electronics, photonics, phononics, and acoustics. The nontrivial topological properties related to the presence of topological modes are tipically found in periodic media. However, it was recently demonstrated that structures called quasicrystals may also exhibit nontrivial topological behavior attributed to dimensions higher than that of the quasicrystal. While quasiperiodicity has received a lot of attention in the fields of crystallography and photonics, research into quasiperiodic elastic structures has been scarce. In this paper, we show how the concepts of quasiperiodicity may be applied to the design of topological mechanical metamaterials. We start by investigating the boundary modes present in quasiperiodic 1D phononic lattices. These modes have the interesting property of being localized at either one of the two different boundaries depending on the value of an additional parameter, which is remnant of the higher dimension. A smooth variation of this parameter in either time or a spatial dimension can lead to a robust transfer of energy between two sites of the structure. We present an idealized mechanical system composed by an array of coupled rods that may be used as a platform for realizing this kind of robust transfer of energy. These are preliminary investigations into a entirely new class of structures which may lead to novel engineering applications.

  10. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  11. Modes of storage ring coherent instabilities

    International Nuclear Information System (INIS)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered

  12. A dual-mode driver IC with monolithic negative drive-voltage capability and digital current-mode controller for depletion-mode GaN HEMT

    NARCIS (Netherlands)

    Wen, Y.; Rose, M.; Fernandes, R.; van Otten, R.; Bergveld, H.J.; Trescases, O.

    2017-01-01

    This work presents a driver and controller integrated circuit (IC) for depletion-mode gallium nitride (GaN) high-electron-mobility transistors (HEMTs). The dual-mode driver can be configured for cascode-drive (CD) or HEMT-drive (HD) mode. In the CD mode, a cascode low-voltage DMOS is driven to

  13. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  14. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...... diameter of ∼59Lim at 1064nm and exhibits a pump absorption of 27dB/m at 976nm. © 2011 Optical Society of America....

  15. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  16. Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM)

    OpenAIRE

    Muliar, Olena; Usuga Castaneda, Mario A.; Rottwitt, Karsten; Lægsgaard, Jesper

    2015-01-01

    The rapid growth of global data traffic demands the continuous search for new technologies and systems that could increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore new degrees of freedom such as polarization, wavelength or optical modes. Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity increase, since it utilizes multiple spatial modes of an optical fiber as indi...

  17. Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms

    International Nuclear Information System (INIS)

    Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.

    1985-01-01

    A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible

  18. Frustration of Bragg reflection by cooperative dual-mode interference: a new mode of optical propagation.

    Science.gov (United States)

    Yariv, A

    1998-12-01

    A new optical mode of propagation is described, which is the natural eigenmode (supermode) of a fiber (or any optical waveguide) with two cospatial periodic gratings. The mode frustrates the backward Bragg scattering from the grating by destructive interference of its two constituent submodes (which are eigenmodes of a uniform waveguide). It can be used in a new type of spatial mode conversion in optical guides.

  19. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  20. Default Mode Network Connectivity in Stroke Patients.

    Science.gov (United States)

    Tuladhar, Anil Man; Snaphaan, Liselore; Shumskaya, Elena; Rijpkema, Mark; Fernandez, Guillén; Norris, David G; de Leeuw, Frank-Erik

    2013-01-01

    The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 'first-ever' stroke patients. Patients were scanned 9-12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in 'first-ever' stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.

  1. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  2. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  3. Task Performance with List-Mode Data

    Science.gov (United States)

    Caucci, Luca

    This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.

  4. Normal modes of weak colloidal gels

    Science.gov (United States)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  5. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-01-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed v α ≥ v A /(2|m-nq|), where v A is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta β α , α-particle pressure gradient parameter (ω * /ω A ) (ω * is the α-particle diamagnetic drift frequency), and (v α /v A ) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10 -4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10 -2 ω A , where ω A = v A /qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  6. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  7. L to H-mode Power Threshold and Confinement Characteristics of H-modes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Na, Y.S., E-mail: ftwalker.hyuns@gmail.com [Seoul National University, Seoul (Korea, Republic of); Ahn, J. W. [Oak Ridge National Laboratory, Oak Ridge (United States); Jeon, Y. M.; Yoon, S. W.; Lee, K. D.; Ko, W. H.; Bae, Y. S.; Kim, W. C.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-09-15

    Full text: Since KSTAR has obtained the H-mode in 2010 campaign, H-mode plasmas were routinely obtained with combined heating of NBI with maximum power of 1.5 MW and ECRH with maximum power of {approx} 0.3 MW and {approx} 0.6 MW for 110 GHz and 170 GHz, respectively. The L- to H-mode power threshold and confinement properties of KSTAR H-modes are investigated in this work. Firstly, the L- to H-mode power threshold and the power loss to the seperatrix are calculated by power balance analysis for about collected 400 shots. As a result, a trend of roll-over is observed in the power threshold of KSTAR H-mode compared with the multi-machine power threshold scaling in the low density regime. Dependence of the power threshold on other parameters are also investigated such as the X-point position and shaping parameters like as triangularity and elongation. In addition, the reason of reduction of power threshold in 2011 campaign compared with that in 2010 is addressed. Secondly, the confinement enhancement factors are calculated to evaluate the performance of KSTAR H-modes. The calculated H{sub 89-p} and H{sub 98} (y, 2) represent that the confinement is enhanced in most KSTAR H-mode discharges. Interestingly, even in L-mode phases, confinement is observed to be enhanced against the multi-machine scalings. H{sub exp} factor is newly introduced to evaluate the amount of confinement improvement in the H-mode phase compared with the L-mode phase in a single discharge. H{sub exp} exhibits that the global energy confinement time of the H-mode phase is improved about 1.3 - 2.0 times compared with that of the L-mode phase. Finally, interpretive and predictive numerical simulations are carried out using the ASTRA code for typical KSTAR H-mode discharges. The Weiland model and the GLF23 model are employed for calculating the anomalous contributions of both electron and ion heat transport in predictive simulations. For the H-mode phase, the Weiland model reproduces the experiment

  8. A comprehensive spectral theory of zonal-mode dynamics in trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Baver, D.A.; Fernandez, E.

    2005-01-01

    A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM) turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1) zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this the dominant saturation mechanism for TEM turbulence. This accounts for the reduction of turbulence level by zonal modes, not zonal-flow ExB shearing. (author)

  9. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  10. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  11. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  12. All-fiber Raman Probe using Higher Order Modes

    DEFF Research Database (Denmark)

    Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....

  13. The AX-PET demonstrator-Design, construction and characterization

    International Nuclear Information System (INIS)

    Beltrame, P.; Bolle, E.; Braem, A.; Casella, C.; Chesi, E.; Clinthorne, N.; De Leo, R.; Dissertori, G.; Djambazov, L.; Fanti, V.; Heller, M.; Joram, C.; Kagan, H.; Lustermann, W.; Meddi, F.; Nappi, E.; Nessi-Tedaldi, F.; Oliver, J.F.; Pauss, F.; Rafecas, M.

    2011-01-01

    Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end electronics and recorded in coincidence by a VME-based data acquisition system. Measurements with point-like 22 Na sources, with the modules used both individually and in coincidence mode, allowed for a complete performance evaluation up to the focal plane reconstruction of point sources. The results obtained are in good agreement with expectations and proved the set-up to be ready for the next evaluation phase with PET phantoms filled with radiotracers.

  14. Probabilistic analysis of ''common mode failures''

    International Nuclear Information System (INIS)

    Easterling, R.G.

    1978-01-01

    Common mode failure is a topic of considerable interest in reliability and safety analyses of nuclear reactors. Common mode failures are often discussed in terms of examples: two systems fail simultaneously due to an external event such as an earthquake; two components in redundant channels fail because of a common manufacturing defect; two systems fail because a component common to both fails; the failure of one system increases the stress on other systems and they fail. The common thread running through these is a dependence of some sort--statistical or physical--among multiple failure events. However, the nature of the dependence is not the same in all these examples. An attempt is made to model situations, such as the above examples, which have been termed ''common mode failures.'' In doing so, it is found that standard probability concepts and terms, such as statistically dependent and independent events, and conditional and unconditional probabilities, suffice. Thus, it is proposed that the term ''common mode failures'' be dropped, at least from technical discussions of these problems. A corollary is that the complementary term, ''random failures,'' should also be dropped. The mathematical model presented may not cover all situations which have been termed ''common mode failures,'' but provides insight into the difficulty of obtaining estimates of the probabilities of these events

  15. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  16. Default mode network connectivity during task execution.

    Science.gov (United States)

    Vatansever, D; Menon, D K; Manktelow, A E; Sahakian, B J; Stamatakis, E A

    2015-11-15

    Initially described as task-induced deactivations during goal-directed paradigms of high attentional load, the unresolved functionality of default mode regions has long been assumed to interfere with task performance. However, recent evidence suggests a potential default mode network involvement in fulfilling cognitive demands. We tested this hypothesis in a finger opposition paradigm with task and fixation periods which we compared with an independent resting state scan using functional magnetic resonance imaging and a comprehensive analysis pipeline including activation, functional connectivity, behavioural and graph theoretical assessments. The results indicate task specific changes in the default mode network topography. Behaviourally, we show that increased connectivity of the posterior cingulate cortex with the left superior frontal gyrus predicts faster reaction times. Moreover, interactive and dynamic reconfiguration of the default mode network regions' functional connections illustrates their involvement with the task at hand with higher-level global parallel processing power, yet preserved small-world architecture in comparison with rest. These findings demonstrate that the default mode network does not disengage during this paradigm, but instead may be involved in task relevant processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A novel mode-locking technique

    International Nuclear Information System (INIS)

    Chen Shaoh; Chen Youming; Chen Taolue; Si Xiangdong; Yang Yi; Deng Ximing

    1993-01-01

    A novel mode-locked Nd:YAG oscillator has been developed by using an ultrafast photoconductive feedback controlled loop, and mode-locked pulses with a duration of 100ps have been obtained. The energy instability of the pulse trains is ±5%. In this type of mode-locking technology, a type of deep-level doped GaAs (Cr-doped) photoconductive switch, which has a fast response in time and is free of avalance process, is used to drive a Pockels' cell to realize mode-locking. The dark resistance of this type of photoconductive switch is 6 orders of magnitude higher than that of the intrinsic single-crystal silicon, and it can reach a level as high as 10 9 ohms. Consequently, it is able to withstand longterm operation at several thousand DC volts. By means of the photoconductive ohmic switch characteristics, the authors have designed a positive feedback control network which has a very fast response time, and can couple a voltage of up to a thousand volts. Using this unit in a Nd:YAG laser, they have successfully realized a very stable mode-locked pulse train with pulse width shorter than 100 ps. The operation principle, and the results of the preliminary experiments are presented here. 1 ref., 3 figs

  18. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  19. Infrared helioseismology - Detection of the chromospheric mode

    Science.gov (United States)

    Deming, D.; Kaeufl, H. U.; Espenak, F.; Glenar, D. A.; Hill, A. A.

    1986-01-01

    Time-series observations of an infrared solar OH absorption line profile have been obtained on two consecutive days using a laser heterodyne spectrometer to view a 2 arcsec portion of the quiet sun at disk center. A power spectrum of the line center velocity shows the well-known photospheric p-mode oscillations very prominently, but also shows a second feature near 4.3 mHz. A power spectrum of the line intensity shows only the 4.3 mHz feature, which is identified as the fundamental p-mode resonance of the solar chromosphere. The frequency of the mode is observed to be in substantial agreement with the eigenfrequency of current chromospheric models. A time series of two beam difference measurements shows that the mode is present only for horizontal wavelengths greater than 19 Mm. The period of a chromospheric p-mode resonance is directly related to the sound travel time across the chromosphere, which depends on the chromospheric temperature and geometric height. Thus, detection of this resonance will provide an important new constraint on chromospheric models.

  20. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  1. Two operating modes for turbocharger system

    International Nuclear Information System (INIS)

    Bayomi, Nazih N.; Abd El-Maksoud, Rafea M.

    2012-01-01

    Highlights: ► A turbocharger system that operates in power assisted mode is introduced. ► The parameters affecting performance of the turbocharger is presented. ► Different operational charts for turbocharger are presented. ► The parametric study is helpful guide to determine turbocharger dimensioning. - Abstract: The present paper introduces a turbocharger system that operates in two different modes according to turbocharging requirements. In the first mode, the turbocharger is operating with power assistance at lower engine speeds where the power of the exhaust gases is insufficient. Thereafter, the second mode is switched leading the compressor and the turbine of the turbocharger to rotate separately for best performance. Analysis is presented to find out the parameters affecting the operation of the turbocharger and their values to achieve enhanced turbocharger performance with high efficient impellers. The parameters studied are based on data of the turbocharger operating conditions and the operational requirements of the engine. The analysis considers the turbocharger system, its turbine and its compressor. The operational charts demonstrate the simulated results for two operating modes. This study is helpful as a guide to determine the turbocharger dimensioning and blade profile assignment without using any given blade dimensional value.

  2. Mode conversion in magneto photonic crystal fibre

    International Nuclear Information System (INIS)

    Otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; Benmerkhi, Ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  3. Gyrokinetic simulation of internal kink modes

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Tsuda, Kenji; Lee, W.W.; Sydora, R.D.

    1995-05-01

    Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode (δf code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the δf code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection

  4. The structure of ideal MHD Alfven modes

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.

    1991-01-01

    Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored

  5. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01

    Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude

  6. Financial Performance of Entry Mode Decisions

    DEFF Research Database (Denmark)

    Boyd, Britta; Dyhr Ulrich, Anna Marie; Hollensen, Svend

    2012-01-01

    Based on a survey of 170 Danish SMEs the paper examines influences on entry mode choices and the financial outcome of these decisions. The main research objectives are divided into two steps: Step 1: To determine the factors influencing the choice of foreign entry modes by Danish companies. Step ...... and implications are provided for companies willing to invest more into foreign markets in order to achieve a higher degree of control and better financial results.......Based on a survey of 170 Danish SMEs the paper examines influences on entry mode choices and the financial outcome of these decisions. The main research objectives are divided into two steps: Step 1: To determine the factors influencing the choice of foreign entry modes by Danish companies. Step 2......: To determine the relationship between the choice of entry mode and export performance, measured in terms of financial outcome. Drawing from transaction cost theory the authors develop and test a model where different factors affect the level of control chosen by the parent company. This study contributes...

  7. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  8. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  9. Unconventional modes in lasers with spatially varying gain and loss

    International Nuclear Information System (INIS)

    Ge Li; Tuereci, H. E.; Chong, Y. D.; Stone, A. D.; Rotter, S.

    2011-01-01

    We discuss a class of lasing modes created by a spatially inhomogeneous gain profile. These lasing modes are ''extra modes,'' in addition to, and very different from, conventional lasing modes, which arise from the passive cavity resonances. These new modes do not have high intensity across the entire gain region, but instead are localized at the gain boundary and throughout the gain-free region. They are surface modes, originating from the transmission resonances of the gain-free region. Using an S-matrix description we connect these surface modes to the lasing modes in PT-symmetric (balanced gain-loss) cavities.

  10. Stability of longitudinal modes in a bunched beam with mode coupling

    International Nuclear Information System (INIS)

    Satoh, K.

    1981-06-01

    In this paper we study a longitudinal coherent bunch instability in which the growth time is comparable to or less than the period of synchrotron oscillations. Both longitudinal and transverse bunch instabilities have been studied. In most treatments, however, the coherent force is assumed to be small and is treated as a perturbation compared with the synchrotron force. This makes the problem simpler because an individual synchrotron mode is decoupled. As bunch current increases, the coherent force is no longer small and the mode frequency shift becomes significant compared with the synchrotron frequency. Therefore in this case it is necessary to include coupling of the synchrotron modes. Recently a fast blow-up instability which comes from mode coupling was studied. Their method is to derive a dispersion relation for a bunched beam using the Vlasov equation and to analyze it as in a coasting beam. They showed that if mode coupling is included the Vlasov equation predicts a fast microwave instability with a stability condition similar to that for a coasting beam. In this paper we will partly follow their method and present a formalism which includes coupling between higher-order radial modes as well as coupling between synchrotron modes. The formalism is considered to be generalization of the Sacherer formalism without mode coupling. This theory predicts that instability is induced not only by coupling between different synchrotron modes, but also by coupling between positive and negative modes, since negative synchrotron modes are included in the theory in a natural manner. This formalism is to be used for a Gaussian bunch and a parabolic bunch, and is also useful for transverse problems

  11. Entry Mode and Performance of Nordic Firms

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2015-01-01

    including the proposed moderating effect, on average, yield higher post-entry performance. This study sheds light on inconsistent results found in previous research investigating the impact of international experience and has practical implications for managerial decision-making.......This study investigates whether the relationship between mode of international market entry and non-location bound international experience is weaker for firms that are large or have a high foreign to total sales ratio, labeled multinational experience. Empirical evidence based on 250 foreign...... market entries made by Norwegian, Danish and Swedish firms suggests that the association between equity mode choice and non-location bound international experience diminishes in the presence of higher levels of multinational experience. Furthermore, firms whose entry mode choice is predicted by the model...

  12. Default mode contributions to automated information processing.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Stamatakis, Emmanuel A

    2017-11-28

    Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such "autopilot" behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based "autopilot role" for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.

  13. Coupling of tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Finn, J.M.

    1977-01-01

    The simultaneous presence of tearing modes of different helical pitches leads to the destruction of magnetic surfaces, which has been suggested as the mechanism leading to the onset of the disruptive instability in tokamaks. For current profiles in which the m = 2 mode is unstable, but the m = 3 is stable, the coupling of the m = 3 to the m = 2 through the poloidal variation of the toroidal field can drive the m = 3 amplitude psi 3 to order psi 2 times the inverse aspect ratio. Detailed calculations, both analytical and numerical, have been performed for two models for the equilibrium and m = 2 mode structure. A slab model and incompressible m = 3 perturbations are assumed. The m = 3 amplitude increases with shear, up to a point, showing that as the current channel shrinks, overlap of resonances becomes more likely. The results also apply qualitatively to other m, m +- 1 interactions

  14. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; García-Moliner, F; Garc A-Moliner, F; Perez-Alvarez, R; Garcia-Moliner, F

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentatio...

  15. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelated...... modes are required to cover the whole operational window of a processs plant including intermediary operating modes. Development of such an model ensemble for a plant would constitute a systematic way of defining the possible plant operating modes and thus provide a platform for also defining a set...... of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...

  16. Examination of the 'web mode effect'

    DEFF Research Database (Denmark)

    Clement, Sanne Lund; Shamshiri-Petersen, Ditte

    Declining response rates is one of the most significant challenges for survey based research today. Seen in isolation, traditional interviewer based data collection methods are still the most effective but also the most expensive, especially the greater difficulty in gaining responses taken...... into account. As a solution, mixed-mode designs have been employed as a way to achieve higher response rates, while keeping the overall costs low. In particular, the use of web based surveys has expanded considerably during the last few years, both as a single data collection method and as a component in mixed...... with telephone surveys, not enabling determination of a “web mode effect”. In this case, differences might as well be due to differences between self-administered and interviewer-administered collection methods. Other parts of literature on mixed-mode design including a web option are using stratified sampling...

  17. Coupled seismoacoustic modes on the seafloor

    Science.gov (United States)

    Butler, Rhett; Lomnitz, Cinna

    2002-05-01

    Wave-to-wave coupling arises when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface [Ewing et al., 1957]. A distinctive signal is observed at the Hawaii-2 Observatory for purely oceanic paths from earthquakes on the Blanco and Mendocino Fracture Zones, off the coast of North America. The signal appears to be a composite of undispersed higher Rayleigh modes propagating along the ocean floor both in the sediments and in the water. The new coupled modes are identified by their frequency composition and their phase and group velocities. Seismoacoustic coupling at the seafloor is conditioned on (a) the presence of a low-velocity interface at the ocean floor, and (b) the wavelength of the Rayleigh component being shorter than the depth of the water layer.

  18. Magnetohydrodynamic waves driven by p-modes

    International Nuclear Information System (INIS)

    Khomenko, Elena; Santamaria, Irantzu Calvo

    2013-01-01

    Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process: (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.

  19. Flower-petal mode converter for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Tantawi, S.G.; Callin, R.; Deruyter, H.; Farkas, Z.D.; Ko, K.; Kroll, N.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.

    1993-01-01

    It is important to minimize power loss in the waveguide system connecting klystron, pulse-compressor, and accelerator in an X-Band NLC. However, existing designs of klystron output cavity circuits and accelerator input couplers utilize rectangular waveguide which has relatively high transmission loss. It is therefore necessary to convert to and from the low-loss mode in circulator waveguide at each end of the system. A description is given of development work on high-power, high-vacuum open-quote flower-petal close-quote transducers, which convert the TE 10 mode in rectangular guide to the TE 01 mode in circular guide. A three-port modification of the flower petal device, which can be used as either a power combiner at the klystron or a power divider at the accelerator is also described

  20. Mode demultiplexer using angularly multiplexed volume holograms.

    Science.gov (United States)

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.