WorldWideScience

Sample records for ge nanocrystals embedded

  1. Synthesis of Ge nanocrystals embedded in a Si host matrix

    Science.gov (United States)

    Ngiam, Shih-Tung; Jensen, Klavs F.; Kolenbrander, K. D.

    1994-12-01

    The synthesis of a composite material consisting of Ge nanoclusters (greater than or equal to 2 nm in diameter) embedded in a Si host matrix is reported. The Ge nanoparticles are produced by pulsed laser ablation and are codeposited in a Si film simultaneously grown by chemical beam epitaxy using disilane. Scanning transmission electron microscopy, combined with energy-dispersive x-ray measurements, show that discrete Ge particles (greater than or equal to 2 nm diameter) are deposited within a polycrystalline Si host matrix. High-resolution transmission electron microscopy reveals that the paricles are crystalline with a lattice spacing corresponding to that of Ge. The enhancement of Si deposition rates from silanes in the presence of Ge, previously demonstrated in chemical vapor deposition of Si(1 - x)Ge(x) alloys, is shown to facilitate the growth of a Si layer around the Ge nanocrystals. The overall composition of the Ge cluster/Si host composite material is determined by Rutherford backscattering measurements.

  2. Uniform fabrication of Ge nanocrystals embedded into SiO2 film via neutron transmutation doping

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-06-01

    Full Text Available Nanocrystalline 74Ge embedded SiO2 films were prepared by employing ion implantation and neutron transmutation doping methods. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and photoluminescence of the obtained samples were measured. The existence of As dopants transmuted from 74Ge is significant to guarantee the uniformity and higher volume density of Ge nanocrystals by tuning the system׳s crystallinity and activating mass transfer process. It was observed that the photoluminescence intensity of Ge nanocrystals increased first then decreased with the increase of arsenic concentration. The optimized fluence of neutron transmutation doping was found to be 5.5×1017 cm−2 to achieve maximum photoluminescence emission in Ge embedded SiO2 film. This work opens a route in the three-dimensional nanofabrication of uniform Ge nanocrystals.

  3. Uniform fabrication of Ge nanocrystals embedded into SiO2 film via neutron transmutation doping

    Institute of Scientific and Technical Information of China (English)

    Wei Liu; Tiecheng Lu; Qingyun Chen; Youwen Hu; Shaobo Dun; Issai Shlimak

    2014-01-01

    Nanocrystalline 74Ge embedded SiO2 films were prepared by employing ion implantation and neutron transmutation doping methods. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and photoluminescence of the obtained samples were measured. The existence of As dopants transmuted from 74Ge is significant to guarantee the uniformity and higher volume density of Ge nanocrystals by tuning the system's crystallinity and activating mass transfer process. It was observed that the photoluminescence intensity of Ge nanocrystals increased first then decreased with the increase of arsenic concentration. The optimized fluence of neutron transmutation doping was found to be 5.5 ? 1017 cm ? 2 to achieve maximum photoluminescence emission in Ge embedded SiO2 film. This work opens a route in the three-dimensional nanofabrication of uniform Ge nanocrystals.

  4. Spectroscopic ellipsometric study of Ge nanocrystals embedded in SiO{sub 2} using parametric models

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, P.; Fried, M. [Research Institute for Technical Physics and Materials Science, Budapest (Hungary); Dana, A.; Aydinli, A. [Institute of Materials Science and Nanotechnology, Bilkent University, Ankara (Turkey); Foss, S.; Finstad, T.G. [University of Oslo, Department of Physics, Blindern, Oslo (Norway); Basa, P.

    2008-05-15

    Ge-rich SiO{sub 2} layers on top of Si substrates were deposited using plasma enhanced chemical vapour deposition. Ge nanocrystals embedded in the SiO{sub 2} layers were formed by high temperature annealing. The samples were measured and evaluated by spectroscopic ellipsometry. Effective medium theory (EMT) and parametric semiconductor models have been used to model the dielectric function of the layers. Systematic dependences of the layer thickness and the oscillator parameters have been found on the annealing temperature (nanocrystal size). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Ge nanocrystals embedded in ultrathin Si3N4 multilayers with SiO2 barriers

    Science.gov (United States)

    Bahariqushchi, R.; Gundogdu, Sinan; Aydinli, A.

    2017-04-01

    Multilayers of germanium nanocrystals (NCs) embedded in thin films of silicon nitride matrix separated with SiO2 barriers have been fabricated using plasma enhanced chemical vapor deposition (PECVD). SiGeN/SiO2 alternating bilayers have been grown on quartz and Si substrates followed by post annealing in Ar ambient from 600 to 900 °C. High resolution transmission electron microscopy (HRTEM) as well as Raman spectroscopy show good crystallinity of Ge confined to SiGeN layers in samples annealed at 900 °C. Strong compressive stress for SiGeN/SiO2 structures were observed through Raman spectroscopy. Size, as well as NC-NC distance were controlled along the growth direction for multilayer samples by varying the thickness of bilayers. Visible photoluminescence (PL) at 2.3 and 3.1 eV with NC size dependent intensity is observed and possible origin of PL is discussed.

  6. Embedded Ge nanocrystals in SiO{sub 2} synthesized by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Baranwal, V., E-mail: vikasphy@gmail.com; Pandey, Avinash C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 211 002 (India); Gerlach, J. W.; Lotnyk, A.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, D-04318 Leipzig (Germany); Karl, H. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany); Ojha, S.; Avasthi, D. K.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-10-07

    200 nm thick SiO{sub 2} layers grown on Si substrates were implanted with 150 keV Ge ions at three different fluences. As-implanted samples were characterized with time-of-flight secondary ion mass spectrometry and Rutherford backscattering spectrometry to obtain depth profiles and concentration of Ge ions. As-implanted samples were annealed at 950 °C for 30 min. Crystalline quality of pristine, as-implanted, and annealed samples was investigated using Raman scattering measurements and the results were compared. Crystalline structure of as-implanted and annealed samples of embedded Ge into SiO{sub 2} matrix was studied using x-ray diffraction. No secondary phase or alloy formation of Ge was detected with x-ray diffraction or Raman measurements. Scanning transmission electron microscope measurements were done to get the nanocrystal size and localized information. The results confirmed that fluence dependent Ge nanocrystals of different sizes are formed in the annealed samples. It is also observed that Ge is slowly diffusing deeper into the substrate with annealing.

  7. Infrared photoluminescence from GeSi nanocrystals embedded in a germanium–silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V. A., E-mail: volodin@isp.nsc.ru; Gambaryan, M. P.; Cherkov, A. G.; Vdovin, V. I. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Stoffel, M.; Rinnert, H.; Vergnat, M. [Université de Lorraine, Institut Jean Lamour UMR CNRS 7198 (France)

    2015-12-15

    We investigate the structural and optical properties of GeO/SiO{sub 2} multilayers obtained by evaporation of GeO{sub 2} and SiO{sub 2} powders under ultrahigh vacuum conditions on Si(001) substrates. Both Raman and infrared absorption spectroscopy measurements indicate the formation of GeSi nanocrystals after postgrowth annealing at 800°C. High-resolution transmission electron microscopy characterizations show that the average size of the nanocrystals is about 5 nm. For samples containing GeSi nanocrystals, photoluminescence is observed at 14 K in the spectral range 1500–1600 nm. The temperature dependence of the photoluminescence is studied.

  8. Infrared photoluminescence from GeSi nanocrystals embedded in a germanium-silicate matrix

    Science.gov (United States)

    Volodin, V. A.; Gambaryan, M. P.; Cherkov, A. G.; Vdovin, V. I.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2015-12-01

    We investigate the structural and optical properties of GeO/SiO2 multilayers obtained by evaporation of GeO2 and SiO2 powders under ultrahigh vacuum conditions on Si(001) substrates. Both Raman and infrared absorption spectroscopy measurements indicate the formation of GeSi nanocrystals after postgrowth annealing at 800°C. High-resolution transmission electron microscopy characterizations show that the average size of the nanocrystals is about 5 nm. For samples containing GeSi nanocrystals, photoluminescence is observed at 14 K in the spectral range 1500-1600 nm. The temperature dependence of the photoluminescence is studied.

  9. Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix

    Science.gov (United States)

    Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla

    2006-05-01

    We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.

  10. Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion-crystallization process

    Energy Technology Data Exchange (ETDEWEB)

    Lepadatu, Ana-Maria [National Institute of Materials Physics (Romania); Stoica, Toma [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich (Germany); Stavarache, Ionel; Teodorescu, Valentin Serban [National Institute of Materials Physics (Romania); Buca, Dan [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich (Germany); Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro [National Institute of Materials Physics (Romania)

    2013-10-15

    Amorphous Ge/SiO{sub 2} multilayer structures deposited by magnetron sputtering have been annealed at different temperatures between 650 and 800 Degree-Sign C for obtaining Ge nanocrystals in oxide matrix. The properties of the annealed structures were investigated by transmission electron microscopy, Raman spectroscopy, and low temperature photoluminescence. The Ge crystallization is partially achieved at 650 Degree-Sign C and increases with annealing temperature. Insight of the Ge nanocrystal formation was acquired by comparing two annealing procedures, i.e., in a conventional tube furnace and by a rapid thermal annealing. By rapid thermal annealing in comparison to conventional furnace one, the Ge crystallization process is faster than Ge diffusion, resulting in the formation of more compact layers of Ge nanocrystals with 8-9.5-nm size as Raman spectroscopy reveals. These findings are important to improve the annealing efficiency in the nanocrystals formation for a precise control of their sizes and location in oxide matrix and for the possibility to create systems with interacting nanoparticles for charge or excitonic transfer. The infrared photoluminescence of Ge nanocrystals at low temperatures shows strong emission with two sharp peaks at about 1,000 meV.

  11. Charge trapping of Ge-nanocrystals embedded in TaZrO{sub x} dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, D., E-mail: David.Lehninger@physik.tu-freiberg.de; Seidel, P.; Geyer, M.; Schneider, F.; Heitmann, J. [Institute of Applied Physics, TU Bergakademie Freiberg, D-09596 Freiberg (Germany); Klemm, V.; Rafaja, D. [Institute of Materials Science, TU Bergakademie Freiberg, D-09596 Freiberg (Germany); Borany, J. von [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany)

    2015-01-12

    Ge-nanocrystals (NCs) were synthesized in amorphous TaZrO{sub x} by thermal annealing of co-sputtered Ge-TaZrO{sub x} layers. Formation of spherical shaped Ge-NCs with small variation of size, areal density, and depth distribution was confirmed by high-resolution transmission electron microscopy. The charge storage characteristics of the Ge-NCs were investigated by capacitance-voltage and constant-capacity measurements using metal-insulator-semiconductor structures. Samples with Ge-NCs exhibit a maximum memory window of 5 V by sweeping the bias voltage from −7 V to 7 V and back. Below this maximum, the width of the memory window can be controlled by the bias voltage. The fitted slope of the memory window versus bias voltage characteristics is very close to 1 for samples with one layer Ge-NCs. A second layer Ge-NCs does not result in a second flat stair in the memory window characteristics. Constant-capacity measurements indicate charge storage in trapping centers at the interfaces between the Ge-NCs and the surrounding materials (amorphous matrix/tunneling oxide). Charge loss occurs by thermal detrapping and subsequent band-to-band tunneling. Reference samples without Ge-NCs do not show any memory window.

  12. Synthesis of visible light emitting self assembled Ge nanocrystals embedded within a SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Hernandez, A.; De Moure-Flores, F.; Quinones-Galvan, J. G.; Santoyo-Salazar, J.; Melendez-Lira, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07300, Mexico, Distrito Federal (Mexico); Rangel-Kuoppa, V. T. [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Plach, Thomas [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria IPN, Calzada Legaria 694, Col. Irrigacion, 11500 Mexico, Distrito Federal (Mexico); Hernandez-Hernandez, L. A. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 U.P. Adolfo Lopez Mateos, Col. San Pedro Zacatenco, C.P. 07730 (Mexico)

    2012-02-15

    As-grown light emitting self-assembled Ge nanocrystals (Ge-NCs) embedded in a SiO{sub 2} matrix were produced via a sequential deposition process of SiO{sub 2}/Ge/SiO{sub 2} layers employing a reactive radio frequency sputtering technique. Obtained Ge-NCs show a crystallographic phase, the proportion, size, quality, and specific orientation of which are determined by the oxygen partial pressure. Photoluminescence (PL) spectra indicate that the size distribution of Ge-NCs is reduced and centered on about 8 nm when higher oxygen partial pressure is employed; the formation of Ge-NCs is corroborated by transmission electron microscopy measurements, and their sizes are consistent with estimates from PL measurements. Resistivity measurements are explained by a near neighbors hopping process, with specific features depending on the Ge-NCs' size. The features of PL and resistivity measurements indicate that there is no appreciable dependence of the number of interfacial defects on the oxygen partial pressure.

  13. Synthesis of visible light emitting self assembled Ge nanocrystals embedded within a SiO2 matrix

    Science.gov (United States)

    Hernández-Hernández, A.; Rangel-Kuoppa, V. T.; Plach, Thomas; De Moure-Flores, F.; Quiñones-Galván, J. G.; Santoyo-Salazar, J.; Zapata-Torres, M.; Hernández-Hernández, L. A.; Meléndez-Lira, M.

    2012-02-01

    As-grown light emitting self-assembled Ge nanocrystals (Ge-NCs) embedded in a SiO2 matrix were produced via a sequential deposition process of SiO2/Ge/SiO2 layers employing a reactive radio frequency sputtering technique. Obtained Ge-NCs show a crystallographic phase, the proportion, size, quality, and specific orientation of which are determined by the oxygen partial pressure. Photoluminescence (PL) spectra indicate that the size distribution of Ge-NCs is reduced and centered on about 8 nm when higher oxygen partial pressure is employed; the formation of Ge-NCs is corroborated by transmission electron microscopy measurements, and their sizes are consistent with estimates from PL measurements. Resistivity measurements are explained by a near neighbors hopping process, with specific features depending on the Ge-NCs' size. The features of PL and resistivity measurements indicate that there is no appreciable dependence of the number of interfacial defects on the oxygen partial pressure.

  14. Formation of SiGe nanocrystals embedded in Al2O3 for the application of write-once-read-many-times memory

    Science.gov (United States)

    Wu, Min-Lin; Wu, Yung-Hsien; Lin, Chia-Chun; Chen, Lun-Lun

    2012-10-01

    The structure of SiGe nanocrystals embedded in Al2O3 formed by sequential deposition of Al2O3/Si/Ge/Al2O3 and a subsequent annealing was confirmed by transmission electron microscopy and energy dispersive spectroscopy (EDS), and its application for write-once-read-many-times (WORM) memory devices was explored in this study. By applying a -10 V pulse for 1 s, a large amount of holes injected from Si substrate are stored in the nanocrystals and consequently, the current at +1.5 V increases by a factor of 104 as compared to that of the initial state. Even with a smaller -5 V pulse for 1 μs, a sufficiently large current ratio of 36 can still be obtained, verifying the low power operation. Since holes are stored in nanocrystals which are isolated from Si substrate by Al2O3 with good integrity and correspond to a large valence band offset with respect to Al2O3, desirable read endurance up to 105 cycles and excellent retention over 100 yr are achieved. Combining these promising characteristics, WORM memory devices are appropriate for high-performance archival storage applications.

  15. Formation of SiGe nanocrystals embedded in Al{sub 2}O{sub 3} for the application of write-once-read-many-times memory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Min-Lin; Wu, Yung-Hsien; Lin, Chia-Chun; Chen, Lun-Lun [Department of Engineering and System Science, National Tsing-Hua University, 300 Hsinchu, Taiwan (China)

    2012-10-15

    The structure of SiGe nanocrystals embedded in Al{sub 2}O{sub 3} formed by sequential deposition of Al{sub 2}O{sub 3}/Si/Ge/Al{sub 2}O{sub 3} and a subsequent annealing was confirmed by transmission electron microscopy and energy dispersive spectroscopy (EDS), and its application for write-once-read-many-times (WORM) memory devices was explored in this study. By applying a -10 V pulse for 1 s, a large amount of holes injected from Si substrate are stored in the nanocrystals and consequently, the current at +1.5 V increases by a factor of 10{sup 4} as compared to that of the initial state. Even with a smaller -5 V pulse for 1 {mu}s, a sufficiently large current ratio of 36 can still be obtained, verifying the low power operation. Since holes are stored in nanocrystals which are isolated from Si substrate by Al{sub 2}O{sub 3} with good integrity and correspond to a large valence band offset with respect to Al{sub 2}O{sub 3}, desirable read endurance up to 10{sup 5} cycles and excellent retention over 100 yr are achieved. Combining these promising characteristics, WORM memory devices are appropriate for high-performance archival storage applications.

  16. Memory characteristics and tunneling mechanism of Ag nanocrystal embedded HfAlO{sub x} films on Si{sub 83}Ge{sub 17}/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.Y., E-mail: qxy2001@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Zhou, G.D.; Li, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Y.; Wang, X.H.; Dai, J.Y. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-07-01

    A nano-floating gate memory capacitor consisting of a stack of 3 nm-thick HfAlO{sub x} tunneling layer, self-organized Ag nanocrystals (NCs), and a 6 nm-thick HfAlO{sub x} control layer, has been fabricated on compressively strained p-type Si{sub 83}Ge{sub 17}/Si(100) substrates by radio-frequency magnetron sputtering. The Ag-NCs with a size of 5–8 nm and a density of 5.7 × 10{sup 12}/cm{sup 2} are well dispersed in the amorphous HfAlO{sub x} matrix. Counterclockwise hysteresis capacitance–voltage curve with a memory window of ∼ 2 V, corresponding to a charge storage density of about 1.3 × 10{sup 13} electrons/cm{sup 2}, is observed in this memory capacitor. The accumulation capacitance of this memory capacitor has no obvious decrease during electrical stressing process within a period of 10{sup 4} s, but the memory window gradually becomes narrower, and only 54% stored charges are retained in the Ag-NCs after 10{sup 5} s stressing. Defect-enhanced Poole–Frenkel tunneling is found to be responsible for the degradation of memory properties. - Highlights: • Dispersed Ag nanocrystals act as memory nodes. • Realize a 2 V memory window • Illustrate the memory degradation process • Identify a defect-enhanced tunneling mechanism.

  17. Fabrication of Ge nanocrystals doped silica-on-silicon waveguides and observation of their strong quantum confinement effect

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten

    2009-01-01

    Germanium (Ge) nanocrystals embedded in silica matrix is an interesting material for new optoelectronic devices. In this paper, standard silica-on-silicon waveguides with a core doped by Ge nanocrystals were fabricated using plasma enhanced chemical vapour deposition and reactive ion etching...

  18. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Alexander N. Ionov

    2011-07-01

    Full Text Available The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS, High Resolution Transmission Electron Microscopy (HR-TEM and X-ray photoelectron spectroscopy (XPS. The irradiation of Ge- NC samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 8000C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of Ge-NC changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.

  19. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  20. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    CERN Document Server

    Bostedt, C; Willey, T M; Nelson, A J; Franco, N; Möller, T; Terminello, L J

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials.

  1. Energy relaxation in optically excited Si and Ge nanocrystals

    NARCIS (Netherlands)

    S. Saeed

    2014-01-01

    The scientific objective of the research presented in this thesis is to explore energy relaxation processes of optically excited Si and Ge nanocrystals. The identification and deeper understanding of unique energy relaxation paths in these materials will open a new window of opportunity for these ma

  2. Germanium Nanocrystals Embedded in Silicon Dioxide for Floating Gate Memory Devices

    Directory of Open Access Journals (Sweden)

    A. Bag

    2011-01-01

    Full Text Available Metal-oxide-semiconductor (MOS capacitors with tri-layer structure consisting of rf magnetron sputtered grown germanium (Ge nanocrystals (NCs and silicon dioxide (SiO2 layers sandwiched between thermally grown tunnel and sputtered grown cap oxide layers of SiO2 were fabricated on p-Si substrates. Plane view transmission electron micrographs revealed the formation of spherically shaped and uniformly distributed Ge NCs. The optical and electronic characteristics of tri-layer structures were studied through photoluminescence (PL spectroscopy and capacitance-voltage (C-V measurements, respectively. Frequency dependent electrical properties of the structures have been studied. The optical emission characteristics support the confinement of the carriers in Ge NCs embedded in oxide matrices. An anticlockwise hysteresis in C-V characteristics suggests electron injection and trapping in Ge NCs.

  3. Local rigidity and physical trends in embedded Si nanocrystals

    Science.gov (United States)

    Kleovoulou, K.; Kelires, P. C.

    2013-12-01

    We investigate the problem of local rigidity of Si nanocrystals embedded in amorphous silica. By analyzing the elastic (bulk) modulus field into atomic contributions, we show that it is highly inhomogeneous. It consists of a hard region in the interior of the nanocrystals, with moduli ˜105 GPa, compared to 98 GPa for bulk Si, and of "superhard" (˜120 GPa) and "supersoft" (˜80 GPa) regions in the outer parts. Overall, the nanocrystal bulk modulus is significantly enhanced compared to the bulk, and its variation with size accurately follows a power-law dependence on the average bond length. The bulk modulus of the oxide matrix and of the interface region is nearly constant with size, with values 60 and 70 GPa, respectively. The average optical (homopolar) gap is directly linked to the elastic and bond-length variations.

  4. Optical characterization of luminescent silicon nanocrystals embedded in glass matrices

    Energy Technology Data Exchange (ETDEWEB)

    Debieu, Olivier

    2008-12-16

    Interstellar dust in nebulae and in the Diffuse Interstellar Medium (DISM) of galaxies contains a component which exhibits efficient visible-near infrared luminescence ranging from 500 to 1000 nm, known as Extended Red Emission (ERE). Silicon nanocrystals (nc-Si) are discussed as possible carriers of the ERE. We employed the accelerator facilities of the Institute of Solid State Physics of the University of Jena to implant Si ions into fused silica windows. An excess concentration of silicon atoms is thus produced in the host SiO{sub 2} matrix which, by applying an annealing at 1100 C, condensates to silicon nanoparticles and crystallizes. Although the condensation and crystallization occur after an annealing of one minute,10, 15 the samples were annealed during one hour in order to well-passivate the nc-Si, that means, to reduce effectively the number of Si-dangling bonds at the nc-Si surface that are efficient non-radiative recombination centers. 10, 16 Upon excitation with UV light, most of our nc-Si/SiO{sub 2} samples revealed strong PL. We implanted into our luminescent nc-Si/SiO{sub 2} systems other atomic elements, as for instance magnesium and calcium, which form silicates if their oxide is combined with SiO{sub 2}. The purpose is to simulate the conditions for silicates containing nc-Si. In order to understand the effect of the incorporation of foreign atoms on the PL properties of our nc-Si/SiO{sub 2} systems, we proceeded to similar experiments with Er and Ge. As has been demonstrated by several authors, 17, 18 the presence of nc-Si in a glass matrix enhances considerably the emission of Er{sup 3+} ions at 1.536{mu}m. At the same time, the PL of nc-Si is considerably quenched. Since the solubility of Er in crystalline silicon is about 2 orders of magnitude lower than in SiO{sub 2}, the optically active Er{sup 3+} ions are believed to be localized outside the nc-Si core, demonstrating that ions present in the host SiO{sub 2} matrix influence the PL

  5. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    Science.gov (United States)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  6. TEM studies of Ge nanocrystal formation in PECVD grown SiO2:Ge/SiO2 multilayers

    Science.gov (United States)

    Agan, S.; Dana, A.; Aydinli, A.

    2006-06-01

    We investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 °C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 °C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 °C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO2 interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer.

  7. Transparent silicate glass-ceramics embedding Ni-doped nanocrystals

    OpenAIRE

    2010-01-01

    Recent progress in the development of transparent silicate glass-ceramics embedding Ni-doped nanocrystals as broadband gain media is reviewed. At first, optical properties such as the peak positions, wavelengths lifetimes and quantum efficiencies of the near-infrared emission of nickel-doped oxide crystals are overviewed. The quantum efficiencies of the near-infrared emission of nickel-doped LiGa5O8 and MgGa2O4 were as high as ~1 even at room temperature. Thus these materials are promising ca...

  8. Influence of Ge content and annealing conditions on the PL properties of nc-Si{sub 1−x}Ge{sub x} embedded in SiO{sub 2} matrix in weak quantum confined regime

    Energy Technology Data Exchange (ETDEWEB)

    Tuğay, Evrin, E-mail: evrin.tugay@erdogan.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Recep Tayyip Erdogan University, Rize 53100 (Turkey); Ilday, Serim [Department of Micro and Nanotechnology, Middle East Technical University, Ankara (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), 06531 Ankara (Turkey); Turan, Raşit [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), 06531 Ankara (Turkey); Department of Physics, Middle East Technical University, Ankara (Turkey); Finstad, Treje G. [Department of Physics, University of Oslo, Oslo (Norway)

    2014-11-15

    Fabrication of Si (nc-Si), Ge (nc-Ge), and Si{sub 1−x}Ge{sub x} (nc-Si{sub 1−x}Ge{sub x}) nanocrystals embedded in SiO{sub 2} matrix is achieved by thermal annealing of magnetron-sputtered thin films. Effects of annealing conditions, namely duration and temperature, as well as Ge content on the photoluminescence properties are investigated. Origin and evolution of the photoluminescence signal in the weak quantum confinement regime are discussed. It is found that photoluminescence signals can be decomposed into four Gaussian peaks originating from Ge-related radiative defects located at the sub-oxide (GeO{sub x}), either inside the matrix or at the interface region (peak M), nc-Si{sub 1−x}Ge{sub x}/SiO{sub 2} interface-related localized states (peak I), localized states in the amorphous Si{sub 1−x}Ge{sub x} bandgap (peak A) and quantum confinement of excitons in small nanocrystals (peak Q). The role of small and large nanocrystals in the photoluminescence mechanism is investigated by varying the mean nanocrystal size from 3 nm to 23 nm (from strong to weak quantum confined regime). Our results demonstrate that the quantum confinement effect in Ge nanocrystals manifests though spectral blueshift due to increase in Ge content. We also propose that the decreasing photoluminescence signal intensity with an increase in Ge content may originate from Ge-related nonradiative P{sub b} centers. - Highlights: • Origin and evolution of PL in weak quantum confinement regime are investigated. • It is necessary to distinguish between the role of smaller and larger nanocrystals. • Blueshift and PL quenching by incorporation of more Ge atoms has been observed.

  9. Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)]. E-mail: cnzwchen@yahoo.com.cn; Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Chen, H.D. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

    2005-08-31

    Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing have been investigated by transmission electron microscopy and high-resolution transmission electron microscopy observations. Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge bilayer films upon annealing. Synchronously, the crystallization processes of amorphous Ge accompanied by the formation of Ge fractal clusters, which were composed of Ge nanocrystals. We found that the grain boundaries of polycrystalline Au film were the initial nucleation sites of Ge nanocrystals. High-resolution transmission electron microscopy observations showed successive nucleation of amorphous Ge at Au grain boundaries near fractal tips. The crystallization process was suggested to be diffusion controlled and a random successive nucleation and growth mechanism.

  10. 360-nm Photoluminescence from Silicon Oxide Films Embedded with Silicon Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    YANG Lin-lin; GUO Heng-qun; ZENG You-hua; WANG Qi-ming

    2006-01-01

    Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescence(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanocrystals was discussed.

  11. Photoluminescence of X-ray irradiated CdSe nanocrystals embedded in dielectric matrices

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, M.V.; Azhniuk, Yu.M.; Zvenigorodsky, V.V.; Krasilinets, V.M.; Gomonnai, A.V. [Institute of Electron Physics, Ukrainian National Academy of Sciences, Universytetska Str. 21, Uzhhorod 88017 (Ukraine); Rayevska, O.E.; Stroyuk, O.L. [L.V. Pysarzhevsky Institute of Physical Chemistry, Ukrainian National Academy of Sciences, Prospect Nauky 31, Kyiv 03028 (Ukraine); Zahn, D.R.T. [Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2013-06-15

    The effect of X-ray irradiation (up to 3200 Gy) on the photoluminescence (PL) of CdSe nanocrystals embedded in polyacrylamide and borosilicate glass matrices is studied. In both cases no PL quenching is observed: for the polyacrylamide-embedded CdSe nanocrystals the PL intensity remains stable, while for the borosilicate glass-embedded nanocrystals it increases somewhat. The obtained PL behavior correlates well with the optical absorption data. This testifies to the radiation stability of the optical characteristics of CdSe nanocrystals in polyacrylamide and irradiation-induced charge transfer between the nanocrystals and the borosilicate glass. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Thermodynamic Properties of Supported and Embedded Metallic Nanocrystals: Gold on/in SiO2

    Directory of Open Access Journals (Sweden)

    Giannazzo F

    2008-01-01

    Full Text Available Abstract We report on the calculations of the cohesive energy, melting temperature and vacancy formation energy for Au nanocrystals with different size supported on and embedded in SiO2. The calculations are performed crossing our previous data on the surface free energy of the supported and embedded nanocrystals with the theoretical surface-area-difference model developed by W. H. Qi for the description of the size-dependent thermodynamics properties of low-dimensional solid-state systems. Such calculations are employed as a function of the nanocrystals size and surface energy. For nanocrystals supported on SiO2, as results of the calculations, we obtain, for a fixed nanocrystal size, an almost constant cohesive energy, melting temperature and vacancy formation energy as a function of their surface energy; instead, for those embedded in SiO2, they decreases when the nanocrystal surface free energy increases. Furthermore, the cohesive energy, melting temperature and vacancy formation energy increase when the nanocrystal size increases: for the nanocrystals on SiO2, they tend to the values of the bulk Au; for the nanocrystals in SiO2 in correspondence to sufficiently small values of their surface energy, they are greater than the bulk values. In the case of the melting temperature, this phenomenon corresponds to the experimentally well-known superheating process.

  13. Synthesis and size differentiation of Ge nanocrystals in amorphous SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Agan, S. [University of Illinois, Department of Materials Science and Engineering, Urbana, IL (United States); Kirikale University, Physics Department, Kirikale (Turkey); Celik-Aktas, A. [University of Illinois, Department of Nuclear, Plasma and Radiological Engineering, Urbana, IL (United States); Zuo, J.M. [University of Illinois, Department of Materials Science and Engineering, Urbana, IL (United States); Dana, A.; Aydinli, A. [Bilkent University, Physics Department, Ankara (Turkey)

    2006-04-15

    Germanosilicate layers were grown on Si substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed at different temperatures ranging from 700-1010 C for durations of 5 to 60 min. Transmission electron microscopy (TEM) was used to investigate Ge nanocrystal formation in SiO{sub 2}:Ge films. High-resolution cross section TEM images, electron energy-loss spectroscopy and energy dispersive X-ray analysis (EDX) data indicate that Ge nanocrystals are present in the amorphous silicon dioxide films. These nanocrystals are formed in two spatially separated layers with average sizes of 15 and 50 nm, respectively. EDX analysis indicates that Ge also diffuses into the Si substrate. (orig.)

  14. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    KAUST Repository

    Stavarache, Ionel

    2017-07-21

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling of nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. It is reported here the significant progress introduced by synthesis procedure to the in-situ structuring of Ge nanocrystallites in SiO2 thin films by heating the substrate at low temperature, 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency of 850 %. This simple preparation approach brings an important contribution to the efort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  15. TEM studies of Ge nanocrystal formation in PECVD grown SiO{sub 2}:Ge/SiO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Agan, S [Physics Department, Kirikkale University, 71450 Kirikkale (Turkey); Dana, A [Physics Department, Bilkent University, 06800 Ankara (Turkey); Aydinli, A [Physics Department, Bilkent University, 06800 Ankara (Turkey)

    2006-06-07

    We investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 {sup 0}C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 {sup 0}C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 {sup 0}C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO{sub 2} interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer.

  16. Si nanocrystals embedded in SiO2: Optical studies in the vacuum ultraviolet range

    DEFF Research Database (Denmark)

    Pankratov, V.; Osinniy, Viktor; Kotlov, A.

    2011-01-01

    Photoluminescence excitation and transmission spectra of Si nanocrystals of different diameters embedded in a SiO2 matrix have been investigated in the broad visible-vacuum ultraviolet spectral range using synchrotron radiation. The dependence of the photoluminescence excitation spectra...... on the nanocrystals size was experimentally established. It is shown that the photoluminescence excitation and absorption spectra are significantly blueshifted with decreasing Si nanocrystal size. A detailed comparison of photoluminescence excitation and absorption spectra with data from theoretical modeling has been...... done. It is demonstrated that the experimentally determined blueshift of the photoluminescence excitation and absorption spectra is larger than the theoretical predictions. The influence of point defects in the SiO2 matrix on the optical and luminescence properties of the embedded Si nanocrystals...

  17. Characterization of PTCDA nanocrystals on Ge(0 0 1):H-(2 × 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Zebari, Amir A.; Kolmer, Marek; Prauzner-Bechcicki, Jakub S., E-mail: jakub.prauzner-bechcicki@uj.edu.pl

    2015-03-30

    Highlights: • We characterize self-assembled PTCDA molecular islands on Ge(0 0 1):H-(2 × 1) surfaces. • Preferred orientation, height, shape and internal structure are identified. • Electronic properties and stability of nanocrystals are discussed. - Abstract: We analyze self-assembled nanocrystals of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on hydrogen passivated Ge(0 0 1) surfaces with use of scanning tunneling microscopy (STM) and spectroscopy (STS). At 0.7ML coverage, 2.1 nm high, elongated, hexagonal islands inclined at 37° with respect to the substrate row are mostly observed. By measuring the differential tunneling conductance, we observe an effect of electronic decoupling of the nanocrystals due to the introduced passivating layer. Finally, we shortly discuss the stability of the islands and their interaction with the scanning probe in the ultra-high vacuum environment.

  18. Nanocrystals magnetic contribution to FINEMET-type soft magnetic materials with Ge addition

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Lab. de Solidos Amorfos, Facultad de Ingenieria-INTECIN, UBA-CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)], E-mail: diego.muraca@gmail.com; Silveyra, J.; Pagnola, M. [Lab. de Solidos Amorfos, Facultad de Ingenieria-INTECIN, UBA-CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Cremaschi, V. [Lab. de Solidos Amorfos, Facultad de Ingenieria-INTECIN, UBA-CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2009-11-15

    Over the last years several works have been published in which magnetic and structural properties of soft magnetic nanocrystalline alloys were reported. Among these, there are a series of articles where the nanocrystals composition of FINEMET-type alloys with Ge addition was obtained by Moessbauer spectroscopy (MS) and X-ray diffraction (XRD). By considering a linear relationship between the magnetic moments of the nanocrystals and the composition of various elements in these crystallites, the magnetic moment of the nanocrystals was calculated. This paper reviews results obtained by different authors since 1980 and they are compared with ours. In turn, we revised some elements not previously considered for the calculus of the nanocrystals composition that allowed us to obtain the magnetic moment of the crystallites in the alloy. In particular, we analyzed FINEMET-type alloys with replacement of B for Ge: Fe{sub 73.5}Si{sub 13.5}Ge{sub 2}B{sub 7}Nb{sub 3}Cu{sub 1} and Fe{sub 73.5}Si{sub 13.5}Ge{sub 4}B{sub 5}Nb{sub 3}Cu{sub 1}. The nanocrystalline structure was obtained by isothermal annealing of melt-spun ribbons at 823 K for 1 h. From MS and XRD we obtained the atomic composition of the nanocrystals in the magnetic material. The magnetic contribution of the nanocrystals to the alloy was calculated using a linear model and the results were compared with experimental measurements of the samples.

  19. GeSi nanocrystals formed by high temperature annealing of GeO/SiO2 multilayers: structure and optical properties

    Science.gov (United States)

    Volodin, V. A.; Cherkov, A. G.; Vdovin, V. I.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2016-12-01

    The structural and optical properties of Ge and GeSi nanocrystals, formed by annealing of GeO/SiO2 multilayers have been investigated. According to Raman spectroscopy, the formation of pure Ge nanocrystals is observed after post growth annealing at 700 °C. Annealings at 800°C-900°C leads to the formation of intermixed GexSi1-x nanocrystals. High resolution transmission electron microscopy shows that the structure and the size of the nanocrystals strongly depend on annealing temperature. Spatial redistribution of Ge with the formation of large faceted clusters located near the Si substrate as well as GeSi intermixing at the substrate/film interface were observed. In the case of the sample containing 20 pairs of GeO/SiO2 layers annealed at 900 °C, some clusters exhibit a pyramid-like shape. FTIR absorption spectroscopy measurements demonstrate that intermixing between the GeO and SiO2 layers occurs leading to the formation of a SiGeO2 glass. Low temperature (10 K-100 K) photoluminescence was observed in the spectral range 1400-2000 nm for samples containing nanocrystals. The temperature dependence of the photoluminescence is studied.

  20. SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study

    Science.gov (United States)

    Abdulsattar, Mudar A.

    2012-02-01

    Infrared and Raman vibrational spectrum are calculated using ab initio density functional theory for SiGe superlattice nanocrystal of approximately 1.6 nm length. After obtaining the optimum positions of atoms via geometrical optimization using density functional theory, coupled perturbed Hartree-Fock equations are solved iteratively to obtain vibrational spectrum. Frequencies of vibrations are analyzed against intensities, reduced masses, and vibrational force constants. A scale factor of 0.81 is suggested to correct the frequencies of the present calculations that are obtained using STO-3 G basis functions. Results show that SiGe nanocrystals have complex and rich vibrational spectrum that can be generally divided into three regions. The highest reduced masses are in the first region where Si and Ge atoms are the main contributors to vibrations with a smaller number of vibrations attributed to hydrogen atoms. The highest intensity lines in SiGe superlattice nanocrystals are in the middle region where most of the modes of vibration can be excited. The third region is characterized by high force constants. The first region shows a redshift of the original Ge-Si bond vibration from the calculated bulk 418 cm-1 to the present nanocrystal 395 cm-1. Hydrogen vibrations interferences are found in the same redshift region that might induce uncertainties in the experimentally measured redshift. Si-H and Ge-H vibrations are observed mainly in the second and third region and less frequently in the first region. These vibrations include modes of vibration such as symmetric, asymmetric, wagging, scissor, rocking, and twisting modes.

  1. Ion beam synthesis of embedded III-As nanocrystals in silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, Rim; Fregnaux, Mathieu; Le Gall, Yann; Muller, Dominique; Mathiot, Daniel [ICube Laboratory, CNRS-Universite de Strasbourg UMR 7163, Strasbourg (France); Schmerber, Guy [IPCMS, CNRS-Universite de Strasbourg UMR 7504, Strasbourg (France)

    2015-01-01

    Our goal is to use the versatility of ion beam synthesis to grow nanocrystals of In{sub x}Ga{sub 1-x}As alloys embedded in a silicon substrate. We study, first, the annealing conditions necessary to grow well defined InAs and GaAs binary nanocrystals. High dose of As, Ga and In is implanted, respectively, at 130, 130 and 180 keV to have overlapping as-implanted profiles. The nanocrystals growth is then achieved by rapid thermal annealing at various temperatures between 650 and 800 C for 1 min under an argon gas flow. Rutherford backscattering spectroscopy profiles show that no significant impurity out-diffusion occurs below 800 C for both systems. In and As thermal redistributions lead to superposed profiles. Raman spectroscopy measurements prove that InAs nanocrystals are formed above 650 C, while 800 C annealing is necessary to obtain GaAs nanocrystals and show that these thermal budgets are enough to fully recrystallize the implanted layer. Grazing incidence X-ray diffraction patterns exhibit clearly InAs and GaAs related peaks. These results prove that GaAs and InAs nanocrystals can be grown in a common temperature range (700-800 C), opening the route to the growth of ternary In{sub x}Ga{sub 1-x}As alloys in the same conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

    Science.gov (United States)

    de Caro, Liberato; Altamura, Davide; Arciniegas, Milena; Siliqi, Dritan; Kim, Mee R.; Sibillano, Teresa; Manna, Liberato; Giannini, Cinzia

    2016-01-01

    Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films.

  3. CORRIGENDUM: TEM studies of nanocrystal formation in PECVD grown for SiO2:Ge/SiO2 multilayers

    Science.gov (United States)

    Agan, S.; Dana, A.; Aydinli, A.

    2006-11-01

    In figure 4(c) the diffraction pattern of the Si substrate was inadvertently included instead of the diffraction pattern of Ge nanocrystals, and should be replaced by the new figure given (see pdf for details).

  4. Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge

    Energy Technology Data Exchange (ETDEWEB)

    Moya, J.A., E-mail: jmoya.fi.uba@gmail.co [IESIING, Facultad de Ingenieria e Informatica, UCASAL, A4402FYP Salta (Argentina); Lab. Solidos Amorfos, Facultad de Ingenieria, INTECIN, UBA-CONICET (Argentina); CONICET (Argentina)

    2010-07-15

    Two simple models were developed in order to determine the chemical composition of both nanocrystals and intergranular amorphous phases in nanocrystallized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} containing Ge using data from X-ray diffraction and Moessbauer spectroscopy techniques. Saturation magnetization of the amorphous intergranular matrix (M{sub s}{sup am}) was calculated considering the contribution of the alpha-Fe(Si,Ge) nanocrystals and saturation magnetization of the alloys. The behavior of M{sub s}{sup am} with the iron content of the matrix was obtained and discussed. The exchange stiffness constant for the nanograins and for the amorphous phases was determined. The increment in the coercive field (H{sub c}) with increasing Ge content was evaluated using two theoretical models for the random magnetocrystalline anisotropy constant (). Results show that the magnetic hardening observed could not be attributed to an increase in but mainly to an important increment of the magnetostriction constant of the alpha-Fe(Si,Ge) nanocrystals (lambda{sub s}{sup cr}). Values for lambda{sub s}{sup cr} are proposed.

  5. Laser-induced growth of nanocrystals embedded in porous materials

    Science.gov (United States)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  6. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  7. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Sudip K Batabyal; A Paul; P Roychoudhury; C Basu

    2006-08-01

    Nano-crystal embedded PbO–P2O5 glass has been prepared and characterized by XRD and TEM measurements. The ultrasonic velocity and attenuation measured within the temperature range 80–300 K show significant structure and interesting feature with the presence of nano-crystalline region. The glass samples were prepared by melt-quench method and nano-crystals of different sizes were produced by heat treatment of the glasses for different durations of heating. All the processes were carried out at or above glass transition temperature. A theoretical model that takes account of the effects of thermally activated relaxation, anharmonicity as well as microscopic elastic inhomogeneities arising out of fluctuations has been successfully applied to interpret the variation of ultrasonic velocity and attenuation data. An interesting outcome of this application has been to propose a method for the determination of the size of nano-crystals from the ultrasonic attenuation data.

  8. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  9. Electronic states in spherical GaN nanocrystals embedded in various dielectric matrices: The k ⋅ p-calculations

    Energy Technology Data Exchange (ETDEWEB)

    Konakov, A. A., E-mail: anton.a.konakov@gmail.com; Filatov, D. O.; Korolev, D. S.; Belov, A. I.; Mikhaylov, A. N.; Tetelbaum, D. I. [Lobachevsky University, Nizhny Novgorod 603950 (Russian Federation); Kumar, Mahesh [Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342011 (India)

    2016-01-15

    Using the envelope-function approximation, the single-particle states of electrons and holes in spherical GaN nanocrystals embedded in different amorphous dielectric matrices (SiO{sub 2}, Al{sub 2}O{sub 3}, HfO{sub 2} and Si{sub 3}N{sub 4}) have been calculated. Ground state energies of electrons and holes in GaN nanocrystals are determined using the isotropic approximation of the k ⋅ p -Hamiltonian. All the ground state energies are found to increase with lowering the nanocrystal size and are proportional to the R{sup −n}, where R is the nanocrystal radius, n =1.5-1.9 for electrons and 1.7-2.0 for holes. The optical gap of GaN nanocrystals changes from 3.8 to 5 eV for the nanocrystal radius ranging from 3 to 1 nm.

  10. Electronic states in spherical GaN nanocrystals embedded in various dielectric matrices: The k ⋅ p-calculations

    Directory of Open Access Journals (Sweden)

    A. A. Konakov

    2016-01-01

    Full Text Available Using the envelope-function approximation, the single-particle states of electrons and holes in spherical GaN nanocrystals embedded in different amorphous dielectric matrices (SiO2, Al2O3, HfO2 and Si3N4 have been calculated. Ground state energies of electrons and holes in GaN nanocrystals are determined using the isotropic approximation of the k ⋅ p -Hamiltonian. All the ground state energies are found to increase with lowering the nanocrystal size and are proportional to the R−n, where R is the nanocrystal radius, n =1.5-1.9 for electrons and 1.7-2.0 for holes. The optical gap of GaN nanocrystals changes from 3.8 to 5 eV for the nanocrystal radius ranging from 3 to 1 nm.

  11. Structure and Optical Properties of Silicon Nanocrystals Embedded in Amorphous Silicon Thin Films Obtained by PECVD

    Directory of Open Access Journals (Sweden)

    B. M. Monroy

    2011-01-01

    Full Text Available Silicon nanocrystals embedded in amorphous silicon matrix were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals. High-resolution transmission electron microscopy images and RAMAN measurements confirmed the existence of nanocrystals embedded in the amorphous matrix with average sizes between 2 and 6 nm. Different crystalline fractions (from 12% to 54% can be achieved in these films by regulating the selected growth parameters. The global optical constants of the films were obtained by UV-visible transmittance measurements. Effective band gap variations from 1.78 to 2.3 eV were confirmed by Tauc plot method. Absorption coefficients higher than standard amorphous silicon were obtained in these thin films for specific growth parameters. The relationship between the optical properties is discussed in terms of the different internal nanostructures of the samples.

  12. Effect of the physical and the chemical structures of Ni nanocrystals on the nonvolatile memory characteristics for small-molecule nonvolatile memorycells embedded with Ni nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Woo-Sik; Park, Jea-Gun [Hanyang University, Seoul (Korea, Republic of)

    2011-06-15

    We determined the effects of the evaporation rate of the Ni layer and the presence of in-situ O{sub 2} plasma oxidation on the physical and the chemical structures of Ni nanocrystals embedded in small molecule (Alq{sub 3}: aluminum tris(8-hydroxyquinoline)) memorycells. The Ni nanocrystals produced by an evaporation rate of 0.1 A/s for the Ni layer with in-situ O{sub 2} plasma oxidation were well isolated from one another by a NiO tunneling barrier. The small-molecule memorycell embedded with isolated Ni nanocrystals surrounded by a NiO tunneling barrier demonstrated a memory margin (I{sub on}/I{sub off} ratio) of {approx}1 x 10{sup 3}, a retention time of more than 10{sup 5} sec, and an endurance of more than 2 x 10{sup 2} erase-and- program cycles.

  13. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  14. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  15. Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties

    Science.gov (United States)

    Zhang, Wei; Chu, Xiaoqing; Chen, Chaoji; Xiang, Jingwei; Liu, Xiaoxiao; Huang, Yunhui; Hu, Xianluo

    2016-06-01

    High-capacity anode materials based on alloy-type group IV elements always have large volume expansion during lithiation when they are used in lithium-ion batteries. Designing hollow structures is a well-established strategy to accommodate the volume change because of sufficient internal void space. Here we report a facile template-free route to prepare hollow Ge nanospheres without using any templates through a quasi-microemulsion method. Ge nanocrystals are preferably self-assembled along the interface of liquid vesicles between water and tetrahydrofuran, and well-defined hollow architectures of ~50 nm in diameter are formed. Both the wall thickness and hollow interiors can be easily tuned. After subsequent carbon coating via pyrolysis of acetylene, the as-formed Ge@C nanocomposite with hollow interiors exhibits a highly reversible capacity of about 920 mA h g-1 at 200 mA g-1 over 50 cycles, and excellent rate capability. The small size and the high structural integrity of hollow Ge@C structures contribute to the superior lithium-storage performances.High-capacity anode materials based on alloy-type group IV elements always have large volume expansion during lithiation when they are used in lithium-ion batteries. Designing hollow structures is a well-established strategy to accommodate the volume change because of sufficient internal void space. Here we report a facile template-free route to prepare hollow Ge nanospheres without using any templates through a quasi-microemulsion method. Ge nanocrystals are preferably self-assembled along the interface of liquid vesicles between water and tetrahydrofuran, and well-defined hollow architectures of ~50 nm in diameter are formed. Both the wall thickness and hollow interiors can be easily tuned. After subsequent carbon coating via pyrolysis of acetylene, the as-formed Ge@C nanocomposite with hollow interiors exhibits a highly reversible capacity of about 920 mA h g-1 at 200 mA g-1 over 50 cycles, and excellent rate

  16. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Bychto, Leszek, E-mail: leszek.bychto@tu.koszalin.pl; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia, E-mail: eumat@upvnet.upv.e [Technical University of Valencia, Nanophotonics Technology Center (Spain)

    2008-12-15

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 {Omega}cm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  17. Charge storage and tunneling mechanism of Ni nanocrystals embedded HfOx film

    Directory of Open Access Journals (Sweden)

    H. X. Zhu

    2016-05-01

    Full Text Available A nano-floating gate memory structure based on Ni nanocrystals (NCs embedded HfOx film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfOx matrix. Pt/Ni-NCs embedded HfOx/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 1012 electrons/cm2, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 104 cycles and excellent retention performance of 105 s, fulfilling the requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.

  18. Influence of the deposition and annealing temperatures on the luminescence of germanium nanocrystals formed in GeO x films and multilayer Ge/SiO2 structures

    Science.gov (United States)

    Grachev, D. A.; Ershov, A. V.; Karabanova, I. A.; Pirogov, A. V.; Nezhdanov, A. V.; Mashin, A. I.; Pavlov, D. A.

    2017-05-01

    The GeO x films and multilayer nanoperiodic Ge/SiO2 structures containing germanium nanocrystals were prepared by physical vapor deposition in vacuum. The properties of the films and multilayer structures were controlled by varying the deposition temperature in the range of 35-590°C and the annealing temperature in the range of 400-1000°C. A comparative study of the optical and structural characteristics of the nanosystems was performed using the methods of Raman scattering spectroscopy, IR spectroscopy, photoluminescence, and electron microscopy, which demonstrated a qualitative similarity of the nanosystems. It was found that annealing at temperatures in the range of 600-800°C leads to the formation of germanium nanocrystals with a high density ( 1012 cm-2), whereas in the materials not subjected to annealing, their density did not exceed 1010 cm-2. The average size of the nanocrystals was found to be 5 ± 2 nm. For both nanosystems, three luminescence bands were observed at 1.2, 1.5-1.7, and 1.7-2.0 eV. It was assumed that the origin of these bands is associated with germanium nanocrystals, oxygen-deficient centers in GeOx, and defects at the Ge/dielectric interface, respectively.

  19. Study of the structural, electrical and optical properties of Ge-Pb-Te nanocrystals

    Science.gov (United States)

    Mahdy, Iman A.; Mahdy, Manal A.; El Sheikh, S. M.

    2016-12-01

    Nanocrystals of Pb37.5Ge12.5Te50 with average size 24 nm are prepared using direct solid state reactions of pure elements in vacuum. The obtained Pb37.5Ge12.5Te50 nanocrystal alloy was used as a starting material for preparing thin films by inert gas condensation (IGC) technique. The obtained thin films show a nanocrystalline structure. Particle size of thin film increases from 4.3 to 6.9 nm with increasing film thickness from 10 to 60 nm. Optical studies for thin films revealed a direct allowed electronic transition. The values of optical band gap E op g decreased from 2.26 to 1.63 eV with increasing film thickness from 10 to 60 nm and inversely proportional to particle size. The electrical conductivity of nanocrystalline thin films was enhanced by a factor of 1000 times with increasing film thickness from 10 to 60 nm. The reduction of electrical conductivity during cooling cycle for 46 and 60 nm film thicknesses can be explained by the so-called core-shell model. The growth of crystal during heating process causes an increase in thin film resistance during cooling which reduces the probability of the presence of current paths within thin film.

  20. Enhanced crystallization of amorphous silicon thin films using embedded silicon nanocrystals

    Science.gov (United States)

    Anderson, Curtis Michael

    This thesis is concerned with the production of silicon thin films for photovoltaic applications. Much research has been carried out to find a stable, more efficient alternative to amorphous silicon, resulting in a number of various amorphous/crystalline mixed-phase film structures with properties superior to amorphous silicon. This thesis work details a completely new approach to mixed-phase film deposition, focusing on the fast crystallization of these films. The deposition of amorphous silicon films with embedded nanocrystals was carried out via a dual-plasma system. It is known that plasma conditions to produce high quality films are much different from those to produce particles. Hence the experimental system used here involved two separate plasmas to allow the optimum production of the crystalline nanoparticles and the amorphous film. Both plasmas use 13.56 MHz excitation voltage with diluted silane as the silicon precursor. The nanoparticle production reactor is a flow-through device that can be altered to control the size of the particles from around 5--30 nm average diameter. The film production reactor is a parallel-plate capacitively-coupled plasma system, into which the aerosol-suspended nanoparticles were injected. The nanocrystals could either be "co-deposited" simultaneously with the amorphous film, or be deposited separately in a layer-by-layer technique; both approaches are discussed in detail. Measurements of the film conductivity provide for the first time unambiguous evidence that the presence of nanocrystallites above 5 nm in the amorphous film have a direct impact on the electronic properties of co-deposited films. Further measurements of the film structure by transmission electron microscopy (TEM) and Raman spectroscopy demonstrate clearly the effect of embedded nanocrystals on the annealed crystallization process; the immediate growth of the crystal seeds has been observed. Additionally, a newly discovered mechanism of film crystallization

  1. Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals.

    Science.gov (United States)

    Hunter, Katharine I; Held, Jacob T; Mkhoyan, K Andre; Kortshagen, Uwe R

    2017-03-08

    In this work, we present an all-gas-phase approach for the synthesis of quantum-confined core/shell nanocrystals (NCs) as a promising alternative to traditional solution-based methods. Spherical quantum dots (QDs) are grown using a single-stage flow-through nonthermal plasma, yielding monodisperse NCs, with a concentric core/shell structure confirmed by electron microscopy. The in-flight negative charging of the NCs by plasma electrons keeps the NC cores separated during shell growth. The success of this gas-phase approach is demonstrated here through the study of Ge/Si core/shell QDs. We find that the epitaxial growth of a Si shell on the Ge QD core compressively strains the Ge lattice and affords the ability to manipulate the Ge band structure by modulation of the core and shell dimensions. This all-gas-phase approach to core/shell QD synthesis offers an effective method to produce high-quality heterostructured NCs with control over the core and shell dimensions.

  2. Preparation of AgCl Nano-Crystal Embedded Tellurite Nonlinear Optical Glasses under Electric Field Accompanied Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Jian LIN; Wenhai HUANG; Bofang LI; Chong JIN; Changcheng LIU; Shuhua LEI; Zhenrong SUN

    2008-01-01

    The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nano-crystal embedded glasses,while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality.The auxiliary direct current electric field,accompanied with heat treatment,was applied on AgCl containing niobic tellurite glass sheet.The nucleation and crystallization of the glass were well controlled under auxiliary electric field.It was found that the average size of AgCl nano-crystal particles in the glass is smaller than that under single heat treatment,and the content of nano-crystals is higher.Therefore the third-order nonlinear optical performance of the glass was increased a lot.The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.

  3. Raman and TEM studies of Ge nanocrystal formation in SiO{sub x}:Ge/SiO{sub x} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Dana, A.; Aydinli, A. [Physics Department and National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Agan, S.; Tokay, S. [Physics Department, Kirikkale University, 71450 Kirikkale (Turkey); Finstad, T.G. [Physics Department, University of Oslo, P.O. Box 1048 - Blindern, 0316 Oslo (Norway)

    2007-07-01

    Alternating germanosilicate-siliconoxide layers of 10-30 nm thickness were grown on Si substrates by plasma enhanced chemically vapor deposition (PECVD). The compositions of the grown films were determined by X-ray photoelectron spectroscopy measurements. The films were annealed at temperatures varying from 670 to 1000 C for 5 to 45 minutes under nitrogen atmosphere. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive X-ray analysis (EDAX) data confirm presence of Ge nanocrystals in each layer. The effect of annealing on the Ge nanocrystal formation in multilayers was investigated by Raman spectroscopy and Transmission Electron Microscopy (TEM). As the annealing temperature is raised to 850 C, single layer of Ge nanocrystals observed at lower annealing temperatures is transformed into a double layer with the smaller sized nanocrystals closer to the substrate SiO{sub 2} interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Optical characterization and density of states determination of silicon nanocrystals embedded in amorphous silicon based matrix

    Science.gov (United States)

    van Sebille, M.; Vasudevan, R. A.; Lancee, R. J.; van Swaaij, R. A. C. M. M.; Zeman, M.

    2015-08-01

    We present a non-destructive measurement and simple analysis method for obtaining the absorption coefficient of silicon nanocrystals (NCs) embedded in an amorphous matrix. This method enables us to pinpoint the contribution of silicon NCs to the absorption spectrum of NC containing films. The density of states (DOS) of the amorphous matrix is modelled using the standard model for amorphous silicon while the NCs are modelled using one Gaussian distribution for the occupied states and one for the unoccupied states. For laser annealed a-Si0.66O0.34:H films, our analysis shows a reduction of the NC band gap from approximately 2.34-2.08 eV indicating larger mean NC size for increasing annealing laser fluences, accompanied by a reduction in NC DOS distribution width from 0.28-0.26 eV, indicating a narrower size distribution.

  5. Photoluminescence from β-SiC nanocrystals embedded in SiO 2 films prepared by ion implantation

    Science.gov (United States)

    Chen, Dihu; Liao, Z. M.; Wang, L.; Wang, H. Z.; Zhao, Fuli; Cheung, W. Y.; Wong, S. P.

    2003-07-01

    Photoluminescence from β-SiC nanocrystals embedded in SiO 2 films at room temperature has been studied. The β-SiC nanocrystals were formed by carbon implantation into Si substrate at 35 keV with various dose, followed by post-implantation annealing at 1200 °C for 30 min in Ar ambient. Thermal dry-oxidation of the annealed samples at 1050 °C for 3 h was performed to form β-SiC nanocrystals embedded in SiO 2 films. The composition and chemical state of C and Si atoms were characterized by non-Rutherford backscattering spectrometry and Fourier transform infrared spectroscopy, respectively. FTIR results show that β-SiC nanocrystals were formed in SiO 2 films, and the amount of β-SiC nanocrystals in SiO 2 films increases with increasing of implanted dose. The photoluminescent properties of the samples were measured at room temperature with a Hitachi F4010 fluorescence spectrophotometer using a xenon lamp as an excitation source (300 nm). Two distinguishable PL bands located at around 460 and 535 nm were observed in all the samples. The PL intensity significantly depends the implanted dose, and there is a critical implanted dose of 2 × 10 17 cm -2, at which the PL intensity reaches the largest value.

  6. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  7. Optical properties of embedded ZnTe nanocrystals in SiO{sub 2} thin layer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.; Naciri, A.E. [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Bd Arago, 57078 Metz (France); Grob, J.J. [InESS, 23 rue du Loess-B20, 67037 Strasbourg Cedex 2 (France)

    2010-07-15

    We have studied the optical properties of ZnTe nanocrystals (ZnTe-nc) embedded in a SiO{sub 2} matrix by spectroscopic ellipsometry. The ZnTe-nc are embedded in a SiO{sub 2} matrix by ion implantation technique. The dose of 2.9 x 10{sup 16} cm{sup -2} of tellurium and zinc ions are implanted in a 250 nm thick SiO{sub 2} layer thermally grown on Si with respective implantation energies of 180 and 115 keV. Subsequent thermal treatments at 700 C lead to the formation of ZnTe-nc. Their size is characterized by transmission electron microscopy. Variable angle ellipsometric measurements are performed in air at room temperature at angles of incidence of 55, 60, and 65 . By taking into account defects caused by ion implantation in silica matrix, the critical points (CPs) dispersion model is used in order to extract the optical responses of the ZnTe-nc. The determined dielectric function spectra reveals distinct structures attributed to direct band gap and optical transition at higher energy. The observed structures are analyzed by fitting second derivative spectrum of the imaginary part of dielectric function with analytic CP line shapes. Results show good agreement with CPs data. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage.

    Science.gov (United States)

    Hu, Shan; Chen, Wen; Uchaker, Evan; Zhou, Jing; Cao, Guozhong

    2015-12-07

    MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100-150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m(2)  g(-1) . The MoS2 @C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2 . The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g(-1) and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g(-1) , as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2 @C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2 , and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass- and charge-transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge-transfer reaction and the diffusivity of the MoS2 @C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li-ion battery market. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electric properties of Ge quantum dot embedded in Si matrix

    Institute of Scientific and Technical Information of China (English)

    MA Xi-ying; SHI Wei-lin

    2005-01-01

    The electric characteristics of Ge quantum dot grown by molecular beam epitaxy in Si matrix were investigated by admittance spectroscopy and deep level transient spectroscopy. The admittance spectroscopy measurements show that the activation energy of 0.341 eV can be considered as the emitting energy of hole from the ground state of the quantum dot. And the capacitance variation with temperature of the sample shows a platform at various frequencies with reverse bias 0.5 V, which indicates that the boundary of space charge region is located at the quantum dot layer where the large confined hole concentration blocks the further extension of space charge region. When the temperature increases from 120 K to 200 K, the holes in the dot emit out completely. The position of the platform shifting with the increase of the applied frequency shows the frequency effects of the charges in the quantum dot. The deep level transient spectroscopy results show that the charge concentration in the Ge quantum dot is a function of the pulse duration and the reverse bias voltage, the activation energy and capture cross-section of hole decrease with the increase of pulse duration due to the Coulomb charging effect. The valence-band offsets of hole in Ge dot obtained by admittance spectroscopy and deep level transient spectroscopy are 0.341 and 0.338 eV, respectively.

  10. De-embedding and Modelling of pnp SiGe HBTs

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Jiang, Chenhui; Johansen, Tom Keinicke

    2007-01-01

    In this work we present a direct parameter extraction procedure for SiGe pnp heterojunction bipolar transistor (HBT) large-signal and small-signal models. Test structure parasitics are removed from the measured small-signal parameters using an open-short de-embedding technique, improved to account...

  11. Investigating the performance of SiGe embedded dual source p-FinFET architecture

    Science.gov (United States)

    Sinha, Kunal; Gupta, Partha Sarathi; Chattopadhyay, Sanatan; Rahaman, Hafizur

    2016-10-01

    In this work, a modified Fin shaped Field Effect Transistor (FinFET) structure has been proposed with dual SiGe embedded extended source regions. Comparative simulation studies with SiGe embedded source/drain conventional single Fin channel and dual Fin channel FinFET structure having similar device footprint area shows almost 3× and 1.5× improvement of drive current respectively and lower threshold voltage in the proposed architecture. The dual extended SiGe source regions and presence of Si drain in the vertical direction of the channel generate bi-axial channel stress which improves the channel charge density, which results in improvement in drive current significantly. Also it has been observed from various simulation studies that the separated gate regions increase the inversion current density in the channel which also leads to improvement of the device performance.

  12. Optical and Structural Properties of Silicon Nanocrystals Embedded in SiOx Matrix Obtained by HWCVD

    Directory of Open Access Journals (Sweden)

    A. Coyopol

    2012-01-01

    Full Text Available The interest in developing optoelectronic devices integrated in the same silicon chip has motivated the study of Silicon nanocrystals (Si-ncs embedded in SiOx (nonstoichiometric silicon oxides films. In this work, Si-ncs in SiOx films were obtained by Hot Wire Chemical Vapor Deposition (HWCVD at 800, 900, and 1000°C. The vibration modes of SiOx films were determined by FTIR measurements. Additionally, FTIR and EDAX were related to get the proper composition of the films. Micro-Raman studies in the microstructure of SiOx films reveal a transition from amorphous-to-nanocrystalline phase when the growth temperature increases; thus, Si-ncs are detected. Photoluminescence (PL measurement shows a broad emission from 400 to 1100 nm. This emission was related with both Si-ncs and interfacial defects present in SiOx films. The existence of Si-ncs between 3 and 6 nm was confirmed by HRTEM.

  13. Improving Passivation Process of Si Nanocrystals Embedded in SiO2 Using Metal Ion Implantation

    Directory of Open Access Journals (Sweden)

    Jhovani Bornacelli

    2013-01-01

    Full Text Available We studied the photoluminescence (PL of Si nanocrystals (Si-NCs embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au, and a subsequent thermal annealing at 600°C under hydrogen-containing atmosphere, the PL signal exhibits a noticeable increase. The ion metal implantation was done at energies such that its distribution inside the silica does not overlap with the previously implanted Si ion . Under proper annealing Ag or Au nanoparticles (NPs could be nucleated, and the PL signal from Si-NCs could increase due to plasmonic interactions. However, the ion-metal-implantation-induced damage can enhance the amount of hydrogen, or nitrogen, that diffuses into the SiO2 matrix. As a result, the surface defects on Si-NCs can be better passivated, and consequently, the PL of the system is intensified. We have selected different atmospheres (air, H2/N2 and Ar to study the relevance of these annealing gases on the final PL from Si-NCs after metal ion implantation. Studies of PL and time-resolved PL indicate that passivation process of surface defects on Si-NCs is more effective when it is assisted by ion metal implantation.

  14. Structural and optical properties of germanium nanostructures on Si(100 and embedded in high-k oxides

    Directory of Open Access Journals (Sweden)

    Ray Samit

    2011-01-01

    Full Text Available Abstract The structural and optical properties of Ge quantum dots (QDs grown on Si(001 for mid-infrared photodetector and Ge nanocrystals embedded in oxide matrices for floating gate memory devices are presented. The infrared photoluminescence (PL signal from Ge islands has been studied at a low temperature. The temperature- and bias-dependent photocurrent spectra of a capped Si/SiGe/Si(001 QDs infrared photodetector device are presented. The properties of Ge nanocrystals of different size and density embedded in high-k matrices grown using radio frequency magnetron sputtering have been studied. Transmission electron micrographs have revealed the formation of isolated spherical Ge nanocrystals in high-k oxide matrix of sizes ranging from 4 to 18 nm. Embedded nanocrystals in high band gap oxides have been found to act as discrete trapping sites for exchanging charge carriers with the conduction channel by direct tunneling that is desired for applications in floating gate memory devices.

  15. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.

    Science.gov (United States)

    Park, Eunjun; Yoo, Hyundong; Lee, Jaewoo; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu

    2015-07-28

    SiOx-based materials attracted a great deal of attention as high-capacity Li(+) storage materials for lithium-ion batteries due to their high reversible capacity and good cycle performance. However, these materials still suffer from low initial Coulombic efficiency as well as high production cost, which are associated with the complicated synthesis process. Here, we propose a dual-size Si nanocrystal-embedded SiOx nanocomposite as a high-capacity Li(+) storage material prepared via cost-effective sol-gel reaction of triethoxysilane with commercially available Si nanoparticles. In the proposed nanocomposite, dual-size Si nanocrystals are incorporated into the amorphous SiOx matrix, providing a high capacity (1914 mAh g(-1)) with a notably improved initial efficiency (73.6%) and stable cycle performance over 100 cycles. The highly robust electrochemical and mechanical properties of the dual-size Si nanocrystal-embedded SiOx nanocomposite presented here are mainly attributed to its peculiar nanoarchitecture. This study represents one of the most promising routes for advancing SiOx-based Li(+) storage materials for practical use.

  16. Optical properties and thermal stability of germanium oxide (GeO{sub 2}) nanocrystals with {alpha}-quartz structure

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, C.V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Department of Materials Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Carbajal-Franco, G. [Department of Materials Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Vemuri, R.S. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Department of Materials Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Troitskaia, I.B. [Laboratory of Optical Materials and Structures, Institute of Semiconductor, Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gromilov, S.A. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor, Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2010-10-25

    Germanium dioxide (GeO{sub 2}) crystals were prepared by a chemical precipitation method at a relatively low-temperature (100 {sup o}C). The grown crystals were characterized by studying their microstructure, optical properties and thermal stability. The results indicate that the grown GeO{sub 2} crystals exhibit {alpha}-quartz type crystal structure. The lattice parameters obtained from XRD were a = 4.987(4) A and c = 5.652(5) A. Electron microscopy analysis indicates a high structural quality of GeO{sub 2} crystals grown using the present approach. Optical absorption measurements indicate a direct bandgap of 5.72 eV without any additional bands arising from localized or defect states. Thermogravimetric measurements indicate the temperature stability of the grown GeO{sub 2} nanocrystals. Microscopic analysis coupled with energy dispersive X-ray spectroscopy of the GeO{sub 2} crystals with {alpha}-quartz type crystal structure indicates their stability in chemical composition up to a temperature of 400 deg. C. The surface morphology of GeO{sub 2} crystals, however, found to be changing with the increase in temperature.

  17. Preparation and properties of Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruilin; Wang, Jinlong; Zhang, Liaolin; Liu, Chunxiao; Wei, Wei [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China)

    2016-07-15

    Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate glass-ceramics were prepared by the melt quenching and subsequent thermal treatment method. The formation of SrAlF{sub 5} nanocrystals in the glass was confirmed by X-ray diffraction and scanning electron microscope. The fluorescence intensity and lifetime of the glass-ceramics increased with the increase of size of nanocrystals. Importantly, by controlling growth of nanocrystals, an obvious enhancement of lifetime (725 μs) emerged in the glass-ceramics heat-treated at 510 C and the transmittance can reach to 72.2 % at 1049 nm. The enhanced fluorescence intensity and lifetime were ascribed to the comfortable local environment to the Nd{sup 3+} ion and scattering of the nanoparticle embedded into the glass matrix. (orig.)

  18. Metastable Ge nanocrystalline in SiGe matrix for photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yao-Tsung; Su, Chien-Hao [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Chang, Jenq-Yang [Department of Optics and Photonics, National Central University, Taoyuan City 320, Taiwan (China); Cheng, Shao-Liang; Lin, Po-Chen [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China); Wu, Albert T., E-mail: atwu@ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320, Taiwan (China)

    2015-09-15

    Highlights: • Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering by using rapid thermal annealing to form nanocrystal films. • Si–Ge alloy does not form total solid solution that is shown in phase diagram. • HRTEM images indicated that Ge atoms segregated and formed Ge clusters that are embedded in the amorphous Si–Ge matrix. • Ge segregation permitted high mobility; the grain size increased and the resistivity decreased with higher Ge content. • The rectifying property became stronger with the Ge fraction in the Si{sub 1−x}Ge{sub x} diodes. Si{sub 1−x}Ge{sub x} diodes are used as photodetectors, which provide a greater output current under illumination. - Abstract: Amorphous Si{sub 1−x}Ge{sub x} films were prepared by co-sputtering on an oxidized Si wafer, followed by rapid thermal annealing to form nanocrystal films. The formation of Ge nanocrystals was not at thermodynamic equilibrium formed in the amorphous Si{sub 1−x}Ge{sub x} matrix. High-resolution transmission electron microscopy was used to characterize the increase in the size of the grains in the Ge nanocrystals as the Ge content increased. The Ge nanocrystals have a greater absorption in the near-infrared region and higher carrier mobility than SiGe crystals, and the variation in their grain sizes can be used to tune the bandgap. This characteristic was exploited herein to fabricate n-Si{sub 1−x}Ge{sub x}/p-Si{sub 1−x}Ge{sub x} p–n diodes on insulating substrates, which were then examined by analyzing their current–voltage characteristics. The rectifying property became stronger as the fraction of Ge in the Si{sub 1−x}Ge{sub x} films increased. The Si{sub 1−x}Ge{sub x} diodes are utilized as photodetectors that have a large output current under illumination. This paper elucidates the correlations between the structural, optical and electrical properties and the p–n junction performance of the film.

  19. Galvanic displacement of metals on semiconductor nanocrystals

    Science.gov (United States)

    Johnson, Melanie; Kelly, Joel A.; Henderson, Eric J.; Veinot, Jonathan G. C.

    2009-11-01

    We report the galvanic displacement (GD) of germanium from germanium nanocrystals (Ge-NCs) with silver. The Ge-NCs are synthesized by reductive thermal processing of germanium suboxide sol-gel prepolymers. Thermal processing yields size-controlled oxide-embedded Ge-NCs, which are liberated by dissolution of the germanium oxide matrix in water. Subsequent exposure of the freestanding Ge-NCs to aqueous solutions of AgNO3 leads to deposition of silver nanostructures by GD. The resulting metal structures were analyzed by XRD, XPS, TEM and EDX, confirming deposition of elemental silver in a variety of shapes and sizes.

  20. Galvanic displacement of metals on semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Melanie; Kelly, Joel A; Henderson, Eric J; Veinot, Jonathan G C, E-mail: jveinot@ualberta.ca [University of Alberta, Department of Chemistry, Edmonton, AB, T6G 2G2 (Canada)

    2009-11-15

    We report the galvanic displacement (GD) of germanium from germanium nanocrystals (Ge-NCs) with silver. The Ge-NCs are synthesized by reductive thermal processing of germanium suboxide sol-gel prepolymers. Thermal processing yields size-controlled oxide-embedded Ge-NCs, which are liberated by dissolution of the germanium oxide matrix in water. Subsequent exposure of the freestanding Ge-NCs to aqueous solutions of AgNO{sub 3} leads to deposition of silver nanostructures by GD. The resulting metal structures were analyzed by XRD, XPS, TEM and EDX, confirming deposition of elemental silver in a variety of shapes and sizes.

  1. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  2. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides.

    Science.gov (United States)

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2016-03-11

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -[Formula: see text] HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol%  in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu(2+) and Eu(3+) in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu[Formula: see text]-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm(-1) at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  3. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  4. Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok; Hyun Park, Ju; Su Jeon, Dong; Geun Kim, Tae, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-03-07

    The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells are formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.

  5. Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals.

    Science.gov (United States)

    Reboud, V; Lévêque, G; Striccoli, M; Placido, T; Panniello, A; Curri, M L; Alducin, J A; Kehoe, T; Kehagias, N; Mecerreyes, D; Newcomb, S B; Iacopino, D; Redmond, G; Sotomayor Torres, C M

    2013-01-07

    We report on a method to enhance the light-emission efficiency of printable thin films of a polymer doped with luminescent (CdSe)ZnS nanocrystals via metallic nanoparticles and nanoimprinted photonic crystals. We experimentally show a strong fluorescence enhancement of nanocrystals by coupling exciton-plasmon with the localized surface plasmon of metallic nanoparticles. The emitted light is efficiently diffracted by photonic crystals structures directly imprinted in the nanocomposite polymer. By combining the field susceptibility technique with optical Bloch equations, we examine the interaction of the quantum and plasmonic entities at small distances.

  6. Properties of silicon dioxide layers with embedded metal nanocrystals produced by oxidation of Si:Me mixture

    Directory of Open Access Journals (Sweden)

    Maksimova Ksenia

    2011-01-01

    Full Text Available Abstract A two-dimensional layers of metal (Me nanocrystals embedded in SiO2 were produced by pulsed laser deposition of uniformly mixed Si:Me film followed by its furnace oxidation and rapid thermal annealing. The kinetics of the film oxidation and the structural properties of the prepared samples were investigated by Rutherford backscattering spectrometry, and transmission electron microscopy, respectively. The electrical properties of the selected SiO2:Me nanocomposite films were evaluated by measuring C-V and I-V characteristics on a metal-oxide-semiconductor stack. It is found that Me segregation induced by Si:Me mixture oxidation results in the formation of a high density of Me and silicide nanocrystals in thin film SiO2 matrix. Strong evidence of oxidation temperature as well as impurity type effect on the charge storage in crystalline Me-nanodot layer is demonstrated by the hysteresis behavior of the high-frequency C-V curves.

  7. Properties of silicon dioxide layers with embedded metal nanocrystals produced by oxidation of Si:Me mixture.

    Science.gov (United States)

    Novikau, Andrei; Gaiduk, Peter; Maksimova, Ksenia; Zenkevich, Andrei

    2011-02-16

    A two-dimensional layers of metal (Me) nanocrystals embedded in SiO2 were produced by pulsed laser deposition of uniformly mixed Si:Me film followed by its furnace oxidation and rapid thermal annealing. The kinetics of the film oxidation and the structural properties of the prepared samples were investigated by Rutherford backscattering spectrometry, and transmission electron microscopy, respectively. The electrical properties of the selected SiO2:Me nanocomposite films were evaluated by measuring C-V and I-V characteristics on a metal-oxide-semiconductor stack. It is found that Me segregation induced by Si:Me mixture oxidation results in the formation of a high density of Me and silicide nanocrystals in thin film SiO2 matrix. Strong evidence of oxidation temperature as well as impurity type effect on the charge storage in crystalline Me-nanodot layer is demonstrated by the hysteresis behavior of the high-frequency C-V curves.

  8. Site spectroscopy of Eu3+ doped- ZnS nanocrystals embedded in sodium carboxymethyl cellulose matrix

    Science.gov (United States)

    Ahemen, I.; Meludu, O.; Dejene, F. B.; Viana, B.

    2016-11-01

    The work investigates the incorporation of Eu3+ ion in ZnS crystal through spectroscopic studies. ZnS: Eu3+ nanocrystals was synthesized via the precipitation technique. Elemental composition analysis indicates a non-stoichiometric distribution between Zn and S. X-ray diffraction studies show lattice expansion demonstrating that Eu3+ ions were incorporated in the host lattice. Annealing temperature gave rise to lattice contraction relative to the as-synthesized indicating a partial expulsion of the ion from the crystal due to heat treatment. Eu3+ ions site symmetry probing from optical features show that trivalent europium were situated both at the nanocrystals surface and at the Zn2+ ion site. Weak energy transfer from host to activator ion occurred probably mainly through exchange interaction and the transfer process was defect mediated.

  9. Absorption and emission of silicon nanocrystals embedded in SiC: Eliminating Fabry-Pérot interference

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, M., E-mail: manuel.schnabel@ise.fraunhofer.de [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Summonte, C.; Canino, M. [Consiglio Nazionale delle Richerche—Istituto per e i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Dyakov, S. A. [Department of Materials and Nano Physics, School of Information and Communication Technology, Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); López-Conesa, L. [MIND–IN2UB, Electronics Department, University of Barcelona, Martí i Franquès 1, E–08028 Barcelona (Spain); Löper, P.; Janz, S. [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Wilshaw, P. R. [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom)

    2015-01-28

    Silicon nanocrystals embedded in SiC are studied by spectrophotometry and photoluminescence (PL) spectroscopy. Absorptivities are found to be affected by residual Fabry-Pérot interference arising from measurements of reflection and transmission at locations of different film thickness. Multiple computational and experimental methods to avoid these errors in thin film measurements, in general, are discussed. Corrected absorptivity depends on the quantity of Si embedded in the SiC but is independent of the Si crystallinity, indicating a relaxation of the k-conservation criterion for optical transitions in the nanocrystals. Tauc gaps of 1.8–2.0 and 2.12 eV are determined for Si nanoclusters and SiC, respectively. PL spectra exhibit a red-shift of ∼100 nm per nm nominal Si nanocluster diameter, which is in agreement with quantum confinement but revealed to be an artifact entirely due to Fabry-Pérot interference. Several simple experimental methods to diagnose or avoid interference in PL measurements are developed that are applicable to all thin films. Corrected PL is rather weak and invariant with passivation, indicating that non-paramagnetic defects are responsible for rapid non-radiative recombination. They are also responsible for the broad, sub-gap PL of the SiC, and can wholly account for the form of the PL of samples with Si nanoclusters. The PL intensity of samples with Si nanoclusters, however, can only be explained with an increased density of luminescent defects in the SiC due to Si nanoclusters, efficient tunneling of photogenerated carriers from Si nanoclusters to SiC defects, or with emission from a-Si nanoclusters. Films prepared on Si exhibit much weaker PL than the same films prepared on quartz substrates.

  10. Structural and optical manipulation of colloidal Ge1-xSnx nanocrystals with experimentally synthesized sizes: Atomistic tight-binding theory

    Science.gov (United States)

    Sukkabot, Worasak

    2017-02-01

    Nontoxic, maintainable and cost-effective group IV semiconductors are gorgeous for an expansive range of electronic and optoelectronic applications, even though the presence of the indirect band gap obstructs the optical performance. However, band structures can be modified from indirect to direct band gaps by constructing the nanostructures or by alloying with tin (Sn) material. In the study presented here, I investigate the impact of ion-centred types, Sn compositions and dimensions on the electronic structures and optical properties in Ge1-xSnx diamond cubic nanocrystals of the experimentally synthesized Sn contents and diameters using the atomistic tight-binding theory (TB) in the conjunction with the configuration interaction description (CI). The analysis of the mechanism suggests that the physical properties are mainly sensitive with ion-centred types (anion (a) and cation (c)), Sn compositions and dimensions of Ge1-xSnx diamond cubic nanocrystals. The reduction of optical band gaps is reported with the increasing diameters and Sn alloying contents. The visible spectral range is obtained allowing for the applications in bio imaging and chemical sensing. The optical band gaps based on tight-binding calculations are in close agreement with the experimental data for Ge1-xSnx nanocrystals with diameter of 2.1 nm, while for Ge1-xSnx nanocrystals with diameter of 2.7 nm there is a discrepancy of 0.4 eV with experimental results and first-principles calculations. An improvement in the luminescence properties of such Ge1-xSnx nanocrystals becomes possible in the presence of the Sn contents. The electron-hole coulomb interaction is reduced with the increasing Sn components, while the electron-hole exchange interaction is increased with the increasing Sn contents. In addition, I have to point out an astonishing phenomenon, stokes shift and fine structure splitting, with the aim for the realization of the entangled source. The stokes shift and fine structure splitting

  11. Applying low-energy multipulse excimer laser annealing to improve charge retention of Au nanocrystals embedded MOS capacitors

    Science.gov (United States)

    Shen, Kuan-Yuan; Chen, Hung-Ming; Liao, Ting-Wei; Kuan, Chieh-Hsiung

    2015-02-01

    The low-energy multipulse excimer laser annealing (LEM-ELA) is proposed to anneal the nanostructure of nanocrystal (NC) embedded in a SiO2 thin film without causing atomic diffusion and damaging the NCs, since the LEM-ELA combining the advantages of laser annealing and UV curing features rapid heating and increasing oxide network connectivity. A Fourier transform infrared spectroscopy (FTIR) characterization of SiO2 thin films annealed using LEM-ELA indicated that the quality was improved through the removal of water-related impurities and the reconstruction of the network Si-O-Si bonds. Then, LEM-ELA was applied to a SiO2 thin film embedded with Au NCs, which were fabricated as MOS capacitors. The charge retention was greatly improved and the percentage of retained charges was about 10% after 3  ×  108 s. To investigate and differentiate the effects of LEM-ELA on charges stored in both oxide traps and in the Au NCs, a double-mechanism charge relaxation analysis was performed. The results indicated that the oxide traps were removed and the confinement ability of Au NCs was enhanced. The separated memory windows contributed from the charges in Au NCs and those in oxide traps were obtained and further confirmed that the LEM-ELA removed oxide traps without damaging the Au NCs.

  12. Optical emission of strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers

    OpenAIRE

    Pavarelli, Nicola; Ochalski, Tomasz J.; Murphy-Armando, Felipe; Huo, Y; Schmidt, Michael; Huyet, Guillaume; Harris, J. S.

    2013-01-01

    We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emis...

  13. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA

    Indian Academy of Sciences (India)

    Shweta Agrawal; Subodh Srivastava; Sumit Kumar; S S Sharma; B Tripathi; M Singh; Y K Vijay

    2009-12-01

    Semiconductor nanocrystals (NCs) have received much interest for their optical and electronic properties. When these NCs dispersed in polymer matrix, brightness of the light emission is enhanced due to their quantum dot size. The CdCuS NCs have been synthesized by chemical route method and then dispersed in PMMA matrix. These nanocomposite polymer films were irradiated by swift heavy ion (SHI) (100 MeV, Si+7 ions beam) at different fluences of 1 × 1010 and 1 × 1012 ions/cm2 and then compared their structural and optical properties by XRD, atomic force microscopy, photoluminescence, and UV-Vis spectroscopy before and after irradiation. The XRD spectra showed a broad hump around 2 ≈ 11.83° due to amorphous PMMA and other peaks corresponding to hexagonal structure of CdS nanocrystals in PMMA matrix. The photoluminescence spectra shows a broad peak at 530 nm corresponding to green emission due to Cu impurities in CdS. The UV-Vis measurement showed red shift in optical absorption and bandgap changed from 4.38–3.60 eV as the irradiation fluency increased with respect to pristine CdCuS nanocomposite polymer film.

  14. Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns

    Science.gov (United States)

    Stepina, N. P.; Zinovieva, A. F.; Dvurechenskii, A. V.; Noda, Shuichi; Molla, Md. Zaman; Samukawa, Seiji

    2017-05-01

    Separated nanocolumns (NCs) with embedded Si nanoclusters were prepared using the top-down technique that combines a bio-template and the defect-free neutral beam etching of Si0.75Ge0.25/Si/Si0.75Ge0.25 double-quantum-well layers. The electron spin resonance (ESR) was studied in the dark and under illumination for the structures with different lateral sizes of NCs. For the structure with a NC diameter in the range of 20-25 nm, the ESR signal is characterized by the isotropic line width. The spatial separation of nanoclusters results in the suppression of the Dyakonov-Perel mechanism of spin relaxation. A decrease in the NC diameter down to 13-14 nm leads to electron localization under the bottom of NCs, making the orientation dependence of the ESR line width anisotropic. Illumination results in the increase in spin lifetimes in both the types of NC structures, relocating the electrons to the center of NCs in the narrow NC structure, and making electron localization stronger in the thick NCs.

  15. Memory Effect of Metal-Oxide-Silicon Capacitors with Self-Assembly Double-Layer Au Nanocrystals Embedded in Atomic-Layer-Deposited HfO_2 Dielectric

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue; GOU Hong-Yan; SUN Qing-Qing; DING Shi-Jin; ZHANG Wei; ZHANG Shi-Li

    2009-01-01

    We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO_2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications.The resulting Au nanocrystals show a density of about 4×10~(11) cm~(-2) and a diameter range of 5-8nm.The metal-oxide-silicon capacitor with double-layer Au nanocrystals embedded in HfO2 dielectric exhibits a large C - V hysteresis window of 11.9 V for ±11 V gate voltage sweeps at 1 MHz, a fiat-band voltage shift of 1.5 V after the electrical stress under 7 V for I ms, a leakage current density of 2.9 ×10~(-8) A/cm~(-2) at 9 V and room temperature.Compared to single-layer Au nanocrystals, the double-layer Au nanocrystals increase the hysteresis window significantly, and the underlying mechanism is thus discussed.

  16. Atomic and electronic structure of silicon nanocrystals embedded in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Bich; Dufour, Christian [Centre de Recherche sur les Ions, les Materiaux et la Photonique, 6 boulevard Marechal Juin, 14050 Caen Cedex (France); Petit, Sebastien [Laboratoire de Cristallographie et Sciences des Materiaux, 6 boulevard Marechal Juin, 14050 Caen Cedex (France)

    2008-11-12

    The atomic structures and the optical and electronic properties of silicon nanocrystals (nc-Si) in a {beta} cristobalite matrix are studied using DFT calculations provided by the AIMPRO code. Five atomic models are considered (two nanocrystal diameters of 5.6 and 11 A with and without interface defects). After total relaxation, the mean Si-Si distances in nc-Si are found to be 6% higher than those in perfect bulk silicon. The optical and electronic properties are influenced by many parameters, among which are the nanograin density and size. The quantum confinement effect is demonstrated by the increase of energy gap when decreasing nanograin size. The energy gap of nc-Si is adjusted by using B3LYP functional calculations; the energy gap of 5.6 A nc-Si is found to be equal to 3.4 eV while that of 11 A nc-Si is equal to 3.1 eV. In the band structure, the levels due to nc-Si appear in the forbidden band of SiO{sub 2}. The electronic density of these levels is presented in 3D. A redshift is observed in the optical absorption spectrum as the nc-Si size increases, and the absorbance of nc-Si/SiO{sub 2} is proportional to the nanograin density. The system is more stable as the distance between nanograins increases. We have also studied two kinds of nc-Si/SiO{sub 2} interface defects (Si-O-Si and Si = O bonds). It is found that the Si-O-Si bridge bond leads to the most stable configuration. The presence of Si = O double bonds reduces the nc-Si energy gap and leads to a redshift in the absorption spectrum. The Si-O-Si bonds produce the inverse effect, i.e. an energy gap increase associated with a blueshift in the absorption spectrum.

  17. Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4

    Science.gov (United States)

    Cosentino, Salvatore; Sungur Ozen, Emel; Raciti, Rosario; Mio, Antonio M.; Nicotra, Giuseppe; Simone, Francesca; Crupi, Isodiana; Turan, Rasit; Terrasi, Antonio; Aydinli, Atilla; Mirabella, Salvo

    2014-01-01

    Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 °C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs embedded in Si3N4 matrix in comparison with those in the SiO2 host. Light absorption by Ge QDs is shown to be more effective in Si3N4 matrix, due to the optical bandgap (0.9-1.6 eV) being lower than in SiO2 matrix (1.2-2.2 eV). Significant photoresponse with a large measured internal quantum efficiency has been observed for Ge QDs in Si3N4 matrix when they are used as a sensitive layer in a photodetector device. These data will be presented and discussed, opening new routes for application of Ge QDs in light harvesting devices.

  18. Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers.

    Science.gov (United States)

    López de Dicastillo, Carol; Garrido, Luan; Alvarado, Nancy; Romero, Julio; Palma, Juan Luis; Galotto, Maria Jose

    2017-05-11

    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC)n were successfully obtained with a final concentration of 23% (w/w) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC respect to polymer weight) and nanocomposites were fully characterized. Overall, nanofibers containing CNC positively modified the physical properties of PLA materials, such as the crystallinity degree of PLA which was greatly enhanced. Specifically, materials with 1% nanofiber 1PLA(PV/CNC)n presented highest improvements related to mechanical and barrier properties; elongation at break was enhanced almost four times and the permeation of oxygen was reduced by approximately 30%.

  19. Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme.

    Science.gov (United States)

    Mahmoud, Khaled A; Lam, Edmond; Hrapovic, Sabahudin; Luong, John H T

    2013-06-12

    A nanocomposite consisting of magnetite nanoparticles (Fe3O4NPs) and Au nanoparticles (AuNPs) embedded on cellulose nanocrystals (CNCs) was used as a magnetic support for the covalent conjugation of papain and facilitated recovery of this immobilized enzyme. Fe3O4NPs (10-20 nm in diameter) and AuNPs (3-7 nm in diameter) were stable and well-dispersed on the CNC surface. Energy-dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to evaluate the surface composition and structure of CNC/Fe3O4NPs/AuNPs. The nanocomposite was successfully used for the immobilization and separation of papain from the reaction mixture. The optimal enzyme loading was 186 mg protein/g CNC/Fe3O4NPs/AuNPs, significantly higher than the value reported in the literature. The activity of immobilized papain was studied by electrochemical detection of its specific binding to the Thc-Fca-Gly-Gly-Tyr-Arg inhibitory sequence bound to an Au electrode. The immobilized enzyme retained 95% of its initial activity after 35 days of storage at 4 °C, compared to 41% for its free form counterpart.

  20. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  1. Ge nanocrystals with highly uniform size distribution deposited on alumina at room temperature by pulsed laser deposition: structural, morphological, and charge trapping properties

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Sanchez, J., E-mail: javier.martin.nano@gmail.com; Marques, L.; Vieira, E. M. F. [University of Minho, Department of Physics and Centre of Physics (Portugal); Doan, Q. T.; Marchand, A.; El Hdiy, A. [LMEN, Universite de Reims Champagne-Ardenne (France); Rolo, A. G.; Pinto, S. R. C.; Ramos, M. M. D.; Chahboun, A.; Gomes, M. J. M. [University of Minho, Department of Physics and Centre of Physics (Portugal)

    2012-05-15

    In this work, we report on the synthesis of Ge nanocrystals (NCs) by pulsed laser deposition (PLD) at room temperature (RT) in an argon atmosphere without any further annealing process. Our results show that functional thin films of crystalline Ge nanoparticles with spherical shapes can be obtained by PLD directly on alumina layers deposited on n-doped Si (100) substrates. In addition, we also demonstrate that a uniform size distribution of NCs with an average diameter of about 3 nm and a density of 2.3 Multiplication-Sign 10{sup 11} cm{sup -2} can be obtained by optimizing a shadow mask set-up, where a solid disk is introduced between the target and the substrate. Charge/discharge effects in Ge NCs deposited on a high-k amorphous alumina layer are also evidenced by conductive atomic force microscopy, which makes them suitable for memory applications.

  2. Magnetic performance of orthorhombic Mn35Ge35Te30 nanocrystals

    Science.gov (United States)

    Mahdy, Iman A.

    2017-01-01

    Nanocrystalline antiferromagnetic Mn35Ge35Te30 diluted magnetic semiconductors powder syntheses by the conventional direct reaction of pure metals. Nanocrystalline nature of the prepared sample confirmed using various techniques, where x-Ray diffraction (XRD) and atomic force microscope (AFM) measurements shows ~96 nm particle size, while transmission electron microscope (TEM) shows 92 nm particle size. XRD analysis show orthorhombic symmetry with lattice parameters a=7.386611±(0.0066) Å, b=8.962502±(0.0090) Å and c=7.027349±(0.0040) Å. Electron Spin resonance (ESR) show a broad asymmetric line whereas the remnant Mn2+ six-hyperfine lines are broadened within |+1/2>→|-1/2> line according to high anisotropy; calculated Landé g-factor is 2.047. Vibrating sample magnetometer (VSM) analysis, field-moment characteristics revealed a hysteresis loop with small coercive field indicating that Mn35Ge35Te30 is a soft magnetic material. Moreover, hysteresis measurements at different temperatures show increasing magnetization with increasing temperature up to 150 K followed by decreased with increasing temperature up to 300 K. This behavior indicated to the antiferromagnetic nature of the prepared nanocrystalline materials. Magnetic moment - temperature measurements show Néel temperature TN=172.6 K. Magnetic force microscope revealed magnetic domains as a result of interaction between magnetic dipole moments of magnetic cantilever and pressed powder.

  3. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    Science.gov (United States)

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications.

  4. Facile synthesis of ultrafine Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie, E-mail: baoxj133@nenu.edu.cn; Guo, Liping, E-mail: guolp078@nenu.edu.cn

    2015-02-25

    Highlights: • Novel hyperfine Co{sub 3}O{sub 4} nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co{sub 3}O{sub 4} nanocrystals and excellent e{sup −} transport rates. • A large current sensitivity of 955.9 μA cm{sup −2} mM{sup −1} toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co{sub 3}O{sub 4} nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co{sub 3}O{sub 4}-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co{sub 3}O{sub 4}-macroporous carbon, Co{sub 3}O{sub 4}-reduced graphene oxide, and free Co{sub 3}O{sub 4} nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm{sup −2} mM{sup −1} between 0 and 0.8 mM and 955.9 μA cm{sup −2} mM{sup −1} between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl{sup −}). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co{sub 3}O{sub 4} nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co{sub 3}O{sub 4} NPs in nanoscale spaces ensured intimate contact between Co{sub 3}O{sub 4} nanocrystals and the

  5. 纳米晶复合Er3+掺杂Ge-In-S-CsI玻璃的发光性能%Luminescence Properties of Nanocrystals Composited Er3+Ions Doped Ge-In-S-CsI Glasses

    Institute of Scientific and Technical Information of China (English)

    戚嘉妮; 许银生; 魏淑林; 陈飞飞; 林常规; 徐铁峰; 戴世勋

    2013-01-01

      纳米晶复合的玻璃材料在稀土离子发光方面有着重要的研究意义。用真空熔融淬冷法制备了Er3+掺杂的70GeS2–20In2S3–10CsI玻璃样品,研究了不同温度和时间热处理玻璃基质内部析出的纳米晶对Er3+发光性能的影响。结果表明:随着热处理温度和时间的增加,玻璃样品的短波截止波长发生了明显的红移现象。在380℃经过18 h热处理后的玻璃样品析出均匀的纳米晶颗粒,尺寸约为10~20 nm。玻璃基质中先后析出In2S3和GeS2晶体。玻璃样品在380℃,经过12 h热处理后,Er3+在1540 nm处的发光增强了3倍,有望应用于C波段通讯用光纤放大器。%The Er2S3 and Ag2S co-doped 70GeS2-20In2S3-10CsI glasses were synthesized by a vacuumed melt-quenching technique. The influence of precipitated nanocrystal on the luminescence properties of RE (rare earth) ions was investigated. The short-wavelength absorption edge appears red-shift when the temperature and duration increase. For the samples treated at 380 for 12℃ h, the nanocrystals in the size range from 10 to 20 nm disperse homogeneously in the glass. The In2S3 and GeS2 nanocrystals precipitate successively. The intensity of 1 540 nm luminescence of Er3+ions is three times greater than that of the glass matrix. The Er3+ions doped chalcogenide glasses with the nanocrystals have potential applications in the C band optical fiber amplifier.

  6. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    “Embedding” as a technical concept comes from linguistics, more precisely from grammar. The present paper investigates whether it can be applied fruitfully to certain questions that have been investigated by historians (and sometimes philosophers) of mathematics: 1. The construction of numeral sy...... spatial and linguistic embedding and concludes that the spatio-linguistic notion of embedding can be meaningfully applied to the former two discussions, whereas the apparent embedding of older within new theories is rather an ideological mirage....

  7. Crystal structure of defect-containing semiconductor nanocrystals. An X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Buljan, Maja [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Institut Rudjer Boskovic, Zagreb (Croatia); Desnica, Uros V.; Radic, Nikola [Institut Rudjer Boskovic, Zagreb (Croatia); Drazic, Goran [Institut Jozef Stefan, Ljubljana (Slovenia); Matej, Zdenek; Vales, Vaclav; Holy, Vaclav [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni

    2009-08-15

    Defects of crystal structure in semiconductor nanocrystals embedded in an amorphous matrix are studied by X-ray diffraction and a full-profile analysis of the diffraction curves based on the Debye formula. A new theoretical model is proposed, describing the diffraction from randomly distributed intrinsic and extrinsic stacking faults and twin blocks in the nanocrystals. The application of the model to full-profile analysis of experimental diffraction curves enables the determination of the concentrations of individual defect types in the nanocrystals. The method has been applied for the investigation of selforganized Ge nanocrystals in an SiO{sub 2} matrix, and the dependence of the structure quality of the nanocrystals on their deposition and annealing parameters was obtained. (orig.)

  8. 2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics.

    Science.gov (United States)

    Wu, Guobo; Fan, Shaohua; Zhang, Yuanhao; Chai, Guanqi; Ma, Zhijun; Peng, Mingying; Qiu, Jianrong; Dong, Guoping

    2013-08-15

    Using conventional melt-quenching and subsequent thermal treatment, Er(3+) doped CaF(2) transparent glass ceramic (GC) was prepared. X-ray diffraction and high-resolution transmission electron microscopy confirmed the formation and microstructure of CaF(2) nanocrystals in glass. An energy-dispersive spectrometer was used to investigate the distribution of Er(3+) ions and CaF(2) nanocrystals in glass. It was found that Er(3+) ions prefer to concentrate in the CaF(2) nanocrystals rather than in a glass matrix, and the amount of Er(3+) ions plays a key role in the formation of CaF(2) nanocrystals in a glass matrix with the Er(3+) ions as nucleating agent. An intense 2.7 μm emission due to Er(3+): I(11/2)4 → I(13/2)4 was achieved upon excitation at 980 nm with a laser diode, while the 2.7 μm emission can be neglected in the as-prepared glass counterpart, which confirmed the incorporation of Er(3+) ions into CaF(2) nanocrystals. An obvious enhancement of 2.7 μm emerged in the GC doped with 3% Er(3+) and heat-treated at 620 °C.

  9. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

    Directory of Open Access Journals (Sweden)

    Sebastian Gutsch

    2015-04-01

    Full Text Available We use high-temperature-stable silicon nitride membranes to investigate single layers of silicon nanocrystal ensembles by energy filtered transmission electron microscopy. The silicon nanocrystals are prepared from the precipitation of a silicon-rich oxynitride layer sandwiched between two SiO2 diffusion barriers and subjected to a high-temperature annealing. We find that such single layers are very sensitive to the annealing parameters and may lead to a significant loss of excess silicon. In addition, these ultrathin layers suffer from significant electron beam damage that needs to be minimized in order to image the pristine sample morphology. Finally we demonstrate how the silicon nanocrystal size distribution develops from a broad to a narrow log-normal distribution, when the initial precipitation layer thickness and stoichiometry are below a critical value.

  10. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2015-01-01

    to become the starting point not only for theoretical algebra, but for the whole transformation of mathematics from his time onward: the possibility of embedding, that is, of making a symbol or an element of a calculation stand not only for a single number, determined or undetermined, but for a whole...

  11. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe₃O₄ nanocrystals for highly efficient capture and isotope labeling of phosphopeptides.

    Science.gov (United States)

    Chen, Xueqin; Li, Siyuan; Zhang, Xiaoxia; Min, Qianhao; Zhu, Jun-Jie

    2015-03-19

    Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe₃O₄ nanocrystals (Fe₃O₄-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe₃O₄ nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe₃O₄-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.

  12. Rare-earth doped YF{sub 3} nanocrystals embedded in sol-gel silica glass matrix for white light generation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Ramos, J. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Santana-Alonso, A. [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Yanes, A.C., E-mail: ayanesh@ull.e [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Castillo, J. del [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Rodriguez, V.D. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain)

    2010-12-15

    YF{sub 3} nanocrystals triply-doped with Yb{sup 3+}, Ho{sup 3+} and Tm{sup 3+} ions embedded in amorphous silica matrix have been successfully obtained by heat treatment of precursor sol-gel glasses for the first time to our knowledge and confirmed by X-ray diffraction and luminescence measurements. Simultaneous UV and visible efficient up-conversion emissions, with well-resolved Stark structure, under 980 nm infrared pump are observed, indicating the effective partition of rare-earth ions into a crystalline-like environment of the YF{sub 3} nanocrystals. Corresponding energy transfer mechanisms have been analyzed and overall colour emission has been quantified in terms of standard chromaticity diagram. By an adequate doping level and heat treatment temperature of precursor sol-gel glasses, a bright white colour has been accomplished, close to the standard equal energy white light illumination point, with potential applications in photo-electronic devices and information processing.

  13. A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Esrafili, Mehdi D., E-mail: esrafili@maragheh.ac.ir; Nematollahi, Parisa; Abdollahpour, Hadi

    2016-08-15

    Highlights: • The oxidation of CO by O{sub 2} molecule is investigated over Al- and Ge-embedded graphene. • The first reaction pathway of the CO oxidation over both surfaces should proceed with the ER mechanism. • Ge-embedded graphene can be used as a more efficient catalyst for oxidation of CO than Al- embedded graphene. - Abstract: In the present study, by means of density functional theory (DFT) calculations, the catalytic oxidation of CO by O{sub 2} molecule is investigated over Al- and Ge-embedded graphene. The large atomic radius of these dopant atoms can induce a local surface curvature and modulate the electronic structure properties of the graphene sheet through the charge redistribution. It is found that the adsorption of molecular O{sub 2} over Al- or Ge-embedded graphene is stronger than that of CO molecule. The CO oxidation reaction by molecular O{sub 2} on Al- and Ge-embedded graphene is comparably studied. The results indicate that a two-step process can occur, namely, CO + O{sub 2} → CO{sub 2} + O{sub ads} and CO + O{sub ads} → CO{sub 2}. Furthermore, the computed activation energy (E{sub act}) for the first reaction on Ge-doped graphene is lower than that of Al-doped one, and the formation of second CO{sub 2} molecule on both surfaces can occur rapidly due to its low energy barrier (0.1 eV).

  14. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Y. [IBM Micro-Electronics Division, 2070 Route 52, Hopewell Junction, New York 12570 (United States); Cooper, D.; Bernier, N. [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Rouviere, J. [University Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Murray, C. E.; Bruley, J. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Route 134, Yorktown Heights, New York 10598 (United States)

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  15. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe3O4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides

    Science.gov (United States)

    Chen, Xueqin; Li, Siyuan; Zhang, Xiaoxia; Min, Qianhao; Zhu, Jun-Jie

    2015-03-01

    Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3O4 nanocrystals (Fe3O4-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe3O4 nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe3O4-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3

  16. Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption.

    Science.gov (United States)

    Lim, Dae-Woon; Yoon, Ji Woong; Ryu, Keun Yong; Suh, Myunghyun Paik

    2012-09-24

    Hexagonal-disk-shaped magnesium nanocrystals (MgNCs) are fabricated within a porous metal-organic framework (MOF, see picture). The MgNCs@MOF stores hydrogen by both physi- and chemisorptions, exhibiting synergistic effects to decrease the isosteric heat of H(2) physisorption compared with that of pristine MOF, and decrease the H(2) chemisorption/desorption temperatures by 200 K compared with those of bare Mg powder. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An optical and structural investigation into CdTe nanocrystals embedded into the tellurium lithium borophosphate glass matrix

    Institute of Scientific and Technical Information of China (English)

    WAGEH; S

    2010-01-01

    Cadmium telluride nanocrystals that form in the TeO2-Li2O-B2O3-P2O5 glass matrix have been synthesized and studied.They are investigated by X-ray diffraction(XRD),optical transmission and infrared spectroscopy.It has been shown that the long annealing time effect on present samples leads to the growth of CdTe nanoparticles and an increase of tellurium oxide on the surface of nanocrystallites.On the other hand,the infrared spectroscopy shows that the phosphate and borate networks of the glass matrices are modified with doping by CdTe nanoparticles.

  18. Spontaneous Emission Enhancement from polymer-embedded colloidal PbS Nanocrystals into Si-based photonics at telecom wavelengths

    CERN Document Server

    Humer, Markus; Jantsch, Wolfgang; Fromherz, Thomas

    2013-01-01

    We experimentally demonstrate the coupling of optically excited PbS nanocrystal (NC) photoluminescence (PL) into Si-based ring resonators and waveguides at 300K. The PbS NCs are dissolved into Novolak polymer at various concentrations and applied by drop-casting. The coupling mechanism and the spontaneous emission enhancement are experimentally investigated and compared to theoretical predictions. Quality (Q) factors of 2500 were obtained in emission and transmission for wavelengths centered around 1.45{\\mu}m. PL intensity shows a linear dependence on the excitation power and no degradation of the Q factors. Devices with stable optical properties are obtained by this versatile technique.

  19. Light harvesting with Ge quantum dots embedded in SiO{sub 2} or Si{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cosentino, Salvatore, E-mail: Salvatore.cosentino@ct.infn.it; Raciti, Rosario; Simone, Francesca; Crupi, Isodiana; Terrasi, Antonio; Mirabella, Salvo [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Sungur Ozen, Emel; Aydinli, Atilla [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Mio, Antonio M.; Nicotra, Giuseppe [IMM-CNR, VII strada 5, 95121 Catania (Italy); Turan, Rasit [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2014-01-28

    Germanium quantum dots (QDs) embedded in SiO{sub 2} or in Si{sub 3}N{sub 4} have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 °C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3–9 nm range in the SiO{sub 2} matrix, or in the 1–2 nm range in the Si{sub 3}N{sub 4} matrix, as measured by transmission electron microscopy. Thus, Si{sub 3}N{sub 4} matrix hosts Ge QDs at higher density and more closely spaced than SiO{sub 2} matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs embedded in Si{sub 3}N{sub 4} matrix in comparison with those in the SiO{sub 2} host. Light absorption by Ge QDs is shown to be more effective in Si{sub 3}N{sub 4} matrix, due to the optical bandgap (0.9–1.6 eV) being lower than in SiO{sub 2} matrix (1.2–2.2 eV). Significant photoresponse with a large measured internal quantum efficiency has been observed for Ge QDs in Si{sub 3}N{sub 4} matrix when they are used as a sensitive layer in a photodetector device. These data will be presented and discussed, opening new routes for application of Ge QDs in light harvesting devices.

  20. Absence of quantum confinement effects in the photoluminescence of Si{sub 3}N{sub 4}–embedded Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, D., E-mail: daniel.hiller@imtek.uni-freiburg.de; Zelenina, A.; Gutsch, S.; Zacharias, M. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Dyakov, S. A. [Department of Electronic and Electrical Engineering, Trinity College Dublin, Dublin 2 (Ireland); Optics and Photonics, School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, Kista SE-16440 (Sweden); López-Conesa, L.; López-Vidrier, J.; Peiró, F.; Garrido, B. [MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona (Spain); Estradé, S. [MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès, 1, 08028 Barcelona (Spain); CCiT, Scientific and Technical Centers, Universitat de Barcelona, C/Lluís Solé i Sabaris 1, 08028 Barcelona (Spain); Valenta, J.; Kořínek, M.; Trojánek, F.; Malý, P. [Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Charles University in Prague, Ke Karlovu 3, CZ-12116 Prague 2 (Czech Republic); Schnabel, M.; Weiss, C.; Janz, S. [Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2014-05-28

    Superlattices of Si-rich silicon nitride and Si{sub 3}N{sub 4} are prepared by plasma-enhanced chemical vapor deposition and, subsequently, annealed at 1150 °C to form size-controlled Si nanocrystals (Si NCs) embedded in amorphous Si{sub 3}N{sub 4}. Despite well defined structural properties, photoluminescence spectroscopy (PL) reveals inconsistencies with the typically applied model of quantum confined excitons in nitride-embedded Si NCs. Time-resolved PL measurements demonstrate 10{sup 5} times faster time-constants than typical for the indirect band structure of Si NCs. Furthermore, a pure Si{sub 3}N{sub 4} reference sample exhibits a similar PL peak as the Si NC samples. The origin of this luminescence is discussed in detail on the basis of radiative defects and Si{sub 3}N{sub 4} band tail states in combination with optical absorption measurements. The apparent absence of PL from the Si NCs is explained conclusively using electron spin resonance data from the Si/Si{sub 3}N{sub 4} interface defect literature. In addition, the role of Si{sub 3}N{sub 4} valence band tail states as potential hole traps is discussed. Most strikingly, the PL peak blueshift with decreasing NC size, which is often observed in literature and typically attributed to quantum confinement (QC), is identified as optical artifact by transfer matrix method simulations of the PL spectra. Finally, criteria for a critical examination of a potential QC-related origin of the PL from Si{sub 3}N{sub 4}-embedded Si NCs are suggested.

  1. Structural and optical properties of silicon nanocrystals embedded in silicon carbide: Comparison of single layers and multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Charlotte, E-mail: charlotte.weiss@ise.fraunhofer.de; Schnabel, Manuel; Reichert, Andreas; Löper, Philipp; Janz, Stefan

    2015-10-01

    Highlights: • Si nanocrystal size control in a SiC matrix achieved by Si content variation. • We proved sublayer intermixing in Si{sub x}C{sub 1−x}/SiC multilayer during annealing. • Excess Si in SiC hinders SiC crystallization. • We performed a comparison between Si{sub x}C{sub 1−x}/SiC multilayers and Si{sub x}C{sub 1−x} single layers. • Si nanocrystal size correlates with the E{sub 04} bandgap. - Abstract: The outstanding demonstration of quantum confinement in Si nanocrystals (Si NC) in a SiC matrix requires the fabrication of Si NC with a narrow size distribution. It is understood without controversy that this fabrication is a difficult exercise and that a multilayer (ML) structure is suitable for such fabrication only in a narrow parameter range. This parameter range is sought by varying both the stoichiometric SiC barrier thickness and the Si-rich SiC well thickness between 3 and 9 nm and comparing them to single layers (SL). The samples processed for this investigation were deposited by plasma-enhanced chemical vapor deposition (PECVD) and subsequently subjected to thermal annealing at 1000–1100 °C for crystal formation. Bulk information about the entire sample area and depth were obtained by structural and optical characterization methods: information about the mean Si NC size was determined from grazing incidence X-ray diffraction (GIXRD) measurements. Fourier-transform infrared spectroscopy (FTIR) was applied to gain insight into the structure of the Si–C network, and spectrophotometry measurements were performed to investigate the absorption coefficient and to estimate the bandgap E{sub 04}. All measurements showed that the influence of the ML structure on the Si NC size, on the Si–C network and on the absorption properties is subordinate to the influence of the overall Si content in the samples, which we identified as the key parameter for the structural and optical properties. We attribute this behavior to interdiffusion of the

  2. Sonochemistry synthesis and enhanced photocatalytic H2-production activity of nanocrystals embedded in CdS/ZnS/In2S3 microspheres

    Science.gov (United States)

    Shen, Zaoyu; Chen, Gang; Wang, Qun; Yu, Yaoguang; Zhou, Chao; Wang, Yu

    2012-03-01

    ZnS and CdS nanocrystals with a size of 5-10 nm embedded in CdS/ZnS/In2S3 microspheres have been successfully synthesized by a sonochemistry method at room temperature and normal pressure without the use of templates or surfactants. The as-prepared products have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), EDX line spectrum, high-angle annular dark-field imaging (HAADF), UV-visible diffuse reflectance spectra (UV-vis) and photoluminescence (PL) spectra. The reaction process in the solution under ultrasonic irradiation was investigated by gas chromatography-mass spectrometry (GC-MS). The mechanisms of phase formation and morphology control of CdS/ZnS/In2S3 microspheres are proposed and discussed in detail. Furthermore, the photocatalytic activity of CdS/ZnS/In2S3 for water splitting was investigated under visible-light irradiation (λ > 400 nm) and an especially high photocatalytic activity (apparent yield is 40.9% at 420 nm) was achieved in the absence of co-catalysts.ZnS and CdS nanocrystals with a size of 5-10 nm embedded in CdS/ZnS/In2S3 microspheres have been successfully synthesized by a sonochemistry method at room temperature and normal pressure without the use of templates or surfactants. The as-prepared products have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), EDX line spectrum, high-angle annular dark-field imaging (HAADF), UV-visible diffuse reflectance spectra (UV-vis) and photoluminescence (PL) spectra. The reaction process in the solution under ultrasonic irradiation was investigated by gas chromatography-mass spectrometry (GC-MS). The mechanisms of phase formation and morphology control of CdS/ZnS/In2S3 microspheres are proposed and discussed in detail. Furthermore, the photocatalytic activity of CdS/ZnS/In2S3 for water splitting was investigated under visible

  3. A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts

    Science.gov (United States)

    Esrafili, Mehdi D.; Nematollahi, Parisa; Abdollahpour, Hadi

    2016-08-01

    In the present study, by means of density functional theory (DFT) calculations, the catalytic oxidation of CO by O2 molecule is investigated over Al- and Ge-embedded graphene. The large atomic radius of these dopant atoms can induce a local surface curvature and modulate the electronic structure properties of the graphene sheet through the charge redistribution. It is found that the adsorption of molecular O2 over Al- or Ge-embedded graphene is stronger than that of CO molecule. The CO oxidation reaction by molecular O2 on Al- and Ge-embedded graphene is comparably studied. The results indicate that a two-step process can occur, namely, CO + O2 → CO2 + Oads and CO + Oads → CO2. Furthermore, the computed activation energy (Eact) for the first reaction on Ge-doped graphene is lower than that of Al-doped one, and the formation of second CO2 molecule on both surfaces can occur rapidly due to its low energy barrier (0.1 eV).

  4. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tian, E-mail: tianz@student.unsw.edu.au; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan [Australian Centre for Advanced Photovoltaics, UNSW Australia, Kensington, New South Wales 2052 (Australia)

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  5. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Science.gov (United States)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  6. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu(3+) Ions Embedded in SiO₂ Film for Emission at 614 nm.

    Science.gov (United States)

    Mangalam, Vivek; Pita, Kantisara

    2017-08-10

    In this work, we study the energy transfer mechanism from ZnO nanocrystals (ZnO-nc) to Eu(3+) ions by fabricating thin-film samples of ZnO-nc and Eu(3+) ions embedded in a SiO₂ matrix using the low-cost sol-gel technique. The time-resolved photoluminescence (TRPL) measurements from the samples were analyzed to understand the contribution of energy transfer from the various ZnO-nc emission centers to Eu(3+) ions. The decay time obtained from the TRPL measurements was used to calculate the energy transfer efficiencies from the ZnO-nc emission centers, and these results were compared with the energy transfer efficiencies calculated from steady-state photoluminescence emission results. The results in this work show that high transfer efficiencies from the excitonic and Zn defect emission centers is mostly due to the energy transfer from ZnO-nc to Eu(3+) ions which results in the radiative emission from the Eu(3+) ions at 614 nm, while the energy transfer from the oxygen defect emissions is most probably due to the energy transfer from ZnO-nc to the new defects created due to the incorporation of the Eu(3+) ions.

  7. Sonochemistry synthesis and enhanced photocatalytic H2-production activity of nanocrystals embedded in CdS/ZnS/In2S3 microspheres.

    Science.gov (United States)

    Shen, Zaoyu; Chen, Gang; Wang, Qun; Yu, Yaoguang; Zhou, Chao; Wang, Yu

    2012-03-21

    ZnS and CdS nanocrystals with a size of 5-10 nm embedded in CdS/ZnS/In(2)S(3) microspheres have been successfully synthesized by a sonochemistry method at room temperature and normal pressure without the use of templates or surfactants. The as-prepared products have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), EDX line spectrum, high-angle annular dark-field imaging (HAADF), UV-visible diffuse reflectance spectra (UV-vis) and photoluminescence (PL) spectra. The reaction process in the solution under ultrasonic irradiation was investigated by gas chromatography-mass spectrometry (GC-MS). The mechanisms of phase formation and morphology control of CdS/ZnS/In(2)S(3) microspheres are proposed and discussed in detail. Furthermore, the photocatalytic activity of CdS/ZnS/In(2)S(3) for water splitting was investigated under visible-light irradiation (λ > 400 nm) and an especially high photocatalytic activity (apparent yield is 40.9% at 420 nm) was achieved in the absence of co-catalysts.

  8. Second-harmonic and linear optical spectroscopic study of silicon nanocrystals embedded in SiO2

    Science.gov (United States)

    Wei, Junwei; Wirth, Adrian; Downer, Michael C.; Mendoza, Bernardo S.

    2011-10-01

    The optical second-harmonic generation (SHG) spectra of silicon nanocrystals (Si NCs) prepared by implanting Si ions uniformly into silica substrates, then annealing, are compared and contrasted to their ellipsometric and photoluminescence excitation (PLE) spectra. Three resonances—two close in energy to E1 (3.4 eV) and E2 (4.27 eV) critical-point resonances of crystalline silicon (c-Si), and a broad resonance intermediate in energy between E1 and E2—are observed in all three types of spectra. These features are observed in conjunction with a sharp 520 cm-1 Raman peak characteristic of c-Si. While the ellipsometric and PLE spectra differ only slightly between samples with average NC diameter dNC=3 and 5 nm, the SHG spectrum changes dramatically from a nearly featureless spectrum dominated by the non-bulk-like intermediate resonance for dNC=3 nm, like the SHG spectrum of amorphous Si (a-Si), to a featured spectrum with pronounced resonances at 3.4, 3.73, and 4.8 eV for dNC=5 nm. The results suggest that SHG is uniquely sensitive to a nanointerfacial transition region containing a-Si and suboxide that is most prominent for small dNC, while ellipsometric and PLE spectra are more sensitive to the c-Si core of the NCs. The persistence of an a-Si tail in the Raman spectrum of annealed samples supports the interpretation.

  9. Low-temperature LPCVD of Si nanocrystals from disilane and trisilane (Silcore®) embedded in ALD-alumina for non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Aarnink, A.A.I.; Boogaard, A.; Kovalgin, A.Y.; Wolters, R.A.M.; Holleman, J.; Schmitz, J.

    2007-01-01

    Non-volatile memory devices are realized using CVD and ALD of all active layers in a cluster tool. The floating gate consists of silicon nanocrystals. A high nanocrystal density was obtained through an enhanced nucleation rate by using disilane (Si2H6) as well as trisilane (Si3H8, known as Silcore®)

  10. Optical and Structural Characterization of Pin Photodetector Based on Germanium Nanocrystals for Third Generation Solar Cells

    Directory of Open Access Journals (Sweden)

    K.K. Sossoe

    2016-11-01

    Full Text Available We investigated the structural and optoelectronic properties of p-n germanium nanocrystals based junctions embedded between GaAs substrate and layers of ZnO:Al or a-Si:H. Scanning electron microscopy and scanning tunneling microscopy were used on these junctions in this work. Calculations of tunneling current on the substrate showed effect of localized defects trapping Fermi level at the surface tending to make a semi-insulating substrate. The average value of the diameter of the Ge nanoparticle is around 12.5 nm. These results lay the foundation for the development of solar cells which active part is made of GeNCs.

  11. Achievement of low parasitic resistance in Ge n-channel metal-oxide-semiconductor field-effect transistor using an embedded TiN-source/drain structure

    Science.gov (United States)

    Nagatomi, Y.; Tateyama, T.; Tanaka, S.; Yamamoto, K.; Wang, D.; Nakashima, H.

    2017-03-01

    We investigated the source/drain (S/D) parasitic resistance (R P) of a Ge n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) with TiN-S/D. The R P was as high as ∼1400 Ω, which is attributed to a very thin amorphous interlayer (a-IL) at a TiN/Ge interface. To solve this problem, n-MOSFETs with an embedded S/D structure were fabricated, of which the S/D was formed by the etching of a Ge layer using 0.03%-H2O2 solution followed by TiN sputter deposition. The electrical performances were investigated for devices with etching depths in the range of 2–22 nm. The devices with etching depths of 2–5 nm did not work. The devices with etching depths of 12–15 nm showed a quite normal transistor operation, and the R P was as low as ∼130 Ω, which is comparable to that of a p-MOSFET with PtGe-S/D. However, R Ps of the devices with etching depths of ∼22 nm was considerably high. The reason for these results is discussed on the basis of an a-IL formation at the sidewall of the engraved S/D region.

  12. Germanene termination of Ge2Pt crystals on Ge(110)

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Zhang, Lijie; Safaei, A.; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2014-01-01

    We have investigated the growth of Pt on Ge(1 1 0) using scanning tunneling microscopy and spectroscopy. The deposition of several monolayers of Pt on Ge(1 1 0) followed by annealing at 1100 K results in the formation of 3D metallic Pt-Ge nanocrystals. The outermost layer of these crystals exhibits

  13. Giant Raman gain in silicon nanocrystals

    National Research Council Canada - National Science Library

    Sirleto, Luigi; Ferrara, Maria Antonietta; Nikitin, Timur; Novikov, Sergei; Khriachtchev, Leonid

    2012-01-01

    ... of next generation nonlinear photonic devices. Here we report the first observation of stimulated Raman scattering in silicon nanocrystals embedded in a silica matrix under non-resonant excitation at infrared wavelengths (~1.5 μm...

  14. Effect of bi-layer ratio in ZnO/Al2O3 multilayers on microstructure and functional properties of ZnO nanocrystals embedded in Al2O3 matrix

    Science.gov (United States)

    Sekhar, K. C.; Levichev, S.; Buljan, M.; Bernstorff, S.; Kamakshi, Koppole; Chahboun, A.; Almeida, A.; Agostinho Moreira, J.; Pereira, M.; Gomes, M. J. M.

    2014-04-01

    Zinc oxide (ZnO) nanocrystals (NCs) embedded in alumina (Al2O3) matrix were produced via rapid thermal annealing (RTA) of pulsed laser deposited ZnO/Al2O3 multilayered nanostructures. The effect of the thickness ratio ( R) between Al2O3 and ZnO in one bi-layer on the microstructure and functional properties of NCs has been investigated. Grazing incidence small angle X-ray scattering confirmed the formation of nanocrystals after RTA. Grazing incidence wide angle X-ray scattering studies revealed that ZnO NCs have a high crystalline quality with (100) as preferred orientation. Tensile strain of NCs decreases with increasing R and is correlated to the distribution of NCs. From Raman analysis, it is noticed that the phonon frequency of the E2 mode, related to the ZnO wurtzite phase, in NCs is shifted towards that of bulk ZnO with increasing R. Photoluminescence studies revealed that the near edge peak position shifts from 382 nm to 371 nm as the ratio R changes from 1.5 to 4 and is attributed to the strain effect. The intensity of emission in the yellow-green region due to defects decreases significantly with increasing R. Current-voltage ( I- V) characteristics of Al/ZnO NCs embedded in Al2O3/n-Si (100)/Al have shown a hysteresis behavior. The increasing width of the hysteresis with increasing R revealed that the origin of the hysteresis might be due to the existence of polar surface charges on well-separated NCs. The high-resistance and low-resistance states in I- V hysteresis curves seem to be governed by Fowler-Nordheim tunneling and Schottky emission mechanisms, respectively.

  15. Unusual broadening of the NIR luminescence of Er{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz; Pereira, Rafael R. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Ribeiro, Sidney José Lima [Laboratório de Materiais Fotônicos, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Ferrier, Alban; Goldner, Philippe [Chimie-Paristech, Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, UPMC Univ Paris 06, 11 Rue Pierre et Marie Curie, 75005 Paris (France); and others

    2014-10-15

    This paper reports on the preparation of novel sol-gel erbium-doped SiO{sub 2}-based nanocomposites embedded with Nb{sub 2}O{sub 5} nanocrystals fabricated using a bottom-up method and describes their structural, morphological, and luminescence characterization. To prepare the glass ceramics, we synthesized xerogels containing Si/Nb molar ratios of 90:10 up to 50:50 at room temperature, followed by annealing at 900, 1000, or 1100 °C for 10 h. We identified crystallization accompanying host densification in all the nanocomposites with orthorhombic (T-phase) or monoclinic (M-phase) Nb{sub 2}O{sub 5} nanocrystals dispersed in the amorphous SiO{sub 2} phase, depending on the niobium content and annealing temperature. A high-intensity broadband emission in the near-infrared region assigned to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition of the Er{sup 3+} ions was registered for all the nanocomposites. The shape and the bandwidth changed with the Nb{sub 2}O{sub 5} crystalline phase, with values achieving up to 81 nm. Er{sup 3+} ions were located mainly in Nb{sub 2}O{sub 5}-rich regions, and the complex structure of the different Nb{sub 2}O{sub 5} polymorphs accounted for the broadening in the emission spectra. The materials containing the T-phase, displayed higher luminescence intensity, longer {sup 4}I{sub 13/2} lifetime and broader bandwidth. In conclusion, these nanostructured materials are potential candidates for photonic applications like optical amplifiers and WDM devices operating in the S, C, and L telecommunication bands. - Highlights: • Rare earth doped Nb{sub 2}O{sub 5} nanocrystals prepared from a bottom-up approach. • Unusual broadband NIR emission in glass ceramic system. • Structural features tuning the luminescence properties. • Potential as optical amplifiers and WDM devices. • Photonic devices operating in the S, C, and L telecommunication.

  16. Nanocrystal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tisdale, William; Prins, Ferry; Weidman, Mark; Beck, Megan

    2016-11-01

    A method of preparing monodisperse MX semiconductor nanocrystals can include contacting an M-containing precursor with an X donor to form a mixture, where the molar ratio between the M containing precursor and the X donor is large. Alternatively, if additional X donor is added during the reaction, a smaller ratio between the M containing precursor and the X donor can be used to prepare monodisperse MX semiconductor nanocrystals.

  17. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Broeckx, Valérie; Boonen, Kurt; Pringels, Lentel; Sagaert, Xavier; Prenen, Hans; Landuyt, Bart; Schoofs, Liliane; Maes, Evelyne

    2016-02-01

    Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.

  18. Effect of fluoride ions on the optical properties of Eu{sup 3+}:PbF{sub 2} nanocrystals embedded into sol–gel host materials

    Energy Technology Data Exchange (ETDEWEB)

    Szpikowska-Sroka, Barbara, E-mail: barbara.szpikowska-sroka@us.edu.pl; Pawlik, Natalia; Żur, Lidia; Czoik, Rozalia; Goryczka, Tomasz; Pisarski, Wojciech A.

    2016-05-01

    In this research, the effects of fluoride ions concentration on luminescence properties of Eu{sup 3+}:PbF{sub 2} nanocrystals in silicate sol–gel materials have been investigated. Optical and structural properties of Eu{sup 3+}:PbF{sub 2} nanocrystals have been examined using X-ray diffraction analysis (XRD) and luminescence spectroscopy. Formation of the cubic β-PbF{sub 2} nanocrystalline phase was confirmed. The crystal size was estimated using Scherrer's equation and Williamson-Hall formula. The optical behavior of Eu{sup 3+} ions in studied materials is strongly dependent on amount of incorporated fluorides in the host lattice and the optimal concentration about 3.0 mass. % give the more intense emission of Eu{sup 3+}. The luminescence spectra showed the characteristic orange-red emission due to the {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} electron transitions, respectively. The luminescence intensity ratio R (I({sup 5}D{sub 0} → {sup 7}F{sub 2})/I({sup 5}D{sub 0} → {sup 7}F{sub 1})) and luminescence lifetimes for the {sup 5}D{sub 0} excited state of Eu{sup 3+} ions were determined for each sample before and after heat treatment process. Obtained results indicate the partially incorporation of Eu{sup 3+} ions into β-PbF{sub 2} nanocrystalline phase during ceramization process. - Highlights: • The effect of fluoride ions concentration on luminescence properties was studied. • Formation of cubic β-PbF{sub 2} nanocrystalline phase was confirmed. • The crystal size was estimated using Scherrer's and Williamson-Hall methods. • Luminescence decay curves of the investigated sol–gel glasses were examined. • The results indicate incorporation of Eu{sup 3+} ions into nanocrystalline phase.

  19. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  20. Evolution of microstructural defects of TiO2 nanocrystals by Zr4+ or/and Ge4+ doping lead to high disinfection efficiency for CWAs

    Science.gov (United States)

    Shen, Zhong; Zhong, Jin-Yi; Chai, Na-Na; He, Xin; Zang, Jian-Zheng; Xu, Hui; Han, Xiao-Yuan; Zhang, Peng

    2017-06-01

    Zr4+, Ge4+ doped and co-doped TiO2 nanoparticles were prepared by a 'one-pot' homogeneous precipitation method. The photocatalytic reaction kinetics of DMMP and the disinfection efficiency of HD, GD and VX on the samples were investigated. By means of a variety of characterization methods, especially the positron annihilation lifetime spectroscopy, the changes in structure and property of TiO2 across doping were studied. The results show that the reasonable engineering design of novel photocatalysts in the field of CWAs decontamination can be realized by adjusting the bulk-to-surface defects ratio, except for crystal structure, specific surface area, pore size distribution and light utilization.

  1. Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

    Science.gov (United States)

    Hafiz, Shopan din Ahmad

    InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1-xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1-xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating delta p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room

  2. Gas phase grown silicon germanium nanocrystals

    Science.gov (United States)

    Mohan, A.; Tichelaar, F. D.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2016-09-01

    We report on the gas phase synthesis of highly crystalline and homogeneously alloyed Si1-xGex nanocrystals in continuous and pulsed plasmas. Agglomerated nanocrystals have been produced with remarkable control over their composition by altering the precursor GeH4 gas flow in a continuous plasma. We specially highlight that in the pulsed plasma mode, we obtain quantum-sized free standing alloy nanocrystals with a mean size of 7.3 nm. The presence of Si1-xGex alloy particles is confirmed with multiple techniques, i.e. Raman spectroscopy, XRD (Xray diffraction) and HRTEM (high resolution transmission electron microscopy) studies, with each of these methods consistently yielding the same composition. The nanocrystals synthesized here have potential applications in band-gap engineering for multijunction solar cells.

  3. MBE-grown Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device.

    Science.gov (United States)

    Manna, S; Aluguri, R; Katiyar, A; Das, S; Laha, A; Osten, H J; Ray, S K

    2013-12-20

    Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance-voltage and conductance-voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices. It has also been observed that single-layer Si(1-x)Ge(x) quantum dots show better memory characteristics than single-layer Si quantum dots.

  4. Photoluminescence of Silicon Nanocrystals in Silicon Oxide

    Directory of Open Access Journals (Sweden)

    L. Ferraioli

    2007-01-01

    Full Text Available Recent results on the photoluminescence properties of silicon nanocrystals embedded in silicon oxide are reviewed and discussed. The attention is focused on Si nanocrystals produced by high-temperature annealing of silicon rich oxide layers deposited by plasma-enhanced chemical vapor deposition. The influence of deposition parameters and layer thickness is analyzed in detail. The nanocrystal size can be roughly controlled by means of Si content and annealing temperature and time. Unfortunately, a technique for independently fine tuning the emission efficiency and the size is still lacking; thus, only middle size nanocrystals have high emission efficiency. Interestingly, the layer thickness affects the nucleation and growth kinetics so changing the luminescence efficiency.

  5. Ce4Ag3Ge4O(0.5)--chains of oxygen-centered [OCe2Ce(2/2)] tetrahedra embedded in a [CeAg3Ge4] intermetallic matrix.

    Science.gov (United States)

    Heymann, Gunter; Riecken, Jan F; Johrendt, Dirk; Rayaprol, Sudhindra; Pöttgen, Rainer; Huppertz, Hubert

    2013-11-14

    The oxidation of an intermetallic phase under high-pressure/high-temperature conditions led to the synthesis of Ce4Ag3Ge4O(0.5) exhibiting [OCe2Ce(2/2] tetrahedral chains, in which the oxygen atoms statistically occupy the tetrahedral centres. Starting from a 1:1:1 CeAgGe precursor (NdPtSb type), a multianvil high-pressure/high-temperature experiment at 11.5 GPa and 1250-1300 °C revealed Ce4Ag3Ge4O(0.5), crystallizing in the space group Pnma with the following lattice parameters: a = 2087.3(4), b = 439.9(1), and c = 1113.8(2) pm. Magnetic measurements showed Curie-Weiss behavior above 100 K with an experimental magnetic moment of 2.42 µB per Ce atom, close to the value for the free Ce(3+) ion, clearly indicating trivalent cerium in Ce4Ag3Ge4O(0.5). Full potential GGA+U band structure calculations resulted in metallic properties and a magnetic ground state with one unpaired 4f-electron per cerium in agreement with the experiments.

  6. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  7. Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region.

    Science.gov (United States)

    Bérubé, J P; Messaddeq, S H; Bernier, M; Skripachev, I; Messaddeq, Y; Vallée, R

    2014-10-20

    The photosensitivity of GeS(x) binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8 x 10(-3)and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 - 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.

  8. Sol-gel derived precursors to Group 14 semiconductor nanocrystals - Convenient materials for enabling nanocrystal-based applications

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, Jonathan G C; Henderson, Eric J; Hessel, Colin M, E-mail: jveinot@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)

    2009-11-15

    Semiconductor nanocrystals are intriguing because of their electronic, optical, and chemical characteristics. Silicon nanocrystals (Si-NCs) of sub-5 nm dimension are of particular interest due to their intense photoluminescent response and the promise of linking silicon photonics and electronics. Other related nanomaterials of technological importance include SiC and Ge. The following contribution describes key experimental findings pertaining to synthetic methodology, investigation of nanodomain formation and growth, as determined by X-ray powder diffraction (XRD) and photoluminescence (PL) spectroscopy for a series of sol-gel derived prepolymers suitable for preparing Group 14 based nanocrystal containing composites.

  9. Sol-gel derived precursors to Group 14 semiconductor nanocrystals - Convenient materials for enabling nanocrystal-based applications

    Science.gov (United States)

    Veinot, Jonathan G. C.; Henderson, Eric J.; Hessel, Colin M.

    2009-11-01

    Semiconductor nanocrystals are intriguing because of their electronic, optical, and chemical characteristics. Silicon nanocrystals (Si-NCs) of sub-5 nm dimension are of particular interest due to their intense photoluminescent response and the promise of linking silicon photonics and electronics. Other related nanomaterials of technological importance include SiC and Ge. The following contribution describes key experimental findings pertaining to synthetic methodology, investigation of nanodomain formation and growth, as determined by X-ray powder diffraction (XRD) and photoluminescence (PL) spectroscopy for a series of sol-gel derived prepolymers suitable for preparing Group 14 based nanocrystal containing composites.

  10. Novel Nanocrystal Floating Gate Memory

    OpenAIRE

    Zhou, Huimei

    2012-01-01

    This work is devoted to investigating the feasibility of engineering nanocrystals and tunnel oxide layer with a novel structure. Several novel devices are demonstrated to improve the performance of the novel nanocrystal memories.A novel TiSi2 nanocrystal memory was demonstrated. TiSi2 nanocrystals were synthesized on SiO2 by annealing Ti covered Si nanocrystals. Compared to the reference Si nanocrystal memory, both experiment and simulation results show that TiSi2 nanocrystal memory exhibits ...

  11. Tuning Li-Ion Diffusion in α-LiMn 1–x Fe x PO 4 Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiangtao [School; Xiao, Yinguo [Jülich; Tang, Hanting [School; Wang, Hongbin [School; Wang, Ziqi [School; Liu, Chaokun [School; Zeng, Hua [School; Huang, Qingzhen [NIST; Ren, Yang [Electrochemical; Wang, Chongmin [Environmental; Zhang, Wei [Sustainable; Pan, Feng [School

    2017-07-17

    Olivine-structured LiMn1-xFexPO4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO4, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn1-xFexPO4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMn0.5Fe0.5PO4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn1-xFexPO4 nanocrystals by inducing high concentrations of Fe2+-Li+ antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g-1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn1-xFexPO4, which is first reported in this work) embedded in α-LiMn0.5Fe0.5PO4. Because of the coherent orientation relationship between β- and α- phases, the β-phase embedded would impede the Li+ diffusion along the [100] and/or [001] directions that was activated by the high density of Fe2+-Li+ antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe2+-Li+ antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn1-xFexPO4 nanocrystals can be tuned by generating new Li+ tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.

  12. Surface chemical modification of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise; Buonsanti, Raffaella; Llordes, Anna

    2017-03-14

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  13. MD SIMULATION FOR NANOCRYSTALS

    Institute of Scientific and Technical Information of China (English)

    马新玲; 杨卫

    2003-01-01

    Molecular dynamic (MD) provided an ab initio simulation for nano-scale mechanical behavior of materials, provided that the inter-atomic potential is accurately prescribed. MD is particularly suitable in simulating the formation, the deformation, and the evolution of nanocrystals under a fast strain rate. To tackle large scale system and nano-seconds time duration, parallel algorithm is desired. The present paper reviews the recent advances in MD simulation for nanocrystals with attention focused on the applications toward nanomechanics. The examined issues are: formation of nanocrystalline metals, nanoindentation on nanocrystals, fast deformation of nanocrystals, orderdisorder transition, and nano-particle impact.

  14. SiGe layer thickness effect on the structural and optical properties of well-organized SiGe/SiO2 multilayers

    Science.gov (United States)

    Vieira, E. M. F.; Toudert, J.; Rolo, A. G.; Parisini, A.; Leitão, J. P.; Correia, M. R.; Franco, N.; Alves, E.; Chahboun, A.; Martín-Sánchez, J.; Serna, R.; Gomes, M. J. M.

    2017-08-01

    In this work, we report on the production of regular (SiGe/SiO2)20 multilayer structures by conventional RF-magnetron sputtering, at 350 °C. Transmission electron microscopy, scanning transmission electron microscopy, raman spectroscopy, and x-ray reflectometry measurements revealed that annealing at a temperature of 1000 °C leads to the formation of SiGe nanocrystals between SiO2 thin layers with good multilayer stability. Reducing the nominal SiGe layer thickness (t SiGe) from 3.5-2 nm results in a transition from continuous SiGe crystalline layer (t SiGe ˜ 3.5 nm) to layers consisting of isolated nanocrystals (t SiGe ˜ 2 nm). Namely, in the latter case, the presence of SiGe nanocrystals ˜3-8 nm in size, is observed. Spectroscopic ellipsometry was applied to determine the evolution of the onset in the effective optical absorption, as well as the dielectric function, in SiGe multilayers as a function of the SiGe thickness. A clear blue-shift in the optical absorption is observed for t SiGe ˜ 2 nm multilayer, as a consequence of the presence of isolated nanocrystals. Furthermore, the observed near infrared values of n = 2.8 and k = 1.5 are lower than those of bulk SiGe compounds, suggesting the presence of electronic confinement effects in the nanocrystals. The low temperature (70 K) photoluminescence measurements performed on annealed SiGe/SiO2 nanostructures show an emission band located between 0.7-0.9 eV associated with the development of interface states between the formed nanocrystals and surrounding amorphous matrix.

  15. Epitaxial Stabilization of Ferromagnetism in the Nanophase of FeGe

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Changgan [ORNL; Varela del Arco, Maria [ORNL; Kent, P. R. C. [University of Tennessee, Knoxville (UTK); Eisenbach, Markus [ORNL; Stocks, George Malcolm [ORNL; Torija Juana, Maria Asuncion [ORNL; Shen, Jian [ORNL; Weitering, Harm H [ORNL

    2006-01-01

    Epitaxial nanocrystals of FeGe have been stabilized on Ge(111). The nanocrystals assume a quasi-one-dimensional shape as they grow exclusively along the (110) direction of the Ge(111) substrate, culminating in a compressed monoclinic modification of FeGe. Whereas monoclinic FeGe is antiferromagnetic in the bulk, the nanowires are surprisingly strong ferromagnets below ~200 K with an average magnetic moment of 0.8?? per Fe atom. Density functional calculations indicate an unusual stabilization mechanism for the observed in the bulk while increased p-d hybridization suppresses the magnetic moments and stabilizes ferromagnetism.

  16. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Cheng, E-mail: scchen0213@gmail.co [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China); Chang, Ting-Chang [Department of Physics and Institute of Electro-Optical Engineering, and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Taiwan (China); Chen, Wei-Ren [Institute of Electronics, National Chiao Tung University, Taiwan, Hsinchu, Taiwan 300 (China); Lo, Yuan-Chun; Wu, Kai-Ting [Institute of Photonics Technologies, National Tsing Hua University, Taiwan (China); Sze, S.M. [Institute of Electronics, National Chiao Tung University, Taiwan, Hsinchu, Taiwan 300 (China); Chen, Jason; Liao, I.H. [ProMOS Technologies, No. 19 Li Hsin Rd., Science-Based Industrial Park, Hsinchu, Taiwan 300 (China); Yeh, Fon-Shan [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China)

    2010-10-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  17. Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals

    Science.gov (United States)

    Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.

    2017-10-01

    We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.

  18. Hardening by twin boundary during nanoindentation in nanocrystals.

    Science.gov (United States)

    Qu, Shaoxing; Zhou, Haofei

    2010-08-20

    The atomistic deformation processes of nanocrystals embedded with nanoscale twin boundaries during nanoindentation are studied by molecular dynamics simulations. Load-displacement curves are obtained and the hardening mechanisms associated with the nanoscale twin boundaries are revealed. Johnson's theoretical indentation model is adopted to estimate the elastic stage of the nanoindentation. In addition, twin boundary-mediated dislocation nucleation is observed and analyzed.

  19. Light emission and floating gate memory characteristics of germanium nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Das, Samaresh; Manna, Santanu; Singha, Rajkumar; Dhar, Achintya; Ray, Samit Kumar [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Anopchenko, Aleksei; Daldosso, Nicola; Pavesi, Lorenzo [Laboratorio di Nanoscienze, Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, 38100 Povo (Trento) (Italy)

    2011-03-15

    We report Ge nanocrystals (NCs) based dual functional light emitting and metal insulator semiconductor (MIS) flash memory devices, fabricated by rf sputtering. Transmission electron micrographs revealed the formation of spherically shaped Ge NCs. We have observed broad electroluminescence (EL) around 760 nm, which is attributed to electron-hole recombination in quantum confined Ge NCs. The dependence of integrated EL intensity on drive currents has also been studied. An anti-clockwise hysteresis behaviour is observed in capacitance-voltage measurements of MIS devices for different sweep voltages, indicating net electron trapping in NC based floating gates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effect of nanocavities on Ge nanoclustering and out-diffusion in SiO2

    Science.gov (United States)

    Li, Chen; Feng, Honglei; Liu, Bin; Liang, Wenshuang; Liu, Guiju; Ross, Guy G.; Wang, Yiqian; Barba, David

    2017-01-01

    Germanium nanocrystals (Ge-ncs) were synthesized by implantation of Ge+ ions into the fused silica, followed by a thermal annealing at 1000 °C. High-resolution transmission electron microscopy was employed to characterize both the morphology of the formed Ge-ncs and the evolution of their depth-distribution as a function of annealing durations. The formation of nanocavities in the vicinity of nanocrystal/SiO2 interface is evidenced, as well as their influence on the release of the compressive stress exerted on Ge-ncs by surrounding SiO2. Some Ge-ncs are found inside nanocavities, and can move into the implanted layer through a nanocavity-assisted diffusion mechanism. This finding sheds light on a new process that can explain the non-uniformity of the Ge-nanocrystal spatial distribution.

  1. Nanocrystal diffusion doping.

    Science.gov (United States)

    Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R

    2013-09-25

    A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.

  2. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    Many financial instruments are designed with embedded leverage such as options and leveraged exchange traded funds (ETFs). Embedded leverage alleviates investors’ leverage constraints and, therefore, we hypothesize that embedded leverage lowers required returns. Consistent with this hypothesis, we...... find that asset classes with embedded leverage offer low risk-adjusted returns and, in the cross-section, higher embedded leverage is associated with lower returns. A portfolio which is long low-embedded-leverage securities and short high-embedded-leverage securities earns large abnormal returns......, with t-statistics of 8.6 for equity options, 6.3 for index options, and 2.5 for ETFs. We provide extensive robustness tests and discuss the broader implications of embedded leverage for financial economics....

  3. Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells.

    Science.gov (United States)

    Antunez, Priscilla D; Buckley, Jannise J; Brutchey, Richard L

    2011-06-01

    The incorporation of colloidal semiconductor nanocrystals into the photoabsorbant material of photovoltaic devices may reduce the production costs of solar cells since nanocrystals can be readily synthesized on a large scale and are solution processable. While the lead chalcogenide IV-VI nanocrystals have been widely studied in a variety of photovoltaic devices, concerns over the toxicity of lead have motivated the exploration of less toxic materials. This has led to the exploration of tin and germanium monochalcogenide IV-VI semiconductors, both of which are made up of earth abundant elements and possess properties similar to the lead chalcogenides. This feature article highlights recent efforts made towards achieving synthetic control over nanocrystal size and morphology of the non-lead containing IV-VI monochalcogenides (i.e., SnS, SnSe, SnTe, GeS and GeSe) and their application toward photovoltaic devices.

  4. Simultaneous control of nanocrystal size and nanocrystal{nanocrystal separation in CdS nanocrystal assembly

    Indian Academy of Sciences (India)

    Sameer Sapra; D D Sarma

    2005-10-01

    We report an easy, one pot synthesis to prepare ordered CdS nanocrystals with varying inter-particle separation and characterize the particle separation using x-ray diffraction at low and wide angles.

  5. Nanocrystals for electronics.

    Science.gov (United States)

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  6. Polycondensation-type Ge nanofractal assembly

    Directory of Open Access Journals (Sweden)

    Zhiwen Chen

    2011-03-01

    Full Text Available The group IV semiconductors such as silicon (Si and germanium (Ge are unique materials with a wide range of technological applications. A versatile integrated device for the semiconductor industry is highly desirable for advanced applications. Notwithstanding the widespread application of Ge its use is not as extensive as that of Si, and nebulous domains in our understanding of its precise technical functions still remain. Previous nanostructures have either been one-dimensional nanomaterials such as nanowires, nanorods, nanobelts/nanoribbons, nanotubes, two-dimensional nanoscale thin films, or zero-dimensional nanoparticles, which all have integer dimensions. Herein, the non-integer dimensional Ge nanostructures, referred to as nanofractals, were successfully assembled by high-vacuum thermal evaporation techniques. We have found that the thermodynamically driven assemblies of Ge nanocrystals possess amazing nanostructures such as polycondensation-type Ge nanofractals with non-integer dimensions, thick branches and smooth edges, metastable gamma-Au0.6Ge0.4 nanocrystals, and a variety of interesting micro/nanometer-sized features. The results of computer simulations using a ripening mechanism of non-uniform grains agree very well with the patterns formed in experiments.

  7. Nanocrystal Thickness Information from Z-Stem: 3-D Imaging in One Shot

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, A.V.; Kippeny, Tl; Erwin, M.; Rosenthal, S.J.; Pennycook, S.J.

    1999-11-29

    The authors have applied Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-Contrast STEM) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. For typical nanocrystal thicknesses, the image intensity is a monotonic function of thickness. Hence an atomic column-resolved image provides information both on the lateral shape of the nanocrystal, as well as the relative thickness of the individual columns. They show that the Z-Contrast image of a single CdSe nanocrystal is consistent with the predicted 3-D model derived from considering HRTEM images of several nanocrystals in different orientations. They further discuss the possibility of measuring absolute thicknesses of atomic columns if the crystal structure is known.

  8. Synthesis of highly monodisperse Ge crystals in a capacitively coupled flow through reactor for photovoltaic applications

    Science.gov (United States)

    Gresback, Ryan; Kortshagen, Uwe

    2006-10-01

    Germanium nanocrystals are interesting candidates for quantum dot-based solar cells. While the band gap of bulk Ge is ˜0.7 eV, the energy gap can be increased due to quantum confinement to ˜ 2eV for Ge particles of ˜3 nm in size. With a single material, Ge nanocrystals of sizes from 3 -15 nm would thus allow to span the entire range of band gaps that is of interest for photovoltaic devices. Moreover, compared to many other quantum dot materials that are currently studied for photovoltaic applications, Ge is perceived as non-toxic and environmentally benign. Ge nanocrystals are synthesized in a tubular, capacitively coupled flow through reactor. Germanium tetrachloride is used as a precursor. It is introduced into the plasma by a flow of argon and hydrogen. At typical pressures of 2 Torr and 40 W of RF power at 13.56 MHz, Ge crystals are generated and reside in the plasma for several tens of milliseconds. The size of the nanocrystals can be controlled in a range from 3-20 nm through the residence time. Particles are highly monodisperse. Organically passivated Ge nanocrystals self-assemble into monolayers when cast from colloidal solutions.

  9. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.

    Science.gov (United States)

    Brutchey, Richard L

    2015-11-17

    The ability to synthesize colloidal semiconductor nanocrystals in a well-controlled manner (i.e., with fine control over size, shape, size dispersion, and composition) has been mastered over the past 15 years. Much of this success stems from careful studies of precursor conversion and nanocrystal growth with respect to phosphine chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals. Despite the high level of success that has been achieved with phosphine chalcogenides, there has been a longstanding interest in exploring alternate chalcogenide precursors because of issues associated with phosphine chalcogenide cost, purity, toxicity, etc. This has resulted in a large body of literature on the use of sulfur and selenium dissolved in octadecene or amines, thio- and selenoureas, and silyl chalcogenides as alternate chalcogenide precursors for metal chalcogenide nanocrystal synthesis. In this Account, emerging work on the use of diorganyl dichalcogenides (R-E-E-R, where E = S, Se, or Te and R = alkyl, allyl, benzyl, or aryl) as alternate chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals is summarized. Among the benefits of these dichalcogenide synthons are the following: (i) they represent the first and only common precursor type that can function as chalcogen transfer reagents for each of the group VI elements (i.e., to make metal oxide, metal sulfide, metal selenide, and metal telluride nanocrystals); (ii) they possess relatively weak E-E bonds that can be readily cleaved under mild thermolytic or photolytic conditions; and (iii) the organic substituents can be tuned to affect the reactivity. These combined attributes have allowed dichalcogenide precursors to be employed for a wide range of metal chalcogenide nanocrystal syntheses, including those for In2S3, SnxGe1-xSe, SnTe, Cu2-xSySe1-y, ZnSe, CdS, CdSe, MoSe2, WSe2, BiSe, and CuFeS2. Interestingly, a number of metastable phases of compositionally complex

  10. Light emission from silicon with tin-containing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Roesgaard, Søren [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Chevallier, Jacques; Hansen, John Lundsgaard; Jensen, Pia Bomholt; Larsen, Arne Nylandsted; Balling, Peter; Julsgaard, Brian, E-mail: brianj@phys.au.dk [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Gaiduk, Peter I. [Belarussian State University, Praspyekt Nyezalyezhnastsi 4, 220030 Minsk (Belarus); Svane, Axel [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2015-07-15

    Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si{sub 1−x−y}Sn{sub x}C{sub y}, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 {sup ∘}C to 900 {sup ∘}C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈10{sup 17} cm{sup −3} and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 {sup ∘}C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  11. Optical properties of ZnS:Mn nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.; En Naciri, A. [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Bd Arago, 57078 Metz (France); Grob, J.J. [InESS, 23 rue du Loess-B20, 67037 Strasbourg Cedex 2 (France)

    2010-02-15

    The optical properties of Mn-doped zinc sulfide (ZnS) nanocrystals embedded in SiO{sub 2} matrix are studied by spectroscopic ellipsometry (SE). The crystals are obtained by sequential multi-energy ion implantation of Zn, S, and Mn into a silica layer grown on Si(111) followed by a subsequent annealing for 30 min at 900 C. The formation of the nanocrystals is evidenced by transmission electron microscopy. The application of a critical-point based model for the analysis of the SE data yields die dielectric function (DF) between 0.6 and 6.5 eV. A pronounced shift of the absorption edge towards higher energies is detected for the nanocrystals In comparison to bulk ZnS (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  13. Biodistribution of 60Co–Co/Graphitic-Shell Nanocrystals In Vivo

    Directory of Open Access Journals (Sweden)

    Li Zhan

    2011-01-01

    Full Text Available The magnetic nano-materials, Co/graphitic carbon- (GC- shell nanocrystals, were made via chemicalvapour deposition (CVD method, and their biodistribution and excretion in mice were studied by using postintravenously (i.v. injecting with 60Co–Co/GC nanocrystals. The results showed that about 5% of Co was embedded into graphitic carbon to form multilayer Co/GC nanocrystals and the size of the particle was ~20 nm, the thickness of the nanocrystal cover layer was ~4 nm, and the core size of Co was ~14 nm. Most of the nanocrystals were accumulated in lung, liver, and spleen after 6, 12, 18, and 24 h after i.v. with 60Co–Co/GC nanocrystals. The nanoparticles were cleared rapidly from blood and closed to lower level in 10 min after injection. The 60Co–Co/GC nanocrystals were eliminated slowly from body in 24 h after injection, ~6.09% of 60Co–Co/GC nanocrystals were excreted by urine, ~1.85% by feces in 24 h, and the total excretion was less than 10%.

  14. Carleson embeddings

    Directory of Open Access Journals (Sweden)

    Helmut J. Heiming

    1996-01-01

    Full Text Available In this paper we discuss several operator ideal properties for so called Carleson embeddings of tent spaces into specific L q(μ-spaces, where μ is a Carleson measure on the complex unit disc. Characterizing absolutely q-summing, absolutely continuous and q-integral Carleson embeddings in terms of the underlying measure is our main topic. The presented results extend and integrate results especially known for composition operators on Hardy spaces as well as embedding theorems for function spaces of similar kind.

  15. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  16. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

    Science.gov (United States)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-09-28

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III-V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors' view on the perspectives in this field is given.

  17. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging.

    Science.gov (United States)

    Monteforte, Marianne; Estandarte, Ana K; Chen, Bo; Harder, Ross; Huang, Michael H; Robinson, Ian K

    2016-07-01

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  18. Luminescent Properties of Silicon Nanocrystals:Spin on Glass Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vásquez-Agustín

    2017-01-01

    Full Text Available The photoluminescence characteristics of films consisting of Si nanocrystals either coated with or embedded into Spin on Glass (SOG were studied. Si nanocrystals showing red or blue luminescence when suspended in alcohol solution were obtained from porous silicon films. These were then either deposited in Si substrates and coated with SOG, or mixed in an SOG solution that was later spun on Si substrates. Both types of films were thermally annealed at 1100 °C for three hours in N2 atmosphere. Transmission electron microscopy measurements showed a mean diameter of 2.5 nm for the Si nanocrystals, as well as the presence of polycrystalline Si nanoagglomerates. These results were confirmed by X-ray diffraction studies, which revealed the (111, (220 and (311 Bragg peaks in Si nanocrystals. Fourier transform infrared spectroscopy studies showed that the coated films present higher chemical reactivity, promoting the formation of non-stoichiometric SiO2, while the embedded films behave as a stoichiometric SiO2 after the thermal annealing. The PL (photoluminescence characterization showed that both embedded and coated films present emission dominated by the Quantum Confinement Effect before undergoing any thermal treatment. After annealing, the spectra were found to be modified only in the case of the coated films, due to the formation of defects in the nanocrystals/SiO2 interface.

  19. The Einstein nanocrystal

    CERN Document Server

    Bertoldi, D S; Miranda, E N

    2016-01-01

    We study the simplest possible model of nanocrystal consisting in a simple cubic lattice with a small number of atoms (NA ~ 10-10^3), where each atom is linked to its nearest neighbor by a quantum harmonic potential. Some properties (entropy, temperature, specific heat) of the nanocrystal are calculated numerically but exactly within the framework of the microcanonical ensemble. We find that the presence of a surface in the nanocrystal modifies the thermostatistic properties to a greater extent than the small number of atoms in the system. The specific heat Cv behaves similarly to the Einstein solid, with an asymptotic value for high temperatures that differs from that of the Dulong-Petit law by a term of the order of NA^(-1/3) and that can be explained easily in terms of the surface. The entropy is non-additive, but this is due to the presence of the surface and we show that the additivity is recovered in the thermodynamic limit. Finally, we find that, when calculations follow the canonical ensemble, results...

  20. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stavarache, Ionel; Lepadatu, Ana-Maria [National Institute of Materials Physics, Magurele 077125 (Romania); Stoica, Toma [Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro [National Institute of Materials Physics, Magurele 077125 (Romania); Academy of Romanian Scientists, Bucuresti 050094 (Romania)

    2013-11-15

    Ge–SiO{sub 2} films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO{sub 2} targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T{sup −1/2} law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T{sup −1/4} dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO{sub 2}.

  1. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  2. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  3. Giant enhancement of light emission from Au nanocrystals into a porous matrix integrated with silicon platform.

    Science.gov (United States)

    Kisner, Alexandre; de Aguiar, Marina Rodrigues; Kubota, Lauro T

    2009-04-01

    Integration of metal nanoparticle-dielectric films with silicon technology is emerging as a promising candidate for sub-wavelength optoelectronics and correlated devices. A giant enhancement of the luminescence intensity of gold nanocrystals directly prepared on a nanoporous template of anodized aluminium oxide is evaluated herewith, for the first time in literature, as a favourable substrate for integrating silicon-based optoelectronics. The size and lateral separation between adjacent particles are controlled by the geometry of the dielectric matrix and on-chip-integration is achieved during the nanoparticle growth, requiring no further steps. A more pronounced photoresponse is observed with embedded nanocrystals as small as 12 nm and the high emission is attributed to the light confinement associated to the increase of the local field effect on the surface plasmon hybridization waves. The demonstrated ability to control the assemble of the nanocrystals and the intense light emission indicate that the embedded gold nanostructures have a high potential for plasmonic device applications.

  4. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  5. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  6. Doping of CdSe Nanocrystals

    Science.gov (United States)

    Jensen, John

    2003-10-01

    What happens to a nanocrystal when it is doped with electrons? We doped CdSe nanocrystals with potassium metal and sodium biphenyl, potassium and sodium acting as the charge carriers. In order to monitor the properties of the doped nanocrystals we used Electron Spin Resonance and luminescence techniques. In this poster we present findings and problems encountered in doping CdSe nanocrystals.

  7. (Si)GeSn nanostructures for light emitters

    Science.gov (United States)

    Rainko, D.; Stange, D.; von den Driesch, N.; Schulte-Braucks, C.; Mussler, G.; Ikonic, Z.; Hartmann, J. M.; Luysberg, M.; Mantl, S.; Grützmacher, D.; Buca, D.

    2016-05-01

    Energy-efficient integrated circuits for on-chip or chip-to-chip data transfer via photons could be tackled by monolithically grown group IV photonic devices. The major goal here is the realization of fully integrated group IV room temperature electrically driven lasers. An approach beyond the already demonstrated optically-pumped lasers would be the introduction of GeSn/(Si)Ge(Sn) heterostructures and exploitation of quantum mechanical effects by reducing the dimensionality, which affects the density of states. In this contribution we present epitaxial growth, processing and characterization of GeSn/(Si)Ge(Sn) heterostructures, ranging from GeSn/Ge multi quantum wells (MQWs) to GeSn quantum dots (QDs) embedded in a Ge matrix. Light emitting diodes (LEDs) were fabricated based on the MQW structure and structurally analyzed via TEM, XRD and RBS. Moreover, EL measurements were performed to investigate quantum confinement effects in the wells. The GeSn QDs were formed via Sn diffusion /segregation upon thermal annealing of GeSn single quantum wells (SQW) embedded in Ge layers. The evaluation of the experimental results is supported by band structure calculations of GeSn/(Si)Ge(Sn) heterostructures to investigate their applicability for photonic devices.

  8. Mechanical Properties of Nanocrystal Supercrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  9. Titanium carbide nanocrystals in circumstellar environments.

    Science.gov (United States)

    von Helden, G; Tielens, A G; van Heijnsbergen, D; Duncan, M A; Hony, S; Waters, L B; Meijer, G

    2000-04-14

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that infrared wavelength spectra of gas-phase titanium carbide nanocrystals derived in the laboratory show a prominent feature at a wavelength of 20.1 micrometers, which compares well to a similar feature in observed spectra of postasymptotic giant branch stars. It is concluded that titanium carbide forms during a short (approximately 100 years) phase of catastrophic mass loss (>0.001 solar masses per year) in dying, low-mass stars.

  10. Efficient one-pot synthesis of monodisperse alkyl-terminated colloidal germanium nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Carolan, Darragh, E-mail: darragh.carolan@tyndall.ie; Doyle, Hugh, E-mail: hugh.doyle@tyndall.ie [University College Cork, Tyndall National Institute (Ireland)

    2014-12-15

    An efficient one-pot method for fabricating alkyl-capped germanium nanocrystals (Ge NCs) is reported. Ge NCs with a size of 3.9 ± 0.5 nm, are formed by co-reduction of germanium tetrachloride in the presence of n-butyltrichlorogermane, producing NCs with butyl-terminated surfaces. The advantage of this method is that it allows rapid synthesis and functionalisation of NCs with minimal post-synthetic purification requirements. TEM imaging showed that the Ge NCs are monodisperse and highly crystalline, while EDX and SAED confirmed the chemical identity and crystal phase of the NCs. FTIR and XPS confirmed that the Ge NCs were well passivated, with some oxidation of the nanocrystal surface. Optical spectroscopy of the NCs showed a strong absorbance in the UV region and an excitation wavelength dependent photoluminescence in the UV/violet. Time resolved photoluminescence measurements showed the presence of two nanosecond lifetime components, consistent with recombination of photogenerated excitons at low lying energy states present at the nanocrystal surface. Photoluminescence quantum yields were determined to be 37 %, one of the highest values reported for organically terminated Ge NCs.

  11. Silicon nanocrystal inks, films, and methods

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  12. Epitaxial Stabilization of Ferromagnetism in the Nanophase of FeGe

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, C. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kent, P. R. C. [University of Tennessee, Knoxville (UTK); Varela del Arco, Maria [ORNL; Eisenbach, Markus [ORNL; Stocks, George Malcolm [ORNL; Torija Juana, Maria Asuncion [ORNL; Shen, Jian [ORNL; Weitering, Harm H [ORNL

    2006-01-01

    Epitaxial nanocrystals of FeGe have been stabilized on Ge(111). The nanocrystals assume a quasi-one-dimensional shape as they grow exclusively along the {l_brace}1{ovr 1}0{r_brace} direction of the Ge(111) substrate, culminating in a compressed monoclinic modification of FeGe. Whereas monoclinic FeGe is antiferromagnetic in the bulk, the nanowires are surprisingly strong ferromagnets below {approx}200 K with an average magnetic moment of 0.8{mu}{sub B} per Fe atom. Density functional calculations indicate an unusual stabilization mechanism for the observed ferromagnetism: lattice compression destabilizes the antiferromagnetic Peierls-like ground state observed in the bulk while increased p-d hybridization suppresses the magnetic moments and stabilizes ferromagnetism.

  13. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  14. Silicon nanocrystals as handy biomarkers

    Science.gov (United States)

    Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Futamura, Yasuhiro; Tilley, Richard; Yamamoto, Kenji

    2007-02-01

    Quantum dots (QDs) have brighter and longer fluorescence than organic dyes. Therefore, QDs can be applied to biotechnology, and have capability to be applied to medical technology. Currently, among the several types of QDs, CdSe with a ZnS shell is one of the most popular QDs to be used in biological experiments. However, when the CdSe QDs were applied to clinical technology, potential toxicological problems due to CdSe core should be considered. To eliminate the problem, silicon nanocrystals, which have the potential of biocompatibility, could be a candidate of alternate probes. Silicon nanocrystals have been synthesized using several techniques such as aerosol, electrochemical etching, laser pyrolysis, plasma deposition, and colloids. Recently, the silicon nanocrystals were reported to be synthesized in inverse micelles and also stabilized with 1-heptene or allylamine capping. Blue fluorescence of the nanocrystals was observed when excited with a UV light. The nanocrystals covered with 1-heptene are hydrophobic, whereas the ones covered with allylamine are hydrophilic. To test the stability in cytosol, the water-soluble nanocrystals covered with allylamine were examined with a Hela cell incorporation experiment. Bright blue fluorescence of the nanocrystals was detected in the cytosol when excited with a UV light, implying that the nanocrystals were able to be applied to biological imaging. In order to expand the application range, we synthesized and compared a series of silicon nanocrystals, which have variable surface modification, such as alkyl group, alcohol group, and odorant molecules. This study will provide a wider range of optoelectronic applications and bioimaging technology.

  15. Photoluminescence of single colour defects in 50nm diamond nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Treussart, F. [Laboratoire de Photonique Quantique et Moleculaire, UMR 8537 du CNRS, ENS Cachan, 61 avenue du President Wilson, 94235 Cachan cedex (France)]. E-mail: francois.treussart@physique.ens-cachan.fr; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, UMR 8537 du CNRS, ENS Cachan, 61 avenue du President Wilson, 94235 Cachan cedex (France); Wu, E. [Laboratoire de Photonique Quantique et Moleculaire, UMR 8537 du CNRS, ENS Cachan, 61 avenue du President Wilson, 94235 Cachan cedex (France); Gacoin, T. [Laboratoire de Physique de la Matiere Condensee, UMR 7643 du CNRS, Ecole Polytechnique, 91128 Palaiseau cedex (France); Grangier, P. [Laboratoire Charles Fabry de l' Institut d' Optique, UMR 8501 du CNRS, BP 147, 91403 Orsay cedex (France); Roch, J.-F. [Laboratoire de Photonique Quantique et Moleculaire, UMR 8537 du CNRS, ENS Cachan, 61 avenue du President Wilson, 94235 Cachan cedex (France)

    2006-04-01

    We used optical confocal microscopy to study optical properties of diamond 50nm nanocrystals first irradiated with an electron beam, then dispersed as a colloidal solution and finally deposited on a silica slide. At room temperature, under CW laser excitation at a wavelength of 514.5nm we observed perfectly photostable single nitrogen-vacancy (NV) colour defects embedded in the nanocrystals. From the zero-phonon line around 575nm in the spectrum of emitted light, we infer a neutral NV{sup 0} type of defect. Such nanoparticle with intrinsic fluorescence are highly promising for applications in biology where long-term emitting fluorescent bio-compatible nanoprobes are still missing.

  16. Embedding Luminescent Nanocrystals in Silica Sol-Gel Matrices

    Science.gov (United States)

    2006-01-01

    3-Mercaptopropyltrimethoxysilane RDX – Rapidly Detonating Explosive SILAR – Successive Ionic Layer Adsorption and Reaction TEOS...The quantum dot samples were cleaned and capped with a ZnS shell as described by the SILAR method [18]. The emission and excitation spectra of the

  17. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  18. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  19. Cellulose nanocrystal submonolayers by spin coating.

    Science.gov (United States)

    Kontturi, Eero; Johansson, Leena-Sisko; Kontturi, Katri S; Ahonen, Päivi; Thüne, Peter C; Laine, Janne

    2007-09-11

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).

  20. Embedded Hardware

    CERN Document Server

    Ganssle, Jack G; Eady, Fred; Edwards, Lewin; Katz, David J; Gentile, Rick

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!. Circuit design using microcontrollers is both a science and an art. This book covers it all. It details all of the essential theory and facts to help an engineer design a robust embedded system. Processors, memory, and the hot topic of interconnects (I/O) are completely covered. Our authors bring a wealth of experience and ideas; thi

  1. Highly doped silicon and germanium nanocrystals for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, N.; Grimm, H.; Wiggers, H. [Duisburg-Essen Univ., Duisburg (Germany). Inst. of Combustion and Gas Dynamics and Center for NanoIntegration; Stein, N.; Schierning, G.; Theissmann, R.; Schmechel, R. [Duisburg-Essen Univ., Duisburg (Germany). Faculty of Engineering and Center for NanoIntegration

    2010-07-01

    Microwave plasma induced decomposition of gaseous precursors like germane (GeH{sub 4}) and silane (SiH{sub 4}) is used to synthesize semiconductor nanocrystals (ncs) that can be utilized for the formation of thermoelectric materials. N or p doping is achieved by mixing silane and germane with phosphine (PH{sub 3}) or diborane (B{sub 2}H{sub 6}), respectively. Adjusting the fraction of the respective precursors in the gas phase is used to control the dopant concentration. (orig.)

  2. Structural, linear and third-order nonlinear optical properties of Cu nanocrystal in sodium borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Chen, Zhaoping; Zhao, Haijun; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2013-09-01

    Highlights: • The NBS glass containing different Cu concentrations were prepared by sol–gel method. • High dispersion and narrow distribution of Cu nanocrystals were in the form of glass. • The optical absorption spectra exhibited the typical SPR for Cu in the wavelength range of 550–600 nm. • The third-order optical properties were investigated by Z-scan technique. -- Abstract: Cu nanocrystals embedded in sodium borosilicate glass of varied Cu contents from 0.5 to 1.5 wt% have been successfully prepared through a sol–gel process. According to the results of X-ray diffraction (XRD) and the energy dispersive X-ray spectrometry (EDS), the metal Cu nanocrystals in cubic crystal system were well distributed inside glass matrix. Fourier Transform Infrared (FTIR) indicated the sodium borosilicate matrix had no major structural change for gels with different Cu contents. The optical absorption peaks due to the surface plasmon resonance of Cu particles were observed in the wavelength range of 550–600 nm. The absorption peak showed a red-shift trend with increasing Cu contents from 0.5 to 1.5 wt%. Transmission electron microscopy (TEM) revealed the existence of spherical Cu nanocrystals in the matrix. The diameter of Cu nanocrystals varied from 1 to 3.5 nm. Furthermore, the third-order nonlinear optical properties were investigated by Z-scan technique at 800 nm. Experimental results indicated the Cu nanocrystals have obvious positive refractive nonlinearities and reverse saturated absorption performance.

  3. Nonclassical radiation from diamond nanocrystals

    CERN Document Server

    Beveratos, A; Gacoin, T; Poizat, J P; Grangier, P; Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Poizat, Jean-Philippe; Grangier, Philippe

    2001-01-01

    The quantum properties of the fluorescence light emitted by diamond nanocrystals containing a single nitrogen-vacancy (NV) colored center is investigated. We have observed photon antibunching with very low background light. This system is therefore a very good candidate for the production of single photon on demand. In addition, we have measured larger NV center lifetime in nanocrystals than in the bulk, in good agreement with a simple quantum electrodynamical model.

  4. Study of strain in partially relaxed Ge epilayers on Si(100) substrate

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ge epilayers of different thicknesses are grown by molecular-beam epitaxy with Sb as a surfactant on SI(100) substrates,X-ray diffraction illustrates that these Ge thin films are partially strained.and the strains decrease gradually with increasing epilayer thickness,Raman spectra reveal a downward shift of the Ge-Ge mode peak as the epilayer thickness increases.In the regions of high strain,the relationship between the Raman shift of this mode and the strain in the partially relaxed samples is considerably different from the linear relationship reported before,which is mainly attributed to the spatial confinement effect of phonons in a nanocrystal.

  5. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    Institute of Scientific and Technical Information of China (English)

    MAO Ping; ZHANG Zhi-Gang; PAN Li-Yang; XU Jun; CHEN Pei-Yi

    2009-01-01

    @@ Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3×1012 cm-2 ), small size (2-4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs.

  6. Semiconductor Nanocrystal Photonics

    Science.gov (United States)

    2005-08-31

    Hahn, H. Du, and T. D. Krauss, "Photoluminescence enhancement of colloidal semiconductor quantum dots embedded in a monolithic microcavity," Appl... DBRs ). The colloidal NC suspension was spun-coat into a 95-nm thick layer in the center of the cavity and then the other layers forming the top DBR

  7. Semiconductor nanocrystal-based phagokinetic tracking

    Science.gov (United States)

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  8. Performance Investigation of Nanoscale Strained Ge pMOSFETs with a GeSn Alloy Stressor.

    Science.gov (United States)

    Lee, Chang-Chun; Chang, Shu-Tong; Cheng, Sen-Wen; Chian, Bow-Tsin

    2015-11-01

    A germanium (Ge)-based substrate combined with germanium-tin (GeSn) alloy embedded in source/drain (S/D) regions has attracted significant attention because of its ability to satisfy the requirements of a high-mobility channel. Devices are shrunk in their geometries to meet the target of superior density in layout arrangement. Thus, determining the influences of devices on mobility gain is important. Accordingly, several designed factors, including gate width, S/D length, and Sn concentration of the GeSn stressor, are systematically analyzed in this study. A second-order formula composed of piezoresistance coefficients is derived and adopted to achieve a precise mobility gain estimation. A peak of the carrier mobility gain appears when a nanoscale geometry combination of 20 nm gate length and -200 nm gate width is used in the Ge channel, and 10% of the Sn mole proportion of the GeSn alloy is applied.

  9. Formation and nonvolatile memory characteristics of W nanocrystals by in-situ steam generation oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Cheng [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.t [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University Taiwan (China); Hsieh, Chieh-Ming [Institute of Electronics, National Chiao Tung University, Taiwan, HsinChu, 300 Taiwan (China); Li, Hung-Wei [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Sze, S.M. [Institute of Electronics, National Chiao Tung University, Taiwan, HsinChu, 300 Taiwan (China); Nien, Wen-Ping; Chan, Chia-Wei [ProMOS Technologies, No. 19 Li Hsin Rd., Science-Based Industrial Park, Hsinchu, 300 Taiwan (China); Yeh, Fon-Shan [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China); Tai, Ya-Hsiang [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu, Taiwan (China)

    2010-12-30

    The authors provide the formation and memory effects of W nanocrystals nonvolatile memory in this study. The charge trapping layer of stacked a-Si and WSi{sub 2} was deposited by low pressure chemical vapor deposition (LPCVD) and was oxidized by in-situ steam generation system to form uniform W nanocrystals embedded in SiO{sub 2}. Transmission electron microscopy analyses revealed the microstructure in the thin film and X-ray photon-emission spectra indicated the variation of chemical composition under different oxidizing conditions. Electrical measurement analyses showed the different charge storage effects because the different oxidizing conditions influence composition of trapping layer and surrounding oxide quality. Moreover, the data retention and endurance characteristics of the formed W nanocrystal memory devices were compared and studied. The results show that the reliability of the structure with 2% hydrogen and 98% oxygen at 950 {sup o}C oxidizing condition has the best performance among the samples.

  10. Pseudomorphic GeSn/Ge (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, A. A., E-mail: tonkikh@mpi-halle.de [Max Planck Institute of Microstructure Physics (Germany); Talalaev, V. G. [Martin Luther University Halle-Wittenberg, ZIK SiLi-nano (Germany); Werner, P. [Max Planck Institute of Microstructure Physics (Germany)

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  11. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  12. Nanocrystals for luminescent solar concentrators.

    Science.gov (United States)

    Bradshaw, Liam R; Knowles, Kathryn E; McDowall, Stephen; Gamelin, Daniel R

    2015-02-11

    Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

  13. Intense white luminescence in ZnTe embedded porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Melo, O. de; Melo, C. de [Physics Faculty, University of Havana, La Habana (Cuba); Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Cd. Universtaria, A.P. 70-360, Coyoacan 04510 (Mexico); Santoyo, J.; Zelaya-Angel, O.; Mendoza-Alvarez, J. G. [Department of Physics, CINVESTAV, IPN (Mexico); Torres-Costa, V. [Departmento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-06-25

    Porous silicon layers were embedded with ZnTe using the isothermal close space sublimation technique. The presence of ZnTe was demonstrated using cross-sectional energy dispersive spectroscopy maps. ZnTe embedded samples present intense room temperature photoluminescence along the whole visible range. We ascribe this PL to ZnTe nanocrystals of different sizes grown on the internal pore surface. Such crystals, with different orientations and sizes, were observed in transmission electron microscopy images, while transmission electron diffraction images of the same regions reveal ZnTe characteristic patterns.

  14. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  15. Injected nanocrystals for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2016-03-01

    Full Text Available Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies.

  16. TOPICAL REVIEW: Biological applications of colloidal nanocrystals

    Science.gov (United States)

    Parak, Wolfgang J.; Gerion, Daniele; Pellegrino, Teresa; Zanchet, Daniela; Micheel, Christine; Williams, Shara C.; Boudreau, Rosanne; LeGros, Mark A.; Larabell, Carolyn A.; Alivisatos, A. Paul

    2003-07-01

    Due to their interesting properties, research on colloidal nanocrystals has moved in the last few years from fundamental research to first applications in materials science and life sciences. In this review some recent biological applications of colloidal nanocrystals are discussed, without going into biological or chemical details. First, the properties of colloidal nanocrystals and how they can be synthesized are described. Second, the conjugation of nanocrystals with biological molecules is discussed. And third, three different biological applications are introduced: (i) the arrangement of nanocrystal-oligonucleotide conjugates using molecular scaffolds such as single-stranded DNA, (ii) the use of nanocrystal-protein conjugates as fluorescent probes for cellular imaging, and (iii) a motility assay based on the uptake of nanocrystals by living cells.

  17. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  18. Grain boundary and lattice diffusion in nanocrystal α-iron: An atomistic simulation study

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Mohammadzadeh, Mina

    2017-09-01

    To obtain fundamental understanding on the effect of grain boundaries on the diffusion kinetics, molecular dynamics simulations (MD) were carried out on single crystal and nanocrystal (with a mean grain size of 2.5 nm) bcc iron using the second nearest-neighbor modified embedded atom method (2NN-MEAM) interatomic potential. Self-diffusion coefficient in single crystal and nanocrystal samples were calculated in the temperature range from 350 K to 1000 K. A temperature-dependence of the diffusion coefficient according to the Arrhenius law was obtained for both lattice and grain boundary diffusion. By doing so, activation energies as well as pre-exponential factors were derived from the diffusion coefficients and compared to experimental data. MD simulation results show that diffusion rate of iron atoms in nanocrystal sample is 6 to 28 orders of magnitude greater than single crystal. The trajectory of iron atoms during diffusion process verified that diffusion occurs mostly in the grain boundaries of nanocrystal iron; suggesting that grain boundary diffusion is dominant in nanocrystal iron. Based on the obtained results pure grain boundary diffusion coefficient was calculated.

  19. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  20. Exciton polarizability in semiconductor nanocrystals.

    Science.gov (United States)

    Wang, Feng; Shan, Jie; Islam, Mohammad A; Herman, Irving P; Bonn, Mischa; Heinz, Tony F

    2006-11-01

    The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.

  1. Nanocrystal bilayer for tandem catalysis.

    Science.gov (United States)

    Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu; Huo, Ziyang; Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Somorjai, Gabor A; Yang, Peidong

    2011-05-01

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts.

  2. Energy transfer with semiconductor nanocrystals

    NARCIS (Netherlands)

    Rogach, A.L.; Klar, T.A.; Lupton, J.M.; Meijerink, A.; Feldmann, J.

    2009-01-01

    Fo¨ rster (or fluorescence) resonant energy transfer (FRET) is a powerful spectroscopic technique to study interactions, conformational and distance changes, in hybrid nanosystems. Semiconductor nanocrystals, also known as colloidal quantum dots, are highly efficient fluorophores with a strong band-

  3. Quantum Dot TiO2-Ge Solar Cells

    Science.gov (United States)

    Church, Carena; Muthuswamy, Elayaraja; Kauzlarich, Susan; Carter, Sue

    2014-03-01

    Colloidal germanium (Ge) quantum dots (CQDs) are attractive solar materials due to their low toxicity compared to Pb- or Cd- based nanocrystals (NC), low cost, and optimal, tunable bandgap for both increased IR response and potential power conversion efficiency (η) boosts from Multiple Exciton Generation (MEG). We report on the successful fabrication and characterization of spun-cast donor/acceptor type TiO2-Ge CQD solar cells utilizing Ge colloidal quantum dots (CQD) synthesized via a facile microwave method as the active layer. We find that our Ge QD size performance-related trends are similar to other QD systems studied. Additionally, our best heterojunction devices achieved short circuit currents (JSC) of 450 μA and open circuit voltages (VOC) of 0.335 V, resulting in η = 0.022 %. While this represents significant increases over previous Ge CQD PV (85 % over hybrid Ge-P3HT PV, 350 % over Ge NC PV), our photocurrents are still much lower than other NC systems. Analysis of intensity-dependent J-V characteristics reveal that our currents are limited by a space-charge region that forms leading to unbalanced charge extraction. We conclude by discussing a variety of film treatments and device structures we have tested to increase JSC.

  4. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  5. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  6. Ion irradiation effects on metallic nanocrystals

    Science.gov (United States)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  7. Si-nanocrystal-based nanofluids for nanothermometry.

    Science.gov (United States)

    Cardona-Castro, M A; Morales-Sánchez, A; Licea-Jiménez, L; Alvarez-Quintana, J

    2016-06-10

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting-freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale.

  8. Si-nanocrystal-based nanofluids for nanothermometry

    Science.gov (United States)

    Cardona-Castro, M. A.; Morales-Sánchez, A.; Licea-Jiménez, L.; Alvarez-Quintana, J.

    2016-06-01

    The measurement of local temperature in nanoscale volumes is becoming a technological frontier. Photoluminescent nanoparticles and nanocolloids are the natural choice for nanoscale temperature probes. However, the influence of a surrounding liquid on the cryogenic behavior of oxidized Si-nanocrystals (Si-NCs) has never been investigated. In this work, the photoluminescence (PL) of oxidized Si-NCs/alcohol based nanocolloids is measured as a function of the temperature and the molecule length of monohydric alcohols above their melting-freezing point. The results unveil a progressive blue shift on the emission peak which is dependent on the temperature as well as the dielectric properties of the surrounding liquid. Such an effect is analyzed in terms of thermal changes of the Si-NCs bandgap, quantum confinement and the polarization effects of the embedding medium; revealing an important role of the dielectric constant of the surrounding liquid. These results are relevant because they offer a general insight to the fundamental behavior of photoluminescent nanocolloids under a cooling process and moreover, enabling PL tuning based on the dielectric properties of the surrounding liquid. Hence, the variables required to engineer PL of nanofluids are properly identified for use as temperature sensors at the nanoscale.

  9. Extrinsic Curvature Embedding Diagrams

    CERN Document Server

    Lu, J L

    2003-01-01

    Embedding diagrams have been used extensively to visualize the properties of curved space in Relativity. We introduce a new kind of embedding diagram based on the {\\it extrinsic} curvature (instead of the intrinsic curvature). Such an extrinsic curvature embedding diagram, when used together with the usual kind of intrinsic curvature embedding diagram, carries the information of how a surface is {\\it embedded} in the higher dimensional curved space. Simple examples are given to illustrate the idea.

  10. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A [NNL-National Nanotechnology Laboratory, INFM, CNR, Via Arnesano, 73100 Lecce (Italy); Resta, V; Laera, A M; Tapfer, L [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: despina.fragouli@unile.it

    2009-04-15

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  11. Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals.

    Science.gov (United States)

    Shojaei-Zadeh, Shahab; Morris, Jeffrey F; Couzis, Alex; Maldarelli, Charles

    2011-11-01

    This study demonstrates how luminescent semiconductor nanocrystals (quantum dots or QDs) can be dispersed uniformly in a poly(dimethylsiloxane) (PDMS) matrix by polymerizing a mixture of the prepolymer oligomers and the nanocrystals with a relatively large concentration of crosslinking molecules. A microfluidic device is used to fabricate PDMS microbeads embedded with the QDs by using flow focusing to first form monodisperse droplets of the prepolymer/crosslinker/nanocrystal mixture in a continuous aqueous phase. The droplets are subsequently collected, and heated to polymerize them into solid microbead composites. The degree of aggregation of the nanocrystals in the matrix is studied by measuring the nonradiative resonance energy transfer (RET) between the nanocrystals. For this purpose, two quantum dots are used with maxima in their luminescence emission spectrum at 560 nm and 620 nm. When the nanocrystals are within the Förster radius (approximately 10 nm) of each other, exciton energy cascades from the QDs which emit at the shorter wavelength to the QDs which emit at the longer wavelength. This energy transfer is quantified, for two concentration ratios of the prepolmer to the crosslinker, by measuring the deviation of the microbead luminescence spectrum from a reference spectrum obtained by dispersing the QD mixture in a solvent (toluene) in which the nanocrystals do not aggregate. For a low concentration of crosslinking molecules relative to the prepolymer (5:1 by weight prepolymer to crosslinker), strong RET is observed as the emission of the 620 nm QDs is increased and the 560 nm QDs is decreased relative to the reference. In the emission spectrum for a higher concentration of crosslinkers (2:1 by weight prepolymer to crosslinker), the resonance energy transfer is less relative to the case of the low concentration of crosslinkers, and the spectrum more closely resembles the reference. This result indicates that the increase in the crosslinker concentration

  12. Electronic structure of cobalt nanocrystals suspended inliquid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  13. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  14. Multicolored luminescent CdS nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The observation of efficient blue, green, orange and red luminescence from CdS nanocrystals made by using a reverse micelle method was reported. The blue luminescence about 480 nm is attributed to the radiative recombination of electron-hole pairs.The red luminescence around 650 nm is due to the radiative recombination of the exciton trapped in the nanocrystal surface defect states. The combination of different portion of band-edge emission and surface trap state emission results in green and orange luminescence for the nanocrystals. The CdS nanocrystals with efficient multicolored luminescence may find potential application in full color displays and biolabelings.

  15. Low temperature synthesis and electrical characterization of germanium doped Ti-based nanocrystals for nonvolatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Wei; Chang, Chun-Yen [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Tu, Chun-Hao; Wang, Pai-Syuan [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan (China); Lin, Chao-Cheng [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan (China); Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Huang, Hui-Chun; Gan, Der-Shin; Ho, New-Jin [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Chen, Shih-Ching [Department of Physics, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Chen, Shih-Cheng [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, 310, Taiwan (China)

    2011-11-30

    Chemical and electrical characteristics of Ti-based nanocrystals containing germanium, fabricated by annealing the co-sputtered thin film with titanium silicide and germanium targets, were demonstrated for low temperature applications of nonvolatile memory. Formation and composition characteristics of nanocrystals (NCs) at various annealing temperatures were examined by transmission electron microscopy and X-ray photon-emission spectroscopy, respectively. It was observed that the addition of germanium (Ge) significantly reduces the proposed thermal budget necessary for Ti-based NC formation due to the rise of morphological instability and agglomeration properties during annealing. NC structures formed after annealing at 500 Degree-Sign C, and separated well at 600 Degree-Sign C annealing. However, it was also observed that significant thermal desorption of Ge atoms occurs at 600 Degree-Sign C due to the sublimation of formatted GeO phase and results in a serious decrease of memory window. Therefore, an approach to effectively restrain Ge thermal desorption is proposed by encapsulating the Ti-based trapping layer with a thick silicon oxide layer before 600 Degree-Sign C annealing. The electrical characteristics of data retention in the sample with the 600 Degree-Sign C annealing exhibited better performance than the 500 Degree-Sign C-annealed sample, a result associated with the better separation and better crystallization of the NC structures.

  16. Lead sulphide nanocrystal photodetector technologies

    Science.gov (United States)

    Saran, Rinku; Curry, Richard J.

    2016-02-01

    Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

  17. Flexible Photonic Cellulose Nanocrystal Films

    OpenAIRE

    Guidetti, G.; Atifi, S; Vignolini, S; Hamad, WY

    2016-01-01

    The fabrication of self-assembled cellulose nanocrystal (CNC) films of tunable photonic and mechanical properties using a facile, green approach is demonstrated. The combination of tunable flexibility and iridescence can dramatically expand CNC coating and film barrier capabilities for paints and coating applications, sustainable consumer packaging products, as well as effective templates for photonic and optoelectronic materials and structures. CelluForce Inc., Biotechnology and Biologica...

  18. Rare-earth containing nanocrystal precipitation and up-conversion luminescence in oxyfluoride glasses.

    Science.gov (United States)

    Qiu, Jianbei; Makishima, Akio

    2005-09-01

    Rare-earth ion doped oxyfluoride glass with a composition of 25SiO2 x 5GeO2 x 15AIO1.5 x 40PbF2 x 10PbO x (4.9 - x)GdF3 x 0.1HoF3 x xYbF3 (x = 0, 0.1,0.2, 0.5,1,2, 3, and 4) in molar ratio was developed. When the oxyfluoride glasses are heat-treated at the first crystallization temperature, the glasses give transparent glass-ceramics in which rare-earth-containing fluorite-type nanocrystals of about 17.2 nm in diameter uniformly precipitated in the glass matrix. Comparing with the glasses before heat treatment, the glass ceramics exhibit very strong up-conversion luminescence under 980-nm light excitation. Rare-earth-containing nanocrystals were also space selectively precipitated upon laser irradiation in an oxyfluoride glass; the size of precipitated nanocrystals can be controlled by laser power and scan speed. The intensity of the green up-conversion luminescence is strongly dependent on the precipitation of beta-PbF2 nanocrystals and the YbF3 concentration. The reasons for the highly efficient Ho3+ up-conversion luminescence are discussed.

  19. Aqueous foams stabilized by chitin nanocrystals

    NARCIS (Netherlands)

    Tzoumaki, M.; Karefyllakis, D.; Moschakis, T.; Biliaderis, C.G.; Scholten, E.

    2015-01-01

    The aim of the present study was to explore the potential use of chitin nanocrystals, as colloidal rod-like particles, to stabilize aqueous foams. Chitin nanocrystals (ChN) were prepared by acid hydrolysis of crude chitin and foams were generated mainly by sonicating the respective dispersions. The

  20. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  1. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from dope

  2. Biomaterials supported CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Balu, Alina M. [Institute of Physical Chemistry ' Ilie Murgulescu' , Spl. Independentei 202, 060021 Bucharest (Romania); Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Campelo, Juan M. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Luque, Rafael, E-mail: q62alsor@uco.es [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Rajabi, Fatemeh [Department of Science, Payame Noor University, PO Box 878, Qazvin (Iran, Islamic Republic of); Romero, Antonio A. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain)

    2010-11-01

    CdS quantum dot materials were prepared through a simple room temperature deposition of CdS nanocrystals on biomaterials including starch and chitosan. Materials obtained were found to contain differently distributed CdS nanocrystals on the surface of the biopolymers, making them potentially interesting for biomedical applications as contrast agents and/or in photocatalysis.

  3. Emission efficiency limit of Si nanocrystals

    NARCIS (Netherlands)

    Limpens, R.; Luxembourg, S.L.; Weeber, A.W.; Gregorkiewicz, T.

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use

  4. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  5. Optical properties of ZnTe and ZnS nanocrystals by critical-points and Tauc-Lorentz models

    Energy Technology Data Exchange (ETDEWEB)

    En Naciri, A., E-mail: ennacir@univ-metz.f [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Bd Arago, 57078 Metz (France); Ahmed, F. [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Bd Arago, 57078 Metz (France); Stchakovsky, M. [Horiba-Jobin Yvon, Z. A. de la Vigne-aux-loups, 5 Avenue Arago, 91380 Chilly-Mazarin Cedex (France)

    2011-02-28

    The optical properties of ZnTe and ZnS nanocrystals (ZnTe-NC and ZnS-NC) were determined by Spectroscopic Ellipsometry. The nanocrystals were embedded in a SiO{sub 2} matrix by ion implantation technique. Their sizes were characterized by transmission electron microscopy. The ZnTe-NC and ZnS-NC were modelled using Critical Points (CPs) dispersion formulas developed by Adachi. Besides the CPs model, the Tauc-Lorentz model was found to be another choice to get a good spectral fitting. Here we demonstrated that these models yield reasonable values of optical constants of II-VI nanocrystals. The best agreement was found with the experimental data over the entire range of 0.6 to 6.5 eV.

  6. Optical dephasing of triply ionized rare earths in transparent glass ceramics containing LaF3 nanocrystals.

    Science.gov (United States)

    Zheng, Hairong; Zhang, Xiangyu; Gao, Dangli; Meltzer, Richard S

    2008-03-01

    Optical dephasing of Pr3+ and Tm3+ ions doped in transparent oxyfluoride glass ceramics was studied with the two-pulse photon echo technique. It was found that the dephasing time of rare earth ions is dramatically less in nanocrystals embedded in a glass matrix than in bulk crystals. A quasi-linear temperature dependence obtained at low temperatures proved that the long-range interaction of the ions inside the nanocrystals with the two level systems of the glass matrix dominates the optical dephasing. The local thermal effect in glass ceramics containing nanocrystals elevates the local temperature, which results in the reduction of optical dephasing time. For Tm(3+)-doped glass ceramics, the elevation of local temperature induced by the irradiation of excitation laser even quenched the photon echo signals in the experimental study.

  7. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  8. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  9. Analysis of charge loss in nonvolatile memory with multi-layered SiC nanocrystals

    Science.gov (United States)

    Lee, Dong Uk; Lee, Tae Hee; Kim, Eun Kyu; Shin, Jin-Wook; Cho, Won-Ju

    2009-08-01

    A nonvolatile memory device with multilayered SiC nanocrystals for long-term data storage was fabricated, and its electrical properties were analyzed. The average size and density of the SiC nanocrystals, which were formed between the tunnel and control oxide layers, were approximately 5 nm and 2×1012 cm-2, respectively. The memory window of nonvolatile memory with the multilayer of SiC nanocrystals was about 2.5 V after program and erase voltages of ±12 V were applied for 500 ms, and then it was maintained at about 1.1 V for 105 s at 75 °C. The activation energy estimated from charge losses of 25% to 50% increased from 0.03 to 0.30 eV, respectively. The charge loss could be caused by a Pool-Frenkel current of holes and electrons between the SiC quantum dots and the carrier charge traps around the SiC nanocrystals embedded in SiO2 or the degradation effect of the tunnel oxide by stress induced leakage current.

  10. Hydroxyapatite nanocrystal coating on biodegradable microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Masahiro [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565 (Japan); Furuzono, Tsutomu, E-mail: furuzono@ri.ncvc.go.jp [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565 (Japan)

    2010-10-15

    Nano-sized single crystals of calcined hydroxyapatite (HAp) were uniformly coated on poly(L-lactic acid) (PLLA) microspheres through the ionic interaction between calcium ions on the HAp nanocrystal and carboxyl groups on the PLLA microsphere. In order to coat the substrate with HAp nanocrystals through ionic interaction, the surfaces of the PLLA microspheres were hydrolyzed in an alkaline aqueous solution at pH 11.0 for 1 h at room temperature. The interaction between the HAp nanocrystals and the carboxyl groups originating from PLLA end groups was estimated by Fourier transform infrared spectroscopy. The alkali-treated PLLA microspheres were coated with HAp nanocrystals by immersing the microspheres in an ethanol dispersion of HAp nanocrystals followed by washing in an ultrasonic bath.

  11. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  12. Exploiting the colloidal nanocrystal library to construct electronic devices

    Science.gov (United States)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  13. Functional nanocrystal-based memories with extraction of nanocrystals properties by charge pumping technique

    Science.gov (United States)

    Diaz, R.; Grisolia, J.; Pecassou, B.; Shalchian, M.; BenAssayag, G.

    2013-04-01

    2D arrays of Si nanocrystals embedded in the gate oxide (⩽10 nm) of NVRAM-like transistors are synthesized by ultra-low-energy ion implantation (ULE-II). As we have shown previously, characteristics of trapping centers responsible for the memory performance such as type, depth location into the oxide, effective size and density could be obtained by using the two-level charge pumping (CP) technique performed versus frequency. It has also been demonstrated clearly that these trapping centers are the Si-NCs. However, in order to enhance the memory performances (i.e. charge retention and endurance to cycling), the synthesis of the Si-NCs must be carefully tuned, especially by adjusting the annealing conditions. In this paper, we demonstrate both that the Si-NCs are still responsible for the charge trapping while transistors are fabricated with strong NCs annealing conditions and that some memory performances recommended by the ITRS, more specifically the endurance criteria, are satisfied, with more than 106 erase/write cycles without degradation of the memory window. Therefore, our synthesis technique could provide high-performances non-volatile memories, ensuring the charge trapping in NCs.

  14. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  15. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Science.gov (United States)

    Oliveira, F.; Fischer, I. A.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.; Schulze, J.

    2015-12-01

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  16. Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films

    Science.gov (United States)

    Kim, Ka-Hyun; Johnson, Erik V.; Kazanskii, Andrey G.; Khenkin, Mark V.; Roca I Cabarrocas, Pere

    2017-01-01

    In this work, we present new results on the plasma processing and structure of hydrogenated polymorphous silicon (pm-Si:H) thin films. pm-Si:H thin films consist of a low volume fraction of silicon nanocrystals embedded in a silicon matrix with medium range order, and they possess this morphology as a significant contribution to their growth comes from the impact on the substrate of silicon clusters and nanocrystals synthesized in the plasma. Quadrupole mass spectrometry, ion flux measurements, and material characterization by transmission electron microscopy (TEM) and atomic force microscopy all provide insight on the contribution to the growth by silicon nanocrystals during PECVD deposition. In particular, cross-section TEM measurements show for the first time that the silicon nanocrystals are uniformly distributed across the thickness of the pm-Si:H film. Moreover, parametric studies indicate that the best pm-Si:H material is obtained at the conditions after the transition between a pristine plasma and one containing nanocrystals, namely a total gas pressure around 2 Torr and a silane to hydrogen ratio between 0.05 to 0.1. From a practical point of view these conditions also correspond to the highest deposition rate achievable for a given RF power and silane flow rate.

  17. Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films

    Science.gov (United States)

    Kim, Ka-Hyun; Johnson, Erik V.; Kazanskii, Andrey G.; Khenkin, Mark V.; Roca i Cabarrocas, Pere

    2017-01-01

    In this work, we present new results on the plasma processing and structure of hydrogenated polymorphous silicon (pm-Si:H) thin films. pm-Si:H thin films consist of a low volume fraction of silicon nanocrystals embedded in a silicon matrix with medium range order, and they possess this morphology as a significant contribution to their growth comes from the impact on the substrate of silicon clusters and nanocrystals synthesized in the plasma. Quadrupole mass spectrometry, ion flux measurements, and material characterization by transmission electron microscopy (TEM) and atomic force microscopy all provide insight on the contribution to the growth by silicon nanocrystals during PECVD deposition. In particular, cross-section TEM measurements show for the first time that the silicon nanocrystals are uniformly distributed across the thickness of the pm-Si:H film. Moreover, parametric studies indicate that the best pm-Si:H material is obtained at the conditions after the transition between a pristine plasma and one containing nanocrystals, namely a total gas pressure around 2 Torr and a silane to hydrogen ratio between 0.05 to 0.1. From a practical point of view these conditions also correspond to the highest deposition rate achievable for a given RF power and silane flow rate. PMID:28091562

  18. ZnO tetrapod nanocrystals

    Directory of Open Access Journals (Sweden)

    Marcus C. Newton

    2007-05-01

    Full Text Available ZnO has received considerable attention because of its unique optical, piezoelectric, and magnetic properties. It also readily self-assembles into a family of nanocrystalline structures. We review the current status of research into ZnO tetrapod nanocrystals. These crystals consist of a ZnO core in the zinc blende structure from which four ZnO arms in the wurtzite structure radiate. The arms are cylinders of hexagonal cross section, with each arm of equal length and diameter. Possible applications in optoelectronics, photovoltaics, spintronics, and piezoelectricity are discussed.

  19. Effect of Co and Ge addition on soft magnetic properties of Fe-Zr-B-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.S. [Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany) and Departamento de Fisica de la Materia Condensada - ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065. 41080 Sevilla (Spain)]. E-mail: jsebas@us.es; Roth, S. [Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Conde, A. [Departamento de Fisica de la Materia Condensada. ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065. 41080 Sevilla (Spain)

    2005-04-15

    Microstructure and magnetic properties are studied for Fe{sub 78}Co{sub 5}Zr{sub 6}Ge{sub 5}B{sub 5}Cu{sub 1} alloy. Curie temperature of the amorphous phase is increased by 200 K with respect to Fe-Zr-B-Ge-Cu alloys, without losing the ultrasoft magnetic properties exhibited at room temperature (H {sub C}{approx}10 A/m). Nanocrystalline microstructure shows a high crystalline volume fraction of {alpha}-Fe nanocrystals ({approx}0.85) with size below 13 nm. Ge content in the crystalline phase is found to decrease continuously during nanocrystallization.

  20. Supersaturated solid solution obtained by mechanical alloying of 75% Fe, 20% Ge and 5% Nb mixture at different milling intensities

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.S.; Ipus, J.J.; Millan, M.; Franco, V. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain); Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain)], E-mail: conde@us.es; Oleszak, D.; Kulik, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland)

    2009-02-05

    Mechanical alloying process of Fe{sub 75}Ge{sub 20}Nb{sub 5} composition has been studied at different milling frequencies from initial pure powder mixture to the development of a single bcc phase (supersaturated solid solution). As an intermediate state, an intermetallic phase is formed, which disappears after further milling or after thermal treatment (ascribed to an endothermic process at 700-800 K). A preferential partition of Nb and Ge to the boundaries between nanocrystals of bcc Fe-Ge-Nb supersaturated solid solution is observed from X-ray diffraction (XRD) and Moessbauer results.

  1. Photoluminescence spectroscopy investigation of epitaxial Si/GaSb nanocrystals/Si heterostructure

    Science.gov (United States)

    Goroshko, Dmitry L.; Shevlyagin, Alexander V.; Chusovitin, Evgeniy A.; Dotsenko, Sergey A.; Gutakovskii, Anton K.; Iinuma, M.; Terai, Y.; Subbotin, Evgeniy Yu.; Galkin, Nikolay G.

    2017-09-01

    Two-layer heterostructure with GaSb nanocrystals formed by solid phase epitaxy and embedded into the silicon was investigated using low-temperature (10-140 K) photoluminescence and time-resolved photoluminescence spectroscopies. Two characteristic luminescence bands with a maximum of about 0.82 and 0.87 eV were observed. It was found that low-energy peak is associated with D1 dislocation-related luminescence in silicon. Analysis of the decay components together with temperature and power dependencies of the photoluminescence for the high-energy maximum revealed that emission is more likely originated from the combined D2 dislocation centers in silicon and radiative recombination in type-II band alignment Si/GaSb nanocrystals/Si heterostructure. A nonradiative recombination dominates in all temperature range studied.

  2. Uncertainty Estimation in SiGe HBT Small-Signal Modeling

    DEFF Research Database (Denmark)

    Masood, Syed M.; Johansen, Tom Keinicke; Vidkjær, Jens;

    2005-01-01

    An uncertainty estimation and sensitivity analysis is performed on multi-step de-embedding for SiGe HBT small-signal modeling. The uncertainty estimation in combination with uncertainty model for deviation in measured S-parameters, quantifies the possible error value in de-embedded two...

  3. Quantum theory of electroabsorption in semiconductor nanocrystals.

    Science.gov (United States)

    Tepliakov, Nikita V; Leonov, Mikhail Yu; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2016-01-25

    We develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.

  4. Size quantization in Cu2Se nanocrystals

    Science.gov (United States)

    Govindraju, S.; Kalenga, M. P.; Airo, M.; Moloto, M. J.; Sikhwivhilu, L. M.; Moloto, N.

    2014-12-01

    Herein we report on the synthesis of size quantized copper selenide nanocrystals via the colloidal method. Different colours of the sample were obtained at different time intervals indicative of the sizes of the nanocrystals. The absorption band edges were blue-shifted from bulk indicative of quantum confinement. This was corroborated by the TEM results that showed very small particles ranging from 2 nm to 7 nm. This work therefore shows a phenomenon readily observed in cadmium chalcogenide nanocrystals but has never been reported for copper based chalcogenides.

  5. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  6. Pro Linux Embedded Systems

    CERN Document Server

    Sally, Gene

    2010-01-01

    Today, Linux is included with nearly every embedded platform. Embedded developers can take a more modern route and spend more time tuning Linux and taking advantage of open source code to build more robust, feature-rich applications. While Gene Sally does not neglect porting Linux to new hardware, modern embedded hardware is more sophisticated than ever: most systems include the capabilities found on desktop systems. This book is written from the perspective of a user employing technologies and techniques typically reserved for desktop systems. * Modern guide for developing embedded Linux syst

  7. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna;

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  8. Unique Challenges Accompany Thick-Shell CdSe/nCdS (n > 10) Nanocrystal Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y; Marchuk, K; Abraham, R; Sampat, S; Abraham, R.; Fang, N; Malko, AV; Vela, J

    2011-12-23

    Thick-shell CdSe/nCdS (n {ge} 10) nanocrystals were recently reported that show remarkably suppressed fluorescence intermittency or 'blinking' at the single-particle level as well as slow rates of Auger decay. Unfortunately, whereas CdSe/nCdS nanocrystal synthesis is well-developed up to n {le} 6 CdS monolayers (MLs), reproducible syntheses for n {ge} 10 MLs are less understood. Known procedures sometimes result in homogeneous CdS nucleation instead of heterogeneous, epitaxial CdS nucleation on CdSe, leading to broad and multimodal particle size distributions. Critically, obtained core/shell sizes are often below those desired. This article describes synthetic conditions specific to thick-shell growth (n {ge} 10 and n {ge} 20 MLs) on both small (sub2 nm) and large (>4.5 nm) CdSe cores. We find added secondary amine and low concentration of CdSe cores and molecular precursors give desired core/shell sizes. Amine-induced, partial etching of CdSe cores results in apparent shell-thicknesses slightly beyond those desired, especially for very-thick shells (n {ge} 20 MLs). Thermal ripening and fast precursor injection lead to undesired homogeneous CdS nucleation and incomplete shell growth. Core/shells derived from small CdSe (1.9 nm) have longer PL lifetimes and more pronounced blinking at single-particle level compared with those derived from large CdSe (4.7 nm). We expect our new synthetic approach will lead to a larger throughput of these materials, increasing their availability for fundamental studies and applications.

  9. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  10. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  11. Data embedding method

    Science.gov (United States)

    Sandford, Maxwell T., II; Bradley, Jonathan N.; Handel, Theodore G.

    1996-01-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in MicrosoftTM bitmap (BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed `steganography.' Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or `lossy' compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is derived from the original host data by an analysis algorithm.

  12. GeSn/Ge multiquantum well photodetectors on Si substrates.

    Science.gov (United States)

    Oehme, M; Widmann, D; Kostecki, K; Zaumseil, P; Schwartz, B; Gollhofer, M; Koerner, R; Bechler, S; Kittler, M; Kasper, E; Schulze, J

    2014-08-15

    Vertical incidence GeSn/Ge multiquantum well (MQW) pin photodetectors on Si substrates were fabricated with a Sn concentration of 7%. The epitaxial structure was grown with a special low temperature molecular beam epitaxy process. The Ge barrier in the GeSn/Ge MQW was kept constant at 10 nm. The well width was varied between 6 and 12 nm. The GeSn/Ge MQW structures were grown pseudomorphically with the in-plane lattice constant of the Ge virtual substrate. The absorption edge shifts to longer wavelengths with thicker QWs in agreement with expectations from smaller quantization energies for the thicker QWs.

  13. Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen)2(NCS)2].

    Science.gov (United States)

    Valverde-Muñoz, Francisco Javier; Gaspar, Ana B; Shylin, Sergii I; Ksenofontov, Vadim; Real, José A

    2015-08-17

    Surfactant-free nanocrystals of the model spin-crossover compound [Fe(phen)2(NCS)2] (phen: 1,10-phenanthroline) have been synthesized applying the reverse micelle technique. The morphology of the nanocrystals, characterized by scanning electronic microscopy, corresponds to rhombohedric platelets with dimensions ranging from 203 × 203 × 106 nm to 142 × 142 × 74 nm. Variation of the concentration of the Fe(BF4)2·6H2O salt in the synthesis has been found to have little influence on the crystallite size. In contrast, the solvent-surfactant ratio (ω) is critical for a good particle growth. The spin transition of the nanocrystals has been characterized by magnetic susceptibility measurements and Mössbauer spectroscopy. The nanocrystals undergo an abrupt and more cooperative spin transition in comparison with the bulk compound. The spin transition is centered in the interval of temperature of 175-185 K and is accompanied by 8 K of thermal hysteresis width. The crystallite quality more than the crystallite size is responsible for the higher cooperativity. The magnetic properties of the nanocrystals embedded in organic polymers such as polyethylene glycol, nujol, glycerol, and triton have been studied as well. The spin transition in the nanocrystals is affected by the polymer coating. The abrupt and first-order spin transition transforms into a more continuous spin transition as a result of the chemical pressure asserted by the organic polymers on the Fe(II) centers.

  14. Influence of hydrogen on thermally induced phase separation in GeO/SiO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sahle, Christoph J; Sternemann, Christian; Nyrow, Alexander; Tolan, Metin [Fakultaet Physik/DELTA, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Zschintzsch, Manuel; Von Borany, Johannes; Muecklich, Arndt; Jeutter, Nicole M [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., PO Box 510119, 01314 Dresden (Germany); Wagner, Ralph; Frahm, Ronald, E-mail: christoph.sahle@tu-dortmund.de [Fachgruppe Physik, Bergische Universitaet Wuppertal, 42097 Wuppertal (Germany)

    2011-03-25

    The influence of the annealing atmosphere on the temperature induced phase separation of Ge oxide in GeO{sub x}/SiO{sub 2} multilayers (x{approx}1), leading to size controlled growth of Ge nanocrystals, is explored by means of x-ray absorption spectroscopy at the Ge K-edge. Ge sub-oxides contained in the as-deposited multilayers diminish with increasing annealing temperature, showing complete phase separation at approximately 450 deg. C using inert N{sub 2} ambient. The use of reducing H{sub 2} in the annealing atmosphere influences the phase separation even at an early stage of the disproportionation. In particular, the temperature regime where the phase separation occurs is lowered by at least 50 deg. C. At temperatures above 400 deg. C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO{sub 2} by H{sub 2}.

  15. Doped Colloidal ZnO Nanocrystals

    Directory of Open Access Journals (Sweden)

    Yizheng Jin

    2012-01-01

    Full Text Available Colloidal ZnO nanocrystals are promising for a wide range of applications due to the combination of unique multifunctional nature and remarkable solution processability. Doping is an effective approach of enhancing the properties of colloidal ZnO nanocrystals in well-controlled manners. In this paper, we analyzed two synthetic strategies for the doped colloidal ZnO nanocrystals, emphasizing our understanding on the critical factors associated with the high temperature and nonaqueous approach. Latest advances of three topics, bandgap engineering, n-type doping, and dilute magnetic semiconductors related to doped ZnO nanocrystals were discussed to reveal the effects of dopants on the properties of the nanocrystalline materials.

  16. Tunable mid IR plasmon in GZO nanocrystals.

    Science.gov (United States)

    Hamza, M K; Bluet, J-M; Masenelli-Varlot, K; Canut, B; Boisron, O; Melinon, P; Masenelli, B

    2015-07-28

    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.

  17. Size-Dependent Raman Shifts for nanocrystals.

    Science.gov (United States)

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-04-22

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size.

  18. Heavily Doped Semiconductor Nanocrystal Quantum Dots

    National Research Council Canada - National Science Library

    David Mocatta; Guy Cohen; Jonathan Schattner; Oded Millo; Eran Rabani; Uri Banin

    2011-01-01

    ... of fundamental understanding of this heavily doped limit under strong quantum confinement. We developed a method to dope semiconductor nanocrystals with metal impurities, enabling control of the band gap and Fermi energy...

  19. Zirconia nanocrystals as submicron level biological label

    Science.gov (United States)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  20. Charge transport in semiconductor nanocrystal quantum dots

    Science.gov (United States)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  1. Annealing induced changes in the structure, optical and electrical properties of GeTiO{sub 2} nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Teodorescu, Valentin Serban; Galca, Aurelian Catalin; Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro

    2014-08-01

    The GeTiO{sub 2} amorphous films were deposited by magnetron sputtering and subsequently annealed at 400, 550, 600 and 700 °C for nanostructuring. The structure of annealed films was investigated by X-ray diffraction and transmission electron microscopy. The transmittance spectra of all annealed GeTiO{sub 2} films were measured and simulated by using Bruggeman effective medium approximation considering components of TiO{sub 2} anatase, crystalline Ge, GeO{sub 2} and voids determined from the structure investigations. The electrical behavior of 400, 600 and 700 °C annealed films was studied by measuring current–voltage characteristics. We found that by increasing the annealing temperature the films thickness decreases from 330 nm (as-deposited films) to 290 nm (700 °C annealed films). The 400 °C annealed films are amorphous, while all the others annealed at higher temperatures are crystallized (X-ray diffraction and transmission electron microscopy). In the 550 and 600 °C annealed films we found the (TiGe)O{sub 2} rutile structure which is formed by starting from the GeO{sub 2} tetragonal structure with high Ti content. Additionally, these films contain TiO{sub 2} anatase structure and cubic Ge nanocrystals. At 700 °C annealing temperature, a surface layer of GeO{sub 2} tetragonal nanocrystals is formed by Ge diffusion and a part of Ge is lost. The experimental transmittance spectra indicate a broadening of the transparency range by increasing the annealing temperature, and the simulated ones also indicate this behavior with the decrease of Ge content, the experimental and simulated spectra being in good agreement. Also, the increase of annealing temperature produces an increase of electrical conductivity.

  2. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  3. Synthesis of new nanocrystal materials

    Science.gov (United States)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of Ti

  4. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  5. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  6. A luminescent nanocrystal stress gauge

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  7. Surface modification of cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Neng; DING Enyong; CHENG Rongshi

    2007-01-01

    In order to improve the dispersibility of cellulose nanocrystal(CNC) particles,three difierent grafted reactions of acetylation,hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface.The main advantages of these methods were the simple and easily controlled reaction conditions,and the dispersibility of the resulting products was distinctly improved.The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy(FT-IR),13 C nuclear magnetic resonance(NMR),transmission electron microscopy(TEM)and thermogravimetric analyses(TGA).The results indicated mat after desiccation,the modification products could be dispersed again in the proper solvents by ultrasonic treatments,and the diameter of their particles had no obvious changes.However,their thermal degradation behaviors were quite different.The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation.

  8. A novel 2-T structure memory device using a Si nanodot for embedded application

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaonan; Wang Yong; Zhang Manhong; Huo Zongliang; Liu Jing; Zhang Bo; Liu Ming

    2011-01-01

    Performance and reliability ofa 2 transistor Si nanocrystal nonvolatile memory(NVM)are investigated.A good performance of the memory cell has been achieved,including a fast program/erase(P/E)speed under low voltages,an excellent data retention(maintaining for 10 years)and good endurance with a less threshold voltage shift of less than 10% after 104 P/E cycles.The data show that the device has strong potential for future embedded NVM applications.

  9. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  10. Photoluminescence from Ge-SiO2 thin films and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ge-SiO2 thin films were deposited on p-type Si substrates using the radio frequency (rf) magnetron sputtering technique with a Ge-SiO2 composite target. Films were annealed in N2 ambience for 30 min at 300℃-1000℃ with an interval of 100℃. Through the X-ray diffraction, the average size of Ge nanocrystals (nc-Ge) was determined. They increased from 3.9 to 6.1 nm with increasing annealing temperature in the range of 600℃-1000℃. Under ultravio-let excitation, all samples emit a strong violet band centered at 396 nm. With the formation of nc-Ge, the samples exhibit another emission of orange band with the peak at 580 nm and its intensity increases with the increasing size of nc-Ge. The peak positions of two bands do not shift obviously. Ex-perimental data indicate that the violet band comes from GeO defect and the orange band originates mainly from the luminescence centers at the interface between the nc-Ge and SiO2 matrix.

  11. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin [School of Photovoltaic and Renewable Energy Engineering, UNSW Australia, Sydney 2052 (Australia)

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.

  12. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (properties. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO 3 nanocrystalline films with grain sizes in the range of 10--30 nm. Dielectric measurements of the films show dielectic constants in the range of 85--90 over the 1 kHz--100 kHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit uniform nanostructured morphologies and grain sizes. In the second part of this chapter, a nonhydrolytic alcoholysis route to study the preparation of well-crystallized size-tunable BaTiO3 nanocrystals is presented. Different surfactants of amines, carboxylic acids, and alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission

  13. Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals.

    Science.gov (United States)

    Yen, Yu-Ting; Lin, Yi-Kai; Chang, Shu-Hao; Hong, Hwen-Fen; Tuan, Hsing-Yu; Chueh, Yu-Lun

    2013-07-19

    This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies, interface between P3HT/CIGS NCs and post-production annealing of devices were investigated, and the best performance of photovoltaic devices was measured under AM 1.5 simulated solar illumination (100 mW/cm2).

  14. Raman probing of competitive laser heating and local recrystallization effect in ZnO nanocrystals.

    Science.gov (United States)

    Ye, J D; Parkinson, P; Ren, F F; Gu, S L; Tan, H H; Jagadish, C

    2012-10-01

    The competitive laser-induced local heating and recrystallization effects in ZnO nanocrystals embedded in a MgO/ZnO stack are reported via resonance Raman spectra. The dependence of the intensity, energy, and resonance effects of the longitudinal optical (LO) phonon on laser excitation condition are discussed in the context of Fröhlich interaction. Redistribution of defects, impurity-diffusion, and grain regrowth caused by thermal and photochemical effects lead to significant changes in coupling strength of electron-phonon interaction, and the resonance behaviors are strongly affected by the interplay of local heating, heat trapping, and local structural modification in such nanostructures.

  15. Swift heavy ion irradiation of Pt nanocrystals: I. shape transformation and dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C. (ANU)

    2014-09-24

    We report on the effects of swift heavy ion irradiation of embedded Pt nanocrystals (NCs), which change from spheres to prolate spheroids to rods upon irradiation. Using a broad range of ion irradiation energies and NC mean sizes we demonstrate that the elongation and dissolution processes are energy and size dependent, attaining comparable levels of shape transformation and dissolution upon a given energy density deposited in the matrix. The NC shape transformation remains operative despite discontinuous ion tracks in the matrix and exhibits a constant threshold size for elongation. In contrast, for ion irradiations in which the ion tracks are continuous, the threshold size for elongation is clearly energy dependent.

  16. The Si Nanocrystal Trap Center Studied by Deep Level Transient Spectroscopy (DLTS)

    OpenAIRE

    Tiezheng Lv; Lili Zhao

    2014-01-01

    Si nanocrystal (NC) embedded into the SiO2 matrix was made by SiO/SiO2 superlattice method. Here we investigate the storage phenomena of MOS structure having Si NC inside the dielectric layer by high frequency C-V method and DLTS. DLTS treated the individual Si NC as a single point deep level defect in the oxide and revealed essences of Si NC storage, such as a large capture cross section at about 1–7 × 10−13 cm2 and potential barrier at about 1.6 eV. These two properties we observed are cons...

  17. On Distributed Embedded Systems

    Directory of Open Access Journals (Sweden)

    Arvindra Sehmi

    2013-01-01

    Full Text Available Thinking of distributed embedded systems (DES—let alone the more general area of embedded computing—as a unified topic is difficult. Nevertheless, it is a vastly important topic and potentially represents a revolution in information technology (IT. DES is driven by the increasing capabilities and ever-declining costs of computing and communications devices, resulting in networked systems of embedded computers whose functional components are nearly invisible to end users. Systems have the potential to alter radically the way in which people interact with their environment by linking a range of devices and sensors that will allow information to be collected, shared, and processed in unprecedented ways.

  18. Effects of local electric surface potential on holes charging process in uncapped germanium nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Aude; El Hdiy, Abdelillah, E-mail: abdelillah.elhdiy@univ-reims.fr [Laboratoire de Recherche en Nanosciences, Bât. 6, case n 15, UFR Sciences, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France)

    2015-04-21

    The charging kinetics of holes are investigated in an uncapped Ge nanocrystal by the use of the nano-electron beam induced current technique. The charging process is studied under zero volt or under an appropriate electric field. The investigation is repeated many times on the same nanocrystal and on others in the same sample to attest of the reproducibility of the results. At 0 V, the cycles of charging kinetics are superimposed and are in a steady state, but an instantaneous local and negative surface potential, established in the nanocrystal at the beginning of the kinetics, slows down the holes charging process. Under an external field, the energy band bending accentuation affects the holes charging time constants. As a result, the holes charging cycles weakly affect the electrical performance of the thin oxide as is indicated by the value of the measured local resistivity of 6 × 10{sup 10}–10{sup 11} Ω cm, which is relatively lower than that of the thick thermal oxide.

  19. Closely packed Ge quantum dots in ITO matrix: influence of Ge crystallization on optical and electrical properties

    Science.gov (United States)

    Car, Tihomir; Nekić, Nikolina; Jerčinović, Marko; Salamon, Krešimir; Bogdanović-Radović, Iva; Delač Marion, Ida; Dasović, Jasna; Dražić, Goran; Ivanda, Mile; Bernstorff, Sigrid; Pivac, Branko; Kralj, Marko; Radić, Nikola; Buljan, Maja

    2016-06-01

    In the present work, a method for the low-temperature production of the material consisting of closely packed Ge QDs embedded in ITO matrix is described. The films are produced by magnetron sputtering deposition followed by thermal annealing. It is shown that the conductivity and optical properties of the films depend on the structure, Ge content in the ITO matrix as well as on the annealing conditions. The conductivity of the films changes up to seven orders of magnitude in dependence on the annealing conditions, and it shows transformation from semiconductor to metallic behavior. The optical properties are also strongly affected by the preparation and annealing conditions, so both conductivity and optical properties can be controllably manipulated. In addition, the crystallization of Ge is found to occur already at 300 °C, which is significantly lower than the crystallization temperature of Ge produced by the same method in silica and alumina matrices.

  20. Room temperature enhanced red emission from novel Eu{sup 3+} doped ZnO nanocrystals uniformly dispersed in nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wang Qijie [School of Electrical and Electronic Engineering and School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Liu Yanxia; Li Xiaodong; Xie Erqing, E-mail: QJWANG@ntu.edu.sg [School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China)

    2011-10-14

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu{sup 3+} doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu{sup 3+} is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu{sup 3+} doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu{sup 3+} doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  1. Room temperature enhanced red emission from novel Eu3 + doped ZnO nanocrystals uniformly dispersed in nanofibers

    Science.gov (United States)

    Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Jie Wang, Qi; Xie, Erqing

    2011-10-01

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu3 + doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu3 + is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu3 + doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu3 + doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  2. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  3. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  4. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  5. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  6. Dielectric function of ZnTe nanocrystals by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F; En Naciri, A; Johann, L [Universite Paul Verlaine-Metz, Laboratoire LPMD, 1 Boulevard Arago, 57078 Metz (France); Grob, J J [InESS, 23 rue du Loess-B20, 67037 Strasbourg Cedex2 (France); Stchakovsky, M, E-mail: ennacir@univ-metz.f [Horiba-Jobin Yvon, Z A de la Vigne-aux-loups, 5 Avenue Arago, 91380 Chilly-Mazarin Cedex (France)

    2009-07-29

    We have studied the optical properties of ZnTe nanocrystals (ZnTe-nc) by spectroscopic ellipsometry. The ZnTe-nc are embedded in a SiO{sub 2} matrix by an ion implantation technique. Two doses of 1 x 10{sup 16} and 5 x 10{sup 15} cm{sup -2} of tellurium and zinc ions are implanted in a 250 nm thick SiO{sub 2} layer thermally grown on silicon with respective implantation energies of 180 and 115 keV. Subsequent thermal treatments at 800 {sup 0}C lead to the formation of ZnTe-nc. Their sizes are characterized by transmission electron microscopy. The ZnTe-nc obtained with the 1 x 10{sup 16} cm{sup -2} dose are self-organized into two layers parallel to the surface. Their mean radius ranges between 4-17 nm and 7-17 nm. The ZnTe-nc obtained with the 5 x 10{sup 15} cm{sup -2} dose are self-organized into one layer with a mean radius between 4-17 nm. A critical points (CPs) dispersion model is used to extract the optical responses of the ZnTe-nc. The optical properties such as the dielectric function and the second derivative of the dielectric function are presented and analyzed. The dielectric function spectra reveal distinct structures attributed to band gap and optical transitions at higher energy. The correlation between the optical responses and the size of the nanocrystals is also given.

  7. Tuning of copper nanocrystals optical properties with their shapes.

    Science.gov (United States)

    Salzemann, C; Brioude, A; Pileni, M-P

    2006-04-13

    Copper nanocrystals are obtained by chemical reduction of copper ions in mixed reverse micelles. A large excess of reducing agent favors producing a new generation of shaped copper nanocrystals as nanodisks, elongated nanocrystals, and cubes. By using UV-Visible spectroscopy and numerical optical simulations we demonstrate that the optical properties are tuned by the relative proportions of spheres and nanodisks.

  8. Metal halide solid-state surface treatment for nanocrystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  9. A simple synthesis and characterization of CuS nanocrystals

    Indian Academy of Sciences (India)

    Ujjal K Gautam; Bratindranath Mukherjee

    2006-02-01

    Water-soluble CuS nanocrystals and nanorods were prepared by reacting copper acetate with thioacetamide in the presence of different surfactants and capping agents. The size of the nanocrystals varied from 3–20 nm depending on the reaction parameters such as concentration, temperature, solvent and the capping agents. The formation of nanocrystals was studied by using UV-visible absorption spectroscopy.

  10. Embedded Data Representations.

    Science.gov (United States)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion of physical data referents - the real-world entities and spaces to which data corresponds - and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded representations, which display data so that it spatially coincides with data referents. Drawing on examples from visualization, ubiquitous computing, and art, we explore the role of spatial indirection, scale, and interaction for embedded representations. We also examine the tradeoffs between non-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.

  11. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    Directory of Open Access Journals (Sweden)

    Dale L. Huber

    2012-05-01

    Full Text Available Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m, which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

  12. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography

    DEFF Research Database (Denmark)

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-01-01

    within pores in the case of use of deposition-precipitation method due to extreme low iso-electric point (IEP) of silica (∼2). Therefore, TiO2 nanocrystals (IEP 6-8) were then introduced to anchor AuNPs [3].In this study, EFTEM tomography was applied to examine the effectiveness of TiO2 for Au......NPs. Materials and methodAu/TiO2-SBA-15 was embedded into epoxy resin for electron microscopy and microtomed to about 30 nm thickness. EFTEM-tomography was operated at 120 kV and using Ti-L ionization edge via three-window method. Prior to EFTEM, STEM-HAADF tomography was also carried out for visualizing Au......NPs and for comparison. Result and discussionFigure 1 shows 3D-volume of AuNPs and TiO2 nanocrystals from EFTEM-tomography. TiO2 nanocrystals in the porous material were successfully visualized using EFTEM -tomography, and local relationship between AuNPs and TiO2 nanocrystals were revealed. A large number of TiO2...

  13. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    Summary form only given. Embedded systems are everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded systems. Over 99% of the microprocessors produced today are used in embedded systems, and recently the number of embedded systems...

  14. EMBEDDING FLOWS AND SMOOTH CONJUGACY

    Institute of Scientific and Technical Information of China (English)

    ZHANGMEIRONG; LIWEIGU

    1997-01-01

    The authors use the functional equation for embedding vector fields to study smooth embedding flows of one-dimensional diffeomorphisms. The existence and uniqueness for smooth embedding flows and vector fields are proved. As an application of embedding flows, some classification results about local and giobal diffeomorphisms under smooth conjugacy are given.

  15. Designer Nanocrystal Materials for Photovoltaics

    Science.gov (United States)

    Kagan, Cherie

    Advances in synthetic methods allow a wide range of semiconductor nanocrystals (NCs) to be tailored in size and shape and to be used as building blocks in the design of NC solids. However, the long, insulating ligands commonly employed in the synthesis of colloidal NCs inhibit strong interparticle coupling and charge transport once NCs are assembled into the solids state as NC arrays. We will describe the range of short, compact ligand chemistries we employ to exchange the long, insulating ligands used in synthesis and to increase interparticle coupling. These ligand exchange processes can have a dramatic influence on NC surface chemistry as well as NC organization in the solids, showing examples of short-range order. Synergistically, we use 1) thermal evaporation and diffusion and 2) wet-chemical methods to introduce extrinsic impurities and non-stoichiometry to passivate surface traps and dope NC solids. NC coupling and doping provide control over the density of states and the carrier type, concentration, mobility, and lifetime, which we characterize by a range of electronic and spectroscopic techniques. We will describe the importance of engineering device interfaces to design NC materials for solar photovoltaics.

  16. Prospects of nanoscience with nanocrystals.

    Science.gov (United States)

    Kovalenko, Maksym V; Manna, Liberato; Cabot, Andreu; Hens, Zeger; Talapin, Dmitri V; Kagan, Cherie R; Klimov, Victor I; Rogach, Andrey L; Reiss, Peter; Milliron, Delia J; Guyot-Sionnnest, Philippe; Konstantatos, Gerasimos; Parak, Wolfgang J; Hyeon, Taeghwan; Korgel, Brian A; Murray, Christopher B; Heiss, Wolfgang

    2015-02-24

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.

  17. Gold nanocrystals with DNA-directed morphologies

    Science.gov (United States)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  18. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  19. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  20. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  1. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  2. LDRD final report on Si nanocrystal as device prototype for spintronics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; Verley, Jason C.; Pan, Wei; Banks, James Clifford; Brewer, Luke N.; Sheng, Josephine Juin-Jye; Barton, Daniel Lee; Dunn, Roberto G.

    2006-11-01

    The silicon microelectronics industry is the technological driver of modern society. The whole industry is built upon one major invention--the solid-state transistor. It has become clear that the conventional transistor technology is approaching its limitations. Recent years have seen the advent of magnetoelectronics and spintronics with combined magnetism and solid state electronics via spin-dependent transport process. In these novel devices, both charge and spin degree freedoms can be manipulated by external means. This leads to novel electronic functionalities that will greatly enhance the speed of information processing and memory storage density. The challenge lying ahead is to understand the new device physics, and control magnetic phenomena at nanometer length scales and in reduced dimensions. To meet this goal, we proposed the silicon nanocrystal system, because: (1) It is compatible with existing silicon fabrication technologies; (2) It has shown strong quantum confinement effects, which can modify the electric and optical properties through directly modifying the band structure; and (3) the spin-orbital coupling in silicon is very small, and for isotopic pure {sup 28}Si, the nuclear spin is zero. These will help to reduce the spin-decoherence channels. In the past fiscal year, we have studied the growth mechanism of silicon-nanocrystals embedded in silicon dioxide, their photoluminescence properties, and the Si-nanocrystal's magnetic properties in the presence of Mn-ion doping. Our results may demonstrate the first evidence of possible ferromagnetic orders in Mn-ion implanted silicon nanocrystals, which can lead to ultra-fast information process and ultra-dense magnetic memory applications.

  3. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  4. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François

    2014-01-01

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  5. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...... are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion...... of physical data referents – the real-world entities and spaces to which data corresponds – and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded...

  6. An efficient Si light-emitting diode based on an n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterostructure.

    Science.gov (United States)

    Sun, Edward; Su, Fu-Hsiang; Shih, Ying-Tsang; Tsai, Hung-Ling; Chen, Ching-Huang; Wu, Mong-Kai; Yang, Jer-Ren; Chen, Miin-Jang

    2009-11-04

    Si nanocrystals embedded in a SiO2 matrix and an n-type Al-doped ZnO (ZnO:Al) layer were applied to improve the external quantum efficiency from Si in n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterojunction light-emitting diodes (LEDs). The Si nanocrystals were grown by low pressure chemical vapor deposition and the ZnO:Al layer was prepared by atomic layer deposition. The n-type ZnO:Al layer acts as an electron injection layer, a transparent conductive window, and an anti-reflection coating to increase the light extraction efficiency. Owing to the spatial confinement of carriers and surface passivation by the surrounding SiO2, the Si nanocrystals embedded in the SiO2 matrix lead to a significant enhancement of the light emission efficiency from Si. An external quantum efficiency up to 4.3 x 10(-4) at the wavelength corresponding to the indirect bandgap of Si was achieved at room temperature.

  7. Aerosol printing of colloidal nanocrystals by aerodynamic focusing

    Science.gov (United States)

    Qi, Lejun

    Colloidal semiconductor nanocrystals, or quantum dots, have shown promise as the active material in electronic and optoelectronic applications, because of their high quantum yield, narrow spectral emission band, size-tunable bandgap, chemical stability, and easy processibility. Meanwhile, it is still challenging to print patterns of nanocrystal films with desired linewidth and thickness, which is a critical step in fabrication of nanocrystal-based devices. In this thesis, a direct-write method of colloidal semiconductor nanocrystals has been developed. Like other direct-write techniques, this aerosol based method simplifies printing process and reduces the manufacturing cost, as it avoids mask screening, lithography, and pre-patterning of the substrate. Moreover, the aerosol printing with aerodynamic lenses needs neither microscale nozzles nor sheath gases, and is able to incorporate into the vacuum systems currently used in microelectronic fabrication. This thesis research presents systematic efforts to develop an aerosol-based method to directly write patterns of semiconductor nanocrystals from colloidal dispersions by aerodynamic focusing. First, the synthesized colloidal nanocrystals in hexane were nebulized into compact and spherical agglomerates suspending in the carrier gas. The details about the impact dynamics of individual aerosolized nanocrystal agglomerates were investigated. As building blocks of printed nanocrystal films, the agglomerate exhibited cohesive and granular behaviors during impact deformation on the substrate. The strength of cohesion between nanocrystals in the agglomerates could be adjusted by tuning the number concentration of colloidal nanocrystal dispersion. Second, ultrathin films of nanocrystals were obtained by printing monodisperse nanocrystal agglomerates. As the result of the granular property of nanocrystal agglomerates, it was found that the thickness of deposited agglomerates strongly depended on the size of agglomerates. A

  8. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  9. Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis.

    Science.gov (United States)

    Mehringer, Christian; Kloner, Christian; Butz, Benjamin; Winter, Benjamin; Spiecker, Erdmann; Peukert, Wolfgang

    2015-03-12

    In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into the second reactor stage (HWR II) and a mixture of SiH4 and GeH4 is added. The ratio of the precursors in the feed, their partial pressures, the synthesis temperature in HWR II and the overall pressure are varied depending on the desired morphology and composition. Alloy particle production is achieved in the heterogeneous surface reaction regime, meaning that germanium (Ge) and Si are deposited on the seed surface simultaneously. The NCs can be synthesized with any desired composition, whilst maintaining a mean diameter around 30 nm with a geometric standard deviation (GSD) around 1.25. The absorption behavior and the related fundamental optical band gap energy in dependence on the alloy composition are exemplarily presented. They prove the possibility to tailor NC properties for electronical and opto-electronical applications. In the homogeneous gas phase reaction regime facetted Ge-Si core-shell structures are accessible. The Ge deposition on the seeds precedes the Si deposition due to different gas phase reaction kinetics of the precursors. The Si layer grows epitaxially on the Ge core and is around 5 nm thick.

  10. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    Science.gov (United States)

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10(15) m(-2) is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  11. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Science.gov (United States)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  12. IBA study of SiGe/SiO{sub 2} nanostructured multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, Nuno P., E-mail: nunoni@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (ao km 139,7), 2695-066 Bobadela LRS (Portugal); Laboratório de Engenharia Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (ao km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Vieira, E.M.F. [Centre of Physics and Physics Department, University of Minho, 4710-057 Braga (Portugal); Parisini, A. [CNR-IMM Sezione di Bologna, via P. Gobetti 101, 40129 Bologna (Italy); Conde, O. [Physics Department and ICEMS, University of Lisbon, 1749-016 Lisboa (Portugal); Martín-Sánchez, J. [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Rolo, A.G. [Centre of Physics and Physics Department, University of Minho, 4710-057 Braga (Portugal); Chahboun, A. [Centre of Physics and Physics Department, University of Minho, 4710-057 Braga (Portugal); FST Tanger, Physics Department, BP 416 Tanger (Morocco); Gomes, M.J.M. [Centre of Physics and Physics Department, University of Minho, 4710-057 Braga (Portugal)

    2014-07-15

    SiGe/SiO{sub 2} multilayers with layer thickness of 5 nm were deposited with RF magnetron sputtering. The as deposited samples had well defined SiGe amorphous layers. Different annealing treatments were made to promote the formation of SiGe nanocrystals. We report an ion beam analysis study with the Rutherford backscattering and elastic recoil analysis detection techniques, in order to determine the thickness and composition of the nanolayers, and gain insight into the evolution of the roughness of the layers. The results are correlated with other structural properties of the samples, as measured with complementary techniques such as grazing incidence X-ray diffraction annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy.

  13. Embedded foveation image coding.

    Science.gov (United States)

    Wang, Z; Bovik, A C

    2001-01-01

    The human visual system (HVS) is highly space-variant in sampling, coding, processing, and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. By taking advantage of this fact, it is possible to remove considerable high-frequency information redundancy from the peripheral regions and still reconstruct a perceptually good quality image. Great success has been obtained previously by a class of embedded wavelet image coding algorithms, such as the embedded zerotree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT) algorithms. Embedded wavelet coding not only provides very good compression performance, but also has the property that the bitstream can be truncated at any point and still be decoded to recreate a reasonably good quality image. In this paper, we propose an embedded foveation image coding (EFIC) algorithm, which orders the encoded bitstream to optimize foveated visual quality at arbitrary bit-rates. A foveation-based image quality metric, namely, foveated wavelet image quality index (FWQI), plays an important role in the EFIC system. We also developed a modified SPIHT algorithm to improve the coding efficiency. Experiments show that EFIC integrates foveation filtering with foveated image coding and demonstrates very good coding performance and scalability in terms of foveated image quality measurement.

  14. Embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2008-01-01

    Brings together experiences from researchers in the field of embedded computer vision, from both academic and industrial research centers, and covers a broad range of challenges and trade-offs brought about by this paradigm shift. This title offers emphasis on tackling important problems for society, safety, security, health, and mobility.

  15. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  16. Epitaxial overgrowth of platinum on palladium nanocrystals

    Science.gov (United States)

    Jiang, Majiong; Lim, Byungkwon; Tao, Jing; Camargo, Pedro H. C.; Ma, Chao; Zhu, Yimei; Xia, Younan

    2010-11-01

    This paper describes a systematic study on the epitaxial overgrowth of Pt on well-defined Pd nanocrystals with different shapes (and exposed facets), including regular octahedrons, truncated octahedrons, and cubes. Two different reducing agents, i.e., citric acid and L-ascorbic acid, were evaluated and compared for the reduction of K2PtCl4 in an aqueous solution in the presence of Pd nanocrystal seeds. When citric acid was used as a reducing agent, conformal overgrowth of octahedral Pt shells on regular and truncated octahedrons of Pd led to the formation of Pd-Pt core-shell octahedrons, while non-conformal overgrowth of Pt on cubic Pd seeds resulted in the formation of an incomplete octahedral Pt shell. On the contrary, localized overgrowth of Pt branches was observed when L-ascorbic acid was used as a reducing agent regardless of the facets expressed on the surface of Pd nanocrystal seeds. This work shows that both the binding affinity of a reducing agent to the Pt surface and the reduction kinetics for a Pt precursor play important roles in determining the mode of Pt overgrowth on Pd nanocrystal surface.

  17. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  18. Organization of 'nanocrystal molecules' using DNA

    Science.gov (United States)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  19. Atomic force microscopy characterization of cellulose nanocrystals

    Science.gov (United States)

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  20. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  1. Franz-Keldysh effect in GeSn pin photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Oehme, M., E-mail: oehme@iht.uni-stuttgart.de; Kostecki, K.; Schmid, M.; Kaschel, M.; Gollhofer, M.; Ye, K.; Widmann, D.; Koerner, R.; Bechler, S.; Kasper, E.; Schulze, J. [Institut für Halbleitertechnik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany)

    2014-04-21

    The optical properties and the Franz-Keldysh effect at the direct band gap of GeSn alloys with Sn concentrations up to 4.2% at room temperature were investigated. The GeSn material was embedded in the intrinsic region of a Ge heterojunction photodetector on Si substrates. The layer structure was grown by means of ultra-low temperature molecular beam epitaxy. The absorption coefficient as function of photon energy and the direct bandgap energies were determined. In all investigated samples, the Franz-Keldysh effect can be observed. A maximum absorption ratio of 1.5 was determined for 2% Sn for a voltage swing of 3 V.

  2. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO{sub 2-{delta}} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung-Hee; Huh, Hoon-Hoe; Son, Kee-Chul; Kim, Eui-Tae [Department of Materials Engineering, Chungnam National University, Daeduk Science Town, Daejeon (Korea); Lee, Chang-Soo [Department of Chemical Engineering, Chungnam National University, Daeduk Science Town, Daejeon (Korea); Kim, Kyung-Hyun; Huh, Chul [Electronics and Telecommunications Research Institute, Daeduk Science Town, Daejeon (Korea)

    2009-04-15

    We report the light-emitting diode (LED) characteristics of colloidal core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in TiO{sub 2-{delta}} thin films on Si substrate. High-quality CdSe/ZnS QDs were synthesized via a pyrolysis in the range of 220-280 C. The QDs were embedded in TiO{sub 2-{delta}} thin film at 200 C by plasma-enhanced metallorganic chemical vapor deposition. The diode structure of n-TiO{sub 2-{delta}}/QDs/p-Si showed electroluminescence characteristics, indicating the possibility of LED applications of colloidal CdSe/ZnS nanocrystal QDs embedded in oxide films on large-area Si wafer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Novel applications of semiconductor nanocrystals

    Science.gov (United States)

    Lau, Pick Chung

    We have investigated ways of modifying a common water soluble CdTe NCs to become non-photobleaching. Such NCs are capable of responding reversibly to an inter-switching of the oxygen and argon environments over multiple hours of photoexcitation. They are found to quench upon exposure to oxygen, but when the system is purged with argon, their photoluminescence (PL) revives to the original intensity. Such discovery could potentially be used as oxygen nanosensors. These PL robust CdTe NCs immobilized on glass substrates also exhibit significant changes in their PL when certain organic/bio molecules are placed in their vicinity (nanoscale). This novel technique also known as NC-organic molecule close proximity imaging (NC-cp imaging) has found to provide contrast ratio greater by a factor of 2-3 compared to conventional fluorescence imaging technique. PL of NCs is recoverable upon removal of these organic molecules, therefore validating these NCs as potential all-optical organic molecular nanosensors and, upon optimization, ultimately serving as point detectors for purposes of super-resolution microscopy (with proper instrumentation). No solvents are required for this sensing mechanism since all solutions were dried under argon flow. Furthermore, core graded shell CdSe/CdSexS1-x/CdS giant nanocrystal (g-NCs) were found to have very robust PL temperature response. At a size of 10.2 nm in diameter, these g-NCs undergo PL drop of only 30% at 355K (normalized to PL intensity at 85K). In comparison, the core step shells CdSe/CdS g-NCs at the same diameter exhibit 80% PL drop at 355K. Spectral shifting and broadening were acquired and found to be 5-10 times and 2-4 times smaller respectively than the standard CdSe core and CdSe/CdS core shell NCs. It is also discovered that these core graded shell g-NCs are largely nonblinking and have insignificant photoluminescence decay even after exciting the samples at very high irradiance (44 kW/cm2) for over an hour. These types of g

  4. Synthesis of Epitaxial Films Based on Ge-Si-Sn Materials with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn Heterojunctions

    Science.gov (United States)

    Timofeev, V. A.; Kokhanenko, A. P.; Nikiforov, A. I.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.

    2015-11-01

    Results of investigations into the synthesis of heterostructures based on Ge-Si-Sn materials by the method of low-temperature molecular beam epitaxy are presented. The formation of epitaxial films during structure growth has been controlled by the reflection high-energy electron diffraction method. Films with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn heterojunctions are grown with Sn content changing from 2 to 10 % at temperatures in the interval 150-350°C. The stressed state, the composition, and the lattice parameter are studied by the x-ray diffraction method using Omega-scan curves and reciprocal space maps. A tensile strain in the Ge film during Ge/Ge0.9Sn0.1/Si structure growth has reached 0.86%.

  5. Emerging Trends in Embedded Processors

    Directory of Open Access Journals (Sweden)

    Gurvinder Singh

    2014-05-01

    Full Text Available An Embedded Processors is simply a µProcessors that has been “Embedded” into a device. Embedded systems are important part of human life. For illustration, one cannot visualize life without mobile phones for personal communication. Embedded systems are used in many places like healthcare, automotive, daily life, and in different offices and industries.Embedded Processors develop new research area in the field of hardware designing.

  6. Embedment of Employee?

    DEFF Research Database (Denmark)

    Buhl, Henrik

    1998-01-01

    The purpose of the paper is to discuss the influence of different approaches and work life conditions on the conception of embedment of employee participation. The discussion is based on three connected approaches: a theoretical research, a research into participation in working life and an empir......The purpose of the paper is to discuss the influence of different approaches and work life conditions on the conception of embedment of employee participation. The discussion is based on three connected approaches: a theoretical research, a research into participation in working life...... and an empirical case study. My starting point will be a case study of a Danish ABB company which will form the framework of my discussion and reflect my present experience. This analysis will emphasize the possibilities of making employee participation a permanent part of the company at all levels....

  7. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  8. Performance and Reliability of Multilayer Silicon Nanocrystal Nonvolatile Memory

    Institute of Scientific and Technical Information of China (English)

    WANG Liudi; ZHANG Zhigang; ZHAO Yue; MAO Ping; PAN Liyang

    2009-01-01

    Nonvolatile memories (NVMs) with triple layers of silicon nanocrystals were fabricated with conventional CMOS technology.This paper explores the program/erase performance and reliability of NVMs with three layers of nanocrystals.The results indicate that the nanocrystals in the triple-layer nanocrystal NVM (NCNVM) are difficult to fully charge during the programming process.The programming speed of the triple-layer NCNVMs is quicker than that of single-layer NCNVMs,which means that the second and third layers of nanocrystals in the triple-layer NCNVM affect the charge of the first layer nanocrystals.Reliability tests show that the memory window has little degradation after 1×104 cycles.

  9. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    Science.gov (United States)

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  10. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.

    Science.gov (United States)

    Zhou, Jiang; Tong, Jin; Su, Xingguang; Ren, Lili

    2016-10-01

    Biodegradable starch nanocrystals prepared by an acid treatment process were modified through crosslinking modification using citric acid as reactant by a dry reaction method. The occurrence of crosslinking modification was evaluated by Fourier transform infrared spectroscopy and swelling degree. X-ray diffraction, wettability tests and contact angle measurements were used to characterize the modified starch nanocrystals. It was found that the crosslinked starch nanocrystals displayed a higher affinity for low polar solvents such as dichloromethane. The surface of starch nanocrystals became more roughness after crosslinking modification with citric acid and the size decreased as revealed by scanning electron microscopy and dynamic light scattering results. XRD analysis showed that the crystalline structure of starch nanocrystals was basically not changed after the crosslinking modification with shorter heating time. The resulting hydrophobic starch nanocrystals are versatile precursors to the development of nanocomposites.

  11. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei; Smith, Rachel; Jun, Young-wook; Kisielowski, Christian; Dahmen, Ulrich; Alivisatos, A. Paul

    2009-02-09

    It is conventionally assumed that the growth of monodisperse colloidal nanocrystals requires a temporally discrete nucleation followed by monomer attachment onto the existing nuclei. However, recent studies have reported violations of this classical growth model, and have suggested that inter-particle interactions are also involved during the growth. Mechanisms of nanocrystal growth still remain controversial. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles. Surprisingly, an initially broad size distribution of the nanocrystals can spontaneously narrow. We suggest that nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies. These observations are expected to be highly relevant for other nanocrystal systems.

  12. Embeddings of Iteration Trees

    OpenAIRE

    Mitchell, William

    1992-01-01

    This paper, dating from May 1991, contains preliminary (and unpublishable) notes on investigations about iteration trees. They will be of interest only to the specialist. In the first two sections I define notions of support and embeddings for tree iterations, proving for example that every tree iteration is a direct limit of finite tree iterations. This is a generalization to models with extenders of basic ideas of iterated ultrapowers using only ultrapowers. In the final section (which is m...

  13. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  14. Synthesis and applications of heterostructured semiconductor nanocrystals

    Science.gov (United States)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  15. Security Embedding Codes

    CERN Document Server

    Ly, Hung D; Blankenship, Yufei

    2011-01-01

    This paper considers the problem of simultaneously communicating two messages, a high-security message and a low-security message, to a legitimate receiver, referred to as the security embedding problem. An information-theoretic formulation of the problem is presented. A coding scheme that combines rate splitting, superposition coding, nested binning and channel prefixing is considered and is shown to achieve the secrecy capacity region of the channel in several scenarios. Specifying these results to both scalar and independent parallel Gaussian channels (under an average individual per-subchannel power constraint), it is shown that the high-security message can be embedded into the low-security message at full rate (as if the low-security message does not exist) without incurring any loss on the overall rate of communication (as if both messages are low-security messages). Extensions to the wiretap channel II setting of Ozarow and Wyner are also considered, where it is shown that "perfect" security embedding...

  16. Synthesis and Surface Modification of CdTe Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CdTe nanocrystals were prepared in aqueous solution via the reaction between Cd2+ and NaHTe in the presence of mercaptoacetic acid. Interactions between CdTe nanocrystals and phenylalanine were formed via electrostatic/coordinate self-assembly. The photoluminescence intensity of CdTe nanocrystals was improved obviously. The interaction mechanism was discussed and was considered to be surface passivation.

  17. Positron studies of surfaces, structure and electronic properties of nanocrystals

    OpenAIRE

    Eijt, S. W. H.; Barbiellini, B.; Houtepen, A.J.; Vanmaekelbergh, D.; Mijnarends, P. E.; Bansil, A.

    2007-01-01

    A brief review is given of recent positron studies of metal and semiconductor nanocrystals. The prospects offered by positron annihilation as a sensitive method to access nanocrystal (NC) properties are described and compared with other experimental methods. The tunability of the electronic structure of nanocrystals underlies their great potential for application in many areas. Owing to their large surface-to-volume ratio, the surfaces and interfaces of NCs play a crucial role in determining ...

  18. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    OpenAIRE

    Sadtler, Bryce F

    2010-01-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions of a nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size an...

  19. Electroluminescence of Si Nanocrystal-Doped SiO2

    Institute of Scientific and Technical Information of China (English)

    CHEN Dan; XIE Zhi-Qiang; WU Qian; ZHAO You-Yuan; LU Ming

    2007-01-01

    @@ We perform a comparative study on the electroluminescence (EL) and photoluminescence (PL) of Si nanocrystaldoped SiO2 (nc-Si:SiO2) and SiO2, and clarify whether the contribution from Si nanocrystals in the EL of nc-Si:SiO2 truly exists. The results unambiguously indicate the presence of EL of Si nanocrystals. The difference of peak positions between the EL and PL spectra are discussed. It is found that the normal method of passivation to enhance the PL of Si nanocrystals is not equally effective for the EL, hence new methods need to be explored to promote the EL of Si nanocrystals.

  20. Growth Mechanisms of CdS Nanocrystals in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Loredana Latterini

    2012-06-01

    Full Text Available CdS nanocrystals were prepared in water-in-oil microemulsions. The nanocrystal properties, absorption and luminescence spectra and size distributions, were monitored at different times after mixing the microemulsions of the two precursors to obtain information on their growth mechanism. In particular, CdS nanocrystals were prepared using water-in-heptane or water-in-nonane microemulsions. The results obtained from the investigation of nanocrystals prepared using heptane as the organic phase, confirmed that nanocrystal nucleation is fast while their growth is determined by droplet exchange content rate. Size distribution histograms obtained from the sample at early time points after mixing presented a bimodal population having average sizes of 3.0 ± 0.1 and 5.8 ± 0.1 nm, thus indicating that surface process controls the nanocrystal growth. With longer reaction times the occurrence of water droplet coalescence is likely responsible for the formation of nanocrystal agglomerates. Using a water-in-nonane microemulsion, the droplet exchange rate can be modified, thus leading to smaller CdS nanocrystals. However, the development of structural defects cannot be excluded, as evidenced by the luminescence spectra of the suspension. In general, aging of the nanocrystal in the pristine microemulsion resulted in the development of cubic semiconductor nanostructures.

  1. Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals

    Science.gov (United States)

    Turkov, Vadim K.; Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We propose a new type of optical spectroscopy of anisotropic semiconductor nanocrystals, which is based on the welldeveloped stationary pump-probe technique, where the pump and probe fields are absorbed upon, respectively, interband and intraband transitions of the nanocrystals' electronic subsystem. We develop a general theory of intraband absorption based on the density matrix formalism. This theory can be applied to study degenerate eigenstates of electrons in semiconductor nanocrystals of different shapes and dimentions. We demonstrate that the angular dependence of intraband absorption by nonspherical nanocrystals enables investigating their shape and orientation, as well as the symmetry of quantum states excited by the probe field and selection rules of electronic transitions.

  2. Au–Ge MEAM potential fitted to the binary phase diagram

    Science.gov (United States)

    Wang, Yanming; Santana, Adriano; Cai, Wei

    2017-02-01

    We have developed a modified embedded atom method potential for the gold–germanium (Au–Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au–Ge liquid alloy.

  3. Characteristics of Sn segregation in Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  4. Phonons in Ge/Si superlattices with Ge quantum dots

    CERN Document Server

    Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T

    2001-01-01

    Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)

  5. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus

    2017-01-01

    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  6. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  7. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  8. Strain-induced morphology manipulations of Si and Ge-based heterostructures on Si(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dentel, D.; Aiet-Mansour, K.; Bischoff, J.L.; Kubler, L.; Bolmont, D

    2004-07-31

    By using reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM) analyses, we show that the well-known Stranski-Krastanov growth mode of Ge/Si(0 0 1) can be modified in a Volmer-Weber one by C pre-deposition on the Si(0 0 1) surface or in a Frank-Van der Merve one by supplying atomic hydrogen during the Ge growth. By tuning the growth conditions and acting on the interplay of surface diffusion, strain and surface energy, morphology manipulations by the growth process control are therefore possible. The Si capping of these Ge self-assembled nanostructures also allows us to point out a correlation between the nucleation mechanism of the Ge or SiGe islands and their associated embedding process. On bare Si surfaces, the final morphology of the embedded Ge film is strongly dependent on the kinetic parameters of the capping layer. Indeed oriented migrations of both Si and Ge atoms are able to smooth or to maintain the islands on the surface. Si diffusions also contribute in a rapid restoration of a planar morphology. On Si(0 0 1)-c(4 x 4) the adatom migrations and consequently the covering mechanism of the Ge islands seems to be governed by the strain mapping related to the C pre-deposited surface. The first stages of the Si capping process have revealed the preservation of the Ge islands associated to an increase of the surface roughness.

  9. Digital Color in Cellulose Nanocrystal Films

    OpenAIRE

    Dumanli, Ahu Gümrah; van der Kooij, Hanne M.; Kamita, Gen; Reisner, Erwin; Baumberg, Jeremy J.; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/am501995e. Cellulose nanocrystals (CNCs) form chiral nematic phases in aqueous suspensions that can be preserved upon evaporation of water. The resulting films show an intense directional coloration determined by their microstructure. Here, microreflection experiments correlated with analysis of the helicoidal nanostructure of the films reveal that the iridescent colors and the ordering of the ind...

  10. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  11. Spatially Embedded Inequality

    DEFF Research Database (Denmark)

    Holck, Lotte

    2016-01-01

    /methodology/approach: – The (re)production of inequality is explored by linking research on organizational space with HRM diversity management. Data from an ethnographic study undertaken in a Danish municipal center illustrates how a substructure of inequality is spatially upheld alongside a formal diversity policy. Archer...... the more subtle, spatially embedded forms of inequality. Originality/value: – Theoretical and empirical connections between research on organizational space and HRM diversity management have thus far not been systematically studied. This combination might advance knowledge on the persistence of micro...

  12. Quantization of submanifold embeddings

    Energy Technology Data Exchange (ETDEWEB)

    Bahns, Dorothea; Zahn, Jochen [Courant Research Centre ' ' Higher Order Structures' ' , Universitaet Goettingen (Germany); Rejzner, Katarzyna [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2013-07-01

    We describe a perturbative quantization of the embedding of d-dimensional submanifolds into n-dimensional Minkowski space, based on suitable generalizations of the Nambu-Goto action. We use tools from perturbative algebraic quantum field theory, quantum field theory on curved spacetimes, and the Batalin-Vilkovisky formalism. The resulting theory is perturbatively non-renormalizable, but well-defined as an effective theory, i.e., there are no anomalies, for any dimension d,n. In particular there is no critical dimension for the case of string theory (d=2).

  13. Shutters with embedded microprocessors

    Science.gov (United States)

    Stephenson, S.

    2015-06-01

    Shutters are used to periodically provide a non-uniformity correction (NUC) calibration surface to micro bolometers. Many bolometer applications, such as TWS and DVE, require compact, power efficient actuators. Actuators in these applications, such as bistable solenoids and stepper motors, benefit from complex drive schemes. Consumer electronics products have generated compact, low-cost drive components that can be used to embed complex drives into these shutters. Shutter drives using these components maintain compactness and power efficiency while simplifying interfaces at minimal cost. Recently, several commercially available shutter systems have been created that incorporate embedded microprocessors into shutters usable for NUC correction of micro bolometers.

  14. Embedded microcontroller interfacing

    CERN Document Server

    Gupta, Gourab Sen

    2010-01-01

    Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teachi

  15. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  16. Universal size dependence of auger constants in direct- and indirect-gap semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Robel, Istvan [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Gresback, Ryan [U OF MINNESOTA; Kortshagen, Uwe [U OF MINNESOTA

    2008-01-01

    Three-dimensional (3D) spatial confinement of electronic wave functions in semiconductor nanocrystals (NCs) results in a significant enhancement of multi-electron phenomena including non radiative Auger recombination. In this process, a conduction-band electron recombines with a valence-band hole by transferring the recombination energy to a third carrier. Significant interest in Auger recombination in NCs has been stimulated by recent studies ofNC lasing, and generation-III photovoltaics enabled by carrier multiplication because in both of these prospective applications Auger recombination represents a dominant carrier-loss mechanism. Here, we perform a side-by-side comparison of Auger recombination rates in NCs of several different compositions including Ge, PbSe, InAs, and CdSe. We observe that the only factor, which has a significant effect on the measured recombination rates, is the size of the NCs but not the details of the material's electronic structure. Most surprisingly, comparable rates are measured for nanocrystals of directand indirect-gap semiconductor NCs despite a dramatic four-to-five orders of magnitude difference in respective bulk-semiconductor Auger constants. This unusual observation can be explained by confinement-induced relaxation of momentum conservation, which smears out the difference between direct- and indirect-gap materials.

  17. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.

  18. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  19. The Game Embedded CALL System to Facilitate English Vocabulary Acquisition and Pronunciation

    Science.gov (United States)

    Young, Shelley Shwu-Ching; Wang, Yi-Hsuan

    2014-01-01

    The aim of this study is to make a new attempt to explore the potential of integrating game strategies with automatic speech recognition technologies to provide learners with individual opportunities for English pronunciation learning. The study developed the Game Embedded CALL (GeCALL) system with two activities for on-line speaking practice. For…

  20. A global Ge isotope budget

    Science.gov (United States)

    Baronas, J. Jotautas; Hammond, Douglas E.; McManus, James; Wheat, C. Geoffrey; Siebert, Christopher

    2017-04-01

    We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4-0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (>150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7-1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25-63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is -0.6 ± 1.8‰.

  1. Hybrid manifold embedding.

    Science.gov (United States)

    Liu, Yang; Liu, Yan; Chan, Keith C C; Hua, Kien A

    2014-12-01

    In this brief, we present a novel supervised manifold learning framework dubbed hybrid manifold embedding (HyME). Unlike most of the existing supervised manifold learning algorithms that give linear explicit mapping functions, the HyME aims to provide a more general nonlinear explicit mapping function by performing a two-layer learning procedure. In the first layer, a new clustering strategy called geodesic clustering is proposed to divide the original data set into several subsets with minimum nonlinearity. In the second layer, a supervised dimensionality reduction scheme called locally conjugate discriminant projection is performed on each subset for maximizing the discriminant information and minimizing the dimension redundancy simultaneously in the reduced low-dimensional space. By integrating these two layers in a unified mapping function, a supervised manifold embedding framework is established to describe both global and local manifold structure as well as to preserve the discriminative ability in the learned subspace. Experiments on various data sets validate the effectiveness of the proposed method.

  2. Microstructural effect of gadolinium oxide nanocrystals upon annealing on electrical properties of memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Michael R.S. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Chuan-Pu, E-mail: cpliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Wang, Jer-Chyi; Chen, Yu-Kai; Lai, Chao-Sung [Department of Electronic Engineering, Chang-Gung University, Kweishan 333, Taoyuan, Taiwan (China); Fang, Yu-Ching; Shu, Li [Materials and Electro-Optics Research Division, Chung Shan Institute of Science and Technology, Longtan 325, Taoyuan, Taiwan (China)

    2012-06-30

    The microstructure evolution of sputtered gadolinium oxide nanocrystal (NC) memory devices upon annealing has been characterized in detail by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TEM results indicate that the as-deposited film is composed of metallic Gd clusters embedded in an amorphous Gd{sub x}O{sub y} matrix. The Gd clusters undergo phase transformation to oxide NCs upon annealing, reaching a maximum density of 7.9-9.1 Multiplication-Sign 10{sup 11} cm{sup -2} at 850 Degree-Sign C, which is consistent with the largest memory window width. Upon annealing at even higher temperature, TEM diffraction patterns and XPS composition profiles indicate apparent Si diffusion into the NC layer, probably from the SiO{sub 2} tunneling oxide or the Si substrate, leading to the formation of gadolinium silicate NCs. The presence of silicate NCs gradually deteriorates the device performance due to the reduction of barrier confinement for stored charges, although the dot density is only marginally decreased. The results suggest that the optimum memory device performance is dominated by not only the most considered size and density of NCs, but also the composition and phase inside. - Highlights: Black-Right-Pointing-Pointer Memory devices with gadolinium oxide nanocrystals have been realized. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy shows annealing-induced interdiffusion of Si. Black-Right-Pointing-Pointer Transmission electron microscopy indicates the formation of gadolinium silicate. Black-Right-Pointing-Pointer Migrating Si from substrate can further modify NC phase upon annealing. Black-Right-Pointing-Pointer Both nanocrystal density and phase influence the device performance.

  3. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  4. Synthesis and Photovoltaic Application of Coper (I) Sulfide Nanocrystals

    Science.gov (United States)

    2008-12-22

    Cu2S ( JCPDS 026-1116, Fig. 1a red lines). Low-resolution transmission electron microscopy (TEM) studies (Fig. 1b) show nanocrystals with an average...a, XRD diffraction pattern of Cu2S nanocrystals, which can be indexed to hexagonal Cu2S ( JCPDS 026-1116, red lines). b, TEM image of Cu2S

  5. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hanyu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Wang, Haitao [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States); Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); McNamara, Bruce K.; Buck, Edgar C. [Nuclear Chemistry & Engineering Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Na, Chongzheng, E-mail: chongzheng.na@gmail.com [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States)

    2016-07-15

    Graphene-supported uranium dioxide (UO{sub 2}) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO{sub 2} nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO{sub 2} crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO{sub 2} nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO{sub 2} nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO{sub 2} nanocrystals for further investigation and development under ambient conditions. - Highlights: • UO{sub 2} nanocrystals are synthesized using polyol reduction method. • Triethylene glycol is the best reducing agent for nano-sized UO{sub 2} crystals. • UO{sub 2} nanocrystals grow on graphene through heteroepitaxy. • Graphene-supported UO{sub 2} nanocrystals can be stored in alcohols to prevent oxidation.

  6. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  7. Effective supercontinuum generation by using highly nonlinear dispersion-shifted fiber incorporated with Si nanocrystals.

    Science.gov (United States)

    Jeong, Seongmook; Ju, Seongmin; Kim, Youngwoong; Watekar, Pramod R; Jeong, Hyejeong; Lee, Ho-Jae; Boo, Seongjae; Kim, Dug Young; Han, Won-Taek

    2012-01-01

    The dispersion-shifted fiber (DSF) incorporated with Si nanocrystals (Si-NCs) having highly nonlinear optical property was fabricated to investigate the effective supercontinuum generation characteristics by using the MCVD process and the drawing process. Optical nonlinearity was enhanced by incorporating Si nanocrystals in the core of the fiber and the refractive index profile of a dispersion-shifted fiber was employed to match its zero-dispersion wavelength to that of the commercially available pumping source for generating effective supercontinuum. The non-resonant nonlinear refractive index, n2, of the Si-NCs doped DSF measured by the cw-SPM method was measured to be 7.03 x 10(-20) [m2/W] and the coefficient of non-resonant nonlinearity, gamma, was 7.14 [W(-1) km(-1)]. To examine supercontinuum generation of the Si-NCs doped DSF, the femtosecond fiber laser with the pulse width of 150 fs (at 1560 nm) was launched into the fiber core. The output spectrum of the Si-NCs doped DSF was found to broaden from 1300 nm to wavelength well beyond 1700 nm, which can be attributed to the enhanced optical nonlinearity by Si-NCs embedded in the fiber core. The short wavelength of the supercontinuum spectrum in the Si-NCs doped DSF showed shift from 1352 nm to 1220 nm for the fiber length of 2.5 m and 200 m, respectively.

  8. Design Methods for Embedded Security

    Directory of Open Access Journals (Sweden)

    I. Verbauwhede

    2009-11-01

    Full Text Available Embedded devices need both an efficient and a secure implementation of cryptographic algorithms. In this overview paper we show a typical top-down approach for secure and efficient implementation of embedded systems. We outline the security pyramid by illustrating the five primary abstraction levels in an embedded system. Focusing only on two levels - architecture and circuit level - we show how the design can be implemented to be both efficient and secure.

  9. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  10. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.

    Science.gov (United States)

    Chen, D; Lawton, D; Thompson, M R; Liu, Q

    2012-09-01

    This study investigated the effectiveness of cellulose nanocrystals derived from potato peel waste as a reinforcement and vapor barrier additive. The nanocrystals were derived from cellulosic material in the potato peel by alkali treatment and subsequently acid hydrolysis. TEM images revealed the average fiber length of the nanocrystals was 410 nm with an aspect ratio of 41; its aspect ratio being considerably larger than cotton-derived nanocrystals prepared using similar reaction conditions. Cellulose nanocrystals (CNC)-filled polyvinyl alcohol (PVA) and thermoplastic starch (TPS) films were prepared by solution casting method to maintain uniform dispersion of the 1-2% (w/w) filler content. An increase of 19% and 33% (starch composite) and 38% and 49% (PVA composite) in tensile modulus was observed for the 1% and 2% CNC-reinforced composites, respectively. Water vapor transmission measurements showed a marginal reduction of water permeability for the PVA composite, whereas no effect was observed for the thermoplastic starch composite.

  11. Synthesis of tungsten carbide nanocrystals and their electrochemical properties

    Institute of Scientific and Technical Information of China (English)

    Jianghua ZENG; Dingsheng YUAN; Yingliang LIU; Jingxing CHEN; Sanxiang TAN

    2009-01-01

    Tungsten carbide (WC) nanocrystals have been prepared by a solvothermal method with Mg as the reductant and WO3 and anhydrous ethanol as the precursors. The effects of time and temperature on the synthesis of WC were investigated and a probable formation mechanism was discussed. The obtained WC nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spec-troscopy and electrochemical methods. Hexagonal close-packed WC was successfully synthesized when the temperature was as low as 500°C. The content of carbon was more than that of W, indicating that the composition of the treated sample was C and WC only. The diameters of WC nanocrystals were ranged from 40 nm to 70 nm and the nanocrystals were dispersed on carbon films. The electrochemical measurements reveal that WC nanocrystals obviously promote Pt/C electrocatalytic ability for the oxygen reduction reaction.

  12. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  13. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  14. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  15. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  16. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  17. Watermark Embedding and Detection

    CERN Document Server

    Zhong, Jidong

    2006-01-01

    The embedder and the detector (or decoder) are the two most important components of the digital watermarking systems. Thus in this work, we discuss how to design a better embedder and detector (or decoder). I first give a summary of the prospective applications of watermarking technology and major watermarking schemes in the literature. My review on the literature closely centers upon how the side information is exploited at both embedders and detectors. In Chapter 3, I explore the optimum detector or decoder according to a particular probability distribution of the host signals. We found that the performance of both multiplicative and additive spread spectrum schemes depends on the shape parameter of the host signals. For spread spectrum schemes, the performance of the detector or the decoder is reduced by the host interference. Thus I present a new host-interference rejection technique for the multiplicative spread spectrum schemes. Its embedding rule is tailored to the optimum detection or decoding rule. T...

  18. Adaptable Embedded Systems

    CERN Document Server

    Lisbôa, Carlos; Carro, Luigi

    2013-01-01

    As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together.  This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability.  The discussion also includes how to employ specialized software to improve this new adaptive system, and...

  19. Size-dependent ligand layer dynamics in semiconductor nanocrystals probed by anisotropy measurements.

    Science.gov (United States)

    Hadar, Ido; Abir, Tsafrir; Halivni, Shira; Faust, Adam; Banin, Uri

    2015-10-12

    Colloidal semiconductor nanocrystals (NC) have reached a high level of synthetic control allowing the tuning of their properties, and their use in various applications. However, the surface of NCs and in particular their size-dependent capping organic ligand behavior, which play an important role in the NC synthesis, dispersibility, and optoelectronic properties, is still not well understood. We study the size-dependent properties of the ligand shell on the surface of NCs, by embedding surface bound dyes as a probe within the ligand shell. The reorientation times for these dyes show a linear dependence on the NC surface curvature indicating size-dependent change in viscosity, which is related to a change in the density of the ligand layer because of the geometry of the surface, a unique feature of NCs. Understanding the properties of the ligand shell will allow rational design of the surface to achieve the desired properties, providing an additional important knob for tuning their functionality.

  20. Strain-dependent photoluminescence behavior in three geometries of CdSe/CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L; Koski, Kristie J; Sivasankar, Sanjeevi; Alivisatos, A Paul

    2009-05-26

    In recent years, a new generation of quantum confined colloidal semiconductor structures has emerged, with more complex shapes than simple quantum dots1, 2. These include nanorods3 and tetrapods4. Beyond shape, it is also now possible to spatially vary the electron and hole potentials within these nanoparticles by varying the composition. Examples of these new structures include seeded dots, rods, and tetrapods, which contain a CdSe core embedded within a CdS shell5, 6. These structures may have many uses beyond those envisioned for simple quantum dots, which are frequently employed in luminescent applications7. This paper is concerned with changes in the optoelectronic properties of tetrapods when the arms are bent. We demonstrate that seeded tetrapods can serve as an optical strain gauge, capable of measuring forces on the order of nanonewtons. We anticipate that a nanocrystal strain gauge with optical readout will be useful for applications ranging from sensitive optomechanical devices to biological force investigations.

  1. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Tondini, S. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena (Italy); Pucker, G. [Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento (Italy); Pavesi, L. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy)

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minority carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.

  2. Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions

    Science.gov (United States)

    Song, Dengyuan; Cho, Eun-Chel; Conibeer, Gavin; Huang, Yidan; Green, Martin A.

    2007-09-01

    Heterojunctions (HJs) were fabricated from p-type Si nanocrystals (Si NCs) embedded in a SiC matrix on an n-type crystalline Si substrate. Transmission electron microscopy revealed that Si NCs are clearly established, with sizes in the range of 3-5nm. The HJ diodes showed a good rectification ratio of 1.0×104 at ±1.0V at 298K. The ideality factor, junction built-in potential, and open-circuit voltage are ˜1.24, 0.72V, and 0.48V, respectively. Measurement of temperature-dependent I-V curves in forward conduction suggests that, in the medium voltage range, junction interface recombination can be described as the dominant current transport mechanism.

  3. Vertical charge-carrier transport in Si nanocrystal/SiO2 multilayer structures.

    Science.gov (United States)

    Osinniy, V; Lysgaard, S; Kolkovsky, Vl; Pankratov, V; Nylandsted Larsen, A

    2009-05-13

    Charge-carrier transport in multilayer structures of Si nanocrystals (NCs) embedded in a SiO(2) matrix grown by magnetron sputtering has been investigated. The presence of two types of Si NCs with different diameters after post-growth annealing is concluded from transmission-electron microscopy and photoluminescence measurements. Based on the electric field and temperature dependences of capacitance and resistivity, it is established that the carrier transport is best described by a combination of phonon-assisted and direct tunneling mechanisms. Poole-Frenkel tunneling seems to be a less suitable mechanism to explain the vertical carrier transport due to the very high values of refractive indices obtained within this model. The possibility to more effectively collect charge carriers generated by light in structures having Si NCs of different size is discussed.

  4. Embedding potentials for excited states of embedded species.

    Science.gov (United States)

    Wesolowski, Tomasz A

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  5. Isospin structure in 68Ge

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-Bo; DONG Hong-Fei; ZHANG Jin-Fu; LU Li-Jun; CAO Wan-Cang; LI Xiao-Wei; WANg Yin

    2009-01-01

    The interacting boson model-3(IBM-3) has been used to study the low-energy level structure and electromagnetic transitions of 68Ge nucleus. The main components of the wave function for some states are also analyzed respectively. The theoretical calculations are in agreement with experimental data, and the 68Ge is in transition from U(5) to SU(3).

  6. 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    To expand the opportunity for discovery, Jefferson Lab is upgrading its facility by doubling the maximum energy of CEBAF's electron beam from 6 billion electron volts (GeV) to 12 billion electron volts (GeV), constructing a new experimental hall and upgrading its three existing experimental halls.

  7. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  8. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  9. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  10. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  11. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous

  12. Computer algebra in spacetime embedding

    CERN Document Server

    Roque, Waldir L

    2014-01-01

    In this paper we describe an algorithm to determine the vectors normal to a space-time V4 embedded in a pseudo-Euclidean manifold M4+n. An application of this algorithm is given considering the Schwarzchild space-time geometry embedded in a 6 dimensional pseudo-Euclidean manifold, using the algebraic computing system REDUCE.

  13. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE-D...

  14. Certifiable Java for Embedded Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, Rene Rydhof

    2014-01-01

    The Certifiable Java for Embedded Systems (CJ4ES) project aimed to develop a prototype development environment and platform for safety-critical software for embedded applications. There are three core constituents: A profile of the Java programming language that is tailored for safety...

  15. Hybridity in Embedded Computing Systems

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强

    1996-01-01

    An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.

  16. Collaborative development of embedded systems

    NARCIS (Netherlands)

    Verhoef, Marcel; Pierce, Kenneth; Gamble, Carl; Broenink, Jan; Fitzgerald, John; Larsen, Peter Gorm; Verhoef, Marcel

    2014-01-01

    This chapter presents motivation for taking a collaborative multi-disciplinary approach to the model-based development of embedded systems. Starting from a consideration of the ubiquity of embedded systems in daily life it identifies challenges faced by industry in developing products in a timely ma

  17. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2003-01-01

    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...

  18. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2002-01-01

    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...

  19. An efficient Si light-emitting diode based on an n- ZnO/SiO{sub 2}-Si nanocrystals-SiO{sub 2}/p-Si heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Edward; Su, Fu-Hsiang; Shih, Ying-Tsang; Tsai, Hung-Ling; Chen, Ching-Huang; Wu, Mong-Kai; Yang, Jer-Ren; Chen, Miin-Jang, E-mail: mjchen@ntu.edu.t [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China)

    2009-11-04

    Si nanocrystals embedded in a SiO{sub 2} matrix and an n-type Al-doped ZnO (ZnO:Al) layer were applied to improve the external quantum efficiency from Si in n- ZnO/SiO{sub 2}-Si nanocrystals-SiO{sub 2}/p-Si heterojunction light-emitting diodes (LEDs). The Si nanocrystals were grown by low pressure chemical vapor deposition and the ZnO:Al layer was prepared by atomic layer deposition. The n-type ZnO:Al layer acts as an electron injection layer, a transparent conductive window, and an anti-reflection coating to increase the light extraction efficiency. Owing to the spatial confinement of carriers and surface passivation by the surrounding SiO{sub 2}, the Si nanocrystals embedded in the SiO{sub 2} matrix lead to a significant enhancement of the light emission efficiency from Si. An external quantum efficiency up to 4.3 x 10{sup -4} at the wavelength corresponding to the indirect bandgap of Si was achieved at room temperature.

  20. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    Science.gov (United States)

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  1. Photoassisted tuning of silicon nanocrystal photoluminescence.

    Science.gov (United States)

    Choi, Jonghoon; Wang, Nam Sun; Reipa, Vytas

    2007-03-13

    Silicon is a rather inefficient light emitter due to the indirect band gap electronic structure, requiring a phonon to balance the electron momentum during the interband transition. Fortunately, momentum requirements are relaxed in the 1-5 nm diameter Si crystals as a result of quantum confinement effects, and bright photoluminescence (PL) in the UV-vis range is achieved. Photoluminescent Si nanocrystals along with the C- and SiC-based nanoparticles are considered bioinert and may lead to the development of biocompatible and smaller probes than the well-known metal chalcogenide-based quantum dots. Published Si nanocrystal production procedures typically do not allow for the fine control of the particle size. An accepted way to make the H-terminated Si nanocrystals consists of anodic Si wafer etching with the subsequent breakup of the porous film in an ultrasound bath. Resulting H-termination provides a useful platform for further chemical derivatization and conjugation to biomolecules. However, a rather polydisperse mixture is produced following the ultrasonic treatment, leading to the distributed band gap energies and the extent of surface passivation. From the technological point of view, a homogeneous nanoparticle size mixture is highly desirable. In this study, we offer an efficient way to reduce the H-terminated Si nanocrystal diameter and narrow size distribution through photocatalyzed dissolution in a HF/HNO3 acid mixture. Si particles were produced using the lateral etching of a Si wafer in a HF/EtOH/H2O bath followed by sonication in deaerated methanol. Initial suspensions exhibited broad photoluminescence in the red spectral region. Photoassisted etching was carried out by adding the HF/HNO3 acid mixture to the suspension and exposing it to a 340 nm light. Photoluminescence and absorbance spectra, measured during dissolution, show the gradual particle size decrease as confirmed by the photoluminescence blue shift. The simultaneous narrowing of the

  2. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  3. Semiconductor nanocrystals photosensitize C60 crystals.

    Science.gov (United States)

    Biebersdorf, Andreas; Dietmüller, Roland; Susha, Andrei S; Rogach, Andrey L; Poznyak, Sergey K; Talapin, Dmitri V; Weller, Horst; Klar, Thomas A; Feldmann, Jochen

    2006-07-01

    Semiconductor nanocrystals (SCNCs) made of CdSe, CdTe, and InP are used to photosensitize needlelike C(60) crystals. The photocurrent is increased by up to 3 orders of magnitude as compared with C(60) crystals without SCNCs. The photocurrent spectrum can be tuned precisely by the SCNC size and material, rendering the SCNC-functionalized C(60) crystals an excellent material for spectrally tuneable photodetectors. We explain the increased photocurrent as a result of photoexcited electrons transferring from the SCNCs to the C(60) crystals and causing photoconductivity, while the complementary holes remain trapped in the SCNCs.

  4. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Science.gov (United States)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  5. Fieldbook: Udvikling af embedded systemer & smarte produkter i praksis

    DEFF Research Database (Denmark)

    Jensen, Henrik Valentin; Agesen, Mads Kronborg; Nyman, Ulrik Mathias;

    DEN HELT KORTE VERSION I denne fieldbook kan du læse om, hvad der skal gøres, når du vil gå fra industrielt til smart produkt. Fieldbooken giver dig grundlag for at tegne dit eget roadmap for din virksomheds udvikling af smarte produkter og embedded systemer. Det handler om jeres: ¤ Udfordring med...... videre med embedded systemer, og som søger inspiration til at øge jeres kompetencer......., hvordan du bruger technology road maps, Systems Engineering og modeller og kommer videre fra klassiske udviklingsdyder som stage gate og krav. Det krydres med cases og best practices baseret på gennemgående forskningscases fra GN ReSound A/S, MAN Diesel & Turbo A/S, Terma A/S og Seluxit ApS. Fieldbooken...

  6. Structure and Photoluminescence of Mullite.Ge Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    GAO Le; WANG Hao; WANG Weimin; FU Zhengyi

    2008-01-01

    Al12Si3.75Ge0.25O26 ceramic powder was prepared by sol-gel method using Al(NO3)3,Si(OC2H5)4 and Cl3GeCH2-CH2COOH as precursors.The structural formation of Al12Si3.75Ge0.25O26 ceramic powder was analyzed by XRD.After reduction by flowing H2/Ar mixture gas,strong room temperature photoluminescence (PL) can be observed at 565 nm,613 nm,682 nm,731 nm and 777 nm,respectively.The PL intensity scarcely depends on the reduction temperature and duration,while the sample reduced at 500 ℃ for 3 hours has the highest PL intensity.Before and after reduction at 500 ℃,the volume of unit cell of mullite solid solution decreases to 0.4699 (A)3.Based on the analysis of XPS and Raman spectra,it can be approved that the PL phenomenon at room temperature is caused by the embedded Ge nanoparticles with the average size of about 1.95 nm.

  7. The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films

    Science.gov (United States)

    Lounis, Sebastien Dahmane

    Colloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation. Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals. ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors

  8. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  9. Maximum Genus of Strong Embeddings

    Institute of Scientific and Technical Information of China (English)

    Er-ling Wei; Yan-pei Liu; Han Ren

    2003-01-01

    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  10. Lattice Embedding of Heronian Simplices

    CERN Document Server

    Lunnon, W Fred

    2012-01-01

    A rational triangle has rational edge-lengths and area; a rational tetrahedron has rational faces and volume; either is Heronian when its edge-lengths are integer, and proper when its content is nonzero. A variant proof is given, via complex number GCD, of the previously known result that any Heronian triangle may be embedded in the Cartesian lattice Z^2; it is then shown that, for a proper triangle, such an embedding is unique modulo lattice isometry; finally the method is extended via quaternion GCD to tetrahedra in Z^3, where uniqueness no longer obtains, and embeddings also exist which are unobtainable by this construction. The requisite complex and quaternionic number theoretic background is summarised beforehand. Subsequent sections engage with subsidiary implementation issues: initial rational embedding, canonical reduction, exhaustive search for embeddings additional to those yielded via GCD; and illustrative numerical examples are provided. A counter-example shows that this approach must fail in high...

  11. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  12. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

    Science.gov (United States)

    Knowles, Kathryn E; Hartstein, Kimberly H; Kilburn, Troy B; Marchioro, Arianna; Nelson, Heidi D; Whitham, Patrick J; Gamelin, Daniel R

    2016-09-28

    Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

  13. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  14. Monolithically integrated Ge CMOS laser

    Science.gov (United States)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  15. Ge-on-Si optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jifeng, E-mail: Jifeng.Liu@Dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Camacho-Aguilera, Rodolfo; Bessette, Jonathan T.; Sun, Xiaochen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wang Xiaoxin [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Cai Yan; Kimerling, Lionel C.; Michel, Jurgen [Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-02-01

    Electronic-photonic synergy has become an increasingly clear solution to enhance the bandwidth and improve the energy efficiency of information systems. Monolithic integration of optoelectronic devices is the ideal solution for large-scale electronic-photonic synergy. Due to its pseudo-direct gap behavior in optoelectronic properties and compatibility with Si electronics, epitaxial Ge-on-Si has become an attractive solution for monolithic optoelectronics. In this paper we will review recent progress in Ge-on-Si optoelectronics, including photodetectors, electroabsorption modulators, and lasers. The performance of these devices has been enhanced by band-engineering such as tensile strain and n-type doping, which transforms Ge towards a direct gap material. Selective growth reduces defect density and facilitates monolithic integration at the same time. Ge-on-Si photodetectors have approached or exceeded the performance of their III-V counterparts, with bandwidth-efficiency product > 30 GHz for p-i-n photodiodes and bandwidth-gain product > 340 GHz for avalanche photodiodes. Enhanced Franz-Keldysh effect in tensile-strained Ge offers ultralow energy photonic modulation with < 30 fJ/bit energy consumption and > 100 GHz intrinsic bandwidth. Room temperature optically-pumped lasing as well as electroluminescence has also been achieved from the direct gap transition of band-engineered Ge-on-Si waveguides. These results indicate that band-engineered Ge-on-Si is promising to achieve monolithic active optoelectronic devices on a Si platform.

  16. Singly and Doubly Occupied Higher Quantum States in Nanocrystals.

    Science.gov (United States)

    Jeong, Juyeon; Yoon, Bitna; Kwon, Young-Wan; Choi, Dongsun; Jeong, Kwang Seob

    2017-02-08

    Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.

  17. Metric embeddings bilipschitz and coarse embeddings into Banach spaces

    CERN Document Server

    Ostrovskii, Mikhail I

    2013-01-01

    Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include embeddability of locally finite metric spaces into Banach spaces is finitely determined, constructions of embeddings, distortion in terms of Poinc

  18. Exchange bias up to room temperature in antiferromagnetic hexagonal Mn3Ge

    Science.gov (United States)

    Qian, J. F.; Nayak, A. K.; Kreiner, G.; Schnelle, W.; Felser, C.

    2014-07-01

    Mn3.04Ge0.96 has a hexagonal crystal structure, which can be stabilized by high-temperature annealing, and shows antiferromagnetic order with a small ferromagnetic component of less than 0.1μB and a coercivity of 0.45 T. In the ordered phase, magnetization curves M(H) exhibit an exchange bias of 62 mT at T = 2 K after field cooling, which is observable up to room temperature. The exchange anisotropy is suggested to originate from the exchange interaction between the host of triangular-antiferromagnetic Mn3Ge units and embedded ferrimagnetic-like clusters. Such clusters develop when excess Mn atoms occupy empty Ge sites in the original triangular-antiferromagnetic structure of Mn3Ge.

  19. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  20. Size-Dependence of Infrared Spectra in Niobium Carbide Nanocrystals

    Science.gov (United States)

    Shubert, V. Alvin; Lewis, Steven P.

    2012-08-01

    Niobium carbide nanocrystals of 1:1 stoichiometry have recently been observed for particle sizes ranging from Nb4C4 to Nb50C50. Infrared (IR) spectroscopic measurements show that a new band of IR vibrational modes appears with increasing particle size at Nb9C9. Using density-functional theory, we show that the vibrational modes in the new band involve structural features present only in nanocrystals with three or more atomic layers in every direction. The Nb9C9 nanocrystal is right at this structural threshold.

  1. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jesse H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Surendranath, Yogesh [Univ. of California, Berkeley, CA (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  2. Colloidal nanocrystal synthesis and the organic-inorganicinterface

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Alivisatos, A. Paul

    2005-05-12

    Colloidal nanocrystals are nanometer-sized, solution-grown inorganic particles stabilized by a layer of surfactants attached to their surface. The inorganic cores exhibit useful properties controlled by composition as well as size and shape, while the surfactant coating ensures that these structures are easy to fabricate and process. It is this combination of features that makes colloidal nanocrystals attractive and promising building blocks for advanced materials and devices. But their full potential can only be exploited if we achieve exquisite control over their composition, size, shape, crystal structure and surface properties. Here we review what is known about nanocrystal growth and outline strategies for controlling it.

  3. Optical activity of chirally distorted nanocrystals

    Science.gov (United States)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  4. A general strategy for nanocrystal synthesis

    Science.gov (United States)

    Wang, Xun; Zhuang, Jing; Peng, Qing; Li, Yadong

    2005-09-01

    New strategies for materials fabrication are of fundamental importance in the advancement of science and technology. Organometallic and other organic solution phase synthetic routes have enabled the synthesis of functional inorganic quantum dots or nanocrystals. These nanomaterials form the building blocks for new bottom-up approaches to materials assembly for a range of uses; such materials also receive attention because of their intrinsic size-dependent properties and resulting applications. Here we report a unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity; these include noble metal, magnetic/dielectric, semiconducting, rare-earth fluorescent, biomedical, organic optoelectronic semiconducting and conducting polymer nanoparticles. This strategy is based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis. We believe our methodology provides a simple and convenient route to a variety of building blocks for assembling materials with novel structure and function in nanotechnology.

  5. Reusable hydroxyapatite nanocrystal sensors for protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Hanagata, Nobutaka [Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Chakarov, Dinko; Kasemo, Bengt [Department of Applied Physics, Chalmers University of Technology, Goeteberg S-41296 (Sweden); Tanaka, Junzo, E-mail: tikoma@ceram.titech.ac.j [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Tokyo 152-8550 (Japan)

    2010-08-15

    The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp) nanocrystal sensors was investigated by Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HAp sensors were removed by (i) ammonia/hydrogen peroxide mixture (APM), (ii) ultraviolet light (UV), (iii) UV/APM, (iv) APM/UV and (v) sodium dodecyl sulfate (SDS) treatments. FTIR spectra of the reused surfaces revealed that the APM and SDS treatments left peptide fragments or the proteins adsorbed on the surfaces, whereas the other methods successfully removed the proteins. The QCM-D measurements indicated that in the removal treatments, fibrinogen was slowly adsorbed in the first cycle because of the change in surface wettability revealed by contact angle measurements. The SDS treatment was not effective in removing proteins. The APM or UV treatment decreased the frequency shifts for the reused HAp sensors. The UV/APM treatment did not induce the frequency shifts but decreased the dissipation shifts. Therefore, we conclude that the APM/UV treatment is the most useful method for reproducing protein adsorption behavior on HAp sensors.

  6. Si and Ge nanostructures epitaxy on a crystalline insulating LaAlO{sub 3}(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Jean-Luc; Mortada, Hussein; Dentel, Didier; Derivaz, Mickael [Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 CNRS-UHA, Universite de Haute Alsace, Mulhouse (France); Ben Azzouz, Chiraz; Akremi, Abdelwahab; Chefi, Chaabanne [Equipe Surface et Interface (ESI) - Faculte des Sciences, Bizerte (Tunisia); Morales, Francisco Miguel; Herrera, Miriam; Manuel, Jose Manuel; Garcia, Rafael [Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, Cadiz University (Spain); Diani, Mustapha [Equipe de Recherche en Mecanique, Materiaux et Metallurgie, FST, Tanger (Morocco)

    2012-04-15

    We present a comparative structural study of the growth of Si and Ge deposited by molecular beam epitaxy (MBE) on a c(2 x 2) reconstructed LaAlO{sub 3}(001) substrate. Our findings are based on complementary experimental techniques such as in situ X-ray photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED), low energy electron diffraction (LEED) and ex situ atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). While the layers are amorphous and wet uniformly the substrate in a low deposition temperature range, above 500 C both Si and Ge growths proceed in a Volmer-Weber (VW) mode leading to the formation of nanocrystals (NCs). The islands are found to be composed of pure Si and Ge and to have abrupt interfaces with the substrate. Both semiconductors (SCs) crystallize in their own diamond structure leading to relaxed NCs. No facets could be observed on the crystalline islands. An epitaxial relationship is established for which the (001) planes of Si and Ge are parallel to the LaAlO{sub 3}(001) surface but are rotated by 45 around the [001] growth axis. The Ge lattice undergoes a second rotation of 6 with respect to the (001) growth axis. This 6 tilt is an original mechanism to partially compensate the strain in the Ge islands induced by the large misfit. Whereas a unique epitaxial relationship is pointed out for Si NCs, many Ge NCs are randomly orientated on the surface. This is interpreted by the fact that the Ge islands are less anchored to the substrate due to a large misfit and to the fact that the Ge-O bonds are weaker than the Si-O ones. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Nonlinear optical properties of semiconductor nanocrystals

    Science.gov (United States)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  8. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  9. Phylogenetic trees and Euclidean embeddings.

    Science.gov (United States)

    Layer, Mark; Rhodes, John A

    2017-01-01

    It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.

  10. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  11. <300> GeV team

    CERN Multimedia

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  12. Controlled crystalline structure and surface stability of cobalt nanocrystals.

    Science.gov (United States)

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M

    2005-04-21

    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles.

  13. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

    Science.gov (United States)

    Schimpf, Alina M; Thakkar, Niket; Gunthardt, Carolyn E; Masiello, David J; Gamelin, Daniel R

    2014-01-28

    Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

  14. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    Science.gov (United States)

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  15. Coupling of Surface Plasmons and Semiconductor Nanocrystals for Nanophotonics Applications

    Science.gov (United States)

    Jayanti, Sriharsha V.

    The goal of this thesis is to engineer the interaction between surface plasmons and semiconductor nanocrystals for nanophotonic applications. Plasmonic metals support surface plasmon polaritons, hybrid photon and electron waves that propagate along a metal-dielectric interface. Unlike photons, surface plasmons can be confined in sub-diffraction geometries. This has two important consequences: 1) optical devices can be designed at the nanoscale, and 2) the high density of electromagnetic fields allows study of enhanced light-matter interactions. Surface plasmons have been exploited to demonstrate components of optoelectronic circuits, optical antennas, surface enhanced spectroscopy, enhanced fluorescence from fluorophores, and nanolasers. Despite the advances, surface plasmon losses limit their propagation lengths to tens of micrometers in the visible wavelengths, hindering many applications. Recently, the template-stripping approach was shown to fabricate metal films that exhibit larger grains and smoother surface, reducing the grain boundary and roughness scattering. To further improve the plasmonic properties, we investigate the importance of deposition conditions in the template-stripping approach. We provide insight and recipes to enhance the plasmonic performance of the most commonly used metals in the ultraviolet, visible, and near-infrared. We also explore the potential of low temperatures to improve the performance of metal films, where the electron-electron and electron-phonon scattering should be reduced. This sets a limit on the minimum loss metals can exhibit. Using this knowledge, we study the optical properties of quantum-confined semiconductor nanocrystals near metal structures. Semiconductor nanocrystals have many attractive characteristics that make them suitable for solid-state lighting and solar cells among others. Specifically, CdSe nanocrystals have been heavily studied for their large absorption and emission cross-sections, size dependent

  16. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran (Iran, Islamic Republic of); Fereshteh, Zeinab [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered.

  17. Metal-insulator transition in films of doped semiconductor nanocrystals.

    Science.gov (United States)

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  18. Doped semiconductor nanocrystal based fluorescent cellular imaging probes.

    Science.gov (United States)

    Maity, Amit Ranjan; Palmal, Sharbari; Basiruddin, S K; Karan, Niladri Sekhar; Sarkar, Suresh; Pradhan, Narayan; Jana, Nikhil R

    2013-06-21

    Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity.

  19. Observability of multivariate differential embeddings

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Luis Antonio [Laboratorio de Modelagem, Analise e Controle de Sistemas Nao Lineares, Departamento de Engenharia Eletronica, Universidade Federeal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG (Brazil); Letellier, Christophe [Universite de Rouen-CORIA UMR 6614, Av. de l' Universite, BP 12, F-76801 Saint-Etienne du Rouvray Cedex (France)

    2005-07-15

    The present paper extends some results recently developed for the analysis of observability in nonlinear dynamical systems. The aim of the paper is to address the problem of embedding an attractor using more than one observable. A multivariate nonlinear observability matrix is proposed which includes the monovariable nonlinear and linear observability matrices as particular cases. Using the developed framework and a number of worked examples, it is shown that the choice of embedding coordinates is critical. Moreover, in some cases, to reconstruct the dynamics using more than one observable could be worse than to reconstruct using a scalar measurement. Finally, using the developed framework it is shown that increasing the embedding dimension, observability problems diminish and can even be eliminated. This seems to be a physically meaningful interpretation of the Takens embedding theorem.

  20. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...... in use has become larger than the number of humans on the planet. The complexity of embedded systems is growing at a very high pace and the constraints in terms of functionality, performance, low energy consumption, reliability, cost and time-to-market are getting tighter. Therefore, the task......-to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...

  1. Visualizing spacetimes via embedding diagrams

    CERN Document Server

    Hledik, Stanislav; Cipko, Alois

    2016-01-01

    It is hard to imagine curved spacetimes of General Relativity. A simple but powerful way how to achieve this is visualizing them via embedding diagrams of both ordinary geometry and optical reference geometry. They facilitate to gain an intuitive insight into the gravitational field rendered into a curved spacetime, and to assess the influence of parameters like electric charge and spin of a black hole, magnetic field or cosmological constant. Optical reference geometry and related inertial forces and their relationship to embedding diagrams are particularly useful for investigation of test particles motion. Embedding diagrams of static and spherically symmetric, or stationary and axially symmetric black-hole and naked-singularity spacetimes thus present a useful concept for intuitive understanding of these spacetimes' nature. We concentrate on general way of embedding into 3-dimensional Euclidean space, and give a set of illustrative examples.

  2. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  3. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2002-01-01

    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  4. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2003-01-01

    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  5. Multilingual Word Embeddings using Multigraphs

    OpenAIRE

    Soricut, Radu; Ding, Nan

    2016-01-01

    We present a family of neural-network--inspired models for computing continuous word representations, specifically designed to exploit both monolingual and multilingual text. This framework allows us to perform unsupervised training of embeddings that exhibit higher accuracy on syntactic and semantic compositionality, as well as multilingual semantic similarity, compared to previous models trained in an unsupervised fashion. We also show that such multilingual embeddings, optimized for semant...

  6. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  7. Fresnel Lens with Embedded Vortices

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2012-01-01

    Full Text Available Vortices of different charges are embedded in a wavefront that has quadratic phase variation, and the intensity distribution near the focal plane is studied. This method may be useful in realizing complicated beam profiles. We have experimentally demonstrated the generation of vortex arrays having integer as well as fractional topological charges that produce different intensity profiles at the focal plane. The phase variation realized on a spatial light modulator (SLM acts as a Fresnel lens with embedded vortices.

  8. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  9. PC/104 Embedded IOCs at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Jianxun Yan, Trent Allison, Sue Witherspoon, Anthony Cuffe

    2009-10-01

    Jefferson Lab has developed embedded IOCs based on PC/104 single board computers (SBC) for low level control systems. The PC/104 IOCs run EPICS on top of the RTEMS operating system. Two types of control system configurations are used in different applications, PC/104 SBC with commercial PC/104 I/O cards and PC/104 SBC with custom designed FPGA-based boards. RTEMS was built with CEXP shell to run on the PC/104 SBC. CEXP shell provides the function of dynamic object loading, which is similar to the widely used VxWorks operating system. Standard software configurations were setup for PC/104 IOC application development to provide a familiar format for new projects as well as ease the conversion of applications from VME based IOCs to PC/104 IOCs. Many new projects at Jefferson Lab are going to employ PC/104 SBCs as IOCs and some applications have already been running them for accelerator operations. The PC/104 - RTEMS IOC provides a free open source Real-Time Operating System (RTOS), low cost/maintenance, easily installed/ configured, flexible, and reliable solution for accelerator control and 12GeV Upgrade projects.

  10. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  11. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  12. How Fast Should Polymer/Drug Nanocrystal Dispersions Be Frozen?

    Science.gov (United States)

    Lee, Jonghwi; Park, Chul Ho

    2006-03-01

    Recent advances in nanoparticle technologies have significantly enhanced the oral and parenteral delivery of poorly water-soluble active pharmaceutical ingredients (APIs). However, reports have been limited on the various drying procedures to convert a liquid nanocrystal dispersions into solid dosage forms. The solid dosage form should consist of nanocrystals that can readily reconstitute into their original size upon dissolution in water. Herein, the freeze drying process of nanocrystal dispersions was examined at varying freezing rates (speed of freezing interface). As freezing rate decreases, more particle-particle aggregation developed. A critical freezing rate, below which the dried nanocrystals cannot be re-dispersed, was identified based on the plot of the particle size of reconstituted nanocrystals versus freezing rate. Freeze drying at a freezing rate near the critical value produces dry powders of bimodal particle size distribution after re-dispersion. In addition, API concentration was found to significantly affect the critical freezing rate and therefore the re-dispersibility of dry powders. The concept of critical freezing rate is critical for the development of solid dosage forms of liquid nanocrystal dispersions. [1] J. Lee, Drug nano- and microparticles processed into solid dosage forms: physical properties, J. Pharm. Sci., 92(10) (2003) 2057-2068.

  13. Functionalization of Cellulose Nanocrystals in Choline Lactate Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Sarah Montes

    2016-06-01

    Full Text Available Cellulose nanocrystals (CNCs are valuable nanomaterials obtained from renewable resources. Their properties make them suitable for a wide range of applications, including polymer reinforcement. However, due to their highly hydrophilic character, it is necessary to modify their surface with non-polar functional groups before their incorporation into a hydrophobic polymer matrix. In this work, cellulose nanocrystals were modified using a silane coupling agent and choline lactate, an ionic liquid derived from renewable resources, as a reaction medium. Modified cellulose nanocrystals were characterized by infrared spectroscopy, showing new peaks associated to the modification performed. X-ray diffraction was used to analyze the crystalline structure of functionalized cellulose nanocrystals and to optimize the amount of silane for functionalization. Poly(lactic acid (PLA nanocomposites containing 1 wt % of functionalized cellulose nanocrystals were prepared. They were characterized by field-emission scanning electron microscopy (FE-SEM and mechanical tests. The use of choline lactate as reaction media has been shown to be an alternative method for the dispersion and silanization of the cellulose nanocrystals without the addition of an external catalyst.

  14. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.

    Science.gov (United States)

    Goodfellow, Brian W; Korgel, Brian A

    2011-04-26

    Colloidal nanocrystals are being explored for use in a variety of applications, from solar cells to transistors to medical diagnostics and therapy. Ordered assemblies of nanocrystals, or superlattices, are one particularly interesting class of these materials, in which the nanocrystals serve as modular building blocks to construct nanostructures by self-assembly with spatial and temporal complexity and unique properties. From a fundamental perspective, the nanocrystals are simple molecular models that can be manipulated and studied to test statistical mechanical and thermodynamic models of crystallization and disorder. An article by Bian et al. in this issue of ACS Nano reports surprising new phase behavior in semiconductor nanocrystal superlattices: reversible transitions between non-close-packed body-centered cubic (bcc) and body-centered tetragonal (bct) structures, and close-packed face-centered cubic (fcc) structures, observed by real-time in situ grazing incidence small-angle X-ray scattering (GISAXS) measurements, upon solvent vapor exposure and increased interparticle separation. These studies offer new insight and raise new questions about superlattice structure and the forces that control self-assembly. Accompanying computer simulations show that ligand-ligand interactions are important. Furthermore, it appears that ligand-coated nanocrystals have more in common with soft microphase-separated materials, like diblock copolymers and surfactant assemblies, than previously realized.

  15. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer

    Energy Technology Data Exchange (ETDEWEB)

    Larramendi, Erick M. [Physics Faculty-ICTM, University of Havana, Colina Universitaria, C.P. 10400 Havana (Cuba); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Department Physik, Center for Optoelectronics and Photonics Paderborn (CeOPP), Universitaet Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany); Schoeps, Oliver; Woggon, Ulrike [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Artemyev, Mikhail V. [Institute for Physico-Chemical Problems, Belarussian State University, Minsk 220080 (Belarus); Schikora, Detlef; Lischka, Klaus [Department Physik, Center for Optoelectronics and Photonics Paderborn (CeOPP), Universitaet Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany)

    2013-01-14

    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  16. Effect of X-ray irradiation on the blinking of single silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pevere, Federico; Bruhn, Benjamin; Sangghaleh, Fatemeh; Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan [Material and Nano Physics Department, ICT School, KTH Royal Institute of Technology, Kista (Sweden)

    2015-12-15

    Photoluminescence (PL) intermittency (blinking) observed for single silicon nanocrystals (Si-NCs) embedded in oxide is usually attributed to trapping/de-trapping of carriers in the vicinity of the NC. Following this model, we propose that blinking could be modified by introducing new trap sites, for example, via X-rays. In this work, we present a study of the effect of X-ray irradiation (up to 65 kGy in SiO{sub 2}) on the blinking of single Si-NCs embedded in oxide nanowalls. We show that the luminescence characteristics, such as spectrum and life-time, are unaffected by X-rays. However, substantial changes in ON-state PL intensity, switching frequency, and duty cycle emerge from the blinking traces, while the ON- and OFF- time distributions remain of mono-exponential character. Although we do not observe a clear monotonic dependence of the blinking parameters on the absorbed dose, our study suggests that, in the future, Si-NCs could be blinking-engineered via X-ray irradiation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. CuIn(S,Se){sub 2}thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Grayson M.; Guo Qijie [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Agrawal, Rakesh, E-mail: agrawalr@purdue.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Hillhouse, Hugh W., E-mail: h2@uw.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Department of Chemical Engineering, University of Washington, Seattle WA 98105 (United States)

    2011-10-31

    CuIn(S,Se){sub 2} thin film solar cells are fabricated by selenizing CuInS{sub 2} nanocrystals synthesized using a variety of copper and indium precursors. Specifically, copper and indium acetates, acetylacetonates, iodides, chlorides and nitrates are investigated to determine the effect of precursors on electronic properties and device performance. Nanocrystal synthesis with each of these precursors can be optimized to yield similar nanocrystal composition, size and structure. In addition, dense chalcopyrite CuIn(S,Se){sub 2} thin films with micron sized grains at the surface are formed upon selenization regardless of precursor type. Surprisingly, solar cells fabricated from each nanocrystal ink have roughly the same carrier concentrations of 10{sup 16} to 10{sup 17} cm{sup -3} in the absorber layer and achieve active area efficiencies of approximately 5%.

  18. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    Science.gov (United States)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  19. Impurities in Silicon Nanocrystals: The intentional and the inherent

    Science.gov (United States)

    Rowe, David J.

    Silicon nanocrystals (SiNCs) have become an important class of materials in the fields of photovoltaics, thermoelectrics, lighting, and medicine. Impurities within SiNCs dramatically alter the electrical and optical properties of the host material, whether the impurity is intentionally added in an attempt to manipulate properties, or is inherent to the material and its natural state. Despite such remarkable changes, impurity incorporation within SiNCs remains poorly understood, since concepts applied to understanding impurities in bulk materials may not completely translate to nanomaterials. Understanding the effect of SiNC impurities requires new technologies to produce materials suitable for study combined with new insights to expound the differences in the nanoscale physics. Nonthermal plasma-assisted gas-phase synthesis provides an excellent route to producing and investigating impurities within SiNCs due to the unique chemical reaction environment of the plasma. The robustness of such a technique allows for the production of very pure SiNCs or SiNCs with added impurities simply by adding different chemicals to the plasma. The chapters in this document focus on the effect that different impurities have on the properties of SiNCs. Chapter 2 focuses on heavily P-doped SiNCs exhibiting the first known observation of a unique electrical and optical property known as localized surface plasmon resonance (LSPR) within free-standing SiNCs. Chapter 3 explains the synthesis of B- and P-doped SiGeNC alloys and their deposition into thin films for thermoelectric applications. Chapter 4 highlights research which uses P-doped SiNCs to form emitter layers for pn-junction type solar cells, including device fabrication and optical characterization. Chapter 5 examines inherent impurities in the form of dangling bond defects which may be responsible for the quenching of SiNC photoluminescence, and their evolution during the process of air-ambient oxidation. Several appendices at

  20. Potentiometric Measurements of Semiconductor Nanocrystal Redox Potentials.

    Science.gov (United States)

    Carroll, Gerard M; Brozek, Carl K; Hartstein, Kimberly H; Tsui, Emily Y; Gamelin, Daniel R

    2016-04-06

    A potentiometric method for measuring redox potentials of colloidal semiconductor nanocrystals (NCs) is described. Fermi levels of colloidal ZnO NCs are measured in situ during photodoping, allowing correlation of NC redox potentials and reduction levels. Excellent agreement is found between electrochemical and optical redox-indicator methods. Potentiometry is also reported for colloidal CdSe NCs, which show more negative conduction-band-edge potentials than in ZnO. This difference is highlighted by spontaneous electron transfer from reduced CdSe NCs to ZnO NCs in solution, with potentiometry providing a measure of the inter-NC electron-transfer driving force. Future applications of NC potentiometry are briefly discussed.

  1. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-02-10

    Natural rubber (NR) latex particles were oxidized using KMnO4 as oxidant to promote the insertion of hydroxyl groups in the surface polyisoprene chains. Different degrees of oxidation were investigated. Both unoxidized and oxidized NR (ONR) latex were used to prepare nanocomposite films reinforced with cellulose nanocrystals (CNCs) by casting/evaporation. The oxidation of NR was carried out to promote chemical interactions between the hydroxyl groups of ONR with those of CNCs through hydrogen bonding. The effect of the degree of oxidation of the NR latex on the rheological behavior of CNC/NR and CNC/ONR suspensions, as well as on the mechanical, swelling and thermal properties of ensuing nanocomposites was investigated. Improved properties were observed for intermediate degrees of oxidation but they were found to degrade for higher oxidation levels.

  2. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  3. SF6 plasma etching of silicon nanocrystals.

    Science.gov (United States)

    Liptak, R W; Devetter, B; Thomas, J H; Kortshagen, U; Campbell, S A

    2009-01-21

    An SF(6)-based plasma has been employed to perform in-flight etching of silicon nanocrystals (Si-NCs) after they were synthesized in an SiH(4)-based plasma. The photoluminescence of the Si-NCs blue-shifts after etching, indicating an etching-induced size reduction of the Si-NCs. It is shown that both the SF(6) plasma power and the flow rate can be utilized to control the etch rate (and thus the size reduction) of the Si-NCs. The SF(6) etched Si-NCs show only low concentrations of residual impurities other than fluorine. Quantum yields as high as 50% have been observed from these SF(6) etched Si-NCs despite oxidation.

  4. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  5. Vapor phase growth and photoluminescence of oriented-attachment Zn2GeO4 nanorods array

    Science.gov (United States)

    Tang, Haiping; Zhu, Xingda; He, Haiping

    2016-10-01

    We carry out one-step vapor phase growth of high quality Zn2GeO4 nanorods array to provide insights into the growth mechanism of such ternary oxide nanostructures. The morphology and microstructure of these nanorods are investigated carefully. Under certain conditions, the nanorods follow the oriented-attachment growth which is unusual in vapor-based growth. Each nanorod consists of many nanocrystals aligned along the [110] direction. The nanorods show strong deep ultraviolet absorption around 260 nm and broad longlife green luminescence around 490 nm.

  6. 2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lai-Sheng Wang

    2011-07-29

    Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the

  7. Embedded binary eutectic alloy nanostructures: a new class of phase change materials.

    Science.gov (United States)

    Shin, S J; Guzman, J; Yuan, C-W; Liao, Christopher Y; Boswell-Koller, Cosima N; Stone, P R; Dubon, O D; Minor, A M; Watanabe, Masashi; Beeman, Jeffrey W; Yu, K M; Ager, J W; Chrzan, D C; Haller, E E

    2010-08-11

    Phase change materials are essential to a number of technologies ranging from optical data storage to energy storage and transport applications. This widespread interest has given rise to a substantial effort to develop bulk phase change materials well suited for desired applications. Here, we suggest a novel and complementary approach, the use of binary eutectic alloy nanoparticles embedded within a matrix. Using GeSn nanoparticles embedded in silica as an example, we establish that the presence of a nanoparticle/matrix interface enables one to stabilize both nanobicrystal and homogeneous alloy morphologies. Further, the kinetics of switching between the two morphologies can be tuned simply by altering the composition.

  8. Epi-cleaning of Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A. [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); Wirths, S.; Buca, D. [Peter Grünberg Institute 9 and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, Juelich 52425 (Germany); Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany); Capellini, G., E-mail: capellini@ihp-microelectronics.com [Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Rome (Italy); IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2015-01-28

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.

  9. Validation of putative reference genes for normalization of Q-RT-PCR data from paraffin-embedded lymphoid tissue

    DEFF Research Database (Denmark)

    Green, Tina Marie; de Stricker, Karin; Møller, Michael Boe

    2009-01-01

    , represented by non-neoplastic lymph nodes and diffuse large B-cell lymphomas, by using 2 statistical software applications, geNorm and NormFinder. In addition, we wanted to validate the usefulness of paraffin-embedded samples for Q-RT-PCR studies by investigating gene expressions of relevant target genes...

  10. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm

    Science.gov (United States)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Latyshev, A. V.; Iinuma, M.; Terai, Y.

    2017-03-01

    This article describes the development of an Si-based light-emitting diode with β-FeSi2 nanocrystals embedded in the active layer. Favorable epitaxial conditions allow us to obtain a direct band gap type-I band alignment Si/β-FeSi2 nanocrystals/Si heterostructure with optical transition at a wavelength range of 1500-1550 nm at room temperature. Transmission electron microscopy data reveal strained, defect-free β-FeSi2 nanocrystals of diameter 6 and 25 nm embedded in the Si matrix. Intense electroluminescence was observed at a pumping current density as low as 0.7 A/cm2. The device reached an optical emission power of up to 25 μW at 9 A/cm2 with an external quantum efficiency of 0.009%. Watt-Ampere characteristic linearity suggests that the optical power margin of the light-emitting diode has not been exhausted. Band structure calculations explain the luminescence as being mainly due to radiative recombination in the large β-FeSi2 nanocrystals resulting from the realization of an indirect-to-direct band gap electronic configuration transformation arising from a favorable deformation of nanocrystals. The direct band gap structure and the measured short decay time of the luminescence of several tens of ns give rise to a fast operation speed for the device. Thus a method for developing a silicon-based photonic integrated circuit, combining complementary metal-oxide-semiconductor technology functionality and near-infrared light emission, is reported here.

  11. V-Ge-Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Savitskij, E.M.; Efimov, Yu.V.; Bodak, O.I.; Kharchenko, O.I.; Shomova, N.A.; Frolova, T.M.

    By the methods of microscopic, X-ray phase analyses, X-ray spectral microanalysis as well as by measurement of Tsub(C) and phase lattice parameters the structure of the vanadium-region of the V-Ge ternary system (up to 40 at.%) - Cu(up to 90 at.%) is studied and isothermal cross section at 800 deg C is plotted. In the studied region solid solutions on the base of vanadium, copper and V/sub 3/Ge and V/sub 5/Ge/sub 3/ compounds are in phase equilibria. The solid solution on the vanadium base in ternary alloys practically does not possess superconductivity at the temperature over 4.2 K. Tsub(C) of V/sub 3/Ge saturated with copper decreases up to 5.3-5.6 K depending on treatment conditions and alloys composition. The superspeed quenching from molten state and the consequent low-temperature tempering of ternary alloys can increase V/sub 3/Ge Tsub(C) up to 6-6.7 K.

  12. Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Radmilovic, Velimir; Kim, Eui-Tae

    2009-11-01

    Charge memory characteristics have been systematically studied based on colloidal CdSe/ZnS nanocrystal quantum dots (QDs) embedded in ˜50 nm-thick TiO2 film. Ligand-capped QDs showed negligible electron charging effect, implying that the electron affinity of QDs was significantly decreased by surface dipole layer surrounding QDs. In contrast, the hole charging was affected by the carrier injection blocking effect of the surface ligands. Efficient electron and hole charging characteristics were realized by removing the surface ligands via H2 plasma treatment.

  13. Setup for in situ WAXS/SAXS studies of the formation and growth of Bi nanodroplets and the melting of Bi nanocrystals using synchrotron radiation

    CERN Document Server

    Kellermann, G; Neuenschwander, R; Plivelic, T S

    2003-01-01

    The setup was designed for in situ studies of structural transformations in materials at high temperatures. It makes possible simultaneous recording of wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) spectra from room temperature up to 1000 deg. C. The setup was installed in the National Synchrotron Light Laboratory SAXS beamline. It was applied to in situ studies of several structural transformations such as the formation and growth of liquid Bi nanodroplets embedded in a B sub 2 O sub 3 -Na sub 2 O glass and the melting of Bi nanocrystals dispersed in the same glass matrix.

  14. Embedded Linux projects using Yocto project cookbook

    CERN Document Server

    González, Alex

    2015-01-01

    If you are an embedded developer learning about embedded Linux with some experience with the Yocto project, this book is the ideal way to become proficient and broaden your knowledge with examples that are immediately applicable to your embedded developments. Experienced embedded Yocto developers will find new insight into working methodologies and ARM specific development competence.

  15. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Science.gov (United States)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai

    2016-09-01

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  16. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis

    2015-01-01

    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...

  17. Ether-like Si-Ge hydrides for applications in synthesis of nanostructured semiconductors and dielectrics.

    Science.gov (United States)

    Tice, Jesse B; Weng, Change; Tolle, John; D'Costa, Vijay R; Singh, Rachna; Menendez, Jose; Kouvetakis, John; Chizmeshya, Andrew V G

    2009-09-14

    Hydrolysis reactions of silyl-germyl triflates are used to produce ether-like Si-Ge hydride compounds including H(3)SiOSiH(3) and the previously unknown O(SiH(2)GeH(3))(2). The structural, energetic and vibrational properties of the latter were investigated by experimental and quantum chemical simulation methods. A combined Raman, infrared and theoretical analysis indicated that the compound consists of an equal mixture of linear and gauche isomers in analogy to the butane-like H(3)GeSiH(2)SiH(2)GeH(3) with an exceedingly small torsional barrier of approximately 0.2 kcal mol(-1). This is also corroborated by thermochemistry simulations which indicate that the energy difference between the isomers is less than 1 kcal mol(-1). Proof-of-principle depositions of O(SiH(2)GeH(3))(2) at 500 degrees C on Si(100) yielded nearly stoichiometric Si(2)Ge(2)O materials, closely reflecting the composition of the molecular core. A complete characterization of the film by RBS, XTEM, Raman and IR ellipsometry revealed the presence of Si(0.30)Ge(0.70) quantum dots embedded within an amorphous matrix of Si-Ge-O suboxide, as required for the fabrication of high performance nonvolatile memory devices. The use of readily available starting materials coupled with facile purification and high yields also makes the above molecular approach an attractive synthesis route to H(3)SiOSiH(3) with industrial applications in the formation of Si-O-N high-k gate materials in high-mobility SiGe based transistors.

  18. Titanium carbide nanocrystals in circumstellar environments

    NARCIS (Netherlands)

    von Helden, G; Tielens, ACGM; van Heijnsbergen, D; Duncan, MA; Hony, S; Waters, LBFM; Meijer, G.

    2000-01-01

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that i

  19. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  20. Titanium carbide nanocrystals in circumstellar environments

    NARCIS (Netherlands)

    von Helden, G.; Tielens, Acgm; van Heijnsbergen, D.; Duncan, M. A.; Hony, S.; Waters, Lbfm; Meijer, G.

    2000-01-01

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that i