WorldWideScience

Sample records for gcm simulation results

  1. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  2. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  3. Simulation and Sensitivity in a Nested Modeling System for South America. Part II: GCM Boundary Forcing.

    Science.gov (United States)

    Rojas, Maisa; Seth, Anji

    2003-08-01

    of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.

  4. A review of recent research on improvement of physical parameterizations in the GLA GCM

    Science.gov (United States)

    Sud, Y. C.; Walker, G. K.

    1990-01-01

    A systematic assessment of the effect of a series of improvements in physical parameterizations of the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) are summarized. The implementation of the Simple Biosphere Model (SiB) in the GCM is followed by a comparison of SiB GCM simulations with that of the earlier slab soil hydrology GCM (SSH-GCM) simulations. In the Sahelian context, the biogeophysical component of desertification was analyzed for SiB-GCM simulations. Cumulus parameterization is found to be the primary determinant of the organization of the simulated tropical rainfall of the GLA GCM using Arakawa-Schubert cumulus parameterization. A comparison of model simulations with station data revealed excessive shortwave radiation accompanied by excessive drying and heating to the land. The perpetual July simulations with and without interactive soil moisture shows that 30 to 40 day oscillations may be a natural mode of the simulated earth atmosphere system.

  5. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    Science.gov (United States)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  6. A new dynamical downscaling approach with GCM bias corrections and spectral nudging

    Science.gov (United States)

    Xu, Zhongfeng; Yang, Zong-Liang

    2015-04-01

    To improve confidence in regional projections of future climate, a new dynamical downscaling (NDD) approach with both general circulation model (GCM) bias corrections and spectral nudging is developed and assessed over North America. GCM biases are corrected by adjusting GCM climatological means and variances based on reanalysis data before the GCM output is used to drive a regional climate model (RCM). Spectral nudging is also applied to constrain RCM-based biases. Three sets of RCM experiments are integrated over a 31 year period. In the first set of experiments, the model configurations are identical except that the initial and lateral boundary conditions are derived from either the original GCM output, the bias-corrected GCM output, or the reanalysis data. The second set of experiments is the same as the first set except spectral nudging is applied. The third set of experiments includes two sensitivity runs with both GCM bias corrections and nudging where the nudging strength is progressively reduced. All RCM simulations are assessed against North American Regional Reanalysis. The results show that NDD significantly improves the downscaled mean climate and climate variability relative to other GCM-driven RCM downscaling approach in terms of climatological mean air temperature, geopotential height, wind vectors, and surface air temperature variability. In the NDD approach, spectral nudging introduces the effects of GCM bias corrections throughout the RCM domain rather than just limiting them to the initial and lateral boundary conditions, thereby minimizing climate drifts resulting from both the GCM and RCM biases.

  7. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations

    KAUST Repository

    Xu, Zhongfeng; Yang, Zong-Liang

    2012-01-01

    An improved dynamical downscaling method (IDD) with general circulation model (GCM) bias corrections is developed and assessed over North America. A set of regional climate simulations is performed with the Weather Research and Forecasting Model

  8. Climatology and variability in the ECHO coupled GCM

    International Nuclear Information System (INIS)

    Latif, M.; Stockdale, T.; Wolff, J.; Burgers, G.; Maier-Reimer, E.; Junge, M.M.; Arpe, K.; Bengtsson, L.

    1993-01-01

    ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a twenty year integration with ECHO. Climate drift is significant, but typical in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The mechanism behind the model ENSO is related to the subsurface memory of the system, but stochastic forcing by the atmosphere seems to be also important. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in midlatitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contract, the interannual variability over the North Atlantic appears to be generated locally. Indications for decadal-scale variability are also found over the North Atlantic. (orig.)

  9. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations

    KAUST Repository

    Xu, Zhongfeng

    2012-09-01

    An improved dynamical downscaling method (IDD) with general circulation model (GCM) bias corrections is developed and assessed over North America. A set of regional climate simulations is performed with the Weather Research and Forecasting Model (WRF) version 3.3 embedded in the National Center for Atmospheric Research\\'s (NCAR\\'s) Community Atmosphere Model (CAM). The GCM climatological means and the amplitudes of interannual variations are adjusted based on the National Centers for Environmental Prediction (NCEP)-NCAR global reanalysis products (NNRP) before using them to drive WRF. In this study, the WRF downscaling experiments are identical except the initial and lateral boundary conditions derived from the NNRP, original GCM output, and bias-corrected GCM output, respectively. The analysis finds that the IDD greatly improves the downscaled climate in both climatological means and extreme events relative to the traditional dynamical downscaling approach (TDD). The errors of downscaled climatological mean air temperature, geopotential height, wind vector, moisture, and precipitation are greatly reduced when the GCM bias corrections are applied. In the meantime, IDD also improves the downscaled extreme events characterized by the reduced errors in 2-yr return levels of surface air temperature and precipitation. In comparison with TDD, IDD is also able to produce a more realistic probability distribution in summer daily maximum temperature over the central U.S.-Canada region as well as in summer and winter daily precipitation over the middle and eastern United States. © 2012 American Meteorological Society.

  10. A statistical-dynamical modeling approach for the simulation of local paleo proxy records using GCM output

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, B.K.; Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Aakesson, O. [Sveriges Meteorologiska och Hydrologiska Inst., Norrkoeping (Sweden)

    1998-08-01

    Recent proxy data obtained from ice core measurements, dendrochronology and valley glaciers provide important information on the evolution of the regional or local climate. General circulation models integrated over a long period of time could help to understand the (external and internal) forcing mechanisms of natural climate variability. For a systematic interpretation of in situ paleo proxy records, a combined method of dynamical and statistical modeling is proposed. Local 'paleo records' can be simulated from GCM output by first undertaking a model-consistent statistical downscaling and then using a process-based forward modeling approach to obtain the behavior of valley glaciers and the growth of trees under specific conditions. The simulated records can be compared to actual proxy records in order to investigate whether e.g. the response of glaciers to climatic change can be reproduced by models and to what extent climate variability obtained from proxy records (with the main focus on the last millennium) can be represented. For statistical downscaling to local weather conditions, a multiple linear forward regression model is used. Daily sets of observed weather station data and various large-scale predictors at 7 pressure levels obtained from ECMWF reanalyses are used for development of the model. Daily data give the closest and most robust relationships due to the strong dependence on individual synoptic-scale patterns. For some local variables, the performance of the model can be further increased by developing seasonal specific statistical relationships. The model is validated using both independent and restricted predictor data sets. The model is applied to a long integration of a mixed layer GCM experiment simulating pre-industrial climate variability. The dynamical-statistical local GCM output within a region around Nigardsbreen glacier, Norway is compared to nearby observed station data for the period 1868-1993. Patterns of observed

  11. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  12. Evaluation of statistically downscaled GCM output as input for hydrological and stream temperature simulation in the Apalachicola–Chattahoochee–Flint River Basin (1961–99)

    Science.gov (United States)

    Hay, Lauren E.; LaFontaine, Jacob H.; Markstrom, Steven

    2014-01-01

    metrics such as the mean and variance and an evaluation of rare and sustained events. In general, precipitation and streamflow quantities were negatively biased in the downscaled GCM outputs, and results indicate that the downscaled GCM simulations consistently underestimate the largest precipitation events relative to the GSD. The KS test results indicate that ARRM-based air temperatures are similar to GSD at the daily time step for the majority of the ACFB, with perhaps subweekly averaging for stream temperature. Depending on GCM and spatial location, ARRM-based precipitation and streamflow requires averaging of up to 30 days to become similar to the GSD-based output.Evaluation of the model skill for historical conditions suggests some guidelines for use of future projections; while it seems correct to place greater confidence in evaluation metrics which perform well historically, this does not necessarily mean those metrics will accurately reflect model outputs for future climatic conditions. Results from this study indicate no “best” overall model, but the breadth of analysis can be used to give the product users an indication of the applicability of the results to address their particular problem. Since results for historical conditions indicate that model outputs can have significant biases associated with them, the range in future projections examined in terms of change relative to historical conditions for each individual GCM may be more appropriate.

  13. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, M.A. [Columbia Univ., Palisades, NY (United States); Rind, D.; Ruedy, R. [Goddard Institute for Space Studies, New York, NY (United States)

    1992-05-01

    Results from new simulations of the Early Jurassic climate show that increased ocean heat transport may have been the primary force generating warmer climates during the past 180 m.y. The simulations, conducted using the general circulation model (GCM) at the Goddard Institute for Space Studies, include realistic representations of paleocontinental distribution, topography, epeiric seas, and vegetation, in order to facilitate comparisons between model results and paleoclimate data. three major features of the simulated Early Jurassic climate include the following. (1) A global warming, compared to the present, of 5 {degrees}C to 10 {degrees}C, with temperature increases at high latitudes five times this global average. Average summer temperatures exceed 35 {degrees}C in low-latitude regions of western Pangaea where eolian sandstones testify to the presence of vast deserts. (2) Simulated precipitation and evaporation patterns agree closely with the moisture distribution interpreted from evaporites, and coal deposits. High rainfall rates are associated primarily with monsoons that originate over the warm Tethys Ocean. Unlike the {open_quotes}megamonsoons{close_quotes} proposed in previous studies, these systems are found to be associated with localized pressure cells whose positions are controlled by topography and coastal geography. (3) Decreases in planetary albedo, occurring because of reductions in sea ice, snow cover, and low clouds, and increases in atmospheric water vapor are the positive climate feedbacks that amplify the global warming. Similar to other Mesozoic climate simulations, our model finds that large seasonal temperature fluctuations occurred over mid- and high-latitude continental interiors, refuting paleoclimate evidence that suggests more equable conditions. 101 refs., 9 figs., 3 tabs.

  14. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  15. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  16. Studies of African wave disturbances with the GISS GCM

    Science.gov (United States)

    Druyan, Leonard M.; Hall, Timothy M.

    1994-01-01

    Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4 deg latitude by 5 deg longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5-10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12 deg - 20 deg N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5-8 day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

  17. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism.

    Science.gov (United States)

    Guan, Bin; Welch, James M; Sapp, Julie C; Ling, Hua; Li, Yulong; Johnston, Jennifer J; Kebebew, Electron; Biesecker, Leslie G; Simonds, William F; Marx, Stephen J; Agarwal, Sunita K

    2016-11-03

    Primary hyperparathyroidism (PHPT) is a common endocrine disease characterized by parathyroid hormone excess and hypercalcemia and caused by hypersecreting parathyroid glands. Familial PHPT occurs in an isolated nonsyndromal form, termed familial isolated hyperparathyroidism (FIHP), or as part of a syndrome, such as multiple endocrine neoplasia type 1 or hyperparathyroidism-jaw tumor syndrome. The specific genetic or other cause(s) of FIHP are unknown. We performed exome sequencing on germline DNA of eight index-case individuals from eight unrelated kindreds with FIHP. Selected rare variants were assessed for co-segregation in affected family members and screened for in an additional 32 kindreds with FIHP. In eight kindreds with FIHP, we identified three rare missense variants in GCM2, a gene encoding a transcription factor required for parathyroid development. Functional characterization of the GCM2 variants and deletion analyses revealed a small C-terminal conserved inhibitory domain (CCID) in GCM2. Two of the three rare variants were recurrent, located in the GCM2 CCID, and found in seven of the 40 (18%) kindreds with FIHP. These two rare variants acted as gain-of-function mutations that increased the transcriptional activity of GCM2, suggesting that GCM2 is a parathyroid proto-oncogene. Our results demonstrate that germline-activating mutations affecting the CCID of GCM2 can cause FIHP. Published by Elsevier Inc.

  18. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century

    Directory of Open Access Journals (Sweden)

    I. Diallo

    2012-01-01

    Full Text Available Reliable climate change scenarios are critical for West Africa, whose economy relies mostly on agriculture and, in this regard, multimodel ensembles are believed to provide the most robust climate change information. Toward this end, we analyze and intercompare the performance of a set of four regional climate models (RCMs driven by two global climate models (GCMs (for a total of 4 different GCM-RCM pairs in simulating present day and future climate over West Africa. The results show that the individual RCM members as well as their ensemble employing the same driving fields exhibit different biases and show mixed results in terms of outperforming the GCM simulation of seasonal temperature and precipitation, indicating a substantial sensitivity of RCMs to regional and local processes. These biases are reduced and GCM simulations improved upon by averaging all four RCM simulations, suggesting that multi-model RCM ensembles based on different driving GCMs help to compensate systematic errors from both the nested and the driving models. This confirms the importance of the multi-model approach for improving robustness of climate change projections. Illustrative examples of such ensemble reveal that the western Sahel undergoes substantial drying in future climate projections mostly due to a decrease in peak monsoon rainfall.

  19. GCM simulations of stable isotopes in the water cycle in comparison with GNIP observations over East Asia

    Science.gov (United States)

    Zhang, Xinping; Sun, Zhian; Guan, Huade; Zhang, Xinzhu; Wu, Huawu; Huang, Yimin

    2012-08-01

    In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (University of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne University), by comparing the model results with GNIP (Global Network of Isotopes in Precipitation) observations. The spatial distributions of mean annual δD and mean annual deuterium excess d in precipitation, and the relationship between δ 18O and δD in precipitation, are compared between GCMs and GNIP data over East Asia. Overall, the four GCMs reproduce major characteristics of δD in precipitation as observed by GNIP. Among the four models, the results of ECHAM4 and GISS E are more consistent with GNIP observed precipitation δD distribution. The simulated d distributions are less consistent with the GNIP results. This may indicate that kinetic fractionation processes are not appropriately represented in the isotopic schemes of GCMs. The GCM modeled MWL (meteoric water line) slopes are close to the GNIP derived MWL, but the simulated MWL intercepts are significantly overestimated. This supports that the four isotope incorporated GCMs may not represent the kinetic fractionation processes well. In term of LMWLs (local meteoric water lines), the simulated LMWL slopes are similar to those from GNIP observations, but slightly overestimated for most locations. Overall, ECHAM4 has better capability in simulating MWL and LMWLs, followed by GISS E. Some isotopic functions (especially those related to kinetic fractionation) and their parameterizations in GCMs may have caused the discrepancy between the simulated and GNIP observed results. Future work is recommended to improve isotopic function parameterization on the basis of the high-resolution isotope observations.

  20. Transient and stationary eddies in differing GCM climates

    International Nuclear Information System (INIS)

    Hall, N.M.J.; Valdes, P.J.

    1994-01-01

    The response of transients to changing forcing/boundary conditions can be just as striking as the response of mean fields such as surface temperature. Indeed the two are intimately linked and the extent to which the transients are either controlled by, or shape the mean flow is difficult to quantify. Diagnostics are presented from several GCM equilibrium climate simulations using the UGAMP GCM. These include representations of the present climate: The Last Glacial Maximum and the Jurassic climate (150 M years ago). Changes in the distribution of transient eddy activity are compared with changes in low level baroclinicity to assess the direct response of the storm tracks to local conditions. Budget calculations are also presented to identify the changing roles of different components of the atmospheric circulation in transporting heat and moisture from equator to pole

  1. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    Science.gov (United States)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed

  2. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    Science.gov (United States)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  3. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  4. How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO

    Directory of Open Access Journals (Sweden)

    Claas Teichmann

    2013-06-01

    Full Text Available Global and regional climate model simulations are frequently used for regional climate change assessments and in climate impact modeling studies. To reflect the inherent and methodological uncertainties in climate modeling, the assessment of regional climate change requires ensemble simulations from different global and regional climate model combinations. To interpret the spread of simulated results, it is useful to understand how the climate change signal is modified in the GCM-RCM modelmodelgeneral circulation model-regional climate model (GCM-RCM chain. This kind of information can also be useful for impact modelers; for the process of experiment design and when interpreting model results. In this study, we investigate how the simulated historical and future climate of the Max-Planck-Institute earth system model (MPI-ESM is modified by dynamic downscaling with the regional model REMO in different world regions. The historical climate simulations for 1950–2005 are driven by observed anthropogenic forcing. The climate projections are driven by projected anthropogenic forcing according to different Representative Concentration Pathways (RCPs. The global simulations are downscaled with REMO over the Coordinated Regional Climate Downscaling Experiment (CORDEX domains Africa, Europe, South America and West Asia from 2006–2100. This unique set of simulations allows for climate type specific analysis across multiple world regions and for multi-scenarios. We used a classification of climate types by Köppen-Trewartha to define evaluation regions with certain climate conditions. A systematic comparison of near-surface temperature and precipitation simulated by the regional and the global model is done. In general, the historical time period is well represented by the GCM and the RCM. Some different biases occur in the RCM compared to the GCM as in the Amazon Basin, northern Africa and the West Asian domain. Both models project similar warming

  5. Impacts of Groundwater on the Atmospheric Convection in Amazon using Multi-GCM Simulations from I-GEM project

    Science.gov (United States)

    Lo, M. H.; Chien, R. Y.; Ducharne, A.; Decharme, B.; Lan, C. W.; Wang, F.; Cheruy, F.; Colin, J.

    2017-12-01

    Previous research indicated that groundwater plays an important role in hydrological cycle and is a major source of water vapor in climate models, which may result in modifications of atmospheric convection. For instance, our previous study showed that when considering the groundwater dynamics in a GCM, the wet soil induced surface cooling effect can further reduce the Amazon dry season convection and precipitation. However, the main mechanisms of the interaction among groundwater, soil moisture, and precipitation are still unclear, and they need to be examined in several climate models. In this study, we further examine the influence of the surface cooling effects due to the groundwater on the convection over the Amazon. To this end, we use idealized simulations of the IGEM (Impact of Groundwater in Earth system Models) project, with 3 GCMs (CESM, CNRM, and IPSL): in each of them, we prescribed a water table at a constant depth throughout all land areas, to create globally wet conditions. Preliminary analysis shows a contradict result of the tendency of precipitation in the three models with wet condition which indicates a great uncertainty of the groundwater's impacts in coupled GCMs.

  6. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  7. The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.L. [Univ. of Arizona, Tucson, AZ (United States); Pitman, A.J. [Macquarie Univ., Sydney (Australia); McAvaney, B. [Bureau of Meterology Research Centre, Melbourne (Australia)] [and others

    1995-07-01

    This study describes the first order impacts of incorporating a complex land-surface scheme, the bare essentials of surface transfer (BEST), into the Australian Bureau of Meteorology Research Centre (BMRC) global atmospheric general circulation model (GCM). Land seasonal climatologies averaged over the last six years of integrations after equilibrium from the GCM with BEST and without BEST (the control) are compared. The modeled results are evaluated with comprehensive sources of data, including the layer-cloud climatologies project (ISCCP) data from 1983 to 1991 and the surface-observed global data of Warrent et al., a five-year climatology of surface albedo estimated from earth radiation budget experiment (ERBE) top-of-the-atmosphere (TOA) radiative fluxes, global grid point datasets of precipitation, and the climatological analyses of surface evaporation and albedo. Emphasis is placed on the surface evaluation of simulations of land-surface conditions such as surface roughness, surface albedo and the surface wetness factor, and on their effects on surface evaporation, precipitation, layer-cloud and surface temperature. The improvements due to the inclusion of BEST are: a realistic geographical distribution of surface roughness, a decrease in surface albedo over areas with seasonal snow cover, an an increase in surface albedo over snow-free land. The simulated reduction in surface evaporation due, in part, to the bio-physical control of vegetation, is also consistent with the previous studies. Since the control climate has a dry bias, the overall simulations from the GCM with BEST are degraded, except for significant improvements for the northern winter hemisphere because of the realistic vegetation-masking effects. The implications of our results for synergistic developments of other aspects of model parameterization schemes such as boundary layer dynamics, clouds, convection and rainfall are discussed. 82 refs., 9 figs., 3 tabs.

  8. Potential vorticity dynamics in the Canadian Climate Centre GCM

    International Nuclear Information System (INIS)

    Koshyk, J.N.; McFarlane, N.

    1994-01-01

    The global distribution of Ertel potential vorticity (PV), simulated by the Canadian Climate Centre general circulation model (CCC GCM) is examined. An expression for PV in terms of an arbitrary vertical coordinate is formulated. This expression is used to calculate temporally averaged PV from the model temperature and wind fields. It is shown that a good approximation to the temporally averaged PV can be obtained from temporally averaged temperature and wind fields. An equation governing the time evolution of PV in the model vertical coordinate system is also derived. This equation is written in flux form and the associated flux is examined in a lower stratographic region of enhanced gravity-wave drag, above the Tibetan plateau. In this region, the southward transport of PV effected by gravity-wave drag is balanced to a large degree by the advection of PV northward. Finally, results from a recent experimental version of the CCC GCM, with an uppermost level at 1 mb, are used to examine PV dynamics associated with a spontaneous model stratospheric sudden warming. The warming is preceded by 2 successive large amplitude wavenumber 1 disturbances in the lower stratosphere. The second of these leads to splitting of the mid-stratospheric vortex into a double vortex pattern, as is clearly evident on maps of the 850K PV field during the warming period

  9. Storm track response to climate change: Insights from simulations using an idealized dry GCM.

    Science.gov (United States)

    Mbengue, Cheikh; Schneider, Tapio

    2013-04-01

    The midlatitude storm tracks, where the most intense extratropical cyclones are found, are an important fixture in the general circulation. They are instrumental in balancing the Earth's heat, momentum, and moisture budgets and are responsible for the weather and climatic patterns over large regions of the Earth's surface. As a result, the midlatitude storm tracks are the subject of a considerable amount of scientific research to understand their response to global warming. This has produced the robust result showing that the storm tracks migrate poleward with global warming. However, the dynamical mechanisms responsible for this migration remain unclear. Our work seeks to broaden understanding of the dynamical mechanisms responsible for storm track migration. Competing mechanisms present in the comprehensive climate models often used to study storm track dynamics make it difficult to determine the primary mechanisms responsible for storm track migration. We are thus prompted to study storm track dynamics from a simplified and idealized framework, which enables the decoupling of mean temperature effects from the effects of static stability and of tropical from extratropical effects. Using a statistically zonally symmetric, dry general circulation model (GCM), we conduct a series of numerical simulations to help understand the storm track response to global mean temperatures and to the tropical convective static stability, which we can vary independently. We define storm tracks as regions of zonally and temporally averaged maxima of barotropic eddy kinetic energy (EKE). This storm track definition also allows us to use previously found scalings between the magnitude of bulk measures of mean available potential energy (MAPE) and EKE, to decompose MAPE, and to obtain some mechanistic understanding of the storm track response in our simulations. These simulations provide several insights, which enable us to extend upon existing theories on the mechanisms driving the

  10. A New Way for Incorporating GCM Information into Water Shortage Projections

    Directory of Open Access Journals (Sweden)

    Seung Beom Seo

    2015-05-01

    Full Text Available Climate change information is essential for water resources management planning, and the majority of research available uses the global circulation model (GCM data to project future water balance. Despite the fact that the results of various GCMs are still heterogeneous, it is common to utilize GCM values directly in climate change impact assessment models. To mitigate these limitations, this study provides an alternative methodology, which uses GCM-based data to assign weights on historical scenarios rather than to directly input their values into the assessment models, thereby reducing the uncertainty involved in the direct use of GCMs. Therefore, the real innovation of this study is placed on the use of a new probability weighting scheme with multiple GCMs rather than on the direct input of GCM-driven data. Applied to make future projections of the water shortage in the Han River basin of Korea, the proposed methodology produced conservative but realistic projection results (15% increase compared to the existing methodologies, which projected a dramatic increase (144% in water shortage over 10 years. As a result, it was anticipated that the amount of water shortages in the Han River basin would gradually increase in the next 90 years, including a 57% increase in the 2080s.

  11. Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model

    Science.gov (United States)

    Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.

    1988-01-01

    Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.

  12. Magnetic perturbations seen by CHAMP and evaluated using the TIE-GCM

    Directory of Open Access Journals (Sweden)

    D. T. Mozzoni

    2007-07-01

    Full Text Available The Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM is a self-consistent, global, atmospheric model that can be used to estimate magnetic perturbations at satellite altitude. These computed perturbations can then be compared with the magnetic vector data provided by low-earth orbiting satellites. In this initial study, the quietest day of each month from 2001–2005 was selected for comparison. CHAMP magnetic vector residuals were computed for these intervals using the CHAOS model to remove core and crustal geomagnetic contributions. Under various input parameters, the TIE-GCM predictions were compared with the CHAMP residuals on an orbit by orbit basis. Initial results demonstrate a reasonable agreement between the TIE-GCM estimates and the CHAMP residuals in non-polar, dayside regions (±50° magnetic latitude where both are able to resolve the Equatorial Electro-Jet (EEJ and solar quiet (Sq current systems. Although no clear component or temporal correlation was discerned, evidence showing the decrease in residual comparisons presents the possibility of using the TIE-GCM to pre-process geomagnetic data for main field modeling purposes.

  13. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  14. Changes of Hydrological Cycles in Land and Atmosphere in Europe and Asia in Case of Deforestation of Siberia (Results of GCM Numerical Experiments)

    International Nuclear Information System (INIS)

    Rubinstein, Konstantin G.; Shmakin, Andrey B.

    2004-01-01

    A new parameterization scheme of land hydrology was introduced into GCM of Hydro meteorological Centre of Russia. In this paper a short description of GCM and the scheme and their main parameters is given, as well as some results of experiments are discussed. It was analyzed hydrological balance in Atmosphere above Euro-Asia continent in two experiments. One of them we call 'Control' and other 'Siberian'. It differs only in type of vegetation and soil in Siberian region. It was shown that in case of 'Siberian deforestation' experiment average summer precipitation and evaporation became detectable less. In region of Caspian Sea precipitation and a little evaporation grow. As consequence it is possible to see changes in season changes of runoff Siberian and Caspian Sea basins. Runoff Siberian rivers decrease (as example we show result of Lena basin) and runoff Caspian basin increase.(Author)

  15. Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study

    Science.gov (United States)

    Walker, G. K.; Sud, Y. C.; Atlas, R.

    1995-01-01

    Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.

  16. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey

    2015-01-01

    Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...

  17. A relationship between regional and global GCM surface air temperature changes and its application to an integrated model of climate change

    International Nuclear Information System (INIS)

    Jonas, M.; Ganopolski, A.V.; Krabec, J.; Olendrzyski, K.; Petoukhov, V.K.

    1994-01-01

    This study outlines the advantages of combining the Integrated Model to Assess the Greenhouse affect (IMAGE, an integrated quick turnaround, global model of climate change) with a spatially detailed General Circulation Model (GCM), in this case developed at the Max Planck Institute for Meteorology (MPI) in Hamburg. The outcome is a modified IMAGE model that simulates the MPI GCM projections of annual surface air temperature change globally and regionally. IMAGE thus provides policy analysts with integrated and regional information about global warming for a great range of policy-dependent greenhouse gas emission or concentration scenarios, while preserving its quick turnaround time. With the help of IMAGE various regional temperature response simulations have been produced. None of these simulations has yet been performed by any GCM. The simulations reflect the uncertainty range of a future warming. In this study the authors deal only with a simplified subsystem of such an integrated model of climate change, which begins with policy options, neglects the societal component in the greenhouse gas accounting tool, and ends with temperature change as the only output of the climate model. The model the authors employ is the Integrated Model to Assess the Greenhouse Effect (IMAGE, version 1.0), which was developed by the Netherlands National Institute of Public Health and Environmental Protection (RIVM). IMAGE is a scientifically based, parameterized simulation policy model designed to calculate the historical and future effects of greenhouse gases on global surface and surface air temperatures and sea-level rise

  18. Linking glacial and future climates through an ensemble of GCM simulations

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2007-01-01

    Full Text Available In this paper we explore the relationships between the modelled climate of the Last Glacial Maximum (LGM and that for doubled atmospheric carbon dioxide compared to the pre-industrial climate by analysing the output from an ensemble of runs from the MIROC3.2 GCM. Our results lend support to the idea in other recent work that the Antarctic is a useful place to look for historical data which can be used to validate models used for climate forecasting of future greenhouse gas induced climate changes, at local, regional and global scales. Good results may also be obtainable using tropical temperatures, particularly those over the ocean. While the greater area in the tropics makes them an attractive area for seeking data, polar amplification of temperature changes may mean that the Antarctic provides a clearer signal relative to the uncertainties in data and model results. Our result for Greenland is not so strong, possibly due to difficulties in accurately modelling the sea ice extent. The MIROC3.2 model shows an asymmetry in climate sensitivity calculated by decreasing rather than increasing the greenhouse gases, with 80% of the ensemble having a weaker cooling than warming. This asymmetry, if confirmed by other studies would mean that direct estimates of climate sensitivity from the LGM are likely to be underestimated by the order of half a degree. Our suspicion is, however, that this result may be highly model dependent. Analysis of the parameters varied in the model suggest the asymmetrical response may be linked to the ice in the clouds, which is therefore indicated as an important area for future research.

  19. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  20. Statistical Downscaling Output GCM Modeling with Continuum Regression and Pre-Processing PCA Approach

    Directory of Open Access Journals (Sweden)

    Sutikno Sutikno

    2010-08-01

    Full Text Available One of the climate models used to predict the climatic conditions is Global Circulation Models (GCM. GCM is a computer-based model that consists of different equations. It uses numerical and deterministic equation which follows the physics rules. GCM is a main tool to predict climate and weather, also it uses as primary information source to review the climate change effect. Statistical Downscaling (SD technique is used to bridge the large-scale GCM with a small scale (the study area. GCM data is spatial and temporal data most likely to occur where the spatial correlation between different data on the grid in a single domain. Multicollinearity problems require the need for pre-processing of variable data X. Continuum Regression (CR and pre-processing with Principal Component Analysis (PCA methods is an alternative to SD modelling. CR is one method which was developed by Stone and Brooks (1990. This method is a generalization from Ordinary Least Square (OLS, Principal Component Regression (PCR and Partial Least Square method (PLS methods, used to overcome multicollinearity problems. Data processing for the station in Ambon, Pontianak, Losarang, Indramayu and Yuntinyuat show that the RMSEP values and R2 predict in the domain 8x8 and 12x12 by uses CR method produces results better than by PCR and PLS.

  1. Gestió remota de serveis de mòbils mitjançant GCM

    OpenAIRE

    Sarda Duran, Marc

    2015-01-01

    This project is developing a system to understand the service offered by Google, Google Cloud Messaging to receive emerging notifications to mobile devices. The system consists of a client application, developed with Eclipse IDE and the Android SDK and server programmed in C #, using Visual Studio 2010. The customer will be able to register to GCM service, and receive notifications of GCM server. The implemented server, will be able to send messages to GCM server, and GCM server resend this m...

  2. Close to Optimally Secure Variants of GCM

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2018-01-01

    Full Text Available The Galois/Counter Mode of operation (GCM is a widely used nonce-based authenticated encryption with associated data mode which provides the birthday-bound security in the nonce-respecting scenario; that is, it is secure up to about 2n/2 adversarial queries if all nonces used in the encryption oracle are never repeated, where n is the block size. It is an open problem to analyze whether GCM security can be improved by using some simple operations. This paper presents a positive response for this problem. Firstly, we introduce two close to optimally secure pseudorandom functions and derive their security bound by the hybrid technique. Then, we utilize these pseudorandom functions that we design and a universal hash function to construct two improved versions of GCM, called OGCM-1 and OGCM-2. OGCM-1 and OGCM-2 are, respectively, provably secure up to approximately 2n/67(n-12 and 2n/67 adversarial queries in the nonce-respecting scenario if the underlying block cipher is a secure pseudorandom permutation. Finally, we discuss the properties of OGCM-1 and OGCM-2 and describe the future works.

  3. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  4. EdGCM: Research Tools for Training the Climate Change Generation

    Science.gov (United States)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To

  5. Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

    Energy Technology Data Exchange (ETDEWEB)

    Garino, Terry J.; Nenoff, Tina M.; Rodriguez, Mark A.

    2014-04-01

    The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

  6. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    Science.gov (United States)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  7. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  8. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  9. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    Science.gov (United States)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  10. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

    Science.gov (United States)

    Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  11. Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM

    Science.gov (United States)

    Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa

    2018-02-01

    Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.

  12. The ability of a GCM-forced hydrological model to reproduce global discharge variability

    NARCIS (Netherlands)

    Sperna Weiland, F.C.; Beek, L.P.H. van; Kwadijk, J.C.J.; Bierkens, M.F.P.

    2010-01-01

    Data from General Circulation Models (GCMs) are often used to investigate hydrological impacts of climate change. However GCM data are known to have large biases, especially for precipitation. In this study the usefulness of GCM data for hydrological studies, with focus on discharge variability

  13. Exploring diurnal and seasonal characteristics of global carbon cycle with GISS Model E2 GCM

    Science.gov (United States)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.

    2017-12-01

    The ability to properly model surface carbon fluxes on the diurnal and seasonal time scale is a necessary requirement for understanding of the global carbon cycle. It is also one of the most challenging tasks faced by modern General Circulation Models (GCMs) due to complexity of the algorithms and variety of relevant spatial and temporal scales. The observational data, though abundant, is difficult to interpret at the global scale, because flux tower observations are very sparse for large impact areas (such as Amazon and African rainforest and most of Siberia) and satellite missions often struggle to produce sufficiently high confidence data over the land and may be missing CO2 amounts near the surface due to the nature of the method. In this work we use the GISS Model E2 GCM to perform a subset of experiments proposed by the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) and relate the results to available observations.The GISS Model E2 GCM is currently equipped with a complete global carbon cycle algorithm. Its surface carbon fluxes are computed by the Ent Terrestrial Biosphere Model (Ent TBM) over the land with observed leaf area index of the Moderate Resolution Imaging Spectrometer (MODIS) and by the NASA Ocean Biogeochemistry Model (NOBM) over the ocean. The propagation of atmospheric CO2 is performed by a generic Model E2 tracer algorithm, which is based on a quadratic upstream method (Prather 1986). We perform a series spin-up experiments for preindustrial climate conditions and fixed preindustrial atmospheric CO2 concentration. First, we perform separate spin-up simulations each for terrestrial and ocean carbon. We then combine the spun-up states and perform a coupled spin-up simulation until the model reaches a sufficient equilibrium. We then release restrictions on CO2 concentration and allow it evolve freely, driven only by simulated surface fluxes. We then study the results of the unforced run, comparing the amplitude and the phase

  14. Numerical simulation of the circulation of the atmosphere of Titan

    Science.gov (United States)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  15. A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change

    International Nuclear Information System (INIS)

    Sailor, D.J.; Hu, T.; Li, X.; Rosen, J.N.

    2000-01-01

    A methodology is presented for downscaling General Circulation Model (GCM) output to predict surface wind speeds at scales of interest in the wind power industry under expected future climatic conditions. The approach involves a combination of Neural Network tools and traditional weather forecasting techniques. A Neural Network transfer function is developed to relate local wind speed observations to large scale GCM predictions of atmospheric properties under current climatic conditions. By assuming the invariability of this transfer function under conditions of doubled atmospheric carbon dioxide, the resulting transfer function is then applied to GCM output for a transient run of the National Center for Atmospheric Research coupled ocean-atmosphere GCM. This methodology is applied to three test sites in regions relevant to the wind power industry - one in Texas and two in California. Changes in daily mean wind speeds at each location are presented and discussed with respect to potential implications for wind power generation. (author)

  16. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Directory of Open Access Journals (Sweden)

    H. J. Punge

    2012-11-01

    Full Text Available Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP and the Eemian (126 kyr BP. While being limited by the low resolution of the general circulation model (GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.

  17. Downscaling of GCM forecasts to streamflow over Scandinavia

    DEFF Research Database (Denmark)

    Nilsson, P.; Uvo, C.B.; Landman, W.A.

    2008-01-01

    flows. The technique includes model output statistics (MOS) based on a non-linear Neural Network (NN) approach. Results show that streamflow forecasts from Global Circulation Model (GCM) predictions, for the Scandinavia region are viable and highest skill values were found for basins located in south......A seasonal forecasting technique to produce probabilistic and deterministic streamflow forecasts for 23 basins in Norway and northern Sweden is developed in this work. Large scale circulation and moisture fields, forecasted by the ECHAM4.5 model 4 months in advance, are used to forecast spring...

  18. Regionalisation of the recent and potential future climate of Central Asia. Modelling on the basis of direct climate data. Final report; Regionalisierung der rezenten und potentiell-zukuenftigen Klimaverhaeltnisse Zentralasiens. Modellierung auf Basis von direkten Klimadaten, geomorphologisch-palaeooekologischen Befunden und GCM-Simulationen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boehner, J; Haselein, F; Hoffmann, H; Klinge, M; Lehmkuhl, F

    2001-07-01

    During the research project, the scientific base for the methodological coupling of GCM-Simulations and relief parametrisations for a spatially distributed downscaling scheme and for the detection of climatic controlled geomorphologic process regions was founded. The results of the application of the downscaling procedure and the detected climatic determinants of the recent geomorphologic process regions serve as the actualistic base for a proxy based climatic reconstruction as well as for the prognosis of potential future climatic impacts on the environment of Central and High Mountain Asia. For the Last Glacial Maximum (LGM), the spatial distribution of temperature and precipitation of Central- and High Mountain Asia was reconstructed and compared to the downscaling results of GCM-Paleo simulations (ECHAM). Due to the possibility of a direct parameterisation of GCM generated circulation variables and complex relief parameters for the regionalisation of climatic variables and geomorphologic process regions, the validation of ECHAM paleo simulations was also possible by comparing the proxy based reconstruction of the late quaternary environment to the modelled environment as derived from the application of ECHAM LGM simulations. For the assessment of potential future climatic impacts on the natural environment, alternative SRES emission scenarios are taken into account to detect the range of possible future changes in the distribution of Central Asia mountain belts and climatic controlled geomorphologic process regions. (orig.) [German] Im Rahmen des Forschungsprojektes wurden die Grundlagen zur methodisch-konzeptionellen Koppelung von GCM-Simulationen mit Reliefparametrisierungen zur raeumlich hochaufloesenden Klimaregionalisierung sowie zur Erfassung und quantitativen Eingrenzung klimatisch determinierter Prozessregionen geschaffen, die die aktualistische Basis fuer Klimarekonstruktionen auf Basis von Proxies aber auch die Grundlage fuer geomorphologisch

  19. Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models

    Directory of Open Access Journals (Sweden)

    Gusfan Halik

    2015-01-01

    Full Text Available Climate change has significant impacts on changing precipitation patterns causing the variation of the reservoir inflow. Nowadays, Indonesian hydrologist performs reservoir inflow prediction according to the technical guideline of Pd-T-25-2004-A. This technical guideline does not consider the climate variables directly, resulting in significant deviation to the observation results. This research intends to predict the reservoir inflow using the statistical downscaling (SD of General Circulation Model (GCM outputs. The GCM outputs are obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR Reanalysis. A new proposed hybrid SD model named Wavelet Support Vector Machine (WSVM was utilized. It is a combination of the Multiscale Principal Components Analysis (MSPCA and nonlinear Support Vector Machine regression. The model was validated at Sutami Reservoir, Indonesia. Training and testing were carried out using data of 1991–2008 and 2008–2012, respectively. The results showed that MSPCA produced better extracting data than PCA. The WSVM generated better reservoir inflow prediction than the one of technical guideline. Moreover, this research also applied WSVM for future reservoir inflow prediction based on GCM ECHAM5 and scenario SRES A1B.

  20. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    Science.gov (United States)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  1. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data

  2. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  3. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  4. Multi-Modal Traveler Information System - GCM Corridor Architecture Functional Requirements

    Science.gov (United States)

    1997-11-17

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  5. Modeling radiative transfer with the doubling and adding approach in a climate GCM setting

    Science.gov (United States)

    Lacis, A. A.

    2017-12-01

    The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.

  6. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  7. Some sensitivities of a coupled ocean-atmosphere GCM

    International Nuclear Information System (INIS)

    Stockdale, T.; Latif, M.; Burgers, G.; Wolff, J.O.

    1994-01-01

    A coupled ocean-atmosphere GCM is being developed for use in seasonal forecasting. As part of the development work, a number of experiments have been made to explore some of the sensitivities of the coupled model system. The overall heat balance of the tropics is found to be very sensitive to convective cloud cover. Adjusting the cloud parameterization to produce stable behaviour of the coupled model also leads to better agreement between model radiative fluxes and satellite data. A further sensitivity is seen to changes in low-level marine stratus, which is under-represented in the initial model experiments. An increase in this cloud in the coupled model produces a small improvement in both the global mean state and the phase of the east Pacific annual cycle. The computational expense of investigating such small changes is emphasized. An indication of model sensitivity to surface albedo is also presented. The sensitivity of the coupled GCM to initial conditions is investigated. The model is very sensitive, with tiny perturbations able to determine El Nino or non-El Nino conditions just six months later. This large sensitivity may be related to the relatively weak amplitude of the model ENSO cycle. (orig.)

  8. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  9. Optimal tuning of a GCM using modern and glacial constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Lauren J.; Valdes, Paul J.; Payne, Antony J.; Kahana, Ron [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2011-08-15

    In climate models, many parameters used to resolve subgrid scale processes can be adjusted through a tuning exercise to fit the model's output to target climatologies. We present an objective tuning of a low resolution Atmosphere-Ocean General Circulation Model (GCM) called FAMOUS where ten model parameters are varied together using a Latin hypercube sampling method to create an ensemble of 100 models. The target of the tuning consists of a wide range of modern climate diagnostics and also includes glacial tropical sea surface temperature. The ensemble of models created is compared to the target using an Arcsin Mielke score. We investigate how the tuning method used and the addition of glacial constraints impact on the present day and glacial climates of the chosen models. Rather than selecting a single configuration which optimises the metric in all the diagnostics, we obtain a subset of nine 'good' models which display great differences in their climate but which, in some sense, are all better than the original configuration. In those simulations, the global temperature response to last glacial maximum forcings is enhanced compared to the control simulation and the glacial Atlantic Ocean circulation is more in agreement with observations. Our study demonstrates that selecting a single 'optimal' configuration, relying only on present day constraints may lead to misrepresenting climates different to that of today. (orig.)

  10. Evaluating the Impact of Localized GCM Grid Refinement on Regional Tropical Cyclone Climatology and Synoptic Variability using Variable-Resolution CAM-SE

    Science.gov (United States)

    Zarzycki, C.; Jablonowski, C.

    2013-12-01

    Using General Circulation Models (GCMs) to resolve sub-synoptic features in climate simulations has traditionally been difficult due to a multitude of atmospheric processes operating at subgrid scales requiring significant parameterization. For example, at traditional GCM horizontal grid resolutions of 50-300 km, tropical cyclones are generally under-resolved. This paper explores a novel variable-resolution global modeling approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such multi-resolution GCM designs allow for targeted use of computing resources at the regional level while maintaining a globally-continuous model domain and may serve to bridge the gap between GCMs with uniform grids and boundary-forced limited area models. A statically-nested, variable-resolution option has recently been introduced into the Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. A 110 km CAM-SE grid with a 28 km nest over the Atlantic Ocean has been coupled to land, ocean, and ice components within the Community Earth System Model (CESM). We present the results of a multi-decadal climate simulation using Atmospheric Model Intercomparison Project (AMIP) protocols, which force the model with historical sea surface temperatures and airborne chemical species. To investigate whether refinement improves the representation of tropical cyclones, we compare Atlantic storm statistics to observations with specific focus paid to intensity profiles and track densities. The resolution dependance of both cyclone structure and objective detection between refined and unrefined basins is explored. In addition, we discuss the potential impact of using variable-resolution grids on the large-scale synoptic interannual variability by comparing refined grid simulations to reanalysis data as well as an unrefined, globally-uniform CAM-SE simulation with identical forcing. We also evaluate the

  11. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  12. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  13. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    Science.gov (United States)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  14. Evaluation and uncertainties of global climate models as simulated in East Asia and China

    International Nuclear Information System (INIS)

    Zhao, Z.C.

    1994-01-01

    The assessments and uncertainties of the general circulation models (GCMs) as simulated in East Asia and China (15-60 N, 70-140 E) have been investigated by using seven GCMs. Four methods of assessment have been chosen. The variables for the validations for the GCMs include the annual, seasonal and monthly mean temperatures and precipitation. The assessments indicated that: (1) the simulations of seven GCMs for temperature are much better than those for precipitation; (2) the simulations in winter are much better than those in summer; (3) the simulations in eastern parts are much better than those in Western parts for both temperature and precipitation; (4) the best GCM for simulated temperature is the GISS model, and the best GCM for simulated precipitation is the UKMO-H model. The seven GCMs' means for both simulated temperature and precipitation provided good results. The range of uncertainties in East Asia and China due to human activities are presented. The differences between the GCMs for temperature and precipitation before the year 2050 are much smaller than those after the year 2050

  15. Multi-Modal Traveler Information System - GCM Corridor Architecture Interface Control Requirements

    Science.gov (United States)

    1997-10-31

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  16. From GCM energy kernels to Weyl-Wigner Hamiltonians: a particular mapping

    International Nuclear Information System (INIS)

    Galetti, D.

    1984-01-01

    A particular mapping is established which directly connects GCM energy kernels to Weyl-Wigner Hamiltonians, under the assumption of gaussian overlap kernel. As an application of this mapping scheme the collective Hamiltonians for some giant resonances are derived. (Author) [pt

  17. Familial isolated primary hyperparathyroidism associated with germline GCM2 mutations is more aggressive and has a lesser rate of biochemical cure.

    Science.gov (United States)

    El Lakis, Mustapha; Nockel, Pavel; Guan, Bin; Agarwal, Sunita; Welch, James; Simonds, William F; Marx, Stephen; Li, Yulong; Nilubol, Naris; Patel, Dhaval; Yang, Lily; Merkel, Roxanne; Kebebew, Electron

    2018-01-01

    Hereditary primary hyperparathyroidism may be syndromic or nonsyndromic (familial isolated hyperparathyroidism). Recently, germline activating mutations in the GCM2 gene were identified in a subset of familial isolated hyperparathyroidism. This study examined the clinical and biochemical characteristics and the treatment outcomes of GCM2 mutation-positive familial isolated hyperparathyroidism as compared to sporadic primary hyperparathyroidism. We performed a retrospective analysis of clinical features, parathyroid pathology, and operative outcomes in 18 patients with GCM2 germline mutations and 457 patients with sporadic primary hyperparathyroidism. Age at diagnosis, sex distribution, race/ethnicity, and preoperative serum calcium concentrations were similar between the 2 groups. The preoperative serum levels of intact parathyroid hormone was greater in patients with GCM2-associated primary hyperparathyroidism (239 ± 394 vs 136 ± 113, P = .005) as were rates of multigland disease and parathyroid carcinoma in the GCM2 group (78% vs 14.3%, P hyperparathyroidism patients have greater preoperative parathyroid hormone levels, a greater rate of multigland disease, a lesser rate of biochemical cure, and a substantial risk of parathyroid carcinoma. Knowledge of these clinical characteristics could optimize the surgical management of GCM2-associated familial isolated hyperparathyroidism. Published by Elsevier Inc.

  18. Tetrahedral ↔ octahedral network structure transition in simulated vitreous SiO2

    International Nuclear Information System (INIS)

    Vo Van Hoang; Nguyen Trung Hai; Hoang Zung

    2006-01-01

    By using molecular dynamics (MD) simulations we found a transition from a tetrahedral to an octahedral network structure in an amorphous SiO 2 model under compression from 2.20 to 5.35 g/cm 3 . And on heating of a high density amorphous (hda) model of 5.35 g/cm 3 at zero pressure, the structure transforms to a low density amorphous (lda) form. Simulations were done in a model containing 3000 particles under periodic boundary conditions with interatomic potentials which have a weak Coulomb interaction and a Morse type short-range interaction

  19. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    Science.gov (United States)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  20. Development of a Quasi-3D Multiscale Modeling Framework: Motivation, basic algorithm and preliminary results

    Directory of Open Access Journals (Sweden)

    Joon-Hee Jung

    2010-11-01

    Full Text Available A new framework for modeling the atmosphere, which we call the quasi-3D (Q3D multi-scale modeling framework (MMF, is developed with the objective of including cloud-scale three-dimensional effects in a GCM without necessarily using a global cloud-resolving model (CRM. It combines a GCM with a Q3D CRM that has the horizontal domain consisting of two perpendicular sets of channels, each of which contains a locally 3D grid-point array. For computing efficiency, the widths of the channels are chosen to be narrow. Thus, it is crucial to select a proper lateral boundary condition to realistically simulate the statistics of cloud and cloud-associated processes. Among the various possibilities, a periodic lateral boundary condition is chosen for the deviations from background fields that are obtained by interpolations from the GCM grid points. Since the deviations tend to vanish as the GCM grid size approaches that of the CRM, the whole system of the Q3D MMF can converge to a fully 3D global CRM. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application, without changing the formulation of model physics. To evaluate the newly developed Q3D CRM in an efficient way, idealized experiments have been performed using a small horizontal domain. In these tests, the Q3D CRM uses only one pair of perpendicular channels with only two grid points across each channel. Comparing the simulation results with those of a fully 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions, including the vertical distributions of cloud water and precipitants, vertical transports of potential temperature and water vapor, and the variances and covariances of dynamical variables. The main improvement from a corresponding 2D simulation appears in the surface fluxes and the vorticity transports that cause the mean wind to change. A comparison with a simulation using a coarse

  1. SU-F-T-362: Quantification and Modelling of the Ionization Chamber Simulation Effective Points On Monaco Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Bai, W [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: Because of statistical noise in Monte Carlo dose calculations, effective point doses may not be accurate. Volume spheres are useful for evaluating dose in Monte Carlo plans, which have an inherent statistical uncertainty.We use a user-defined sphere volume instead of a point, take sphere sampling around effective point make the dose statistics to decrease the stochastic errors. Methods: Direct dose measurements were made using a 0.125cc Semiflex ion chamber (IC) 31010 isocentrically placed in the center of a homogeneous Cylindric sliced RW3 phantom (PTW, Germany).In the scanned CT phantom series the sensitive volume length of the IC (6.5mm) were delineated and defined the isocenter as the simulation effective points. All beams were simulated in Monaco in accordance to the measured model. In our simulation using 2mm voxels calculation grid spacing and choose calculate dose to medium and request the relative standard deviation ≤0.5%. Taking three different assigned IC over densities (air electron density(ED) as 0.01g/cm3 default CT scanned ED and Esophageal lumen ED 0.21g/cm3) were tested at different sampling sphere radius (2.5, 2, 1.5 and 1 mm) statistics dose were compared with the measured does. Results: The results show that in the Monaco TPS for the IC using Esophageal lumen ED 0.21g/cm3 and sampling sphere radius 1.5mm the statistical value is the best accordance with the measured value, the absolute average percentage deviation is 0.49%. And when the IC using air electron density(ED) as 0.01g/cm3 and default CT scanned EDthe recommented statistical sampling sphere radius is 2.5mm, the percentage deviation are 0.61% and 0.70%, respectivly. Conclusion: In Monaco treatment planning system for the ionization chamber 31010 recommend air cavity using ED 0.21g/cm3 and sampling 1.5mm sphere volume instead of a point dose to decrease the stochastic errors. Funding Support No.C201505006.

  2. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  3. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20{sup th} century contemporary results of global climate models and NARCCAP regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)

    2010-06-15

    We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)

  4. A long-term simulation of forest carbon fluxes over the Qilian Mountains

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei; Fan, Wenwu

    2016-10-01

    In this work, we integrated a remote-sensing-based (the MODIS MOD_17 Gross Primary Productivity (GPP) model (MOD_17)) and a process-based (the Biome-BioGeochemical Cycles (Biome-BGC) model) ecological model in order to estimate long-term (from 2000 to 2012) forest carbon fluxes over the Qilian Mountains in northwest China, a cold and arid forest ecosystem. Our goal was to obtain an accurate and quantitative simulation of spatial GPP patterns using the MOD_17 model and a temporal description of forest processes using the Biome-BGC model. The original MOD_17 model was first optimized using a biome-specific parameter, observed meteorological data, and reproduced fPAR at the eddy covariance site. The optimized MOD_17 model performed much better (R2 = 0.91, RMSE = 5.19 gC/m2/8d) than the original model (R2 = 0.47, RMSE = 20.27 gC/m2/8d). The Biome-BGC model was then calibrated using GPP for 30 representative forest plots selected from the optimized MOD_17 model. The calibrated Biome-BGC model was then driven in order to estimate forest GPP, net primary productivity (NPP), and net ecosystem exchange (NEE). GPP and NEE were validated against two-year (2010 and 2011) EC measurements (R2 = 0.79, RMSE = 1.15 gC/m2/d for GPP; and R2 = 0.69, RMSE = 1.087 gC/m2/d for NEE). NPP estimates from 2000 to 2012 were then compared to dendrochronological measurements (R2 = 0.73, RMSE = 24.46 gC/m2/yr). Our results indicated that integration of the two models can be used for estimating carbon fluxes with good accuracy and a high temporal and spatial resolution. Overall, NPP displayed a downward trend, with an average rate of 0.39 gC/m2/yr, from 2000 and 2012 over the Qilian Mountains. Simulated average annual NPP yielded higher values for the southeast as compared to the northwest. The most positive correlative climatic factor to average annual NPP was downward shortwave radiation. The vapor pressure deficit, and mean temperature and precipitation yielded negative correlations to average

  5. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  6. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    Science.gov (United States)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  7. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change

  8. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garino, Terry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Croes, Kenneth James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  9. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 2. A diurnally coupled CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [Met Office Hadley Centre, Exeter (United Kingdom); University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Madec, G. [Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Slingo, J.M.; Woolnough, S.J.; Cole, J. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom)

    2008-12-15

    Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2 C in the central and western Pacific to over 0.3 C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170 E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in

  10. A rank-based approach for correcting systematic biases in spatial disaggregation of coarse-scale climate simulations

    Science.gov (United States)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-07-01

    Use of General Circulation Model (GCM) precipitation and evapotranspiration sequences for hydrologic modelling can result in unrealistic simulations due to the coarse scales at which GCMs operate and the systematic biases they contain. The Bias Correction Spatial Disaggregation (BCSD) method is a popular statistical downscaling and bias correction method developed to address this issue. The advantage of BCSD is its ability to reduce biases in the distribution of precipitation totals at the GCM scale and then introduce more realistic variability at finer scales than simpler spatial interpolation schemes. Although BCSD corrects biases at the GCM scale before disaggregation; at finer spatial scales biases are re-introduced by the assumptions made in the spatial disaggregation process. Our study focuses on this limitation of BCSD and proposes a rank-based approach that aims to reduce the spatial disaggregation bias especially for both low and high precipitation extremes. BCSD requires the specification of a multiplicative bias correction anomaly field that represents the ratio of the fine scale precipitation to the disaggregated precipitation. It is shown that there is significant temporal variation in the anomalies, which is masked when a mean anomaly field is used. This can be improved by modelling the anomalies in rank-space. Results from the application of the rank-BCSD procedure improve the match between the distributions of observed and downscaled precipitation at the fine scale compared to the original BCSD approach. Further improvements in the distribution are identified when a scaling correction to preserve mass in the disaggregation process is implemented. An assessment of the approach using a single GCM over Australia shows clear advantages especially in the simulation of particularly low and high downscaled precipitation amounts.

  11. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    International Nuclear Information System (INIS)

    Reed, K. A.

    2015-01-01

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral element core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty

  12. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM

    OpenAIRE

    Basu, Shabari; Wilson, John; Richardson, Mark; Ingersoll, Andrew

    2006-01-01

    We report on the successful simulation of global dust storms in a general circulation model. The simulated storms develop spontaneously in multiyear simulations and exhibit significant interannual variability. The simulated storms produce dramatic increases in atmospheric dustiness, global-mean air temperatures, and atmospheric circulation intensity, in accord with observations. As with observed global storms, spontaneous initiation of storms in the model occurs in southern spring and summer,...

  13. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Kai Feng

    Full Text Available It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus, but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5 and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.

  14. A third generation tomography system with fifteen detectors and a gamma-ray source in fan beam geometry simulated by Monte Carlo Method

    International Nuclear Information System (INIS)

    Velo, A.F.; Alvarez, A.G.; Carvalho, D.V.S.; Fernandez, V.; Somessari, S.; Sprenger, F.F.; Hamada, M.M.; Mesquita, C.H.

    2017-01-01

    This paper describes the Monte Carlo simulation, using MCNP4C, of a multichannel third generation tomography system containing a two radioactive sources, 192 Ir (316.5 - 468 KeV) and 137 Cs (662 KeV), and a set of fifteen NaI(Tl) detectors, with dimensions of 1 inch diameter and 2 inches thick, in fan beam geometry, positioned diametrically opposite. Each detector moves 10 steps of 0,24 deg , totalizing 150 virtual detectors per projection, and then the system rotate 2 degrees. The Monte Carlo simulation was performed to evaluate the viability of this configuration. For this, a multiphase phantom containing polymethyl methacrylate (PMMA ((ρ ≅ 1.19 g/cm 3 )), iron (ρ ≅ 7.874 g/cm 3 ), aluminum (ρ ≅ 2.6989 g/cm 3 ) and air (ρ ≅ 1.20479E-03 g/cm 3 ) was simulated. The simulated number of histories was 1.1E+09 per projection and the tally used were the F8, which gives the pulse height of each detector. The data obtained by the simulation was used to reconstruct the simulated phantom using the statistical iterative Maximum Likelihood Estimation Method Technique (ML-EM) algorithm. Each detector provides a gamma spectrum of the sources, and a pulse height analyzer (PHA) of 10% on the 316.5 KeV and 662 KeV photopeaks was performed. This technique provides two reconstructed images of the simulated phantom. The reconstructed images provided high spatial resolution, and it is supposed that the temporal resolution (spending time for one complete revolution) is about 2.5 hours. (author)

  15. On the Representation of Cloud Phase in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy

    2016-04-01

    Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  16. Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations

    DEFF Research Database (Denmark)

    Meier, H E Markus; Andersson, Helén C; Arheimer, Berit

    2012-01-01

    Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850–2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850–2006, atmospheric, hydrological and nutrient...... forcings were reconstructed, based on historical measurements. For the future period 1961–2098, scenario simulations were driven by regionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air- and riverborne nutrient load scenarios (ranging from...... a pessimistic ‘business-as-usual’ to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher...

  17. Equations of states for an ionic liquid under high pressure: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Ribeiro, Mauro C.C.; Pádua, Agílio A.H.; Gomes, Margarida F.C.

    2014-01-01

    Highlights: • We compare different equation of states, EoS, for an ionic liquid under high pressure. • Molecular dynamics, MD, simulations have been used to evaluate the best EoS. • MD simulations show that a group contribution model can be extrapolated to P ∼ 1.0 GPa. • A perturbed hard-sphere EoS also fits the densities calculated by MD simulations. - Abstract: The high-pressure dependence of density given by empirical equation of states (EoS) for the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (or triflate), [C 4 C 1 im][TfO], is compared with results obtained by molecular dynamics (MD) simulations. Two EoS proposed for [C 4 C 1 im][TfO] in the pressure range of tens of MPa, which give very different densities when extrapolated to pressures beyond the original experiments, are compared with a group contribution model (GCM). The MD simulations provide support that one of the empirical EoS and the GCM is valid in the pressure range of hundreds of MPa. As an alternative to these EoS that are based on modified Tait equations, it is shown that a perturbed hard-sphere EoS based on the Carnahan–Starling–van der Waals equation also fits the densities calculated by MD simulations of [C 4 C 1 im][TfO] up to ∼1.0 GPa

  18. On the climate model simulation of Indian monsoon low pressure systems and the effect of remote disturbances and systematic biases

    Science.gov (United States)

    Levine, Richard C.; Martin, Gill M.

    2018-06-01

    Monsoon low pressure systems (LPS) are synoptic-scale systems forming over the Indian monsoon trough region, contributing substantially to seasonal mean summer monsoon rainfall there. Many current global climate models (GCMs), including the Met Office Unified Model (MetUM), show deficient rainfall in this region, much of which has previously been attributed to remote systematic biases such as excessive equatorial Indian Ocean (EIO) convection, while also substantially under-representing LPS and associated rainfall as they travel westwards across India. Here the sources and sensitivities of LPS to local, remote and short-timescale forcing are examined, in order to understand the poor representation in GCMs. An LPS tracking method is presented using TRACK feature tracking software for comparison between re-analysis data-sets, MetUM GCM and regional climate model (RCM) simulations. RCM simulations, at similar horizontal resolution to the GCM and forced with re-analysis data at the lateral boundaries, are carried out with different domains to examine the effects of remote biases. The results suggest that remote biases contribute significantly to the poor simulation of LPS in the GCM. As these remote systematic biases are common amongst many current GCMs, it is likely that GCMs are intrinsically capable of representing LPS, even at relatively low resolution. The main problem areas are time-mean excessive EIO convection and poor representation of precursor disturbances transmitted from the Western Pacific. The important contribution of the latter is established using RCM simulations forced by climatological 6-hourly lateral boundary conditions, which also highlight the role of LPS in moving rainfall from steep orography towards Central India.

  19. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  20. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  1. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  2. An assessment of global climate model-simulated climate for the western cordillera of Canada (1961-90)

    Science.gov (United States)

    Bonsal, Barrie R.; Prowse, Terry D.; Pietroniro, Alain

    2003-12-01

    Climate change is projected to significantly affect future hydrologic processes over many regions of the world. This is of particular importance for alpine systems that provide critical water supplies to lower-elevation regions. The western cordillera of Canada is a prime example where changes to temperature and precipitation could have profound hydro-climatic impacts not only for the cordillera itself, but also for downstream river systems and the drought-prone Canadian Prairies. At present, impact researchers primarily rely on global climate models (GCMs) for future climate projections. The main objective of this study is to assess several GCMs in their ability to simulate the magnitude and spatial variability of current (1961-90) temperature and precipitation over the western cordillera of Canada. In addition, several gridded data sets of observed climate for the study region are evaluated.Results reveal a close correspondence among the four gridded data sets of observed climate, particularly for temperature. There is, however, considerable variability regarding the various GCM simulations of this observed climate. The British, Canadian, German, Australian, and US GFDL models are superior at simulating the magnitude and spatial variability of mean temperature. The Japanese GCM is of intermediate ability, and the US NCAR model is least representative of temperature in this region. Nearly all the models substantially overestimate the magnitude of total precipitation, both annually and on a seasonal basis. An exception involves the British (Hadley) model, which best represents the observed magnitude and spatial variability of precipitation. This study improves our understanding regarding the accuracy of GCM climate simulations over the western cordillera of Canada. The findings may assist in producing more reliable future scenarios of hydro-climatic conditions over various regions of the country. Copyright

  3. Trace gas transport in the 1999/2000 Arctic winter: comparison of nudged GCM runs with observations

    Directory of Open Access Journals (Sweden)

    M. K. van Aalst

    2004-01-01

    Full Text Available We have compared satellite and balloon observations of methane (CH4 and hydrogen fluoride (HF during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM. For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of chemistry and transport processes. However, caution must be used inside the polar vortex, particularly late in the winter. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents some aspects of the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match observations well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.

  4. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    Science.gov (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  5. Draft Genome Sequence of the Psychrophilic and Alkaliphilic Rhodonellum psychrophilum Strain GCM71T.

    Science.gov (United States)

    Hauptmann, Aviaja L; Glaring, Mikkel A; Hallin, Peter F; Priemé, Anders; Stougaard, Peter

    2013-12-05

    Rhodonellum psychrophilum GCM71(T), isolated from the cold and alkaline submarine ikaite columns in the Ikka Fjord in Greenland, displays optimal growth at 5 to 10°C and pH 10. Here, we report the draft genome sequence of this strain, which may provide insight into the mechanisms of adaptation to these extreme conditions.

  6. Influence of hydrological models on cumulative flow simulation under climate change scenarios : an application in the Baskatong watershed

    International Nuclear Information System (INIS)

    Chartier, I.

    2006-01-01

    Since Hydro-Quebec owns and operates many hydroelectric power plants, from which it draws 96 per cent of its electricity, the electric utility found it necessary to study the impact of climate change on water resources and cumulative flow. This paper described Hydro-Quebec's method for evaluating climatic change impacts using hydrological simulations, with particular reference to the Baskatong watershed in the Outaouais region of Quebec. This basin is one of 5 sub-basins within the Gatineau River. Hydro-Quebec's studies were conducted using 3 hydrological models known as MOHYSE, HSAMI and HYDROTEL; 4 general circulation models (GCM) known as HadCM3, CSIRO, ECHAM4 and CGCM3; and, 4 greenhouse gas scenarios called A1, B1, A2 and B2. GCMs were shown to have a larger impact on the final hydrological simulation result compared to greenhouse gas scenarios or the hydrological models, although the latter two did have a significant impact on the final result of the simulation. Each scenario provided long term predictions despite the use of different models. The study demonstrated that many regions will have to rely on a range of GCM for more elaborate climatic scenarios. 9 refs., 1 tab., 9 figs

  7. Ranking GCM Estimates of Twentieth Century Precipitation Seasonality in the Western U.S. and its Influence on Floristic Provinces.

    Science.gov (United States)

    Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Floristic provinces of the western United States (west of 100W) can be segregated into three regions defined by significant seasonal precipitation during the months of: 1) November-March (Mediterranean); 2) July- September (Monsoonal); or, 3) May-June (Rocky Mountain). This third region is best defined by the absence of the late spring-early summer drought that affects regions 1 and 2. Each of these precipitation regimes is characterized by distinct vegetation types and fire seasonality adapted to that particular cycle of seasonal moisture availability and deficit. Further, areas where these regions blend from one to another can support even more complex seasonal patterns and resulting distinctive vegetation types. As a result, modeling the effects of climates on these ecosystems requires confidence that GCMs can at least approximate these sub- continental seasonal precipitation patterns. We evaluated the late Twentieth Century (1950-1999 AD) estimates of annual precipitation seasonality produced by 22 GCMs contained within the IPCC Fourth Assessment (AR4). These modeled estimates were compared to values from the PRISM dataset, extrapolated from station data, over the same historical period for the 3 seasonal periods defined above. The correlations between GCM estimates and PRISM values were ranked using 4 measures: 1) A map pattern relationship based on the correlation coefficient, 2) A map pattern relationship based on the congruence coefficient, 3) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation amounts, and, 4) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation percentages of the annual total. For each of the four metrics, the rank order of models was very similar. The ranked order of the performance of the different models quantified aspects of the model performance visible in the mapped results. While some models represented the seasonal patterns very well, others

  8. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  9. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  10. Influence of Giant CCN on warm rain processes in the ECHAM5 GCM

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2008-07-01

    Full Text Available Increased Cloud Condensation Nuclei (CCN load due to anthropogenic activity might lead to non-precipitating clouds because the cloud drops become smaller (for a constant liquid water content and, therefore, less efficient in rain formation (aerosol indirect effect. Adding giant CCN (GCCN into such a cloud can initiate precipitation (namely, drizzle and, therefore, might counteract the aerosol indirect effect.

    The effect of GCCN on global climate on warm clouds and precipitation within the ECHAM5 General Circulation Model (GCM is investigated. Therefore, the newly introduced prognostic rain scheme (Posselt and Lohmann, 2007 is applied so that GCCN are directly activated into rain drops. The ECHAM5 simulations with incorporated GCCN show that precipitation is affected only locally. On the global scale, the precipitation amount does not change. Cloud properties like total water (liquid + rain water and cloud drop number show a larger sensitivity to GCCN. Depending on the amount of added GCCN, the reduction of total water and cloud drops account for up to 20% compared to the control run without GCCN. Thus, the incorporation of the GCCN accelerate the hydrological cycle so that clouds precipitate faster (but not more and less condensed water is accumulated in the atmosphere.

    An estimate of the anthropogenic aerosol indirect effect on the climate is obtained by comparing simulations for present-day and pre-industrial climate. The introduction of the prognostic rain scheme lowered the anthropogenic aerosol indirect effect significantly compared to the standard ECHAM5 with the diagnostic rain scheme. The incorporation of the GCCN changes the model state, especially the cloud properties like TWP and Nl. The precipitation changes only locally but globally the precipitation is unaffected because it has to equal the global mean evaporation rate. Changing the cloud properties leads to a local reduction of the aerosol indirect

  11. On the Representation of Ice Nucleation in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, T.

    2015-12-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  12. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  13. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.; McCabe, Matthew

    2013-01-01

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  14. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.

    2013-03-26

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  15. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    Science.gov (United States)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by

  16. How genetic data improve the interpretation of results of faecal glucocorticoid metabolite measurements in a free-living population.

    Directory of Open Access Journals (Sweden)

    Maik Rehnus

    Full Text Available Measurement of glucocorticoid metabolites (GCM in faeces has become a widely used and effective tool for evaluating the amount of stress experienced by animals. However, the potential sampling bias resulting from an oversampling of individuals when collecting "anonymous" (unknown sex or individual faeces has rarely been investigated. We used non-invasive genetic sampling (NIGS to investigate potential interpretation errors of GCM measurements in a free-living population of mountain hares during the mating and post-reproductive periods. Genetic data improved the interpretation of results of faecal GCM measurements. In general GCM concentrations were influenced by season. However, genetic information revealed that it was sex-dependent. Within the mating period, females had higher GCM levels than males, but individual differences were more expressed in males. In the post-reproductive period, GCM concentrations were neither influenced by sex nor individual. We also identified potential pitfalls in the interpretation of anonymous faecal samples by individual differences in GCM concentrations and resampling rates. Our study showed that sex- and individual-dependent GCM levels led to a misinterpretation of GCM values when collecting "anonymous" faeces. To accurately evaluate the amount of stress experienced by free-living animals using faecal GCM measurements, we recommend documenting individuals and their sex of the sampled population. In stress-sensitive and elusive species, such documentation can be achieved by using NIGS and for diurnal animals with sexual and individual variation in appearance or marked individuals, it can be provided by a detailed field protocol.

  17. Microphysical Modeling of Titan's Detached Haze Layer in a 3D GCM

    Science.gov (United States)

    Larson, Erik J.; Toon, Owen B.; West, Robert A.; Friedson, A. James

    2015-11-01

    We investigate the formation and seasonal cycle of the detached haze layer in Titan’s upper atmosphere using a 3D GCM with coupled aerosol microphysics. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that

  18. Evolution of the Antarctic polar vortex in spring: Response of a GCM to a prescribed Antarctic ozone hole

    Science.gov (United States)

    Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.

    1988-01-01

    The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.

  19. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    Science.gov (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  20. The CCPP-ARM Parameterization Testbed (CAPT): Where Climate Simulation Meets Weather Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Potter, G L; Williamson, D L; Cederwall, R T; Boyle, J S; Fiorino, M; Hnilo, J J; Olson, J G; Xie, S; Yio, J J

    2003-11-21

    To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands, in particular, that the GCM parameterizations of unresolved processes should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provied that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by realistically initialized climate GCM, and the application of six-hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be similarly tested. In order to further this method for evaluating and analyzing parameterizations in climate GCMs, the USDOE is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM. Numerical weather prediction methods show promise for improving parameterizations in climate GCMs.

  1. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    International Nuclear Information System (INIS)

    Mouri, Goro

    2015-01-01

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  2. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mouri, Goro, E-mail: mouri@rainbow.iis.u-tokyo.ac.jp

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  3. Evaluation for Moroccan dynamically downscaled precipitation from GCM CHAM5 and its regional hydrologic response

    Directory of Open Access Journals (Sweden)

    Tsou Jaw

    2015-03-01

    Full Text Available Study region: Morocco (excluding Western Sahara. Study focus: This study evaluated Moroccan precipitation, dynamically downscaled (0.18-degree from three runs of the studied GCM ECHAM5/MPI-OM, under the present-day (1971–2000/20C3M and future (2036–2065/A1B climate scenarios. The spatial and quantitative properties of the downscaled precipitation were evaluated by a verified, fine-resolution reference. The effectiveness of the hydrologic responses, driven by the downscaled precipitation, was further evaluated for the study region over the upstream watershed of Oum er Rbia River located in Central Morocco. New hydrological insights for the region: The raw downscaling runs reasonably featured the spatial properties but quantitatively misrepresented the mean and extreme intensities of present-day precipitation. Two proposed bias correction approaches, namely stationary Quantile-Mapping (QM and non-stationary Equidistant CDF Matching model (EDCDFm, successfully reduced the system biases existing in the raw downscaling runs. However, both raw and corrected runs projected great diversity in terms of the quantity of future precipitation. Hydrologic simulations performed by a well-calibrated Variable Infiltration Capacity model successfully reproduced the present-day streamflow. The driven flows were identified highly correlated with the effectiveness of the downscaled precipitation. The future flows were projected to be markedly diverse, mainly due to the varied precipitation projections. Two of the three flow simulation runs projected slight to severe drying scenarios, while another projected an opposite trend for the evaluated future period. Keywords: Dynamical downscaling, Moroccan precipitation, Regional hydrology

  4. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  5. Summarizing Simulation Results using Causally-relevant States

    Science.gov (United States)

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  6. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-01-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  7. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.

    2015-05-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  8. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    Science.gov (United States)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  9. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jinmei; Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation, many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.

  10. Impacts of deforestation and afforestation in the Mediterranean region as simulated by the MPI atmospheric GCM

    Science.gov (United States)

    Dümenil Gates, Lydia; Ließ, Stefan

    2001-10-01

    For two reasons it is important to study the sensitivity of the global climate to changes in the vegetation cover over land. First, in the real world, changes in the vegetation cover may have regional and global implications. Second, in numerical simulations, the sensitivity of the simulated climate may depend on the specific parameterization schemes employed in the model and on the model's large-scale systematic errors. The Max-Planck-Institute's global general circulation model ECHAM4 has been used to study the sensitivity of the local and global climate during a full annual cycle to deforestation and afforestation in the Mediterranean region. The deforestation represents an extreme desertification scenario for this region. The changes in the afforestation experiment are based on the pattern of the vegetation cover 2000 years before present when the climate in the Mediterranean was more humid. The comparison of the deforestation integration to the control shows a slight cooling at the surface and reduced precipitation during the summer as a result of less evapotranspiration of plants and less evaporation from the assumption of eroded soils. There is no significant signal during the winter season due to the stronger influence of the mid-latitude baroclinic disturbances. In general, the results of the afforestation experiment are opposite to those of the deforestation case. A significant response was found in the vicinity of grid points where the land surface characteristics were modified. The response in the Sahara in the afforestation experiment is in agreement with the results from other general circulation model studies.

  11. Does Dynamical Downscaling Introduce Novel Information in Climate Model Simulations of Recipitation Change over a Complex Topography Region?

    Science.gov (United States)

    Tselioudis, George; Douvis, Costas; Zerefos, Christos

    2012-01-01

    Current climate and future climate-warming runs with the RegCM Regional Climate Model (RCM) at 50 and 11 km-resolutions forced by the ECHAM GCM are used to examine whether the increased resolution of the RCM introduces novel information in the precipitation field when the models are run for the mountainous region of the Hellenic peninsula. The model results are inter-compared with the resolution of the RCM output degraded to match that of the GCM, and it is found that in both the present and future climate runs the regional models produce more precipitation than the forcing GCM. At the same time, the RCM runs produce increases in precipitation with climate warming even though they are forced with a GCM that shows no precipitation change in the region. The additional precipitation is mostly concentrated over the mountain ranges, where orographic precipitation formation is expected to be a dominant mechanism. It is found that, when examined at the same resolution, the elevation heights of the GCM are lower than those of the averaged RCM in the areas of the main mountain ranges. It is also found that the majority of the difference in precipitation between the RCM and the GCM can be explained by their difference in topographic height. The study results indicate that, in complex topography regions, GCM predictions of precipitation change with climate warming may be dry biased due to the GCM smoothing of the regional topography.

  12. Precipitation intensity-duration-frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties

    Science.gov (United States)

    Hosseinzadehtalaei, Parisa; Tabari, Hossein; Willems, Patrick

    2018-02-01

    An ensemble of 88 regional climate model (RCM) simulations at 0.11° and 0.44° spatial resolutions from the EURO-CORDEX project is analyzed for central Belgium to investigate the projected impact of climate change on precipitation intensity-duration-frequency (IDF) relationships and extreme precipitation quantiles typically used in water engineering designs. The rate of uncertainty arising from the choice of RCM, driving GCM, and radiative concentration pathway (RCP4.5 & RCP8.5) is quantified using a variance decomposition technique after reconstruction of missing data in GCM × RCM combinations. A comparative analysis between the historical simulations of the EURO-CORDEX 0.11° and 0.44° RCMs shows higher precipitation intensities by the finer resolution runs, leading to a larger overestimation of the observations-based IDFs by the 0.11° runs. The results reveal that making a temporal stationarity assumption for the climate system may lead to underestimation of precipitation quantiles up to 70% by the end of this century. This projected increase is generally larger for the 0.11° RCMs compared with the 0.44° RCMs. The relative changes in extreme precipitation do depend on return period and duration, indicating an amplification for larger return periods and for smaller durations. The variance decomposition approach generally identifies RCM as the most dominant component of uncertainty in changes of more extreme precipitation (return period of 10 years) for both 0.11° and 0.44° resolutions, followed by GCM and RCP scenario. The uncertainties associated with cross-contributions of RCMs, GCMs, and RCPs play a non-negligible role in the associated uncertainties of the changes.

  13. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  14. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

    Science.gov (United States)

    van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.

    2005-02-01

    We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

  15. Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations

    NARCIS (Netherlands)

    Pelt, van S.C.; Beersma, J.J.; Buishand, T.A.; Hurk, van den B.J.J.M.; Kabat, P.

    2012-01-01

    Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available global climate model (GCM) or regional climate model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks.

  16. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  17. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  18. Using long-term ARM observations to evaluate Arctic mixed-phased cloud representation in the GISS ModelE GCM

    Science.gov (United States)

    Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2016-12-01

    The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering

  19. Analyses of the stratospheric dynamics simulated by a GCM with a stochastic nonorographic gravity wave parameterization

    Science.gov (United States)

    Serva, Federico; Cagnazzo, Chiara; Riccio, Angelo

    2016-04-01

    The effects of the propagation and breaking of atmospheric gravity waves have long been considered crucial for their impact on the circulation, especially in the stratosphere and mesosphere, between heights of 10 and 110 km. These waves, that in the Earth's atmosphere originate from surface orography (OGWs) or from transient (nonorographic) phenomena such as fronts and convective processes (NOGWs), have horizontal wavelengths between 10 and 1000 km, vertical wavelengths of several km, and frequencies spanning from minutes to hours. Orographic and nonorographic GWs must be accounted for in climate models to obtain a realistic simulation of the stratosphere in both hemispheres, since they can have a substantial impact on circulation and temperature, hence an important role in ozone chemistry for chemistry-climate models. Several types of parameterization are currently employed in models, differing in the formulation and for the values assigned to parameters, but the common aim is to quantify the effect of wave breaking on large-scale wind and temperature patterns. In the last decade, both global observations from satellite-borne instruments and the outputs of very high resolution climate models provided insight on the variability and properties of gravity wave field, and these results can be used to constrain some of the empirical parameters present in most parameterization scheme. A feature of the NOGW forcing that clearly emerges is the intermittency, linked with the nature of the sources: this property is absent in the majority of the models, in which NOGW parameterizations are uncoupled with other atmospheric phenomena, leading to results which display lower variability compared to observations. In this work, we analyze the climate simulated in AMIP runs of the MAECHAM5 model, which uses the Hines NOGW parameterization and with a fine vertical resolution suitable to capture the effects of wave-mean flow interaction. We compare the results obtained with two

  20. Electron-cloud simulation results for the SPS and recent results for the LHC

    International Nuclear Information System (INIS)

    Furman, M.A.; Pivi, M.T.F.

    2002-01-01

    We present an update of computer simulation results for some features of the electron cloud at the Large Hadron Collider (LHC) and recent simulation results for the Super Proton Synchrotron (SPS). We focus on the sensitivity of the power deposition on the LHC beam screen to the emitted electron spectrum, which we study by means of a refined secondary electron (SE) emission model recently included in our simulation code

  1. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    Science.gov (United States)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  2. Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations

    International Nuclear Information System (INIS)

    Meier, H E Markus; Andersson, Helén C; Arheimer, Berit; Donnelly, Chantal; Eilola, Kari; Höglund, Anders; Kuznetsov, Ivan; Blenckner, Thorsten; Gustafsson, Bo G; Müller-Karulis, Bärbel; Niiranen, Susa; Chubarenko, Boris; Hansson, Anders; Havenhand, Jonathan; MacKenzie, Brian R; Neumann, Thomas; Piwowarczyk, Joanna; Raudsepp, Urmas; Reckermann, Marcus; Ruoho-Airola, Tuija

    2012-01-01

    Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850–2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850–2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961–2098, scenario simulations were driven by regionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air- and riverborne nutrient load scenarios (ranging from a pessimistic ‘business-as-usual’ to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems. (letter)

  3. The intensity of precipitation during extratropical cyclones in global warming simulations: a link to cyclone intensity?

    Energy Technology Data Exchange (ETDEWEB)

    Watterson, I.G. [CSIRO Atmospheric Research, Aspendale (Australia)

    2006-01-01

    Simulations of global warming over the coming century from two CSIRO GCMs are analysed to assess changes in the intensity of extratropical cyclones, and the potential role of increased latent heating associated with precipitation during cyclones. A simple surface cyclone detection scheme is applied to a four-member ensemble of simulations from the Mark 2 GCM, under rising greenhouse gas concentrations. The seasonal distribution of cyclones appears broadly realistic during 1961-1990. By 2071-2100, with 3 K global warming, numbers over 20 deg N to 70 deg N decrease by 6% in winter and 2% annually, with similar results for the south. The average intensity of cyclones, from relative central pressure and other measures, is largely unchanged however. 30-yr extremes of dynamic intensity also show little clear change, including values averaged over continents. Mean rain rates at cyclone centres are typically at least double rates from all days. Rates during cyclones increase by an average 14% in the northern winter under global warming. Rates over adjacent grid squares and during the previous day increase similarly, as do extreme rates. Results from simulations of the higher-resolution (1.8 deg grid) Mark 3 GCM are similar, with widespread increases in rain rates but not in cyclone intensity. The analyses suggest that latent heating during storms increases, as anticipated due to the increased moisture capacity of the warmer atmosphere. However, any role for enhanced heating in storm development in the GCMs is apparently masked by other factors. An exception is a 5% increase in extreme intensity around 55 deg S in Mark 3, despite decreased numbers of lows, a factor assessed using extreme value theory. Further studies with yet higher-resolution models may be needed to examine the potential realism of these results, particularly with regard to extremes at smaller scale.

  4. Implementation of Controlled Traffic in the Canadian Prairies: Soil and Plant Dynamics under Simulated and Field Conditions

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    Achieving resiliency in agroecosystems may be accomplished through the incorporation of contemporary management systems and the diversification of crop rotations with pulse crops, such as controlled traffic farming (CTF) and faba beans (Vicia faba L.). As these practices become more common in the Canadian Prairies, it is imperative to have a well-rounded understanding of how faba beans interact with the soil-plant-atmosphere continuum in conditions found in contemporary management systems. Simulated field conditions emulated soil compaction found in both the trafficked and un-trafficked areas of a CTF system, in which the presence of high water availability was shown to offset the negative results of large applications of compactive effort. Furthermore, low water availability exacerbated differences in plant responses between compaction treatments. The simulated treatment of 1.2 gcm-3 coupled with high water content yielded the most optimal results for most measured parameters, with a contrasting detrimental treatment of 1.4 gcm-3 at low water availability. The simulated field conditions were further bridged through an analysis of two commercial sites in Alberta, Canada that compared both trafficked and un-trafficked soil properties. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. The measured soil physical and hydraulic properties of bulk density, macroporosity, S-Index, PAWC and Km were shown to be heavily influenced by the CTF traffic regime, while soil nutrient properties of AN, pH, STN SOC were determined to be dependent on both management and landscape features.

  5. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  6. Development of a group contribution method for estimating free energy of peptides in a dodecane-water system via molecular dynamic simulations.

    Science.gov (United States)

    Mora Osorio, Camilo Andrés; González Barrios, Andrés Fernando

    2016-12-07

    Calculation of the Gibbs free energy changes of biological molecules at the oil-water interface is commonly performed with Molecular Dynamics simulations (MD). It is a process that could be performed repeatedly in order to find some molecules of high stability in this medium. Here, an alternative method of calculation has been proposed: a group contribution method (GCM) for peptides based on MD of the twenty classic amino acids to obtain free energy change during the insertion of any peptide chain in water-dodecane interfaces. Multiple MD of the twenty classic amino acids located at the interface of rectangular simulation boxes with a dodecane-water medium were performed. A GCM to calculate the free energy of entire peptides is then proposed. The method uses the summation of the Gibbs free energy of each amino acid adjusted in function of its presence or absence in the chain as well as its hydrophobic characteristics. Validation of the equation was performed with twenty-one peptides all simulated using MD in dodecane-water rectangular boxes in previous work, obtaining an average relative error of 16%.

  7. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  8. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  9. Process-Oriented Diagnostics of Tropical Cyclones in Global Climate Models

    Science.gov (United States)

    Moon, Y.; Kim, D.; Camargo, S. J.; Wing, A. A.; Sobel, A. H.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    Simulating tropical cyclone (TC) activity with global climate models (GCMs) remains a challenging problem. While some GCMs are able to simulate TC activity that is in good agreement with the observations, many other models exhibit strong biases. Decreasing horizontal grid spacing of the GCM simulations tends to improve the characteristics of simulated TCs, but this enhancement alone does not necessarily lead to greater skill in simulating TC activity. This study uses process-based diagnostics to identify model characteristics that could explain why some GCM simulations are able to produce more realistic TC activity than others. The diagnostics examine how convection, moisture, clouds and related processes are coupled at individual grid points, which yields useful information into how convective parameterizations interact with resolved model dynamics. These diagnostics share similarities with those originally developed to examine the Madden-Julian Oscillations in climate models. This study will examine TCs in eight different GCM simulations performed at NOAA/GFDL, NCAR and NASA that have different horizontal resolutions and ocean coupling. Preliminary results suggest that stronger TCs are closely associated with greater rainfall - thus greater diabatic heating - in the inner-core regions of the storms, which is consistent with previous theoretical studies. Other storm characteristics that can be used to infer why GCM simulations with comparable horizontal grid spacings produce different TC activity will be examined.

  10. Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique

    Science.gov (United States)

    Colin, Jeanne; Déqué, Michel; Radu, Raluca; Somot, Samuel

    2010-10-01

    We assess the impact of two sources of uncertainties in a limited area model (LAM) on the representation of intense precipitation: the size of the domain of integration and the use of the spectral nudging technique (driving of the large-scale within the domain of integration). We work in a perfect-model approach where the LAM is driven by a general circulation model (GCM) run at the same resolution and sharing the same physics and dynamics as the LAM. A set of three 50 km resolution simulations run over Western Europe with the LAM ALADIN-Climate and the GCM ARPEGE-Climate are performed to address this issue. Results are consistent with previous studies regarding the seasonal-mean fields. Furthermore, they show that neither the use of the spectral nudging nor the choice of a small domain are detrimental to the modelling of heavy precipitation in the present experiment.

  11. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  12. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  13. Simulation Results of Double Forward Converter

    Directory of Open Access Journals (Sweden)

    P. Vijaya KUMAR

    2009-12-01

    Full Text Available This work aims to find a better forward converter for DC to DC conversion.Simulation of double forward converter in SMPS system is discussed in this paper. Aforward converter with RCD snubber to synchronous rectifier and/or to current doubleris also discussed. The evolution of the forward converter is first reviewed in a tutorialfashion. Performance parameters are discussed including operating principle, voltageconversion ratio, efficiency, device stress, small-signal dynamics, noise and EMI. Itscircuit operation and its performance characteristics of the forward converter with RCDsnubber and double forward converter are described and the simulation results arepresented.

  14. a New Framework for Characterising Simulated Droughts for Future Climates

    Science.gov (United States)

    Sharma, A.; Rashid, M.; Johnson, F.

    2017-12-01

    Significant attention has been focussed on metrics for quantifying drought. Lesser attention has been given to the unsuitability of current metrics in quantifying drought in a changing climate due to the clear non-stationarity in potential and actual evapotranspiration well into the future (Asadi-Zarch et al, 2015). This talk presents a new basis for simulating drought designed specifically for use with climate model simulations. Given the known uncertainty of climate model rainfall simulations, along with their inability to represent low-frequency variability attributes, the approach here adopts a predictive model for drought using selected atmospheric indicators. This model is based on a wavelet decomposition of relevant atmospheric predictors to filter out less relevant frequencies and formulate a better characterisation of the drought metric chosen as response. Once ascertained using observed precipication and associated atmospheric variables, these can be formulated from GCM simulations using a multivariate bias correction tool (Mehrotra and Sharma, 2016) that accounts for low-frequency variability, and a regression tool that accounts for nonlinear dependence (Sharma and Mehrotra, 2014). Use of only the relevant frequencies, as well as the corrected representation of cross-variable dependence, allows greater accuracy in characterising observed drought, from GCM simulations. Using simulations from a range of GCMs across Australia, we show here that this new method offers considerable advantages in representing drought compared to traditionally followed alternatives that rely on modelled rainfall instead. Reference:Asadi Zarch, M. A., B. Sivakumar, and A. Sharma (2015), Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI), Journal of Hydrology, 526, 183-195. Mehrotra, R., and A. Sharma (2016), A Multivariate Quantile-Matching Bias Correction Approach with Auto- and Cross

  15. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  16. Presenting simulation results in a nested loop plot.

    Science.gov (United States)

    Rücker, Gerta; Schwarzer, Guido

    2014-12-12

    Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.

  17. Understanding and simulating the link between African easterly waves and Atlantic tropical cyclones using a regional climate model: the role of domain size and lateral boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Louis-Philippe [MISU, Stockholm University, Stockholm (Sweden); Universite du Quebec a Montreal, CRCMD Network, Montreal, QC (Canada); Jones, Colin G. [Swedish Meterological and Hydrological Institute, Rossby Center, Norrkoeping (Sweden)

    2012-07-15

    Using a suite of lateral boundary conditions, we investigate the impact of domain size and boundary conditions on the Atlantic tropical cyclone and african easterly Wave activity simulated by a regional climate model. Irrespective of boundary conditions, simulations closest to observed climatology are obtained using a domain covering both the entire tropical Atlantic and northern African region. There is a clear degradation when the high-resolution model domain is diminished to cover only part of the African continent or only the tropical Atlantic. This is found to be the result of biases in the boundary data, which for the smaller domains, have a large impact on TC activity. In this series of simulations, the large-scale Atlantic atmospheric environment appears to be the primary control on simulated TC activity. Weaker wave activity is usually accompanied by a shift in cyclogenesis location, from the MDR to the subtropics. All ERA40-driven integrations manage to capture the observed interannual variability and to reproduce most of the upward trend in tropical cyclone activity observed during that period. When driven by low-resolution global climate model (GCM) integrations, the regional climate model captures interannual variability (albeit with lower correlation coefficients) only if tropical cyclones form in sufficient numbers in the main development region. However, all GCM-driven integrations fail to capture the upward trend in Atlantic tropical cyclone activity. In most integrations, variations in Atlantic tropical cyclone activity appear uncorrelated with variations in African easterly wave activity. (orig.)

  18. A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations

    Directory of Open Access Journals (Sweden)

    M. Michou

    2011-10-01

    Full Text Available This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006 is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated.

    Remaining problems concern the upper stratosphere (5 to 1 hPa where temperatures are too high, and where there are biases in the NO2, N2O5 and O3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.

  19. Milestone M4900: Simulant Mixing Analytical Results

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  20. Monte Carlo simulation of the effect of miniphantom on in-air output ratio

    International Nuclear Information System (INIS)

    Li Jun; Zhu, Timothy C.

    2010-01-01

    Purpose: The aim of the study was to quantify the effect of miniphantoms on in-air output ratio measurements, i.e., to determine correction factors for in-air output ratio. Methods: Monte Carlo (MC) simulations were performed to simulate in-air output ratio measurements by using miniphantoms made of various materials (PMMA, graphite, copper, brass, and lead) and with different longitudinal thicknesses or depths (2-30 g/cm 2 ) in photon beams of 6 and 15 MV, respectively, and with collimator settings ranging from 3x3 to 40x40 cm 2 . EGSnrc and BEAMnrc (2007) software packages were used. Photon energy spectra corresponding to the collimator settings were obtained from BEAMnrc code simulations on a linear accelerator and were used to quantify the components of in-air output ratio correction factors, i.e., attenuation, mass energy absorption, and phantom scatter correction factors. In-air output ratio correction factors as functions of miniphantom material, miniphantom longitudinal thickness, and collimator setting were calculated and compared to a previous experimental study. Results: The in-air output ratio correction factors increase with collimator opening and miniphantom longitudinal thickness for all the materials and for both energies. At small longitudinal thicknesses, the in-air output ratio correction factors for PMMA and graphite are close to 1. The maximum magnitudes of the in-air output ratio correction factors occur at the largest collimator setting (40x40 cm 2 ) and the largest miniphantom longitudinal thickness (30 g/cm 2 ): 1.008±0.001 for 6 MV and 1.012±0.001 for 15 MV, respectively. The MC simulations of the in-air output ratio correction factor confirm the previous experimental study. Conclusions: The study has verified that a correction factor for in-air output ratio can be obtained as a product of attenuation correction factor, mass energy absorption correction factor, and phantom scatter correction factor. The correction factors obtained in the

  1. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    Science.gov (United States)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  2. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  3. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a

  4. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  5. Evaluation of uncertainties in regional climate change simulations

    DEFF Research Database (Denmark)

    Pan, Z.; Christensen, J. H.; Arritt, R. W.

    2001-01-01

    , an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over...... to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all...... regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial...

  6. Using relational databases to collect and store discrete-event simulation results

    DEFF Research Database (Denmark)

    Poderys, Justas; Soler, José

    2016-01-01

    , export the results to a data carrier file and then process the results stored in a file using the data processing software. In this work, we propose to save the simulation results directly from a simulation tool to a computer database. We implemented a link between the discrete-even simulation tool...... and the database and performed performance evaluation of 3 different open-source database systems. We show, that with a right choice of a database system, simulation results can be collected and exported up to 2.67 times faster, and use 1.78 times less disk space when compared to using simulation software built...

  7. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  8. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    Science.gov (United States)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  9. The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations

    Science.gov (United States)

    Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.

    2002-07-01

    A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed

  10. SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model

    Science.gov (United States)

    Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria

    2016-04-01

    The SiSeRHMap (simulator for mapped seismic response using a hybrid model) is a computerized methodology capable of elaborating prediction maps of seismic response in terms of acceleration spectra. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code architecture composed of five interdependent modules. A GIS (geographic information system) cubic model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A meta-modelling process confers a hybrid nature to the methodology. In this process, the one-dimensional (1-D) linear equivalent analysis produces acceleration response spectra for a specified number of site profiles using one or more input motions. The shear wave velocity-thickness profiles, defined as trainers, are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Emul-spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated evolutionary algorithm (EA) and the Levenberg-Marquardt algorithm (LMA) as the final optimizer. In the final step, the GCM maps executor module produces a serial map set of a stratigraphic seismic response at different periods, grid solving the calibrated Emul-spectra model. In addition, the spectra topographic amplification is also computed by means of a 3-D validated numerical prediction model. This model is built to match the results of the numerical simulations related to isolate reliefs using GIS morphometric data. In this way, different sets of seismic response maps are developed on which maps of design acceleration response spectra are also defined by means of an enveloping technique.

  11. Medical Simulation Practices 2010 Survey Results

    Science.gov (United States)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  12. Electron-cloud simulation results for the PSR and SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    We present recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos. In particular, a complete refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has been included in the simulation code

  13. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  14. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  15. Reconstructing the ideal results of a perturbed analog quantum simulator

    Science.gov (United States)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  16. Sensitivity of RegCM3 simulations to horizontal resolution

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2009-09-01

    Full Text Available as initial and time-dependent lateral boundary conditions. The basic idea behind regional climate modelling is that a GCM can provide correct large scale circulation in response to global climatic forcing and the RCM can represent sub-GCM grid scale forcings...

  17. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  18. DoSSiER: Database of Scientific Simulation and Experimental Results

    CERN Document Server

    Wenzel, Hans; Genser, Krzysztof; Elvira, Daniel; Pokorski, Witold; Carminati, Federico; Konstantinov, Dmitri; Ribon, Alberto; Folger, Gunter; Dotti, Andrea

    2017-01-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  19. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  20. Simulation of Drought-induced Tree Mortality Using a New Individual and Hydraulic Trait-based Model (S-TEDy)

    Science.gov (United States)

    Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.

    2017-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  1. Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2005-01-01

    Full Text Available We demonstrate the application of an efficient multivariate probabilistic parameter estimation method to a spectral primitive equation atmospheric GCM. The method, which is based on the Ensemble Kalman Filter, is effective at tuning the surface air temperature climatology of the model to both identical twin data and reanalysis data. When 5 parameters were simultaneously tuned to fit the model to reanalysis data, the model errors were reduced by around 35% compared to those given by the default parameter values. However, the precipitation field proved to be insensitive to these parameters and remains rather poor. The model is computationally cheap but chaotic and otherwise realistic, and the success of these experiments suggests that this method should be capable of tuning more sophisticated models, in particular for the purposes of climate hindcasting and prediction. Furthermore, the method is shown to be useful in determining structural deficiencies in the model which can not be improved by tuning, and so can be a useful tool to guide model development. The work presented here is for a limited set of parameters and data, but the scalability of the method is such that it could easily be extended to a more comprehensive parameter set given sufficient observational data to constrain them.

  2. The determination of uranium distribution homogeneity in the fuel plates with the uranium loading of 4.80 and 5.20 g/cm3 by X-Ray attenuation

    International Nuclear Information System (INIS)

    Supardjo; Rojak, A.; Boybul; Suyoto; Datam, A. S.

    2000-01-01

    The calibration of X-Ray intensity of the U 3 Si 2 -AI fuel plates with the uranium loading between 3.60 up to 5.20 g/cm 3 and varied thickness of AIMgSi1 reference block have been performed. The measurement with changing variable slit diameter and energy of X-Ray attenuation, are produced enough representative X-Ray intensity at 18 mm slit diameter and energy of 43 kV. From the correlation of X-ray intensities vs variation of uranium loading in the fuel plates and thickness of the AIMgSi1 materials, the equivalence of thickness of the AIMgSi1 block to the uranium loading of fuel plates are determined. By assuming that the tolerance of the homogeneity measurement is + 20 % from normal thickness staircase of the AIMgSi1 standard could be determined and than together with fuel plate were scanned to determine the uranium homogeneity. The test result on the U 3 Si 2 -AI fuel plates with uranium loading of 4.80 and 5.20 g/cm 3 (each 4 fuel plates) indicated that uranium distribution in the fuel plates is relatively homogeneous, with each maximum deviation being 6.30 % and 6.90%. It is showed that measurement method is relatively good, easy, and fast so that this method is suitable to control the uranium homogeneity in the fuel plate. (author)

  3. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  4. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    Directory of Open Access Journals (Sweden)

    A. Sanna

    2013-06-01

    Full Text Available In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°, for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  5. First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008

    Science.gov (United States)

    Liu, Jing; Liu, Hanli; Wang, Wenbin; Burns, Alan G.; Wu, Qian; Gan, Quan; Solomon, Stanley C.; Marsh, Daniel R.; Qian, Liying; Lu, Gang; Pedatella, Nicholas M.; McInerney, Joe M.; Russell, James M.; Schreiner, William S.

    2018-02-01

    New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM-X), in order to self-consistently simulate the coupled atmosphere-ionosphere system. The first specified dynamics WACCM-X v.2.0 results are compared with several data sets, and with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM-X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM-X, TIE-GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM-X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM-X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data-model comparisons demonstrate that WACCM-X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense.

  6. Comparison between the performance of some KEK-klystrons and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shigeki [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    Recent developments of various klystron simulation codes have enabled us to realistically design klystrons. This paper presents various simulation results using the FCI code and the performances of tubes manufactured based on this code. Upgrading a 30-MW S-band klystron and developing a 50-MW S-band klystron for the KEKB projects are successful examples based on FCI-code predictions. Mass-productions of these tubes have already started. On the other hand, a discrepancy has been found between the FCI simulation results and the performance of real tubes. In some cases, the simulation results lead to high-efficiency results, while manufactured tubes show the usual value, or a lower value, of the efficiency. One possible cause may come from a data mismatch between the electron-gun simulation and the input data set of the FCI code for the gun region. This kind of discrepancy has been observed in 30-MW S-band pulsed tubes, sub-booster pulsed tubes and L-band high-duty pulsed klystrons. Sometimes, JPNDSK (one-dimensional disk-model code) gives similar results. Some examples using the FCI code are given in this article. An Arsenal-MSU code could be applied to the 50-MW klystron under collaboration with Moscow State University; a good agreement has been found between the prediction of the code and performance. (author)

  7. First results from simulations of supersymmetric lattices

    Science.gov (United States)

    Catterall, Simon

    2009-01-01

    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the Script Q = 4 theory in D = 0,2 dimensions and the Script Q = 16 theory in D = 0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of Script N = 4 super Yang-Mills may be achievable in the near future.

  8. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    Science.gov (United States)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  9. Bringing a Realistic Global Climate Modeling Experience to a Broader Audience

    Science.gov (United States)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2010-12-01

    EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.

  10. Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050.

    Science.gov (United States)

    Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L; Hawbaker, Todd J; Sleeter, Ben; Zhu, Zhiliang

    2015-12-01

    Climate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting. The three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m 2 in 2006 to 10,234 gC/m 2 in 2050 with an annual rate increase of 53 gC/m 2 /year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m 2 /year in 2006 to 310 gC/m 2 /year in 2050 with an annual rate increase of 1.22 gC/m 2 /year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m 2 /year during 2006-2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006-2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks. The GYE is a carbon sink during 2006-2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m 2 , which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m 2 , and thus is not significant.

  11. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models

    Directory of Open Access Journals (Sweden)

    Behzad Asadieh

    2016-05-01

    Full Text Available To understand changes in global mean and extreme streamflow volumes over recent decades, we statistically analyzed runoff and streamflow simulated by the WBM-plus hydrological model using either observational-based meteorological inputs from WATCH Forcing Data (WFD, or bias-corrected inputs from five global climate models (GCMs provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP. Results show that the bias-corrected GCM inputs yield very good agreement with the observation-based inputs in average magnitude of runoff and streamflow. On global average, the observation-based simulated mean runoff and streamflow both decreased about 1.3% from 1971 to 2001. However, GCM-based simulations yield increasing trends over that period, with an inter-model global average of 1% for mean runoff and 0.9% for mean streamflow. In the GCM-based simulations, relative changes in extreme runoff and extreme streamflow (annual maximum daily values and annual-maximum seven-day streamflow are slightly greater than those of mean runoff and streamflow, in terms of global and continental averages. Observation-based simulations show increasing trend in mean runoff and streamflow for about one-half of the land areas and decreasing trend for the other half. However, mean and extreme runoff and streamflow based on the GCMs show increasing trend for approximately two-thirds of the global land area and decreasing trend for the other one-third. Further work is needed to understand why GCM simulations appear to indicate trends in streamflow that are more positive than those suggested by climate observations, even where, as in ISI-MIP, bias correction has been applied so that their streamflow climatology is realistic.

  12. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios.

    Science.gov (United States)

    Mouri, Goro

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  13. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  14. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2010-08-01

    Full Text Available A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS in the new model setup, but outgoing long-wave radiation (OLR decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR is of similar magnitude for the new and the original scheme.

  15. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Science.gov (United States)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  16. Reconstructing Holocene climate using a climate model: Model strategy and preliminary results

    Science.gov (United States)

    Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.

    2009-04-01

    An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.

  17. ANOVA parameters influence in LCF experimental data and simulation results

    Directory of Open Access Journals (Sweden)

    Vercelli A.

    2010-06-01

    Full Text Available The virtual design of components undergoing thermo mechanical fatigue (TMF and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation and the damage and life model (for life assessment. The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF tests, low cycle fatigue (LCF tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo

  18. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  19. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    International Nuclear Information System (INIS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-01-01

    This study presents an estimate of the effects of climate variables and CO 2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO 2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  20. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    Science.gov (United States)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  1. A GCM Solution for Leveraging Server-side JMS Functionality to Android-based Trading Application

    Directory of Open Access Journals (Sweden)

    Claudiu VINTE

    2013-01-01

    Full Text Available The paper presents our solution for a message oriented communication mechanism, employing Google Cloud Messaging (GCM on the client-side, and Java Message Service (JMS on the server-side, in order to leverage JMS functionality to Android-based trading application. Our ongoing research has been focused upon conceiving a way to expose the trading services offered by our academic trading system ASETS to a mobile trading application based on Android platform. ASETS trading platform is a distributed SOA implementation, with an original API based on JMS. In order to design and implement an Android based client, able to inter-communicate with the server-side components of ASETS, in a manner consistent with publisher/subscriber JMS communication model, there was particularly necessary to have object embedded messages, produced by various ASETS services, pushed to the client application. While point-to-point communication model could be resolved on the client-side by employing synchronous HTTP socket connections over TCP/IP, the asynchronously generated messages from the server-side had to reach the client application in a push manner.

  2. Latest results of the Tunka Radio Extension

    Directory of Open Access Journals (Sweden)

    Kostunin D.

    2017-01-01

    Full Text Available The Tunka Radio Extension (Tunka-Rex is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.

  3. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    Science.gov (United States)

    Battaglin, William; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring

  4. A method for data handling numerical results in parallel OpenFOAM simulations

    International Nuclear Information System (INIS)

    nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" data-affiliation=" (Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2nd Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania))" >Anton, Alin; th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" data-affiliation=" (Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24th Mihai Viteazu Ave., 300221, TM Timişoara (Romania))" >Muntean, Sebastian

    2015-01-01

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit ® [1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms

  5. A method for data handling numerical results in parallel OpenFOAM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Alin [Faculty of Automatic Control and Computing, Politehnica University of Timişoara, 2" n" d Vasile Pârvan Ave., 300223, TM Timişoara, Romania, alin.anton@cs.upt.ro (Romania); Muntean, Sebastian [Center for Advanced Research in Engineering Science, Romanian Academy – Timişoara Branch, 24" t" h Mihai Viteazu Ave., 300221, TM Timişoara (Romania)

    2015-12-31

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  6. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  7. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    International Nuclear Information System (INIS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-01-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software

  8. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D., E-mail: david.tisseur@cea.fr; Costin, M., E-mail: david.tisseur@cea.fr; Rattoni, B., E-mail: david.tisseur@cea.fr; Vienne, C., E-mail: david.tisseur@cea.fr; Vabre, A., E-mail: david.tisseur@cea.fr; Cattiaux, G., E-mail: david.tisseur@cea.fr [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Sollier, T. [Institut de Radioprotection et de Sûreté Nucléaire, B.P.17 92262 Fontenay-Aux-Roses (France)

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  9. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  10. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  11. Comparisons of the simulation results using different codes for ADS spallation target

    International Nuclear Information System (INIS)

    Yu Hongwei; Fan Sheng; Shen Qingbiao; Zhao Zhixiang; Wan Junsheng

    2002-01-01

    The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra

  12. Early human-plant interactions based on palaeovegetation simulations of Africa over glacial-interglacial cycles

    Science.gov (United States)

    Cowling, S. A.; Cox, P. M.; Jones, C. D.; Maslin, M. A.; Spall, S. A.

    2003-04-01

    A greater understanding of African palaeovegetation environments over the Pleistocene (1.6 Mya) is important for evaluating potential catalysts underlying the anatomical, social and demographic changes observed in early human populations. We used a state-of-the-art fully-coupled earth system model (HADLEY-GCM3) to simulate typical glacial and interglacial environments likely encountered by late-Pleistocene humans. Our simulations indicate that tropical broadleaf forests of central Africa were not severely restricted by expanding grasslands during the last glacial maximum, although the carbon content of stem and density of leaf components were substantially reduced. We interpret a natural eastern migration corridor between southern Africa and the Rift Valley based on simulations of a no-analogue vegetation assemblage characterised by a unique combination of grass and low density forest. We postulate that early human populations in southern Africa were isolated from northern groups during warm interglacials, and that trans-African migration was facilitated during glacial cycles via a more openly forested eastern corridor.

  13. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  14. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  15. Assessing drought risk under climate change in the US Great Plains via evaporative demand from downscaled GCM projections

    Science.gov (United States)

    Dewes, C.; Rangwala, I.; Hobbins, M.; Barsugli, J. J.

    2016-12-01

    Drought conditions in the US Great Plains occur primarily in response to periods of low precipitation, but they can be exacerbated by enhanced evaporative demand (E0) during periods of elevated temperatures, radiation, advection, and/or decreased humidity. A number of studies project severe to unprecedented drought conditions for this region later in the 21st century. Yet, we have found that methodological choices in the estimation of E0 and the selection of global climate model (GCM) output account for large uncertainties in projections of drought risk. Furthermore, the coarse resolution of GCMs offers little usability for drought risk assessments applied to socio-ecological systems, and users of climate data for that purpose tend to prefer existing downscaled products. Here we derive a physically based estimation of E0 - the FAO56 Penman-Monteith reference evapotranspiration - using driving variables from the Multivariate Adaptive Constructed Analogs (MACA) dataset, which have a spatial resolution of approximately 4 km. We select downscaled outputs from five CMIP5 GCMs, whereby we aim to represent different scenarios for the future of the Great Plains region (e.g. warm/wet, hot/dry, etc.). While this downscaling methodology removes GCM bias relative to a gridded product for historical data (METDATA), we first examine the remaining bias relative to ground (point) estimates of E0. Next we assess whether the downscaled products preserve the variability of their parent GCMs, in both historical and future (RCP8.5) projections. We then use the E0 estimates to compute multi-scale time series of drought indices such as the Evaporative Demand Drought Index (EDDI) and the Standardized Precipitation-Evaporation Index (SPEI) over the Great Plains region. We also attribute variability and drought anomalies to each of the driving parameters, to tease out the influence of specific model biases and evaluate geographical nuances of E0 drivers. Aside from improved understanding of

  16. Comparison of multiple-criteria decision-making methods - results of simulation study

    Directory of Open Access Journals (Sweden)

    Michał Adamczak

    2016-12-01

    Full Text Available Background: Today, both researchers and practitioners have many methods for supporting the decision-making process. Due to the conditions in which supply chains function, the most interesting are multi-criteria methods. The use of sophisticated methods for supporting decisions requires the parameterization and execution of calculations that are often complex. So is it efficient to use sophisticated methods? Methods: The authors of the publication compared two popular multi-criteria decision-making methods: the  Weighted Sum Model (WSM and the Analytic Hierarchy Process (AHP. A simulation study reflects these two decision-making methods. Input data for this study was a set of criteria weights and the value of each in terms of each criterion. Results: The iGrafx Process for Six Sigma simulation software recreated how both multiple-criteria decision-making methods (WSM and AHP function. The result of the simulation was a numerical value defining the preference of each of the alternatives according to the WSM and AHP methods. The alternative producing a result of higher numerical value  was considered preferred, according to the selected method. In the analysis of the results, the relationship between the values of the parameters and the difference in the results presented by both methods was investigated. Statistical methods, including hypothesis testing, were used for this purpose. Conclusions: The simulation study findings prove that the results obtained with the use of two multiple-criteria decision-making methods are very similar. Differences occurred more frequently in lower-value parameters from the "value of each alternative" group and higher-value parameters from the "weight of criteria" group.

  17. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  18. Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

    International Nuclear Information System (INIS)

    Somerville, R.C.J.; Iacobellis, S.F.

    2005-01-01

    Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional

  19. 3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere

    Science.gov (United States)

    Tingle, S.; Mueller-Wodarg, I. C.

    2009-12-01

    We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the

  20. Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM

    Directory of Open Access Journals (Sweden)

    J. R. Alder

    2011-02-01

    Full Text Available We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems and MOM2 (Modular Ocean Model version 2 nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2 and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation.

  1. An attempt to detect the greenhouse-gas signal in a transient GCM simulation

    International Nuclear Information System (INIS)

    Barnett, T.P.

    1990-01-01

    Results from the GISS model forced by transient greenhouse-gas (GHG) increases are used to demonstrate methods of detecting the theoretically predicted GHG signal. The signal predicted to occur in the surface temperature of the world's ocean since 1958 is not found in the observations but this is not surprising since the signal was small in the first place. The main result of the study is to demonstrate many of the key issues/difficulties that attend the detection problem

  2. Effects of a Simple Convective Organization Scheme in a Two-Plume GCM

    Science.gov (United States)

    Chen, Baohua; Mapes, Brian E.

    2018-03-01

    A set of experiments is described with the Community Atmosphere Model (CAM5) using a two-plume convection scheme. To represent the differences of organized convection from General Circulation Model (GCM) assumptions of isolated plumes in uniform environments, a dimensionless prognostic "organization" tracer Ω is invoked to lend the second plume a buoyancy advantage relative to the first, as described in Mapes and Neale (2016). When low-entrainment plumes are unconditionally available (Ω = 1 everywhere), deep convection occurs too easily, with consequences including premature (upstream) rainfall in inflows to the deep tropics, excessive convective versus large-scale rainfall, poor relationships to the vapor field, stable bias in the mean state, weak and poor tropical variability, and midday peak in diurnal rainfall over land. Some of these are shown to also be characteristic of CAM4 with its separated deep and shallow convection schemes. When low-entrainment plumes are forbidden by setting Ω = 0 everywhere, some opposite problems can be discerned. In between those extreme cases, an interactive Ω driven by the evaporation of precipitation acts as a local positive feedback loop, concentrating deep convection: In areas of little recent rain, only highly entraining plumes can occur, unfavorable for rain production. This tunable mechanism steadily increases precipitation variance in both space and time, as illustrated here with maps, time-longitude series, and spectra, while avoiding some mean state biases as illustrated with process-oriented diagnostics such as conserved variable profiles and vapor-binned precipitation curves.

  3. Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells

    Directory of Open Access Journals (Sweden)

    Vinay Budhraja

    2017-01-01

    Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.

  4. Very high resolution regional climate simulations on the 4 km scale as a basis for carbon balance assessments in northeast European Russia

    Science.gov (United States)

    Stendel, Martin; Hesselbjerg Christensen, Jens; Adalgeirsdottir, Gudfinna; Rinke, Annette; Matthes, Heidrun; Marchenko, Sergej; Daanen, Ronald; Romanovsky, Vladimir

    2010-05-01

    Simulations with global circulation models (GCMs) clearly indicate that major climate changes in polar regions can be expected during the 21st century. Model studies have shown that the area of the Northern Hemisphere underlain by permafrost could be reduced substantially in a warmer climate. However, thawing of permafrost, in particular if it is ice-rich, is subject to a time lag due to the large latent heat of fusion. State-of-the-art GCMs are unable to adequately model these processes because (a) even the most advanced subsurface schemes rarely treat depths below 5 m explicitly, and (b) soil thawing and freezing processes cannot be dealt with directly due to the coarse resolution of present GCMs. Any attempt to model subsurface processes needs information about soil properties, vegetation and snow cover, which are hardly realistic on a typical GCM grid. Furthermore, simulated GCM precipitation is often underestimated and the proportion of rain and snow is incorrect. One possibility to overcome resolution-related problems is to use regional climate models (RCMs). Such an RCM, HIRHAM, has until now been the only one used for the entire circumpolar domain, and its most recent version, HIRHAM5, has also been used in the high resolution study described here. Instead of the traditional approach via a degree-day based frost index from observations or model data, we use the regional model to create boundary conditions for an advanced permafrost model. This approach offers the advantage that the permafrost model can be run on the grid of the regional model, i.e. in a considerably higher resolution than in previous approaches. We here present results from a new time-slice integration with an unprecedented horizontal resolution of only 4 km, covering northeast European Russia. This model simulation has served as basis for an assessment of the carbon balance for a region in northeast European Russia within the EU-funded Carbo-North project.

  5. Simulation results of the electron-proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Sebastian; Steinhagen, Jan; Kulkarni, Shrinivasrao; Grunau, Jan; Paspirgilis, Rolf; Martin, Cesar; Boettcher, Stephan; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    The Electron Proton Telescope (EPT) is one of five instruments in the Energetic Particle Detector suite for Solar Orbiter. It investigates low energy electrons and protons of solar events. EPT covers an energy range from 20400 keV for electrons and 20 keV-7 MeV for protons and distinguishes electrons from protons using a magnet/foil technique with silicon detectors. There will be two EPT units, each with double-barreled telescopes, one looking sunwards/antisunwards and the other north/south. EPT is designed using the GEometry ANd Tracking (GEANT) simulation toolkit developed by CERN for Monte Carlo calculations. Here we present the details of our simulations and the simulation results with respect to energy coverage and the geometrical factor of the EPT instrument. We also look at the far-field of the EPT magnets, which is important for electromagnetic cleanliness considerations.

  6. Bioclim Deliverable D4/5: global climatic characteristics, including vegetation and seasonal cycles over Europe, for snapshots over the next 200,000 years

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the BIOCLIM project is to develop and present techniques that can be used to develop self-consistent patterns of possible future climate changes over the next million years (climate scenarios), and to demonstrate how these climate scenarios can be used in assessments of the long-term safety of nuclear waste repository sites. Within the project, two strategies are implemented to predict climate change. The first is the hierarchical strategy, in which a hierarchy of climate models is used to investigate the evolution of climate over the period of interest. These models vary from very simple 2-D and threshold models, which simulate interactions between only a few aspects of the earth system, through general circulation models (GCMs) and vegetation models, which simulate in great detail the dynamics and physics of the atmosphere, ocean, and biosphere, to regional models, which focus in particular on the European region and the specific areas of interest. The second strategy is the integrated strategy, in which intermediate complexity climate models are developed, and used to consecutively simulate the development of the earth system over many millennia. Although these models are relatively simple compared to a GCM, they are more advanced than 2D models, and do include physical descriptions of the biosphere, cryo-sphere, atmosphere and ocean. This deliverable, D4/5, focuses on the hierarchical strategy, and in particular the GCM and vegetation model simulation of possible future climates. Deliverable D3 documented the first step in this strategy. The Louvain-la-Neuve 2-D climate model (LLN-2D) was used to estimate (among other variables) annual mean temperatures and ice volume in the Northern Hemisphere over the next 1 million years. It was driven by the calculated evolution of orbital parameters, and plausible scenarios of CO 2 concentration. From the results, 3 future time periods within the next 200,000 years were identified as being extreme, that is

  7. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V.M.; Villanueva, E.E.; Garduno, R.; Adem, J. [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1995-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  8. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V M; Villanueva, E E; Garduno, R; Adem, J [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1996-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  9. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  10. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    Science.gov (United States)

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  11. Improving the trust in results of numerical simulations and scientific data analytics

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil [Argonne National Lab. (ANL), Argonne, IL (United States); Hovland, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Peterka, Tom [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, Carolyn [Argonne National Lab. (ANL), Argonne, IL (United States); Snir, Marc [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, Stefan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-30

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general

  12. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  13. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  14. Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Martin Hofmann

    2017-09-01

    Full Text Available We analyze the output of various state-of-the-art irradiance models for photovoltaic systems. The models include two sun position algorithms, three types of input data time series, nine diffuse fraction models and five transposition models (for tilted surfaces, resulting in 270 different model chains for the photovoltaic (PV system simulation. These model chains are applied to 30 locations worldwide and three different module tracking types, totaling in 24,300 simulations. We show that the simulated PV yearly energy output varies between −5% and +8% for fixed mounted PV modules and between −26% and +14% for modules with two-axis tracking. Model quality varies strongly between locations; sun position algorithms have negligible influence on the simulation results; diffuse fraction models add a lot of variability; and transposition models feature the strongest influence on the simulation results. To highlight the importance of irradiance with high temporal resolution, we present an analysis of the influence of input temporal resolution and simulation models on the inverter clipping losses at varying PV system sizing factors for Lindenberg, Germany. Irradiance in one-minute resolution is essential for accurately calculating inverter clipping losses.

  15. The potential influence of multiple scattering on longwave flux and heating rate simulations with clouds

    Science.gov (United States)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.; Kuo, C.; Mlawer, E. J.

    2017-12-01

    Clouds, which cover approximately 67% of the globe, serve as one of the major modulators in adjusting radiative energy on the Earth. Since rigorous radiative transfer computations including multiple scattering are costly, only absorption is considered in the longwave spectral bands in the radiation sub-models of the general circulation models (GCMs). Quantification of the effect of ignoring longwave scattering for flux and heating rate simulations is performed by using the GCM version of the Longwave Rapid Radiative Transfer Model (RRTMG_LW) with an implementation with the 16-stream Discrete Ordinates Radiative Transfer (DISORT) Program for a Multi-Layered Plane-Parallel Medium in conjunction with the 2010 CCCM products that merge satellite observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the CloudSat, the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectrometer (MODIS). One-year global simulations show that neglecting longwave scattering overestimates upward flux at the top of the atmosphere (TOA) and underestimates downward flux at the surface by approximately 2.63 and 1.15 W/m2, respectively. Furthermore, when longwave scattering is included in the simulations, the tropopause is cooled by approximately 0.018 K/day and the surface is heated by approximately 0.028 K/day. As a result, the radiative effects of ignoring longwave scattering and doubling CO2 are comparable in magnitude.

  16. First results from the IllustrisTNG simulations: the galaxy colour bimodality

    Science.gov (United States)

    Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Weinberger, Rainer; Hernquist, Lars; Pakmor, Rüdiger; Genel, Shy; Torrey, Paul; Vogelsberger, Mark; Kauffmann, Guinevere; Marinacci, Federico; Naiman, Jill

    2018-03-01

    We introduce the first two simulations of the IllustrisTNG project, a next generation of cosmological magnetohydrodynamical simulations, focusing on the optical colours of galaxies. We explore TNG100, a rerun of the original Illustris box, and TNG300, which includes 2 × 25003 resolution elements in a volume 20 times larger. Here, we present first results on the galaxy colour bimodality at low redshift. Accounting for the attenuation of stellar light by dust, we compare the simulated (g - r) colours of 109 1011 M⊙ which redden at z z = 0 mass post-reddening; at the same time, ˜18 per cent of such massive galaxies acquire half or more of their final stellar mass while on the red sequence.

  17. Extended post processing for simulation results of FEM synthesized UHF-RFID transponder antennas

    Directory of Open Access Journals (Sweden)

    R. Herschmann

    2007-06-01

    Full Text Available The computer aided design process of sophisticated UHF-RFID transponder antennas requires the application of reliable simulation software. This paper describes a Matlab implemented extension of the post processor capabilities of the commercially available three dimensional field simulation programme Ansoft HFSS to compute an accurate solution of the antenna's surface current distribution. The accuracy of the simulated surface currents, which are physically related to the impedance at the feeding point of the antenna, depends on the convergence of the electromagnetic fields inside the simulation volume. The introduced method estimates the overall quality of the simulation results by combining the surface currents with the electromagnetic fields extracted from the field solution of Ansoft HFSS.

  18. Modeling results for a linear simulator of a divertor

    International Nuclear Information System (INIS)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-01-01

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

  19. Verification of results of core physics on-line simulation by NGFM code

    International Nuclear Information System (INIS)

    Zhao Yu; Cao Xinrong; Zhao Qiang

    2008-01-01

    Nodal Green's Function Method program NGFM/TNGFM has been trans- planted to windows system. The 2-D and 3-D benchmarks have been checked by this program. And the program has been used to check the results of QINSHAN-II reactor simulation. It is proved that the NGFM/TNGFM program is applicable for reactor core physics on-line simulation system. (authors)

  20. Coupling atmospheric, hydrological and hydraulic models to develop a catalogue of worst-case scenarios for extreme flooding in Switzerland

    Science.gov (United States)

    José Gómez-Navarro, Juan; Felder, Guido; Raible, Christoph C.; Martius, Olivia; Rössler, Ole

    2015-04-01

    Extreme flooding are a natural threat that leads to great economical cost, especially in densely populated areas such as Switzerland. However, the study of such extremes is difficult due to the fact they are, by definition, very rare, whereas the instrumental period is relatively short. This hampers the study of events with large return periods, which are precisely those more relevant from the impact point of view. Thus, new methodologies have to be developed that provide a deeper understanding of such disastrous situations and their driving mechanisms. This study employs a chain of models that allow the study of the frequency and severity of such situations and to analyse their driving physical mechanisms. First, a long climate simulation (a control simulation spanning more than 500 years) with the comprehensive Global Circulation Model (GCM) CESM1 is used as test-bed for producing a dataset of several centuries of physically consistent climate. This data is then used to filter out a number of case studies corresponding to extreme situations, which are selected as candidates for further analysis. However, although the physical consistency of this simulation ensures that the synoptic circulation leading to the selected events is plausible, the global model employs a coarse spatial resolution (1 degree) that precludes the accurate simulation of the precipitation in areas of complex topography such as Switzerland. Hence, once the dates of the candidate cases are selected within the GCM run, this dataset is downscaled with the Regional Climate Model (RCM) WRF. The RCM implements a spatial resolution of 2 km over the entire alpine area, which allows it to reproduce more accurately the precipitation induced by interactions between the large-scale forcing and the orography. The results show that WRF is able to improve the simulation of precipitation compared to the GCM alone. Although the large-scale flow and the location of the precipitation maxima is very similar in

  1. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  2. Simulating the 2012 High Plains drought using three single column versions (SCM) of BUGS5

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2013-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we will focus on the 2012 High Plains drought and will perform numerical simulations using three single column versions (SCM) of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)) at multiple sites overlying the Ogallala Aquifer for the 2011-2012 periods. In the first version of BUGS5, the model will be used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM consists of 64 atmospheric columns), will replace the single CSU GCM atmospheric parameterization and will be coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 will be coupled to each CRM column of the SP-CAM (64 CRM columns coupled to 64 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of BUGS5, differences in simulated energy and moisture fluxes will be computed between the 2011 and 2012 period and will be compared to differences calculated using

  3. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  4. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  5. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    Science.gov (United States)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  6. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xianan [Univ. of California, Los Angeles, CA (United States); Waliser, Duane E. [California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.; Kim, Daehyun [Columbia Univ., New York, NY (United States); Zhao, Ming [Princeton Univ., NJ (United States); Sperber, Kenneth R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, William F. [Princeton Univ., NJ (United States); Schubert, Siegfried D. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Zhang, Guang J. [Scripps Institute of Oceanography. La Jolla, California (United States); Wang, Wanqiu [National Oceanic and Atmospheric Administration (NOAA), National Centers for Environmental Protection. Camp Springs, MD (United States); Khairoutdinov, Marat [Institute for Terrestrial and Planetary Atmospheres. Stony Brook Univ., NY (United States); Neale, Richard B. [National Center for Atmospheric Research. Boulder, CO (United States); Lee, Myong-In [Ulsan National Institute for Science and Technology. Seoul (Korea)

    2012-08-01

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  7. Simulation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models

    Science.gov (United States)

    Jiang, Xianan; Waliser, Duane E.; Kim, Daehyun; Zhao, Ming; Sperber, Kenneth R.; Stern, W. F.; Schubert, Siegfried D.; Zhang, Guang J.; Wang, Wanqiu; Khairoutdinov, Marat; hide

    2012-01-01

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  8. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xianan [University of California, Joint Institute for Regional Earth System Science and Engineering, Los Angeles, CA (United States); California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA (United States); Waliser, Duane E. [California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA (United States); Kim, Daehyun [Lamont-Doherty Earth Observatory of Columbia University, New York, NY (United States); Zhao, Ming; Stern, William F. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schubert, Siegfried D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Zhang, Guang J. [Scripps Institution of Oceanography, La Jolla, CA (United States); Wang, Wanqiu [NOAA/National Centers for Environmental Prediction, Camp Springs, MD (United States); Khairoutdinov, Marat [Stony Brook University, Institute for Terrestrial and Planetary Atmospheres, Stony Brook, NY (United States); Neale, Richard B. [National Center for Atmospheric Research, Boulder, CO (United States); Lee, Myong-In [Ulsan National Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-08-15

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  9. Constraining snowmelt in a temperature-index model using simulated snow densities

    KAUST Repository

    Bormann, Kathryn J.

    2014-09-01

    Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027gcm-3 to -0.004gcm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the

  10. Constraining snowmelt in a temperature-index model using simulated snow densities

    KAUST Repository

    Bormann, Kathryn J.; Evans, Jason P.; McCabe, Matthew

    2014-01-01

    Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027gcm-3 to -0.004gcm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the

  11. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Gabric, Albert J.; Cropp, Roger; Marchant, Harvey

    2003-01-01

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO 2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  12. Simulation of gamma-ray irradiation of lettuce leaves in a 137Cs irradiator using MCNP

    International Nuclear Information System (INIS)

    Kim, Jongsoon; Moreira, Rosana G.; Braby, Leslie A.

    2010-01-01

    Ionizing radiation effectively reduces the number of common microbial pathogens in fresh produce. However, the efficacy of the process for pathogens internalized into produce tissue is unknown. The objective of this study was to understand gamma irradiation of lettuce leaf structure exposed in a 137 Cs irradiator using MCNP. The simulated 137 Cs irradiator is a self-shielded device, and its geometry and sources are described in the MCNP input file. When the irradiation chamber is filled with water, lower doses are found at the center of the irradiation volume and the dose uniformity ratio (maximum dose/minimum dose) is 1.76. For randomly oriented rectangular lettuce leaf segments in the irradiation chamber, the dose uniformity ratio is 1.25. It shows that dose uniformity in the Cs irradiator is strongly dependent of the density of the sample. To understand dose distribution inside the leaf, we divided a lettuce leaf into a low density (flat) region (0.72 g/cm 3 ) and high density (rib) region (0.86 g/cm 3 ). Calculated doses to the rib are 61% higher than doses to the flat region of the leaf. This indicates that internalized microorganisms can be inactivated more easily than organisms on the surface. This study shows that irradiation can effectively reduce viable microorganism internalized in lettuce. (author)

  13. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    Science.gov (United States)

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  14. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    Science.gov (United States)

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  15. Planck 2015 results: XII. Full focal plane simulations

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, compris...

  16. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  17. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  18. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  19. Global Warming and the Summertime Evapotranspiration Regime of the Alpine Region

    Energy Technology Data Exchange (ETDEWEB)

    Calanca, P.; Jasper, K. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, CH-8046 Zuerich (Switzerland); Roesch, A.; Wild, M. [Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2006-11-15

    Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961-1990 and a time-slice simulation valid for 2071-2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.

  20. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    Science.gov (United States)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  1. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  2. Separation of electron ion ring components (computational simulation and experimental results)

    International Nuclear Information System (INIS)

    Aleksandrov, V.S.; Dolbilov, G.V.; Kazarinov, N.Yu.; Mironov, V.I.; Novikov, V.G.; Perel'shtejn, Eh.A.; Sarantsev, V.P.; Shevtsov, V.F.

    1978-01-01

    The problems of the available polarization value of electron-ion rings in the regime of acceleration and separation of its components at the final stage of acceleration are studied. The results of computational simulation by use of the macroparticle method and experiments on the ring acceleration and separation are given. The comparison of calculation results with experiment is presented

  3. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden

    Science.gov (United States)

    Hellström, Cecilia; Chen, Deliang

    2003-11-01

    A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.

  4. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    Science.gov (United States)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  5. The role of shallow convection in promoting the northward propagation of boreal summer intraseasonal oscillation

    Science.gov (United States)

    Liu, Fei; Zhao, Jiuwei; Fu, Xiouhua; Huang, Gang

    2018-02-01

    By conducting idealized experiments in a general circulation model (GCM) and in a toy theoretical model, we test the hypothesis that shallow convection (SC) is responsible for explaining why the boreal summer intraseasonal oscillation (BSISO) prefers propagating northward. Two simulations are performed using ECHAM4, with the control run using a standard detrainment rate of SC and the sensitivity run turning off the detrainment rate of SC. These two simulations display dramatically different BSISO characteristics. The control run simulates the realistic northward propagation (NP) of the BSISO, while the sensitivity run with little SC only simulates stationary signals. In the sensitivity run, the meridional asymmetries of vorticity and humidity fields are simulated under the monsoon vertical wind shear (VWS); thus, the frictional convergence can be excited to the north of the BSISO. However, the lack of SC makes the lower and middle troposphere very dry, which prohibits further development of deeper convection. A theoretical BSISO model is also constructed, and the result shows that SC is a key to convey the asymmetric vorticity effect to induce the BSISO to move northward. Thus, both the GCM and theoretical model results demonstrate the importance of SC in promoting the NP of the BSISO.

  6. Monte Carlo simulation of a TRIGA source driven core configuration: Preliminary results

    International Nuclear Information System (INIS)

    Burgio, N.; Ciavola, C.; Santagata, A.

    2002-01-01

    The different core configurations with a k eff ranging from 0.93 to 0.98, and their response when driven by a pulsed neutron source were simulated with MCNP4C3 (Los Alamos - Monte Carlo N Particles). Simulation results could be considered both as preliminary check for nuclear data and a conceptual design for 'source jerk' experiments on the frame of TRIGA Accelerator Driven Experiment (TRADE) on the reactor facility of Casaccia research center. (author)

  7. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  8. The impact of tropical wind data on the analysis and forcasts of the GLA GCM for the global weather experiment

    Science.gov (United States)

    Paegle, Jan; Baker, W. E.

    1985-01-01

    It is well-known that divergent wind estimates are much more dependent upon the analysis system than are estimates of the rotational wind. This conclusion is supported in recent analyses of FGGE SOP1 data produced by the Goddard Laboratory for Atmospheres (GLA), the Geophysical Fluid Dynamics Laboratory (GFDL) and the European Center for Medium Range Weather Forecasting (ECMWF). These analyses differ in the forecast models that are used for the four-dimensional assimilation, in the data rejection criteria, and, to a certain extent, in the data density. Because the final divergent wind is a product of both model constraints and observation, it is relevant to inquire how much of each goes into the final product. We presently investigate this question through a systematic analysis of tropical data that are sampled at different densities by the GLA GCM.

  9. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  10. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    Directory of Open Access Journals (Sweden)

    Vanessa L. Gonçalves

    2005-03-01

    Full Text Available In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS, and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree of swelling varied with the pH for glutaraldehyde chitosan microspheres (GCM and epichlorhydrin chitosan microspheres (ECM. Partial acid and basic hydrolysis affected the swelling behavior of the GCM matrix. Release kinetics of diclofenac sodium from these matrices were investigated at pH 1.2, 6.8 and 9.0, simulating the gastrointestinal tract conditions. The results indicated that the release mechanism deviated slightly from Fickian transport.

  11. Evaluation of RRTMG and Fu-Liou RTM Performance against LBLRTM-DISORT Simulations and CERES Data in terms of Ice Clouds Radiative Effects

    Science.gov (United States)

    Gu, B.; Yang, P.; Kuo, C. P.; Mlawer, E. J.

    2017-12-01

    Evaluation of RRTMG and Fu-Liou RTM Performance against LBLRTM-DISORT Simulations and CERES Data in terms of Ice Clouds Radiative Effects Boyan Gu1, Ping Yang1, Chia-Pang Kuo1, Eli J. Mlawer2 Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA Atmospheric and Environmental Research (AER), Lexington, MA 02421, USA Ice clouds play an important role in climate system, especially in the Earth's radiation balance and hydrological cycle. However, the representation of ice cloud radiative effects (CRE) remains significant uncertainty, because scattering properties of ice clouds are not well considered in general circulation models (GCM). We analyze the strengths and weakness of the Rapid Radiative Transfer Model for GCM Applications (RRTMG) and Fu-Liou Radiative Transfer Model (RTM) against rigorous LBLRTM-DISORT (a combination of Line-By-Line Radiative Transfer Model and Discrete Ordinate Radiative Transfer Model) calculations and CERES (Clouds and the Earth's Radiant Energy System) flux observations. In total, 6 US standard atmospheric profiles and 42 atmospheric profiles from Atmospheric and Environmental Research (AER) Company are used to evaluate the RRTMG and Fu-Liou RTM by LBLRTM-DISORT calculations from 0 to 3250 cm-1. Ice cloud radiative effect simulations with RRTMG and Fu-Liou RTM are initialized using the ice cloud properties from MODIS collection-6 products. Simulations of single layer ice cloud CRE by RRTMG and LBLRTM-DISORT show that RRTMG, neglecting scattering, overestimates the TOA flux by about 0-15 W/m2 depending on the cloud particle size and optical depth, and the most significant overestimation occurs when the particle effective radius is small (around 10 μm) and the cloud optical depth is intermediate (about 1-10). The overestimation reduces significantly when the similarity rule is applied to RRTMG. We combine ice cloud properties from MODIS Collection-6 and atmospheric profiles from the Modern

  12. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Zorita, E.; Hughes, J.P.

    1993-01-01

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO 2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  13. Results of Aging Tests of Vendor-Produced Blended Feed Simulant

    International Nuclear Information System (INIS)

    Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

    2009-01-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75 F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: (1) stored outside in a 250-gallon tote, (2) stored inside in a gallon plastic bottle, (3) stored inside in a well mixed 5-L tank, and (4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following

  14. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Science.gov (United States)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  15. Simulation Loop between CAD systems, Geant4 and GeoModel: Implementation and Results

    CERN Document Server

    Sharmazanashvili, Alexander; The ATLAS collaboration

    2015-01-01

    Data_vs_MonteCarlo discrepancy is one of the most important field of investigation for ATLAS simulation studies. There are several reasons of above mentioned discrepancies but primary interest is falling on geometry studies and investigation of how geometry descriptions of detector in simulation adequately representing “as-built” descriptions. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: 1/ Inconsistency to “as-built” geometry descriptions; 2/Internal inaccuracies of transactions added by simulation packages itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML/Persint->CATIA; IV/VP1->CATIA; GeoModel->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each othe...

  16. The study of bone mineral density and structure in proximal femur by quantitative CT in elderly Chinese women

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Liu Xia; Wang Yusheng; Li Jin; Qu Hui; Li Jing; Genant, H.; Lang, T.

    2009-01-01

    Objective: To evaluate the bone mineral density (BMD) and structure of proximal femur in elderly Chinese women by quantatitive computed tomography (QCT) and dual energy X-ray absorptiometry (DXA), and to further compare the results of these two methods. Methods: Sixty-six healthy Chinese women over 65 years old participated in this study. The left hips of all subjects were measured with DXA and the BMD of femoral neck and trochanteric region were calculated. With QCT, the BMD and tissue volume of cortical, trabecular and integral bone were calculated for femoral neck, trochanteric and total femur regions in both hips. Appropriate statistical analyses were performed with SPSS 11.5. Results: The BMD and structural parameters in different regions and different compartments of the proximal femur could be precisely assessed with QCT technique. The BMD of cortical bone in femoral neck [(0.52±0.04) g/cm 3 ], BMD of cortical bone in trochanteric region [(0.49±0.03) g/cm 3 ] and BMD of integral bone in troehanteric region [(0.22±0.04) g/cm 3 ] were greater in the fight than those in the left [(0.51±0.04), (0.48±0.03), (0.21±0.04)g/cm 3 ]. The difference had statistical signification (P 2 (0.78±0.13) g/cm 2 , 5.80 cm 3 (0.06±0.03) g/cm 3 , (5.19 ± 1.40) cm 3 , (0.25 ± 0.04)g/cm 3 , 15.66 cm 3 , (21.74±3.43) cm 3 , (0.08 ± 0.03)g/cm 3 , (34.27±6.09) cm 3 and (76.12±11.11) cm 3 respectively, in the fight the corresponding parameters being (0.52±0.10) g/cm 2 (0.78±0.13) g/cm 2 6.01 cm 3 , (0.06±0.02) g/cm 3 , (5.17±1.27) cm 3 , (0.25±0.04)g/cm 3 , 15.62 cm 3 , (22.12±3.60) cm 3 , (0.09±0.03) g/cm 3 , (34.17±5.94) cm 3 and (76.53±10.71) cm 3 respectively. There were no significant difference between the left and right parameters above (P>0.0 ). All QCT parameters of the right hip correlated well with their corresponding ones of left hip with correlation coefficients ranging from 0.656-0.955, P<0.05. QCT-derived simulated DXA femoral neck and trochanteric

  17. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Songhi

    2014-01-01

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm 3 . The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  18. Study on driver model for hybrid truck based on driving simulator experimental results

    Directory of Open Access Journals (Sweden)

    Dam Hoang Phuc

    2018-04-01

    Full Text Available In this paper, a proposed car-following driver model taking into account some features of both the compensatory and anticipatory model representing the human pedal operation has been verified by driving simulator experiments with several real drivers. The comparison between computer simulations performed by determined model parameters with the experimental results confirm the correctness of this mathematical driver model and identified model parameters. Then the driver model is joined to a hybrid vehicle dynamics model and the moderate car following maneuver simulations with various driver parameters are conducted to investigate influences of driver parameters on vehicle dynamics response and fuel economy. Finally, major driver parameters involved in the longitudinal control of drivers are clarified. Keywords: Driver model, Driver-vehicle closed-loop system, Car Following, Driving simulator/hybrid electric vehicle (B1

  19. Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

    Directory of Open Access Journals (Sweden)

    K. Yu

    2018-01-01

    Full Text Available Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs driven by archived meteorological data from general circulation models (GCMs. The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn–210Pb–7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25°  ×  0.3125° (≈ 25 km and 2°  ×  2.5° (≈ 200 km resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km and c48 (≈ 200 km horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25°  ×  0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25°  ×  0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25°  ×  0.3125° to 2°  ×  2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the

  20. Climate change implications for wind power resources in the Northwest United States

    International Nuclear Information System (INIS)

    Sailor, David J.; Smith, Michael; Hart, Melissa

    2008-01-01

    Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5-10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential. (author)

  1. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  2. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  3. Comparisons of numerical simulations with ASTRID code against experimental results in rod bundle geometry for boiling flows

    International Nuclear Information System (INIS)

    Larrauri, D.; Briere, E.

    1997-12-01

    After different validation simulations of flows through cylindrical and annular channels, a subcooled boiling flow through a rod bundle has been simulated with ASTRID Steam-Water of software. The experiment simulated is called Poseidon. It is a vertical rectangular channel with three heating rods inside. The thermohydraulic conditions of the simulated flow were close to the DNB conditions. The simulation results were analysed and compared against the available measurements of liquid and wall temperatures. ASTRID Steam-Water produced satisfactory results. The wall and the liquid temperatures were well predicted in the different parts of the flow. The void fraction reached 40 % in the vicinity of the heating rods. The distribution of the different calculated variables showed that a three-dimensional simulation gives essential information for the analysis of the physical phenomena involved in this kind of flow. The good results obtained in Poseidon geometry will encourage future rod bundle flow simulations and analyses with ASTRID Steam-Water code. (author)

  4. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    Science.gov (United States)

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The application of Global Climate Model (GCM) output to a hydrologic model allows for comparisons between simulated recent and future conditions and provides insight into the dynamics of hydrology as it may be affected by climate change. A previously developed numerical model of the Suwannee River Basin, Florida, USA, was modified and calibrated to represent transient conditions. A simulation of recent conditions was developed for the 372-month period 1970-2000 and was compared with a simulation of future conditions for a similar-length period 2039-2069, which uses downscaled GCM data. The MODFLOW groundwater-simulation code was used in both of these simulations, and two different MODFLOW boundary condition “packages” (River and Streamflow-Routing Packages) were used to represent interactions between surface-water and groundwater features.

  5. First experimental results and simulation for gas optimisation of the MART-LIME detector

    International Nuclear Information System (INIS)

    Bazzano, A.; Brunetti, M.T.; Cocchi, M.; Hall, C.J.; Lewis, R.A.; Natalucci, L.; Ortuno-Prados, F.; Ubertini, P.

    1996-01-01

    A large area high pressure multi-wire proportional counter (MWPC), with both spatial and spectroscopic capabilities, is being jointly developed by the Istituto di Astrofisica Spaziale (IAS), CNR, Frascati, Italy and the Daresbury Laboratory (DL), Warrington, UK as part of the MART-LIME telescope. Recent test results (October-December 1995) carried out at the DL facilities are presented. A brief study, by means of a simulation program, on the possible gas mixtures to be employed in the MART-LIME detector is also reported. The results of the simulation are compared with the experimental data obtained from the tests. (orig.)

  6. A bias-corrected CMIP5 dataset for Africa using the CDF-t method - a contribution to agricultural impact studies

    Science.gov (United States)

    Moise Famien, Adjoua; Janicot, Serge; Delfin Ochou, Abe; Vrac, Mathieu; Defrance, Dimitri; Sultan, Benjamin; Noël, Thomas

    2018-03-01

    The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function transform (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here CDF-t has been applied over the period 1950-2099 combining Historical runs and climate change scenarios for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evaluation of the results over West Africa has been carried out on a list of priority user-based metrics that were discussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth. These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa are quite different, depending on the bias-correction method used. However all these projections show a similar relative decreasing trend over the 21st century.

  7. Some results of simulation on radiation effects in crystals

    International Nuclear Information System (INIS)

    Baier, T.; AN SSSR, Novosibirsk

    1993-05-01

    Simulations concerning radiation in oriented silicon and tungsten crystals of different thicknesses are developed. Conditions are those of experiments done at Kharkov (Ukraine) and Tomsk (Russia) with electron beams in the 1 GeV range. Systematic comparisons between experimental and simulated spectra associated to real spectrum, radiation energy and angular distribution of the photons are developed. The ability of the simulation program to describe crystal effects in the considered energy range is analysed. (author) 11 refs.; 8 figs

  8. Virtual simulation. First clinical results in patients with prostate cancer

    International Nuclear Information System (INIS)

    Buchali, A.; Dinges, S.; Koswig, S.; Rosenthal, P.; Salk, S.; Harder, C.; Schlenger, L.; Budach, V.

    1998-01-01

    Investigation of options of virtual simulation in patients with localized prostate cancer. Twenty-four patients suffering from prostate cancer were virtual simulated. The clinical target volume was contoured and the planning target volume was defined after CT scan. The isocenter of the planning target volume was determined and marked at patient's skin. The precision of patients marking was controlled with conventional simulation after physical radiation treatment planning. Mean differences of the patient's mark revealed between the 2 simulations in all room axes around 1 mm. The organs at risk were visualized in the digital reconstructed radiographs. The precise patient's mark of the isocentre by virtual simulation allows to skip the conventional simulation. The visualisation of organs at risk leeds to an unnecessarity of an application of contrast medium and to a further relieve of the patient. The personal requirement is not higher in virtual simulation than in conventional CT based radiation treatment planning. (orig./MG) [de

  9. Simulation Results of Closed Loop Controlled Interline Power Flow Controller System

    Directory of Open Access Journals (Sweden)

    P. USHA RANI

    2016-01-01

    Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.

  10. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    Science.gov (United States)

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  11. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    Science.gov (United States)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  12. Driving simulator test results Deliverable no D6.3. Final draft

    NARCIS (Netherlands)

    Weiland, J.; Mattes, S.; Kuhn, F.; Gelau, Ch.; Schindhelm, R.; Hoedemaeker, D.D.M.

    2003-01-01

    Deliverable 6.3 reports the procedure and results from a driving simulator study. This study was carried out to test the efficiency of the principles of the in-vehicle information manager, which was developed within the Comunicar project. Thirty-six subjects were tested in a fixed-base driving

  13. A quality assurance program of simulators in radiotherapy. Pt. 2. Extent and results of long-term quality assurance tests on a therapy simulator

    International Nuclear Information System (INIS)

    Mueller-Sievers, K.; Kober, B.

    1997-01-01

    Background: Since 1990 we follow a quality assurance program with periodical tests of functional performance values of a 16-year-old simulator. Material and Method: For this purpose we adopted and modified German standards for quality assurance on linear accelerators and international standards elaborated for simulators (International Electrotechnical Commission). The tests are subdivided into daily visual checks (light field indication, optical distance indicator, isocentre-indicating devices, indication of gantry and collimator angles) and monthly and annually tests of relevant simulator parameters. Some important examples demonstrate the small variation of parameters over 6 years: Position of the light field centre when rotating the collimator, diameter of the isocentre circle when rotating the gantry, accuracy of the isocentre indication device, and coincidence of light field and simulated radiation field. Results: As an important result we can state, that by these rigid periodic tests it was possible to detect and compensate deteriorations of simulators quality rapidly. Conclusions: Technical improvements and specific calling-in of maintenance personnel whenever felt appropriate provided performance characteristics of our old simulator which are required by international recommendations as a basis for modern radiotherapy. (orig.) [de

  14. Quench simulation results for a 12-T twin-aperture dipole magnet

    Science.gov (United States)

    Cheng, Da; Salmi, Tiina; Xu, Qingjin; Peng, Quanling; Wang, Chengtao; Wang, Yingzhe; Kong, Ershuai; Zhang, Kai

    2018-06-01

    A 12-T twin-aperture subscale dipole magnet is being developed for SPPC pre-study at the Institute of High Energy Physics (IHEP). The magnet is comprised of 6 double-pancake coils which include 2 Nb3Sn coils and 4 NbTi coils. As the stored energy of the magnet is 0.452 MJ and the operation margin is only about 20% at 4.2 K, a quick and effective quench protection system is necessary during the test of this high field magnet. For the design of the quench protection system, attention was not only paid to the hotspot temperature and terminal voltage, but also the temperature gradient during the quench process due to the poor mechanical characteristics of the Nb3Sn cables. With the adiabatic analysis, numerical simulation and the finite element simulation, an optimized protection method is adopted, which contains a dump resistor and quench heaters. In this paper, the results of adiabatic analysis and quench simulation, such as current decay, hot-spot temperature and terminal voltage are presented in details.

  15. Focus: Assessing the regional impacts of global warming

    International Nuclear Information System (INIS)

    Woo, Mingko

    1992-01-01

    Five studies are presented which assess the impacts of global warming on physical, economic, and social systems in Canada. A study on the use of climatic change scenarios to estimate ecoclimatic impacts was carried out. These scenarios may include synthetic scenarios produced from historical data, global climate model (GCM) simulations, and hybrid scenarios. The advantages and drawbacks of various scenarios are discussed along with the criteria for selecting impact assessment models. An examination of water resources in the Great Lakes and the Saskatchewan River subbasin uses case studies of two areas that have experienced wide hydrological variations due to climatic variability in order to determine the impacts of global warming scenarios on net basin supply. Problems of developing regional models are discussed and results of projected changes in net basin supply are presented for GCM-based simulations and hypothetical warming scenarios. A study of the impacts of climate warming on transportation and the regional economy in northern Canada uses stochastic models to provide examples of how Mackenzie River barge traffic will be affected. The economic impacts of the resultant lengthened shipping season are outlined under three scenarios. The implications of climatic change on Ontario agriculture are assessed according to GCM scenarios. Results are presented for crop yields and production as well as land resource suitability. Finally, sociocultural implications of global warming on the Arctic and the Inuit are summarized, with reference to a past warming episode occurring around the year 1000. 45 refs., 4 figs., 3 tabs

  16. Effects of interactive transport and scavenging of smoke on the calculated temperature change resulting from large amounts of smoke

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Walton, J.J.

    1984-12-01

    Several theoretical studies with numerical models have shown that substantial land-surface cooling can occur if very large amounts (approx. 100 x 10 12 = 100 Tg) of highly absorbing sooty-particles are injected high into the troposphere and spread instantaneously around the hemisphere (Turco et al., 1983; Covey et al. 1984; MacCracken, 1983). A preliminary step beyond these initial calculations has been made by interactively coupling the two-layer, three-dimensional Oregon State University general circulation model (GCM) to the three-dimensional GRANTOUR trace species model developed at the Lawrence Livermore National Laboratory. The GCM simulation includes treatment of tropospheric dynamics and thermodynamics and the effect of soot on solar radiation. The GRANTOUR simulation includes treatment of particle transport and scavenging by precipitation, although no satisfactory verification of the scavenging algorithm has yet been possible. We have considered the climatic effects of 150 Tg (i.e., the 100 Mt urban war scenario from Turco et al., 1983) and of 15 Tg of smoke from urban fires over North America and Eurasia. Starting with a perpetual July atmospheric situation, calculation of the climatic effects as 150 Tg of smoke are spread slowly by the winds, rather than instantaneously dispersed as in previous calculations, leads to some regions of greater cooling under the denser parts of the smoke plumes and some regions of less severe cooling where smoke arrival is delayed. As for the previous calculations, mid-latitude decreases of land surface air temperature for the 150 Tg injection are greater than 15 0 C after a few weeks. For a 15 Tg injection, however, cooling of more than several degrees centigrade only occurs in limited regions under the dense smoke plumes present in the first few weeks after the injection. 10 references, 9 figures

  17. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  18. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    Science.gov (United States)

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  19. Recent simulation results of the magnetic induction tomography forward problem

    Directory of Open Access Journals (Sweden)

    Stawicki Krzysztof

    2016-06-01

    Full Text Available In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

  20. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    Science.gov (United States)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  1. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  2. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  3. Molecular Dynamics Simulations of Liquid Phosphorus at High Temperature and Pressure

    International Nuclear Information System (INIS)

    Wu Yanning; Zhao Gang; Liu Changsong; Zhu Zhengang

    2008-01-01

    By performing ab initio molecular dynamics simulations, we have investigated the microstructure, dynamical and electronic properties of liquid phosphorus (P) under high temperature and pressure. In our simulations, the calculated coordination number (CN) changes discontinuously with density, and seems to increase rapidly after liquid P is compressed to 2.5 g/cm 3 . Under compression, liquid P shows the first-order liquid-liquid phase transition from the molecular liquid composed of the tetrahedral P 4 molecules to complex polymeric form with three-dimensional network structure, accompanied by the nonmetal to metal transition of the electronic structure. The order parameters Q 6 and Q 4 are sensitive to the microstructural change of liquid P. By calculating diffusion coefficients, we show the dynamical anomaly of liquid P by compression. At lower temperatures, a maximum exists at the diffusion coefficients as a function of density; at higher temperatures, the anomalous behavior is weakened. The excess entropy shows the same phenomena as the diffusion coefficients. By analysis of the angle distribution functions and angular limited triplet correlation functions, we can clearly find that the Peierls distortion in polymeric form of liquid P is reduced by further compression

  4. Calculation of channels for forming and transport of medical proton beams at the JINR phasotron

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Mirokhin, I.V.; Molokanov, A.G.; Obukhov, Yu.L.; Savchenko, O.V.

    1984-01-01

    Results of numerical simulation of shaping and transporting processes of therapeutic proton beams with a modified Bragg curve at the JINR phasotron are presented. The mean energy of proton beams are about 100, 130 and 200 MeV. To provide the flat-topped depth-dose distributions with a steep back slope, the method of shaping with a necessary energy spectrum from a nonmonoenergetic beam is used. It is shown by the calculations that it is possible to choose such modes of the channel operation at which clinical-physical requirements to the parameters of medical proton beams are satisfied. Extensions of flat-tops of dose peaks are 1.3 g/cm 2 , 1.7 g/cm 2 and 3.5 g/cm 2 for the 100 MeV, 130 MeV and 200 MeV beam energies, respectively. Dose rate in the peaks of modified distributions are not less than 100 rad per minute

  5. Design and CFD Simulation of the Drift Eliminators in Comparison with PIV Results

    Directory of Open Access Journals (Sweden)

    Stodůlka Jiří

    2015-01-01

    Full Text Available Drift eliminators are the essential part of all modern cooling towers preventing significant losses of liquid water escaping to the enviroment. These eliminators need to be effective in terms of water capture but on the other hand causing only minimal pressure loss as well. A new type of such eliminator was designed and numerically simulated using CFD tools. Results of the simulation are compared with PIV visulisation on the prototype model.

  6. AIRS-Observed Interrelationships of Anomaly Time-Series of Moist Process-Related Parameters and Inferred Feedback Values on Various Spatial Scales

    Science.gov (United States)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena

    2011-01-01

    In the beginning, a good measure of a GMCs performance was their ability to simulate the observed mean seasonal cycle. That is, a reasonable simulation of the means (i.e., small biases) and standard deviations of TODAY?S climate would suffice. Here, we argue that coupled GCM (CG CM for short) simulations of FUTURE climates should be evaluated in much more detail, both spatially and temporally. Arguably, it is not the bias, but rather the reliability of the model-generated anomaly time-series, even down to the [C]GCM grid-scale, which really matter. This statement is underlined by the social need to address potential REGIONAL climate variability, and climate drifts/changes in a manner suitable for policy decisions.

  7. Verification of Temperature and Precipitation Simulated Data by Individual and Ensemble Performance of Five AOGCM Models for North East of Iran

    Directory of Open Access Journals (Sweden)

    B. Ashraf

    2014-08-01

    Full Text Available Scince climatic models are the basic tools to study climate change and because of the multiplicity of these models, selecting the most appropriate model for the studying location is very considerable. In this research the temperature and precipitation simulated data by BCM2, CGCM3, CNRMCM3, MRICGCM2.3 and MIROC3 models are downscaled with proportional method according A1B, A2 and B1 emission scenarios for Torbat-heydariye, Sabzevar and Mashhad initially. Then using coefficient of determination (R2, index of agreement (D and mean-square deviations (MSD, models were verified individually and as ensemble performance. The results showed that, based on individual performance and three emission scenarios, MRICGCM2.3 model in Torbat-heydariye and Mashhad and MIROC3.2 model in Sabzevar had the best performance in simulation of temperature and MIROC3.2, MRICGCM2.3 and CNRMCM3 models have provided the most accurate predictions for precipitation in Torbat-heydariye, Sabzevar and Mashahad respectively. Also simulated temperature by all models in Torbat-heydariye and Sabzevar base on B1 scenario and, in Mashhad based on A2 scenario had the lowest uncertainty. The most accuracy in modeling of precipitation was resulted based on A2 scenario in Torbat-heydariye and, B1 scenario in Sabzevar and Mashhad. Investigation of calculated statistics driven from ensemble performance of 5 selected models caused notable reduction of simulation error and thus increase the accuracy of predictions based on all emission scenarios generally. In this case, the best fitting of simulated and observed temperature data were achieved based on B1 scenario in Torbat-heydariye and Sabzevar and, A2 scenario in Mashhad. And the best fitting simulated and observed precipitation data were obtained based on A2 scenario in Torbat-heydariye and, B1 scenario in Sabzevar and Mashhad. According to the results of this research, before any climate change research it is necessary to select the

  8. Unusual Physical Properties of the Chicxulub Crater Peak Ring: Results from IODP/ICDP Expedition 364

    Science.gov (United States)

    Christeson, G. L.; Gebhardt, C.; Gulick, S. P. S.; Le Ber, E.; Lofi, J.; Morgan, J. V.; Nixon, C.; Rae, A.; Schmitt, D. R.

    2017-12-01

    IODP/ICDP Expedition 364 Hole M0077A drilled into the peak ring of the Chicxulub impact crater, recovering core between 505.7 and 1334.7 m below the seafloor (mbsf). Physical property measurements include wireline logging data, a vertical seismic profile (VSP), Multi-Sensor Core Logger (MSCL) measurements, and discrete sample measurements. The Hole M0077A peak ring rocks have unusual physical properties. Across the boundary between post-impact sediment and crater breccia we measure a sharp decrease in velocities and densities, and an increase in porosity. Mean crater breccia values are 3000-3300 m/s, 2.14-2.15 g/cm3, and 31% for velocity, density, and porosity, respectively. This zone is also associated with a low-frequency reflector package on MCS profiles and a low-velocity layer in FWI images, both confirmed from the VSP dataset. The thin (24 m) crater melt unit has mean velocity measurements of 3800-4150 m/s, density measurements of 2.32-2.34 g/cm3, and porosity measurements of 20%; density and porosity values are intermediate between the overlying impact breccia and underlying granitic basement, while the velocity values are similar to those for the underlying basement. The Hole M0077A crater melt unit velocities and densities are considerably less than values of 5800 m/s and 2.68 g/cm3 measured at an onshore well located in the annular trough. The uplifted granitic peak ring materials have mean values of 4100-4200 m/s, 2.39-2.44 g/cm3, and 11% for compressional wave velocity, density, and porosity, respectively; these values differ significantly from typical granite which has higher velocities (5400-6000 m/s) and densities (2.62-2.67 g/cm3), and lower porosities (<1%). All Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable fracturing, and are consistent with numerical models for peak-ring formation.

  9. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  10. The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999

    Directory of Open Access Journals (Sweden)

    L. Jourdain

    2008-06-01

    Full Text Available We present a description and evaluation of the Chemistry-Climate Model (CCM LMDz-REPROBUS, which couples interactively the extended version of the Laboratoire de Météorologie Dynamique General Circulation Model (LMDz GCM and the stratospheric chemistry module of the REactive Processes Ruling the Ozone BUdget in the Stratosphere (REPROBUS model. The transient simulation evaluated here covers the period 1980–1999. The introduction of an interactive stratospheric chemistry module improves the model dynamical climatology, with a substantial reduction of the temperature biases in the lower tropical stratosphere. However, at high latitudes in the Southern Hemisphere, a negative temperature bias, that is already present in the GCM version, albeit with a smaller magnitude, leads to an overestimation of the ozone depletion and its vertical extent in the CCM. This in turn contributes to maintain low polar temperatures in the vortex, delay the break-up of the vortex and the recovery of polar ozone. The latitudinal and vertical variation of the mean age of air compares favourable with estimates derived from long-lived species measurements, though the model mean age of air is 1–3 years too young in the middle stratosphere. The model also reproduces the observed "tape recorder" in tropical total hydrogen (=H2O+2×CH4, but its propagation is about 30% too fast and its signal fades away slightly too quickly. The analysis of the global distributions of CH4 and N2O suggests that the subtropical transport barriers are correctly represented in the simulation. LMDz-REPROBUS also reproduces fairly well most of the spatial and seasonal variations of the stratospheric chemical species, in particular ozone. However, because of the Antarctic cold bias, large discrepancies are found for most species at high latitudes in the Southern Hemisphere during the spring and early summer. In the Northern Hemisphere, polar ozone depletion and its variability are underestimated

  11. Consistency and Main Differences Between European Regional Climate Downscaling Intercomparison Results; From PRUDENCE and ENSEMBLES to CORDEX

    Science.gov (United States)

    Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.

    2017-12-01

    For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes

  12. SiO2-Ta2O5 sputtering yields: simulated and experimental results

    International Nuclear Information System (INIS)

    Vireton, E.; Ganau, P.; Mackowski, J.M.; Michel, C.; Pinard, L.; Remillieux, A.

    1994-09-01

    To improve mirrors coating, we have modeled sputtering of binary oxide targets using TRIM code. First, we have proposed a method to calculate TRIM input parameters using on the one hand thermodynamic cycle and on the other hand Malherbe's results. Secondly, an iterative processing has provided for oxide steady targets caused by ionic bombardment. Thirdly, we have exposed a model to get experimental sputtering yields. Fourthly, for (Ar - SiO 2 ) pair, we have determined that steady target is a silica one. A good agreement between simulated and experimental yields versus ion incident angle has been found. For (Ar - Ta 2 O 5 ) pair, we have to introduce preferential sputtering concept to explain discrepancy between simulation and experiment. In this case, steady target is tantalum monoxide. For (Ar - Ta(+O 2 ) pair, tantalum sputtered by argon ions in reactive oxygen atmosphere, we have to take into account new concept of oxidation stimulated by ion beam. We have supposed that tantalum target becomes a Ta 2 O 5 one in reactive oxygen atmosphere. Then, following mechanism is similar to previous pair. We have obtained steady target of tantalum monoxide too. Comparison between simulated and experimental sputtering yields versus ion incident angle has given very good agreement. By simulation, we have found that tantalum monoxide target has at least 15 angstrom thickness. Those results are compatible with Malherbe's and Taglauer's ones. (authors)

  13. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  14. Cooperation as a Service in VANET: Implementation and Simulation Results

    Directory of Open Access Journals (Sweden)

    Hajar Mousannif

    2012-01-01

    Full Text Available The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET, specializing from the well-known Mobile Ad Hoc Networks (MANET to Vehicle-to-Vehicle (V2V and Vehicle-to-Infrastructure (V2I wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS; a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle's cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR for intra-cluster communications and DTN (Delay–and disruption-Tolerant Network routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach.

  15. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    Science.gov (United States)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  16. Simulation and Analysis of Microwave Transmission through an Electron Cloud, a Comparison of Results

    International Nuclear Information System (INIS)

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-01

    Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations

  17. Extending systems thinking in planning and evaluation using group concept mapping and system dynamics to tackle complex problems.

    Science.gov (United States)

    Hassmiller Lich, Kristen; Urban, Jennifer Brown; Frerichs, Leah; Dave, Gaurav

    2017-02-01

    Group concept mapping (GCM) has been successfully employed in program planning and evaluation for over 25 years. The broader set of systems thinking methodologies (of which GCM is one), have only recently found their way into the field. We present an overview of systems thinking emerging from a system dynamics (SD) perspective, and illustrate the potential synergy between GCM and SD. As with GCM, participatory processes are frequently employed when building SD models; however, it can be challenging to engage a large and diverse group of stakeholders in the iterative cycles of divergent thinking and consensus building required, while maintaining a broad perspective on the issue being studied. GCM provides a compelling resource for overcoming this challenge, by richly engaging a diverse set of stakeholders in broad exploration, structuring, and prioritization. SD provides an opportunity to extend GCM findings by embedding constructs in a testable hypothesis (SD model) describing how system structure and changes in constructs affect outcomes over time. SD can be used to simulate the hypothesized dynamics inherent in GCM concept maps. We illustrate the potential of the marriage of these methodologies in a case study of BECOMING, a federally-funded program aimed at strengthening the cross-sector system of care for youth with severe emotional disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations

    Science.gov (United States)

    Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.

    2010-12-01

    The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.

  19. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    Science.gov (United States)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  20. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    Science.gov (United States)

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate

  1. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    Science.gov (United States)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  2. Interparticle interactions and structure in nonideal solutions of human serum albumin studied by small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjöberg, B.; Mortensen, K.

    1994-01-01

    of human serum albumin (HSA) up to a concentration of 0.26 g/cm(3) in 1.08 M NaCl. In order to obtain a model for the interactions we have combined the SANS data with results obtained by Monte Carlo simulations where we calculate the structure factor S(Q) and the pair correlation function g......Moderately or highly concentrated nonideal solutions of macromolecules are very important systems e.g. in biology and in many technical processes. In this work we have used the small-angle neutron scattering technique (SANS) to study the interactions and interparticle structure in solutions......(r). The advantage of using the Monte Carlo method is that completely general models for the particle shape and the interactions can be considered. It is found that the SANS data can be explained by a model where the shape of the HSA molecule is approximated by an ellipsoid of revolution with semiaxes a = 6.8 nm...

  3. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    Science.gov (United States)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  4. Solar collectors and heat pump: Market review and preliminary simulation results

    International Nuclear Information System (INIS)

    Tepe, Rainer; Roennelid, Mats

    2002-01-01

    Heating systems that combine solar collectors and a heat pump available on the market in Sweden have been studied. A majority of the systems found combine the solar collectors with a ground source heat pump. The technology for combining the collectors and the heat pump does however vary considerably. In the most simple systems, the collectors heat the return water from the heat pump, i.e. the collectors are used for raising the temperature in the boreholes for the heat pump. In the advanced systems, the solar heat is used for tap water, space heating and for raising the temperature of the heat pump's evaporator. There exist only very few comparative evaluations of the contributions from solar collectors in heat pump systems, and there is a need for finding the potential for this technique. In the present study, results are reported from preliminary simulations of solar collectors and ground source heat pumps installed in one-family houses. Simulations are made for two heating loads: 8,650 and 16,500 kWh/year resp., and a hot water load of 3,000 kWh/year. The study shows that: the temperature of the borehole decreases when solar collectors are not used (about 1.2 deg C in three years): 8 m 2 glazed solar collectors used for hot water production can reduce the electricity consumption with up to 13%, with best results in the house with low heating load: 50 m 2 unglazed solar collectors coupled to the evaporator or the borehole can give reductions of up to 14%, largest reduction in the house with high heating load, where the heat extraction from the borehole is large: the unglazed collectors have the highest economic potential, and can be cost effective for houses with high heating load: the simulations do not include a thorough system optimization, better results can be expected from continued optimization work

  5. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    Science.gov (United States)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  6. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    Energy Technology Data Exchange (ETDEWEB)

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  7. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    Energy Technology Data Exchange (ETDEWEB)

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle

  8. Comparing the results of lattice and off-lattice simulations for the melt of nonconcatenated rings

    International Nuclear Information System (INIS)

    Halverson, Jonathan D; Kremer, Kurt; Grosberg, Alexander Y

    2013-01-01

    To study the conformational properties of unknotted and nonconcatenated ring polymers in the melt, we present a detailed qualitative and quantitative comparison of simulation data obtained by molecular dynamics simulation using an off-lattice bead-spring model and by Monte Carlo simulation using a lattice model. We observe excellent, and sometimes even unexpectedly good, agreement between the off-lattice and lattice results for many quantities measured including the gyration radii of the ring polymers, gyration radii of their subchains, contact probabilities, surface characteristics, number of contacts between subchains, and the static structure factors of the rings and their subchains. These results are, in part, put in contrast to Moore curves, and the open, linear polymer counterparts. While our analysis is extensive, our understanding of the ring melt conformations is still rather preliminary. (paper)

  9. Utilisation of simulation in industrial design and resulting business opportunities (SISU) - MASIT18

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Leppaevuori, J.; Manninen, J. (VTT Technical Research Centre of Finland, Espoo (Finland)); Valli, A.; Hasari, H.; Koistinen, A.; Leppaenen, S. (Helsinki Polytechnic Stadia, City of Helsinki, Helsinki (Finland)); Lahti, S. (EVTEK University of Applied Sciences, Vantaa (Finland))

    2008-07-01

    In the SISU project, over 10 case studies are carried out in many different fields and applications. Results and experience of developing simulation applications have started to accumulate. One of the most important results this far is that there are many common features, both good and bad, between our test cases. Simulation is a fast, reliable, and often low risk method of studying different systems and processes. On the other hand, many applications need very expensive licences, plenty of parametric data and highly specialised knowledge in order to produce really valuable results. Industrial partners are acting like real customers in the case studies. We hope that this methodology will help us to answer our main question: how do we create a value chain from model development via model application for end users? The best thing to happen will be if partners learn to apply simulation productively. Other scientists and companies will follow, and new value chains will mushroom. In the case study of Mamec and EVTEK - Mixing model - the aim is to develop a fluid mechanical model for a mixing chamber. This study is similar to the preceding case of Watrec. In this study, the main problems have been in material properties area, because of non-Newtonian fluids and multiphase flows. Material property parameters of the non-Newtonian power law have been defined and flow field simulations have started. In the case study of Fortum and EVTEK - MDR - Measurement data reconciliation - the aim is to apply MDR in a power plant environment and study the possibility of developing a commercial additional tool for power plant simulation through the well-proven MDR technique based on linear filtering theory. The MDR method has been applied, for example, to energy and chemical processes. MDR is closely connected with system maintenance, simulation pre-processing and process diagnostics. Experimental work has proceeded from simple unit processes to large and complicated process systems. One

  10. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    Science.gov (United States)

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  11. Monju operator training report. Training results and upgrade of the operation training simulator in 2002 YF

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto; Kawanishi, Tomotake; Yoshida, Kazuo

    2003-09-01

    The prototype fast breeder reactor, Monju, has been performing deliberately the operator training which is composed of the regulated training required by the government and the self-training. The training used a full scope type simulator (MARS: Monju Advanced Reactor Simulator) plays an important role among of the above mentioned trainings and greatly contributes to the Monju operator training for Monju restarting. This report covers the activities of Monju operator training in 2002 FY, i.e. the training results and the remodeling working of the MARS in progress since 1999. (1) Eight simulator training courses were carried out 46 times and 180 trainees participated. Additionally, both the regulated training and self-training were held total 10 times by attended 34 trainees, as besides simulator training. (2) Above training data was reduced compare with the last year's data (69 times (338 trainees)) due to the indispensable training courses in Monju operator training were changed by reorganized operator's number and decreasing of training times owing to remodeling working of the simulator was conducted. (3) By means of upgrading of the MARS completed in 2002 FY, its logic arithmetic time was became speedier and its instructing function was improved remarkably, thus, the simulator training was became to be more effective. Moreover, it's planning to do both remodeling in the next year as the final working: remodeling of reactor core model with the aim of improvement simulating accuracy and corresponding to the sodium leakage measures. Regarding on the Monju training results and simulator's remodeling so far finished, please referring JNC report number of JNC TN 4410 2002-001 Translation of Monju Simulator Training owing Monju Accident and Upgrade of MARS''. (author)

  12. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-03-01

    This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.

  13. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  14. Operational performance of generator condition monitors

    International Nuclear Information System (INIS)

    Braun, J.M.; Brown, G.

    1990-01-01

    This paper reports on the generator condition monitor (GCM) developed in an attempt to detect overheating inside large turbine generators. As part of a broader study on rotating machinery diagnostics, generator condition monitors were evaluated under field conditions in a 550 MW turbogenerator. Small 100 W resistors coated with insulating paints and varnishes were mounted inside the generator to simulate insulation overheating. The GCM responded very rapidly to an overheating event, typically within two minutes, even for hot spots as small s 10 cm 2 . Similarly the aerosols produced on overheating were found extremely short lived, decaying within two to three minutes after overheating was discontinued. Use of heated ion chambers was found to desensitize the GCM regardless of the nature of the overheated insulation and in some cases would altogether prevent the GCM from reaching the 50% pre-set alarm level commonly used on GCMs

  15. Preliminary Analysis and Simulation Results of Microwave Transmission Through an Electron Cloud

    International Nuclear Information System (INIS)

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-01

    The electromagnetic particle-in-cell (PIC) code VORPAL is being used to simulate the interaction of microwave radiation through an electron cloud. The results so far show good agreement with theory for simple cases. The study has been motivated by previous experimental work on this problem at the CERN SPS [1], experiments at the PEP-II Low Energy Ring (LER) at SLAC [4], and proposed experiments at the Fermilab Main Injector (MI). With experimental observation of quantities such as amplitude, phase and spectrum of the output microwave radiation and with support from simulations for different cloud densities and applied magnetic fields, this technique can prove to be a useful probe for assessing the presence as well as the density of electron clouds

  16. Validation of thermohydraulic codes by comparison of experimental results with computer simulations

    International Nuclear Information System (INIS)

    Madeira, A.A.; Galetti, M.R.S.; Pontedeiro, A.C.

    1989-01-01

    The results obtained by simulation of three cases from CANON depressurization experience, using the TRAC-PF1 computer code, version 7.6, implanted in the VAX-11/750 computer of Brazilian CNEN, are presented. The CANON experience was chosen as first standard problem in thermo-hydraulic to be discussed at ENFIR for comparing results from different computer codes with results obtained experimentally. The ability of TRAC-PF1 code to prevent the depressurization phase of a loss of primary collant accident in pressurized water reactors is evaluated. (M.C.K.) [pt

  17. Some results on ethnic conflicts based on evolutionary game simulation

    Science.gov (United States)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  18. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    Science.gov (United States)

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  19. Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa

    Science.gov (United States)

    Gómara, Iñigo; Mohino, Elsa; Losada, Teresa; Domínguez, Marta; Suárez-Moreno, Roberto; Rodríguez-Fonseca, Belén

    2018-06-01

    West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979-2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO-WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED-WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM-WAM teleconnection, which cannot be isolated for the 1979-2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.

  20. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  1. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  2. Relative role of pre-monsoon conditions and intraseasonal oscillations in determining early-vs-late indian monsoon intensity in a GCM

    Science.gov (United States)

    Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2018-01-01

    The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.

  3. Saltstone Matrix Characterization And Stadium Simulation Results

    International Nuclear Information System (INIS)

    Langton, C.

    2009-01-01

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM(reg s ign) service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM(reg s ign) concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples

  4. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  5. Simple but accurate GCM-free approach for quantifying anthropogenic climate change

    Science.gov (United States)

    Lovejoy, S.

    2014-12-01

    We are so used to analysing the climate with the help of giant computer models (GCM's) that it is easy to get the impression that they are indispensable. Yet anthropogenic warming is so large (roughly 0.9oC) that it turns out that it is straightforward to quantify it with more empirically based methodologies that can be readily understood by the layperson. The key is to use the CO2 forcing as a linear surrogate for all the anthropogenic effects from 1880 to the present (implicitly including all effects due to Greenhouse Gases, aerosols and land use changes). To a good approximation, double the economic activity, double the effects. The relationship between the forcing and global mean temperature is extremely linear as can be seen graphically and understood without fancy statistics, [Lovejoy, 2014a] (see the attached figure and http://www.physics.mcgill.ca/~gang/Lovejoy.htm). To an excellent approximation, the deviations from the linear forcing - temperature relation can be interpreted as the natural variability. For example, this direct - yet accurate approach makes it graphically obvious that the "pause" or "hiatus" in the warming since 1998 is simply a natural cooling event that has roughly offset the anthropogenic warming [Lovejoy, 2014b]. Rather than trying to prove that the warming is anthropogenic, with a little extra work (and some nonlinear geophysics theory and pre-industrial multiproxies) we can disprove the competing theory that it is natural. This approach leads to the estimate that the probability of the industrial scale warming being a giant natural fluctuation is ≈0.1%: it can be dismissed. This destroys the last climate skeptic argument - that the models are wrong and the warming is natural. It finally allows for a closure of the debate. In this talk we argue that this new, direct, simple, intuitive approach provides an indispensable tool for communicating - and convincing - the public of both the reality and the amplitude of anthropogenic warming

  6. Quantitative evaluation for training results of nuclear plant operator on BWR simulator

    International Nuclear Information System (INIS)

    Sato, Takao; Sato, Tatsuaki; Onishi, Hiroshi; Miyakita, Kohji; Mizuno, Toshiyuki

    1985-01-01

    Recently, the reliability of neclear power plants has largely risen, and the abnormal phenomena in the actual plants are rarely encountered. Therefore, the training using simulators becomes more and more important. In BWR Operator Training Center Corp., the training of the operators of BWR power plants has been continued for about ten years using a simulator having the nearly same function as the actual plants. The recent high capacity ratio of nuclear power plants has been mostly supported by excellent operators trained in this way. Taking the opportunity of the start of operation of No.2 simulator, effort has been exerted to quantitatively grasp the effect of training and to heighten the quality of training. The outline of seven training courses is shown. The technical ability required for operators, the items of quantifying the effect of training, that is, operational errors and the time required for operation, the method of quantifying, the method of collecting the data and the results of the application to the actual training are described. It was found that this method is suitable to quantify the effect of training. (Kako, I.)

  7. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1990-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed

  8. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1991-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed. 25 refs.; 9 figs

  9. Ecological forecasting under climatic data uncertainty: a case study in phenological modeling

    International Nuclear Information System (INIS)

    Cook, Benjamin I; Terando, Adam; Steiner, Allison

    2010-01-01

    Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations.

  10. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    Science.gov (United States)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  11. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    Science.gov (United States)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while

  12. Simulated impacts of land cover change on summer climate in the Tibetan Plateau

    International Nuclear Information System (INIS)

    Li Qian; Xue Yongkang

    2010-01-01

    The Tibetan Plateau (TP) is a key region of land-atmosphere interactions with severe eco-environment degradation. This study uses an atmospheric general circulation model, NCEP GCM/SSiB, to present the major TP summer climate features for six selected ENSO years and preliminarily assess the possible impact of land cover change on the summer circulation over the TP. Compared to Reanalysis II data, the GCM using satellite derived vegetation properties generally reproduces the main 6-year-mean TP summer circulation features despite some discrepancies in intensity and geographic locations of some climate features. Two existing vegetation maps with very different land cover conditions over the TP, one with bare ground and one with vegetation cover, derived from satellite derived data, are tested and produce clearer climate signals due to land cover change. It shows that land cover change from vegetated land to bare ground decreases the radiation absorbed by the surface and results in weaker surface thermal effects, which lead to lower atmospheric temperature, as well as weaker vertical ascending motion, low-layer cyclonic, upper level anticyclonic, and summer monsoon circulation. These changes in circulation cause a decrease in the precipitation in the southeastern TP.

  13. Use of RCM simulations to assess the impact of climate change on wind energy availability

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, Rebecca Jane

    2004-01-01

    There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This report presents an application and evaluation of physical (dynamical) downscaling toolsfor examining the impact of climate change...... on near-surface flow and hence wind energy density across northern Europe. It is shown that: - Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period(1961-1990) exhibit reasonable and realistic features as documented in in situ observations...... and reanalysis data products. - The differences between near-surface wind speed and direction calculated for the control run (January 1, 1961 – December 30, 1990)based on boundary conditions derived from two Global Climate Models (GCM): HadAM3H and ECHAM4/OPYC3 are comparable to changes in the climate change...

  14. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.

    Science.gov (United States)

    Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-03-16

    OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.

  15. A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation

    Science.gov (United States)

    Byun, K.; Hamlet, A. F.

    2017-12-01

    There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.

  16. 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)

    2009-07-01

    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.

  17. How do rigid-lid assumption affect LES simulation results at high Reynolds flows?

    Science.gov (United States)

    Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration

    2017-11-01

    This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.

  18. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    Energy Technology Data Exchange (ETDEWEB)

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  19. Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using BISON

    International Nuclear Information System (INIS)

    Novascone, S. R.; Spencer, B. W.; Andrs, D.; Williamson, R. L.; Hales, J. D.; Perez, D. M.

    2013-01-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa. (authors)

  20. Uncertainty of future projections of species distributions in mountainous regions.

    Directory of Open Access Journals (Sweden)

    Ying Tang

    Full Text Available Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline

  1. Signal detection in global mean temperatures after "Paris": an uncertainty and sensitivity analysis

    Science.gov (United States)

    Visser, Hans; Dangendorf, Sönke; van Vuuren, Detlef P.; Bregman, Bram; Petersen, Arthur C.

    2018-02-01

    In December 2015, 195 countries agreed in Paris to hold the increase in global mean surface temperature (GMST) well below 2.0 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C. Since large financial flows will be needed to keep GMSTs below these targets, it is important to know how GMST has progressed since pre-industrial times. However, the Paris Agreement is not conclusive as regards methods to calculate it. Should trend progression be deduced from GCM simulations or from instrumental records by (statistical) trend methods? Which simulations or GMST datasets should be chosen, and which trend models? What is pre-industrial and, finally, are the Paris targets formulated for total warming, originating from both natural and anthropogenic forcing, or do they refer to anthropogenic warming only? To find answers to these questions we performed an uncertainty and sensitivity analysis where datasets and model choices have been varied. For all cases we evaluated trend progression along with uncertainty information. To do so, we analysed four trend approaches and applied these to the five leading observational GMST products. We find GMST progression to be largely independent of various trend model approaches. However, GMST progression is significantly influenced by the choice of GMST datasets. Uncertainties due to natural variability are largest in size. As a parallel path, we calculated GMST progression from an ensemble of 42 GCM simulations. Mean progression derived from GCM-based GMSTs appears to lie in the range of trend-dataset combinations. A difference between both approaches appears to be the width of uncertainty bands: GCM simulations show a much wider spread. Finally, we discuss various choices for pre-industrial baselines and the role of warming definitions. Based on these findings we propose an estimate for signal progression in GMSTs since pre-industrial.

  2. Parallel of semi-empirical results simulated by MCNP of X-ray spectra with a semiconductor

    International Nuclear Information System (INIS)

    Santos, L.R.; Vivolo, V.; Potiens, M.P.A.; Navarro, M.V.T.; Santos, W.S.

    2016-01-01

    The aim of this study was to use the MCNPX radiation transport code to simulate X-ray spectra generated by a constant voltage system in a CdTe semiconductor detector. As part of the validation process, we obtained a series of experimental spectra. Comparatively, in all cases there is a good correlation between the two spectra. There were no statistically significant differences between the experimental results with the simulated. (author)

  3. Some Experimental and Simulation Results on the Dynamic Behaviour of Spur and Helical Geared Transmissions with Journal Bearings

    Directory of Open Access Journals (Sweden)

    R. Fargère

    2012-01-01

    Full Text Available Some interactions between the dynamic and tribological behaviour of geared transmissions are examined, and a number of experimental and simulation results are compared. A model is introduced which incorporates most of the possible interactions between gears, shafts and hydrodynamic journal bearings. It combines (i a specific element for wide-faced gears that includes the normal contact conditions between actual mating teeth, that is, with tooth shape deviations and mounting errors, (ii shaft finite elements, and (iii the external forces generated by journal bearings determined by directly solving Reynolds' equation. The simulation results are compared with the measurement obtained on a high-precision test rig with single-stage spur and helical gears supported by hydrodynamic journal bearings. The experimental and simulation results compare well thus validating the simulation strategy both at the global and local scales.

  4. Monte Carlo design and simulation of a grid-type multi-layer pixel collimator for radiotherapy: Feasibility study

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-05-01

    In order to confirm the possibility of field application of a different type collimator with a multileaf collimator (MLC), we constructed a grid-type multi-layer pixel collimator (GTPC) by using a Monte Carlo n-particle simulation (MCNPX). In this research, a number of factors related to the performance of the GPTC were evaluated using simulated output data of a basic MLC model. A layer was comprised of a 1024-pixel collimator (5.0 × 5.0 mm2) which could operate individually as a grid-type collimator (32 × 32). A 30-layer collimator was constructed for a specific portal form to pass radiation through the opening and closing of each pixel cover. The radiation attenuation level and the leakage were compared between the GTPC modality simulation and MLC modeling (tungsten, 17.50 g/cm3, 5.0 × 70.0 × 160.0 mm3) currently used for a radiation field. Comparisons of the portal imaging, the lateral dose profile from a virtual water phantom, the dependence of the performance on the increase in the number of layers, the radiation intensity modulation verification, and the geometric error between the GTPC and the MLC were done using the MCNPX simulation data. From the simulation data, the intensity modulation of the GTPC showed a faster response than the MLC's (29.6%). In addition, the agreement between the doses that should be delivered to the target region was measured as 97.0%, and the GTPC system had an error below 0.01%, which is identical to that of MLC. A Monte Carlo simulation of the GTPC could be useful for verification of application possibilities. Because the line artifact is caused by the grid frame and the folded cover, a lineal dose transfer type is chosen for the operation of this system. However, the result of GTPC's performance showed that the methods of effective intensity modulation and the specific geometric beam shaping differed with the MLC modality.

  5. Monte Carlo design and simulation of a grid-type multi-layer pixel collimator for radiotherapy: feasibility study

    International Nuclear Information System (INIS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae-Suk

    2014-01-01

    In order to confirm the possibility of field application of a different type collimator with a multileaf collimator (MLC), we constructed a grid-type multi-layer pixel collimator (GTPC) by using a Monte Carlo n-particle simulation (MCNPX). In this research, a number of factors related to the performance of the GPTC were evaluated using simulated output data of a basic MLC model. A layer was comprised of a 1024-pixel collimator (5.0 x 5.0 mm 2 ) which could operate individually as a grid-type collimator (32 x 32). A 30-layer collimator was constructed for a specific portal form to pass radiation through the opening and closing of each pixel cover. The radiation attenuation level and the leakage were compared between the GTPC modality simulation and MLC modeling (tungsten, 17.50 g/cm 3 , 5.0 x 70.0 x 160.0 mm 3 ) currently used for a radiation field. Comparisons of the portal imaging, the lateral dose profile from a virtual water phantom, the dependence of the performance on the increase in the number of layers, the radiation intensity modulation verification, and the geometric error between the GTPC and the MLC were done using the MCNPX simulation data. From the simulation data, the intensity modulation of the GTPC showed a faster response than the MLC's (29.6%). In addition, the agreement between the doses that should be delivered to the target region was measured as 97.0%, and the GTPC system had an error below 0.01%, which is identical to that of MLC. A Monte Carlo simulation of the GTPC could be useful for verification of application possibilities. Because the line artifact is caused by the grid frame and the folded cover, a lineal dose transfer type is chosen for the operation of this system. However, the result of GTPC's performance showed that the methods of effective intensity modulation and the specific geometric beam shaping differed with the MLC modality.

  6. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P. [Candu Energy Inc, Mississauga, Ontario (Canada)

    2012-07-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  7. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    International Nuclear Information System (INIS)

    Xu, X.P.

    2012-01-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  8. Probabilistic Near and Far-Future Climate Scenarios of Precipitation and Surface Temperature for the North American Monsoon Region Under a Weighted CMIP5-GCM Ensemble Approach.

    Science.gov (United States)

    Montero-Martinez, M. J.; Colorado, G.; Diaz-Gutierrez, D. E.; Salinas-Prieto, J. A.

    2017-12-01

    It is well known the North American Monsoon (NAM) region is already a very dry region which is under a lot of stress due to the lack of water resources on multiple locations of the area. However, it is very interesting that even under those conditions, the Mexican part of the NAM region is certainly the most productive in Mexico from the agricultural point of view. Thus, it is very important to have realistic climate scenarios for climate variables such as temperature, precipitation, relative humidity, radiation, etc. This study tries to tackle that problem by generating probabilistic climate scenarios using a weighted CMIP5-GCM ensemble approach based on the Xu et al. (2010) technique which is on itself an improved method from the better known Reliability Ensemble Averaging algorithm of Giorgi and Mearns (2002). In addition, it is compared the 20-plus GCMs individual performances and the weighted ensemble versus observed data (CRU TS2.1) by using different metrics and Taylor diagrams. This study focuses on probabilistic results reaching a certain threshold given the fact that those types of products could be of potential use for agricultural applications.

  9. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  10. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  11. Estimation of Bouguer Density Precision: Development of Method for Analysis of La Soufriere Volcano Gravity Data

    Directory of Open Access Journals (Sweden)

    Hendra Gunawan

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol3no3.20084The precision of topographic density (Bouguer density estimation by the Nettleton approach is based on a minimum correlation of Bouguer gravity anomaly and topography. The other method, the Parasnis approach, is based on a minimum correlation of Bouguer gravity anomaly and Bouguer correction. The precision of Bouguer density estimates was investigated by both methods on simple 2D syntetic models and under an assumption free-air anomaly consisting of an effect of topography, an effect of intracrustal, and an isostatic compensation. Based on simulation results, Bouguer density estimates were then investigated for a gravity survey of 2005 on La Soufriere Volcano-Guadeloupe area (Antilles Islands. The Bouguer density based on the Parasnis approach is 2.71 g/cm3 for the whole area, except the edifice area where average topography density estimates are 2.21 g/cm3 where Bouguer density estimates from previous gravity survey of 1975 are 2.67 g/cm3. The Bouguer density in La Soufriere Volcano was uncertainly estimated to be 0.1 g/cm3. For the studied area, the density deduced from refraction seismic data is coherent with the recent Bouguer density estimates. New Bouguer anomaly map based on these Bouguer density values allows to a better geological intepretation.    

  12. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  13. Dense hydrogen plasma: Comparison between models

    International Nuclear Information System (INIS)

    Clerouin, J.G.; Bernard, S.

    1997-01-01

    Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society

  14. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m 2 /hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  15. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    International Nuclear Information System (INIS)

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-01-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler

  16. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    Science.gov (United States)

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  17. Bias-correction and Spatial Disaggregation for Climate Change Impact Assessments at a basin scale

    Science.gov (United States)

    Nyunt, Cho; Koike, Toshio; Yamamoto, Akio; Nemoto, Toshihoro; Kitsuregawa, Masaru

    2013-04-01

    Basin-scale climate change impact studies mainly rely on general circulation models (GCMs) comprising the related emission scenarios. Realistic and reliable data from GCM is crucial for national scale or basin scale impact and vulnerability assessments to build safety society under climate change. However, GCM fail to simulate regional climate features due to the imprecise parameterization schemes in atmospheric physics and coarse resolution scale. This study describes how to exclude some unsatisfactory GCMs with respect to focused basin, how to minimize the biases of GCM precipitation through statistical bias correction and how to cover spatial disaggregation scheme, a kind of downscaling, within in a basin. GCMs rejection is based on the regional climate features of seasonal evolution as a bench mark and mainly depends on spatial correlation and root mean square error of precipitation and atmospheric variables over the target region. Global Precipitation Climatology Project (GPCP) and Japanese 25-uear Reanalysis Project (JRA-25) are specified as references in figuring spatial pattern and error of GCM. Statistical bias-correction scheme comprises improvements of three main flaws of GCM precipitation such as low intensity drizzled rain days with no dry day, underestimation of heavy rainfall and inter-annual variability of local climate. Biases of heavy rainfall are conducted by generalized Pareto distribution (GPD) fitting over a peak over threshold series. Frequency of rain day error is fixed by rank order statistics and seasonal variation problem is solved by using a gamma distribution fitting in each month against insi-tu stations vs. corresponding GCM grids. By implementing the proposed bias-correction technique to all insi-tu stations and their respective GCM grid, an easy and effective downscaling process for impact studies at the basin scale is accomplished. The proposed method have been examined its applicability to some of the basins in various climate

  18. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    Science.gov (United States)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from

  19. Simulations of ITER disruption and VDE scenarios with TSC and comparison with DINA results

    International Nuclear Information System (INIS)

    Bandyopadhyay, I.

    2008-01-01

    Vertical Displacement Events (VDEs) and plasma current disruptions pose one of the major concerns for the lifetime of in-vessel components in ITER, as well as for machine robustness, as large electromagnetic and thermal loads will induced at such events. Hence, accurate modelling of such events is crucial for estimating disruption induced forces. In the past, ITER disruption modelling has been carried out for ITER using the DINA code. However, since predictive simulations of such events depend on a large number of model assumptions, there exists chances of large error bars on the model predictions. As such it is imperative to validate the code results with other models. Towards this objective, we have carried out the VDE and Disruption simulations using the TSC code and the results are compared with the earlier DINA predictions. A detailed electromagnetic model of the ITER vessel, blankets and the first wall components has been created in TSC. In both VDE and disruption cases, the initial plasma is taken as ITER reference scenario 2 end of burn (EOB) specifications with I p = 15 MA, B t = 5 .3 T, e > 8.8 keV, e > = 1.1 x 10 20 m -3 . The plasma current disruption is initiated by dropping the plasma β in 1 msec, so that after the β crash e > = 6 eV, following which the plasma position control is switched off, resulting in a plasma current quench in about 65 msec. On the other hand, in the VDE case, the plasma control is switched off which results in either upward or downward VDE depending on the initial position of the plasma current centroid. In this case the plasma current remains close to 15 MA for a much longer time, about 700 msec in the simulations till the edge safety factor (q) becomes less than 1.5, following which the β is crashed resulting in plasma current quench. Significant differences exist in the DINA and TSC models, for example, even though the plasma current quench rate predicted by the models matches well in till the halo currents start flowing

  20. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  1. Differences in rain rate intensities between TRMM observations and community atmosphere model simulations

    Science.gov (United States)

    Deng, Yi; Bowman, Kenneth P.; Jackson, Charles

    2007-01-01

    Precipitation related latent heating is important in driving the atmospheric general circulation and in generating intraseasonal to decadal atmospheric variability. Our ability to project future climate change, especially trends in costly precipitation extremes, hinges upon whether coupled GCMs capture processes that affect precipitation characteristics. Our study compares the tropical-subtropical precipitation characteristics of simulations by the NCAR CAM3.1 atmospheric GCM and observations derived from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite. Despite a fairly good simulation of the annual mean rain rate, CAM rains about 10-50% more often than the real world and fails to capture heavy rainfall associated with deep convective systems over subtropical South America and U.S. Southern Plains. When it rains, there is a likelihood of 0.96-1.0 that it rains lightly in the model, compared to values of 0.84-1.0 in TRMM data. On the other hand, the likelihood of the occurrence of moderate to heavy rainfall is an order of magnitude higher in observations (0.12-0.2) than that in the model (model compensates for the lack of heavy precipitation through raining more frequently within the light rain category, which leads to an annual rainfall amount close to what is observed. CAM captures the qualitative change of rain rate PDF from a "dry" oceanic to a "wet" oceanic region, but it fails to simulate the change of precipitation characteristics from an oceanic region to a land region where thunderstorm rainfall dominates.

  2. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  3. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    Science.gov (United States)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  4. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  5. Do lateral boundary condition update frequency and the resolution of the boundary data affect the regional model COSMO-CLM? A sensitivity study.

    Science.gov (United States)

    Pankatz, K.; Kerkweg, A.

    2014-12-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the german Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In regional climate modeling it is common to update the lateral boundary conditions (LBC) of the regional model every six hours. This is mainly due to the fact, that reference data sets like ERA are only available every six hours. Additionally, for offline coupling procedures it would be too costly to store LBC data in higher temporal resolution for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBC has a significant effect on the climate in the domain of the regional model (RCM). This study uses the RCM COSMO-CLM/MESSy (Kerkweg and Jöckel, 2012) to couple COSMO-CLM offline to the GCM ECHAM5. One study examines a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in regional domain shows only small deviations, some stastically significant though, of 2m temperature, sea level pressure and precipitaion.The second scope of the study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations.The second study examines the quality of decadal hind-casts of the decade 2001-2010 when the horizontal resolution of the driving model, namely T42, T63, T85, T106, from which the LBC are calculated, is altered. Two sets of simulations are evaluated. For the first set of simulations, the GCM simulations are performed at different resolutions using the same boundary conditions for GHGs and SSTs, thus

  6. Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras

    Directory of Open Access Journals (Sweden)

    MENDOZA, Carlos O.

    2013-06-01

    Full Text Available The rotation maize and dry bean provides the main food supply of smallholder farmers in Honduras. Crop model assessment of climate change impacts (2070–2099 compared to a 1961–1990 baseline on a maize–dry bean rotation for several sites across a range of climatic zones and elevations in Honduras. Low productivity systems, together with an uncertain future climate, pose a high level of risk for food security. The cropping systems simulation dynamic model CropSyst was calibrated and validated upon field trail site at Zamorano, then run with baseline and future climate scenarios based upon general circulation models (GCM and the ClimGen synthetic daily weather generator. Results indicate large uncertainty in crop production from various GCM simulations and future emissions scenarios, but generally reduced yields at low elevations by 0 % to 22 % in suitable areas for crop production and increased yield at the cooler, on the hillsides, where farming needs to reduce soil erosion with conservation techniques. Further studies are needed to investigate strategies to reduce impacts and to explore adaptation tactics.

  7. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  8. Low-cost autonomous orbit control about Mars: Initial simulation results

    Science.gov (United States)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work

  9. Comparison of simulation and experimental results for a model aqueous tert-butanol solution

    Science.gov (United States)

    Overduin, S. D.; Patey, G. N.

    2017-07-01

    Molecular dynamics simulations are used to investigate the behavior of aqueous tert-butanol (TBA) solutions for a range of temperatures, using the CHARMM generalized force field (CGenFF) to model TBA and the TIP4P/2005 or TIP4P-Ew water model. Simulation results for the density, isothermal compressibility, constant pressure heat capacity, and self-diffusion coefficients are in good accord with experimental measurements. Agreement with the experiment is particularly good at low TBA concentration, where experiments have revealed anomalies in a number of thermodynamic properties. Importantly, the CGenFF model does not exhibit liquid-liquid demixing at temperatures between 290 and 320 K (for systems of 32 000 molecules), in contrast with the situation for several other common TBA models [R. Gupta and G. N. Patey, J. Chem. Phys. 137, 034509 (2012)]. However, whereas real water and TBA are miscible at all temperatures where the liquid is stable, we observe some evidence of demixing at 340 K and above. To evaluate the structural properties at low concentrations, we compare with both neutron scattering and recent spectroscopic measurements. This reveals that while the CGenFF model is a definite improvement over other models that have been considered, the TBA molecules still exhibit a tendency to associate at low concentrations that is somewhat stronger than that indicated by experiments. Finally, we discuss the range and decay times of the long-range correlations, providing an indication of the system size and simulation times that are necessary in order to obtain reliable results for certain properties.

  10. Land-Atmosphere Coupling in the Multi-Scale Modelling Framework

    Science.gov (United States)

    Kraus, P. M.; Denning, S.

    2015-12-01

    The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced

  11. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  12. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  13. Experimental and computer simulation results of the spot welding process using SORPAS software

    International Nuclear Information System (INIS)

    Al-Jader, M A; Cullen, J D; Athi, N; Al-Shamma'a, A I

    2009-01-01

    The highly competitive nature of the automotive industry drives demand for improvements and increased precision engineering in resistance spot welding. Currently there are about 4300 weld points on the average steel vehicle. Current industrial monitoring systems check the quality of the nugget after processing 15 cars, once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. This paper presents a simulation of the spot welding growth curves, along with a comparison to growth curves performed on an industrial spot welding machine. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. The first section in your paper

  14. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  15. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    Science.gov (United States)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  16. Results from pion calibration runs for the H1 liquid argon calorimeter and comparisons with simulations

    International Nuclear Information System (INIS)

    Andrieu, B.; Ban, J.; Barrelet, E.; Bergstein, H.; Bernardi, G.; Besancon, M.; Binder, E.; Blume, H.; Borras, K.; Boudry, V.; Brasse, F.; Braunschweig, W.; Brisson, V.; Campbell, A.J.; Carli, T.; Colombo, M.; Coutures, C.; Cozzika, G.; David, M.; Delcourt, B.; DelBuono, L.; Devel, M.; Dingus, P.; Drescher, A.; Duboc, J.; Duenger, O.; Ebbinghaus, R.; Egli, S.; Ellis, N.N.; Feltesse, J.; Feng, Y.; Ferrarotto, F.; Flauger, W.; Flieser, M.; Gamerdinger, K.; Gayler, J.; Godfrey, L.; Goerlich, L.; Goldberg, M.; Graessler, R.; Greenshaw, T.; Greif, H.; Haguenauer, M.; Hajduk, L.; Hamon, O.; Hartz, P.; Haustein, V.; Haydar, R.; Hildesheim, W.; Huot, N.; Jabiol, M.A.; Jacholkowska, A.; Jaffre, M.; Jung, H.; Just, F.; Kiesling, C.; Kirchhoff, T.; Kole, F.; Korbel, V.; Korn, M.; Krasny, W.; Kubenka, J.P.; Kuester, H.; Kurzhoefer, J.; Kuznik, B.; Lander, R.; Laporte, J.F.; Lenhardt, U.; Loch, P.; Lueers, D.; Marks, J.; Martyniak, J.; Merz, T.; Naroska, B.; Nau, A.; Nguyen, H.K.; Niebergall, F.; Oberlack, H.; Obrock, U.; Ould-Saada, F.; Pascaud, C.; Pyo, H.B.; Rauschnabel, K.; Ribarics, P.; Rietz, M.; Royon, C.; Rusinov, V.; Sahlmann, N.; Sanchez, E.; Schacht, P.; Schleper, P.; Schlippe, W. von; Schmidt, C.; Schmidt, D.; Shekelyan, V.; Shooshtari, H.; Sirois, Y.; Staroba, P.; Steenbock, M.; Steiner, H.; Stella, B.; Straumann, U.; Turnau, J.; Tutas, J.; Urban, L.; Vallee, C.; Vecko, M.; Verrecchia, P.; Villet, G.; Vogel, E.; Wagener, A.; Wegener, D.; Wegner, A.; Wellisch, H.P.; Yiou, T.P.; Zacek, J.; Zeitnitz, Ch.; Zomer, F.

    1993-01-01

    We present results on calibration runs performed with pions at CERN SPS for different modules of the H1 liquid argon calorimeter which consists of an electromagnetic section with lead absorbers and a hadronic section with steel absorbers. The data cover an energy range from 3.7 to 205 GeV. Detailed comparisons of the data and simulation with GHEISHA 8 in the framework of GEANT 3.14 are presented. The measured pion induced shower profiles are well described by the simulation. The total signal of pions on an energy scale determined from electron measurements is reproduced to better than 3% in various module configurations. After application of weighting functions, determined from Monte Carlo data and needed to achieve compensation, the reconstructed measured energies agree with simulation to about 3%. The energies of hadronic showers are reconstructed with a resolution of about 50%/√E + 2%. This result is achieved by inclusion of signals from an iron streamer tube tail catcher behind the liquid argon stacks. (orig.)

  17. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  18. Do consumers prefer foods with nutrition and health claims? Results of a purchase simulation

    DEFF Research Database (Denmark)

    Aschemann-Witzel, Jessica; Hamm, U.

    2010-01-01

    This contribution reports findings of a close-to-realistic purchase simulation for foods labelled with nutrition and health claims. The results show that products with a claim are clearly preferred, but that the determining factors of choice differ between the food categories. Choice was positively...

  19. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  20. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  1. Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions – Part 1: Africa and India

    Directory of Open Access Journals (Sweden)

    Y. C. Sud

    2009-10-01

    Full Text Available Version-4 of the Goddard Earth Observing System (GEOS-4 General Circulation Model (GCM was employed to assess the influence of potential changes in aerosols on the regional circulation, ambient temperatures, and precipitation in four selected regions: India and Africa (current paper, as well as North and South America (companion paper. Ensemble-simulations were carried out with the GCM to assess the aerosol direct and indirect effects, hereafter ADE and AIE. Each simulation was started from the NCEP-analyzed initial conditions for 1 May and was integrated through May-June-July-August of each year: 1982–1987 to provide an ensemble set of six simulations. In the first set, called experiment (#1, climatological aerosols were prescribed. The next two experiments (#2 and #3 had two sets of simulations each: one with 2X and other with 1/2X the climatological aerosols over each of the four selected regions. In experiment #2, the anomaly regions were advectively restricted (AR, i.e., the large-scale prognostic fields outside the aerosol anomaly regions were prescribed while in experiment #3, the anomaly regions were advectively Interactive (AI as is the case in a normal GCM integrations, but with the same aerosols anomalies as in experiment #2. Intercomparisons of circulation, diabatic heating, and precipitation difference fields showed large disparities among the AR and AI simulations, which raised serious questions about the proverbial AR assumption, commonly invoked in regional climate simulation studies. Consequently AI simulation mode was chosen for the subsequent studies. Two more experiments (#4 and #5 were performed in the AI mode in which ADE and AIE were activated one at a time. The results showed that ADE and AIE work in concert to make the joint influences larger than sum of each acting alone. Moreover, the ADE and AIE influences were vastly different for the Indian and Africa regions, which suggest an imperative need to include them

  2. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    Science.gov (United States)

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-05-03

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rainout assessment: the ACRA system and summaries of simulation results

    International Nuclear Information System (INIS)

    Watson, C.W.; Barr, S.; Allenson, R.E.

    1977-09-01

    A generalized, three-dimensional, integrated computer code system was developed to estimate collateral-damage threats from precipitation-scavenging (rainout) of airborne debris-clouds from defensive tactical nuclear engagements. This code system, called ACRA for Atmospheric-Contaminant Rainout Assessment, is based on Monte Carlo statistical simulation methods that allow realistic, unbiased simulations of probabilistic storm, wind, and precipitation fields that determine actual magnitudes and probabilities of rainout threats. Detailed models (or data bases) are included for synoptic-scale storm and wind fields; debris transport and dispersal (with the roles of complex flow fields, time-dependent diffusion, and multidimensional shear effects accounted for automatically); microscopic debris-precipitation interactions and scavenging probabilities; air-to-ground debris transport; local demographic features, for assessing actual threats to populations; and nonlinear effects accumulations from multishot scenarios. We simulated several hundred representative shots for West European scenarios and climates to study single-shot and multishot sensitivities of rainout effects to variations in pertinent physical variables

  4. CREAM: Results, Implications and Outlook

    CERN Document Server

    Seo, Eun-Suk

    The Cosmic Ray Energetics And Mass (CREAM) balloon-borne experiment has accumulated ∼161 days of exposure during six successful flights over Antarctica. Energy measurements are made with a transition radiation detector and an ionization calorimeter. Charge measurements are made with timing scintillators, pixelated Si, and Cherenkov detectors to minimize the effect of backscattered particles. High energy cosmicray data were collected over a wide energy range from ∼ 1010 to ∼ 1015 eV at an average altitude of ∼ 38.5 km, with ∼ 3.9 g/cm2 atmospheric overburden. All cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Recent results from the ongoing analysis including the discrepant hardening of elemental spectra at ∼ 200 GeV/n are presented and their implications on cosmic-ray origin, acceleration and propagation are discussed. The project status and plans are also presented.

  5. Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5

    Energy Technology Data Exchange (ETDEWEB)

    Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

    2012-12-11

    Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

  6. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    International Nuclear Information System (INIS)

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual's performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average

  7. ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [North Carolina State Univ., Raleigh, NC (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model output and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP

  8. Impacts of revised PFTs on JULES simulated carbon and moisture fluxes

    Science.gov (United States)

    Harper, Anna; Cox, Peter; Sitch, Stephen; Mercado, Lina; Luke, Catherine; Jupp, Tim; Wiltshire, Andy; Jones, Chris; Friedlingstein, Pierre

    2013-04-01

    JULES is the land surface model in the Hadley Centre GCM, which is used for investigations of climate and climate change. We analyze the impacts on the simulated carbon and moisture fluxes of extending the PFTs in a manner consistent with observed leaf traits. The model currently represents global vegetation with five PFTs (needleleaf and broadleaf trees, C3 and C4 grasses, and shrubs). We add three new PFTs to delineate between deciduous and evergreen trees and shrubs. Since the inception of JULES in the late 90's, a tremendous amount of new data linking leaf traits and potential photosynthesis is available. We use data from the TRY plant trait data base to revise the relationships between leaf area, leaf lifespan, leaf nitrogen content, and Vcmax. In addition, JULES now includes a canopy radiation scheme based on fractions of sunlit and shaded leaves at 10 levels in the canopy. This results in a vertical distribution of nitrogren and Vcmax through the canopy and enables multilayer scaling from leaf to canopy level photosynthesis. The scheme is more physically realistic than previous canopy radiation schemes, but remains to be evaluated outside of the Tropics. Within the constraints of observed values, we optimize new parameter values related to the canopy radiation and photosynthesis, using optimization software developed at the University of Exeter. Impacts on simulated GPP, respiration, and latent heat flux are examined. In particular, we are interested in a better understanding of carbon cycle dynamics in tropical forests. Using data from TRY, carbon fluxes are improved across all PFTs compared to observations from Fluxnet tower sites. We adopt a regional analysis to compare JULES fluxes in certain regions (e.g. tropical forests, and boreal and tropical shrub-dominated landscapes).

  9. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  10. Numerical simulation of direct-drive ICF ignition in spherical geometry

    International Nuclear Information System (INIS)

    Yu Xiaojin

    2006-01-01

    The basic condition required for achieving central ignition is producing a hot spot with 10 keV temperature and 0.3 g/cm 2 surface density. Growth of hydrodynamic instability during deceleration phase will destroy the symmetric-drive, reduce the volume of central hot spot and make a harmful effect on ignition. Based on the LARED-S code, considering the thermonuclear reaction and α-particle heating, a numerical study of direct-drive ICF in spherical geometry is made. One-dimensional results agree well with the NIF ignition target designs, and show that the α-particle heating plays an important role in marginal ignition. Two-dimensional results show that the growth of hydrodynamic instability during deceleration phase makes a harmful effect on ignition. (authors)

  11. Verification of simulation model with COBRA-IIIP code by confrontment of experimental results

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da; Pontedeiro, A.C.; Oliveira Barroso, A.C. de

    1985-01-01

    It is presented an evaluation of the COBRA IIIP/MIT code (of thermal hydraulic analysis by subchannels), comparing their results with experimental data obtained in stationary and transient regimes. It was done a study to calculate the spatial and temporal critical heat flux. It is presented a sensitivity study of simulation model related to the turbulent mixture and the number of axial intervals. (M.C.K.) [pt

  12. Simulated building energy demand biases resulting from the use of representative weather stations

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; Xie, Yulong; Kraucunas, Ian

    2018-01-01

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, to capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.

  13. 600 MeV Simulation of the Production of Cosmogenic Nuclides in Meteorites by Galactic Protons

    CERN Multimedia

    2002-01-01

    A large variety of stable and radioactive nuclides is produced by the interaction of solar and galactic cosmic rays with extraterrestrial matter. Measurements of such cosmogenic nuclides provide information about the constancy of cosmic ray fluxes in space and time and about the irradiation history of individual extraterrestrial objects provided that there exist reliable models describing the production process. For the calculation of the depth dependent production of cosmogenic nuclides in meteorites no satisfactory Therefore, the irradiation of small stony meteorites (radii~$<$~40~cm) by galactic protons is simulated in a series of thick target irradiation experiments at the 600~MeV proton beam of the SC. \\\\ \\\\ The thick targets are spheres (R = 5, 15, 25 cm) and are made out of diorite because of its low water content, its high density (3.0~g/cm|3) and because it provides a good approximation of the chemical composition of some common meteorite clas These spheres will also contain a wide variety of pure...

  14. Relative solvation free energies calculated using an ab initio QM/MM-based free energy perturbation method: dependence of results on simulation length.

    Science.gov (United States)

    Reddy, M Rami; Erion, Mark D

    2009-12-01

    Molecular dynamics (MD) simulations in conjunction with thermodynamic perturbation approach was used to calculate relative solvation free energies of five pairs of small molecules, namely; (1) methanol to ethane, (2) acetone to acetamide, (3) phenol to benzene, (4) 1,1,1 trichloroethane to ethane, and (5) phenylalanine to isoleucine. Two studies were performed to evaluate the dependence of the convergence of these calculations on MD simulation length and starting configuration. In the first study, each transformation started from the same well-equilibrated configuration and the simulation length was varied from 230 to 2,540 ps. The results indicated that for transformations involving small structural changes, a simulation length of 860 ps is sufficient to obtain satisfactory convergence. In contrast, transformations involving relatively large structural changes, such as phenylalanine to isoleucine, require a significantly longer simulation length (>2,540 ps) to obtain satisfactory convergence. In the second study, the transformation was completed starting from three different configurations and using in each case 860 ps of MD simulation. The results from this study suggest that performing one long simulation may be better than averaging results from three different simulations using a shorter simulation length and three different starting configurations.

  15. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures.

  16. The Holinger apartment house in Oberdorf, Switzerland - Measurement results and simulations; Mehrfamilienhaus Holinger, Oberdorf BL. Messungen und Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Blatter, M. [Max Blatter, Bremgarten, former in Muenchenstein (Switzerland); Bruehwiler, D. [Daniel Bruehwiler, Energietechnik und Informatik, Faellanden (Switzerland)

    2000-12-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) as part of the research program on solar architecture discusses the results of measurements and simulations made on a four-family home. The heating system of the building which uses a window and roof air collector system combined with wood-fired ovens is described. The most important findings are presented and discussed. Schematics of the heat-collection systems are presented and discussed and the heat-recovery system is described. The measurement system is described and the results obtained are analysed, as are the monthly and annual energy balances of the building. The results of a computer simulation are presented and discussed and compared with the actual measurements made. System optimisation was simulated. The possibility of using the system in summer to pre-heat domestic hot water is looked at. The conclusions drawn from the project are discussed.

  17. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    International Nuclear Information System (INIS)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures

  18. Long-Term Climatic and Anthropogenic Impacts on Streamwater Salinity in New York State: INCA Simulations Offer Cautious Optimism.

    Science.gov (United States)

    Gutchess, Kristina; Jin, Li; Ledesma, José L J; Crossman, Jill; Kelleher, Christa; Lautz, Laura; Lu, Zunli

    2018-02-06

    The long-term application of road salts has led to a rise in surface water chloride (Cl - ) concentrations. While models have been used to assess the potential future impacts of continued deicing practices, prior approaches have not incorporated changes in climate that are projected to impact hydrogeology in the 21st century. We use an INtegrated CAtchment (INCA) model to simulate Cl - concentrations in the Tioughnioga River watershed. The model was run over a baseline period (1961-1990) and climate simulations from a range of GCMs run over three 30-year intervals (2010-2039; 2040-2069; 2070-2099). Model projections suggest that Cl - concentrations in the two river branches will continue to rise for several decades, before beginning to decline around 2040-2069, with all GCM scenarios indicating reductions in snowfall and associated salt applications over the 21st century. The delay in stream response is most likely attributed to climate change and continued contribution of Cl - from aquifers. By 2100, surface water Cl - concentrations will decrease to below 1960s values. Catchments dominated by urban lands will experience a decrease in average surface water Cl - , although moderate compared to more rural catchments.

  19. Sub-millimeter planar imaging with positron emitters: EGS4 code simulation and experimental results

    International Nuclear Information System (INIS)

    Bollini, D.; Del Guerra, A.; Di Domenico, G.

    1996-01-01

    Experimental data for Planar Imaging with positron emitters (pulse height, efficiency and spatial resolution) obtained with two matrices of 25 crystals (2 x 2 x 30 mm 3 each) of YAP:Ce coupled with a Position Sensitive PhotoMultiplier (Hamamatsu R2486-06) have been reproduced with high accuracy using the EGS4 code. Extensive simulation provides a detailed description of the performance of this type of detector as a function of the matrix granularity, the geometry of the detector and detection threshold. We present the Monte Carlo simulation and the preliminary experimental results of a prototype planar imaging system made of two matrices, each one consisting of 400 (2 x 2 x 30 mm 3 ) crystals of YAP-Ce

  20. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  1. Hydroclimate variability: comparing dendroclimatic records and future GCM scenarios

    International Nuclear Information System (INIS)

    Lapp, S.

    2008-01-01

    Drought events of the 20th Century in western North America have been linked to teleconnections that influence climate variability on inter-annual and decadal to multi-decadal time scales. These teleconnections represent the changes sea surface temperatures (SSTs) in the tropical and extra-tropical regions of the Pacific Ocean, ENSO (El-Nino Southern Oscillation) and PDO (Pacific Decadal Oscillation), respectively, and the Atlantic Ocean, AMO (Atlantic Multidecadal Oscillation), and also to atmospheric circulation patterns (PNA: Pacific-North American). A network of precipitation sensitive tree-ring chronologies from Montana, Alberta, Saskatchewan and NWT highly correlate to the climate moisture index (CMI) of precipitation potential evapotranspiration (P-PET), thus, capturing the long-term hydroclimatic variability of the region. Reconstructions of annual and seasonal CMI identify drought events in previous centuries that are more extreme in magnitude, frequency and duration than recorded during the instrumental period. Variability in the future climate will include these natural climate cycles as well as modulations of these cycles affected by human induced global warming. The proxy hydroclimate records derived from tree-rings present information on decadal and multi-decadal hydroclimatic variability for the past millennium; therefore, providing a unique opportunity to validate the climate variability simulated by GCMs (Global Climate Models) on longer time scales otherwise constrained by the shorter observation records. Developing scenarios of future variability depends: 1) on our understanding of the interaction of these teleconnection; and, 2) to identify climate models that are able to accurately simulate the hydroclimatic variability as detected in the instrumental and proxy records. (author)

  2. Research on climate change and variability at the Ab dus Salam International Centre for Theoretical Physics

    International Nuclear Information System (INIS)

    Giorgi, F.; Molteni, F.

    2002-01-01

    The Physics of Weather and Climate Section at the Abdus Salam International Centre for Theoretical Physics, established in 1998, is currently performing research on different aspects of climate variability, dealing with both natural and anthropogenic aspects of climate changes. In addition to performing diagnostic work on multi-decadal observational datasets and climate simulations carried out in major research centres, the PWC section has been developing its own climate modeling capability, which is focused on three main areas: a) modeling of regional climate change; b) seasonal forecasting at global and regional scale; c) development of simplified models of the general circulation. On topic a), research on different aspects of anthropogenic climate change is being carried out using the Regional Climate (RegCM) developed by Giorgi and collaborators at the National Centre for Atmospheric Research. Time-slice experiments with a high-resolution atmospheric GCM, comparing current climate conditions with future climate scenarios in selected decades, are also planned for the near future. On topic b), a strategy based on ensembles of high-resolution simulations with atmospheric GCM's, using sea surface temperature anomalies predicted by lower-resolution coupled models from other institutions, is currently under experimentation. A one-way nesting of RegCM into the GCM simulations will also be tested. On item c), a 5-layer atmospheric GCM with simplified physical parameterizations has been developed. This model has a very small computational cost compared with state-of-the-art GCMs, and is suitable for studies of natural climate variability on inter-decadal and intercentennial time scales. It is planned to couple this model to simplified ocean models of different complexity, from a simple, static mixed layer model, to simplified models of the tropical Pacific circulation suited to the simulation of the El Nino phenomenon. A joint project with the IAEA-MEL Laboratory in

  3. Signal detection in global mean temperatures after “Paris”: an uncertainty and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    H. Visser

    2018-02-01

    Full Text Available In December 2015, 195 countries agreed in Paris to hold the increase in global mean surface temperature (GMST well below 2.0 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C. Since large financial flows will be needed to keep GMSTs below these targets, it is important to know how GMST has progressed since pre-industrial times. However, the Paris Agreement is not conclusive as regards methods to calculate it. Should trend progression be deduced from GCM simulations or from instrumental records by (statistical trend methods? Which simulations or GMST datasets should be chosen, and which trend models? What is pre-industrial and, finally, are the Paris targets formulated for total warming, originating from both natural and anthropogenic forcing, or do they refer to anthropogenic warming only? To find answers to these questions we performed an uncertainty and sensitivity analysis where datasets and model choices have been varied. For all cases we evaluated trend progression along with uncertainty information. To do so, we analysed four trend approaches and applied these to the five leading observational GMST products. We find GMST progression to be largely independent of various trend model approaches. However, GMST progression is significantly influenced by the choice of GMST datasets. Uncertainties due to natural variability are largest in size. As a parallel path, we calculated GMST progression from an ensemble of 42 GCM simulations. Mean progression derived from GCM-based GMSTs appears to lie in the range of trend–dataset combinations. A difference between both approaches appears to be the width of uncertainty bands: GCM simulations show a much wider spread. Finally, we discuss various choices for pre-industrial baselines and the role of warming definitions. Based on these findings we propose an estimate for signal progression in GMSTs since pre-industrial.

  4. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    Science.gov (United States)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  5. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  6. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  7. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    Science.gov (United States)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  8. Solar Potential Analysis and Integration of the Time-Dependent Simulation Results for Semantic 3d City Models Using Dynamizers

    Science.gov (United States)

    Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.

    2017-10-01

    Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.

  9. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  10. Possible future changes in South East Australian frost frequency: an inter-comparison of statistical downscaling approaches

    Science.gov (United States)

    Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville

    2018-04-01

    Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.

  11. Effect of temperature on the expansion and microstructure Of U3 Si2-AI mini plate fuel of 3.6 g/cm3 uranium loading

    International Nuclear Information System (INIS)

    Ginting, A. Br.; Samosir, N.; Suparjo; Nasution, H.

    2000-01-01

    Expansion analysis has been conducted to 50 x 20-mm U 3 Si 2 -AI mini plate of 3.6 g/cm 3 uranium loading using dilatometer. The analysis was carried out at various temperatures of 170 o C, 350 o C and 550 o C in Argon medium with delay time 4 days. The result showed that the fuel plate was relatively stable with increasing of heating time but underwent significant expansion. Heating at 170 o C, 350 o C and 550 o C resulted in the expansion of the U 3 Si 2 -AI fuel plate of to 83-212 mum, 333-475 mum, and 433-724 mum with coefficient expansion of 24.2x10 -6 / o C - 24.3x10 -6 / o C, 25.5x10 -6 / o C - 26.2x10 -6 /'oC and 26.6 x 10 -6 / o C - 28.2 x 10 -6 / o C respectively. Microanalysis of the U 3 Si 2 -AI mini plate fuel with SEM-EDS upon heating at those temperature variation showed that microstructure change didn't occur at 170 o C, mean while interaction between AIMg2 cladding and the fuel meat appeared to take place at 350 o C and 550 o C. Data on the expansion and microstructure change of U 3 Si 2 -AI fuel plate upon heating are of great important for the manufacture/fabrication of research fuel plate to produce silicide fuel element for higher uranium loading. (author)

  12. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    Science.gov (United States)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  13. Impact of thermoplastic mask on X-ray surface dose calculated with Monte Carlo code

    International Nuclear Information System (INIS)

    Zhao Yanqun; Li Jie; Wu Liping; Wang Pei; Lang Jinyi; Wu Dake; Xiao Mingyong

    2010-01-01

    Objective: To calculate the effects of thermoplastic mask on X-ray surface dose. Methods: The BEAMnrc Monte Carlo Code system, designed especially for computer simulation of radioactive sources, was performed to evaluate the effects of thermoplastic mask on X-ray surface dose.Thermoplastic mask came from our center with a material density of 1.12 g/cm 2 . The masks without holes, with holes size of 0.1 cm x 0.1 cm, and with holes size of 0. 1 cm x 0.2 cm, and masks with different depth (0.12 cm and 0.24 cm) were evaluated separately. For those with holes, the material width between adjacent holes was 0.1 cm. Virtual masks with a material density of 1.38 g/cm 3 without holes with two different depths were also evaluated. Results: Thermoplastic mask affected X-rays surface dose. When using a thermoplastic mask with the depth of 0.24 cm without holes, the surface dose was 74. 9% and 57.0% for those with the density of 1.38 g/cm 3 and 1.12 g/cm 3 respectively. When focusing on the masks with the density of 1.12 g/cm 3 , the surface dose was 41.2% for those with 0.12 cm depth without holes; 57.0% for those with 0. 24 cm depth without holes; 44.5% for those with 0.24 cm depth with holes size of 0.1 cm x 0.2 cm;and 54.1% for those with 0.24 cm depths with holes size of 0.1 cm x 0.1 cm.Conclusions: Using thermoplastic mask during the radiation increases patient surface dose. The severity is relative to the hole size and the depth of thermoplastic mask. The surface dose change should be considered in radiation planning to avoid severe skin reaction. (authors)

  14. Examining the Performance of Statistical Downscaling Methods: Toward Matching Applications to Data Products

    Science.gov (United States)

    Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.

    2017-12-01

    Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.

  15. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  16. PDF added value of a high resolution climate simulation for precipitation

    Science.gov (United States)

    Soares, Pedro M. M.; Cardoso, Rita M.

    2015-04-01

    General Circulation Models (GCMs) are models suitable to study the global atmospheric system, its evolution and response to changes in external forcing, namely to increasing emissions of CO2. However, the resolution of GCMs, of the order of 1o, is not sufficient to reproduce finer scale features of the atmospheric flow related to complex topography, coastal processes and boundary layer processes, and higher resolution models are needed to describe observed weather and climate. The latter are known as Regional Climate Models (RCMs) and are widely used to downscale GCMs results for many regions of the globe and are able to capture physically consistent regional and local circulations. Most of the RCMs evaluations rely on the comparison of its results with observations, either from weather stations networks or regular gridded datasets, revealing the ability of RCMs to describe local climatic properties, and assuming most of the times its higher performance in comparison with the forcing GCMs. The additional climatic details given by RCMs when compared with the results of the driving models is usually named as added value, and it's evaluation is still scarce and controversial in the literuature. Recently, some studies have proposed different methodologies to different applications and processes to characterize the added value of specific RCMs. A number of examples reveal that some RCMs do add value to GCMs in some properties or regions, and also the opposite, elighnening that RCMs may add value to GCM resuls, but improvements depend basically on the type of application, model setup, atmospheric property and location. The precipitation can be characterized by histograms of daily precipitation, or also known as probability density functions (PDFs). There are different strategies to evaluate the quality of both GCMs and RCMs in describing the precipitation PDFs when compared to observations. Here, we present a new method to measure the PDF added value obtained from

  17. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    Science.gov (United States)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  18. The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [Groupe de Modelisation Grande Echelle et Climat, CNRM-GAME, Meteo-France, Toulouse Cedex 1 (France); Walsh, Kevin [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Lavender, Sally; Abbs, Deborah [CSIRO Atmospheric and Marine Research, Aspendale, VIC (Australia); Roux, Frank [Universite de Toulouse and Centre National de la Recherche Scientifique, Laboratoire d' Aerologie, Toulouse (France)

    2012-10-15

    The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10-20 N, 20-80 W; Goldenberg and Shapiro in J Clim 9:1169-1187, 1996) is examined through a subset of ocean-atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5 ) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig. 1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered. (orig.)

  19. Spectrally constrained NIR tomography for breast imaging: simulations and clinical results

    Science.gov (United States)

    Srinivasan, Subhadra; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Paulsen, Keith D.

    2005-04-01

    A multi-spectral direct chromophore and scattering reconstruction for frequency domain NIR tomography has been implemented using constraints of the known molar spectra of the chromophores and a Mie theory approximation for scattering. This was tested in a tumor-simulating phantom containing an inclusion with higher hemoglobin, lower oxygenation and contrast in scatter. The recovered images were quantitatively accurate and showed substantial improvement over existing methods; and in addition, showed robust results tested for up to 5% noise in amplitude and phase measurements. When applied to a clinical subject with fibrocystic disease, the tumor was visible in hemoglobin and water, but no decrease in oxygenation was observed, making oxygen saturation, a potential diagnostic indicator.

  20. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  1. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  2. Regional forecasting with global atmospheric models; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  3. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  4. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  5. Utilizing Monte-Carlo radiation transport and spallation cross sections to estimate nuclide dependent scaling with altitude

    Science.gov (United States)

    Argento, D.; Reedy, R. C.; Stone, J.

    2010-12-01

    Cosmogenic Nuclides (CNs) are a critical new tool for geomorphology, allowing researchers to date Earth surface events and measure process rates [1]. Prior to CNs, many of these events and processes had no absolute method for measurement and relied entirely on relative methods [2]. Continued improvements in CN methods are necessary for expanding analytic capability in geomorphology. In the last two decades, significant progress has been made in refining these methods and reducing analytic uncertainties [1,3]. Calibration data and scaling methods are being developed to provide a self consistent platform for use in interpreting nuclide concentration values into geologic data [4]. However, nuclide dependent scaling has been difficult to address due to analytic uncertainty and sparseness in altitude transects. Artificial target experiments are underway, but these experiments take considerable time for nuclide buildup in lower altitudes. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray radiation impinging on the upper atmosphere and track the resulting secondary particles through a model of the Earth’s atmosphere and lithosphere. To address the issue of nuclide dependent scaling, the neutron flux values determined by the MCNPX simulation are folded in with estimated cross-section values [5,6]. Preliminary calculations indicate that scaling of nuclide production potential in free air seems to be a function of both altitude and nuclide production pathway. At 0 g/cm2 (sea-level) all neutron spallation pathways have attenuation lengths within 1% of 130 g/cm2. However, the differences in attenuation length are exacerbated with increasing altitude. At 530 g/cm2 atmospheric height (~5,500 m), the apparent attenuation lengths for aggregate SiO2(n,x)10Be, aggregate SiO2(n,x)14C and K(n,x)36Cl become 149.5 g/cm2, 151 g/cm2 and 148 g/cm2 respectively. At 700 g/cm2 atmospheric height (~8,400m - close to the highest

  6. Seeking deep convective parameter updates that improve tropical Pacific climatology in CESM using Pareto fronts

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2016-12-01

    Despite increasing complexity and process representation in global climate models (GCMs), accurate climate simulation is limited by uncertainties in sub-grid scale model physics, where cloud processes and precipitation occur, and the interaction with large-scale dynamics. Identifying highly sensitive parameters and constraining them against observations is therefore a valuable step in narrowing uncertainty. However, changes in parameterizations often improve some variables or aspects of the simulation while degrading others. This analysis addresses means of improving GCM simulation of present-day tropical Pacific climate in the face of these tradeoffs. Focusing on the deep convection scheme in the fully coupled Community Earth System Model (CESM) version 1, four parameters were systematically sampled, and a metamodel or model emulator was used to reconstruct the parameter space of this perturbed physics ensemble. Using this metamodel, a Pareto front is constructed to visualize multiobjective tradeoffs in model performance, and results highlight the most important aspects of model physics as well as the most sensitive parameter ranges. For example, parameter tradeoffs arise in the tropical Pacific where precipitation cannot improve without sea surface temperature getting worse. Tropical precipitation sensitivity is found to be highly nonlinear for low values of entrainment in convecting plumes, though it is fairly insensitive at the high end of the plausible range. Increasing the adjustment timescale for convective closure causes the centroid of tropical precipitation to vary as much as two degrees latitude, highlighting the effect these physics can have on large-scale features of the hydrological cycle. The optimization procedure suggests that simultaneously increasing the maximum downdraft mass flux fraction and the adjustment timescale can yield improvements to surface temperature and column water vapor without degrading the simulation of precipitation. These

  7. Evaluating IPCC AR4 cool-season precipitation simulations and projections for impacts assessment over North America

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, Stephanie A. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States); The Wilderness Society, Anchorage, AK (United States); Russell, Joellen L.; Goodman, Paul J. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States)

    2011-12-15

    General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30 N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized. (orig.)

  8. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    Science.gov (United States)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  9. Vitrification of Hanford wastes in a joule-heated ceramic melter and evaluation of resultant canisterized product

    International Nuclear Information System (INIS)

    Chapman, C.C.; Buelt, J.L.; Slate, S.C.; Katayama, Y.B.; Bunnell, L.R.

    1979-08-01

    Experience gained in the week-long vitrification test and characterization of the glass produced in the run support the following conclusions: The Hanford waste simulated in this test can be readily vitrified in a joule-heated ceramic melter. Physical properties of the molten glass were entirely compatible with melter operation. The average feed rate of 106 kg/h is high enough to make the ceramic melter a feasible piece of equipment for vitrifying Hanford wastes. The glass produced in this trial had good chemical durability, 6(10) -5 g/cm 2 -d. When one of the canisters was purposely dropped onto a steel pad, the damage was limited to deformation of the steel can in the impact area, cracking of a weld, and fracturing of glass in the immediate vicinity of the impact area. No glass was released from the canister as a result of the drop test. The results of this vitrification test support the technical feasibility of vitrifying Hanford wastes by means of a joule-heated ceramic melter. Surface area for large glass castings is equivalent to the mass median particle diameters between 4.27 cm (1.75 in.) and 8.91 cm (3.51 in.) even when allowed to cool rapidly by standing in ambient air. Large canisters (up to 0.91 m in dia) can be cast without large voids while standing in air if the fill rate is over 100 kg/h. 34 figures, 10 tables

  10. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  11. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  12. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    Science.gov (United States)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  13. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  14. Bioclim Deliverable D6a: regional climatic characteristics for the European sites at specific times: the dynamical down-scaling

    International Nuclear Information System (INIS)

    2003-01-01

    The overall aim of BIOCLIM is to assess the possible long-term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: - Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. - Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. - Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. The BIOCLIM project is designed to advance the state-of-the-art of biosphere modelling for use in Performance Assessments. Therefore, two strategies are developed for representing sequential climatic changes to geosphere-biosphere systems. The hierarchical strategy successively uses a hierarchy of climate models. These models vary from simple 2-D models, which simulate interactions between a few aspects of the Earth system at a rough surface resolution, through General Circulation Model (GCM) and vegetation model, which simulate in great detail the dynamics and physics of the atmosphere, ocean and biosphere, to regional models, which focus on the European regions and sites of interest. Moreover, rule-based and statistical down-scaling procedures are also considered. Comparisons are provided in terms of climate and vegetation cover at the selected times and for the study regions. The integrated strategy consists of using integrated climate models, representing all the physical mechanisms important for long-term continuous climate variations, to simulate the climate evolution over

  15. Phase-Transfer Energetics of Small-Molecule Alcohols Across the Water-Hexane Interface: Molecular Dynamics Simulation Using Charge Equilibration Models

    Science.gov (United States)

    Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep

    2010-01-01

    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (ε∥) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ε∥ for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than

  16. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    Science.gov (United States)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  17. Projecting impacts of climate change on water availability using artificial neural network techniques

    Science.gov (United States)

    Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo

    2017-01-01

    Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.

  18. Development of computer code SIMPSEX for simulation of FBR fuel reprocessing flowsheets: II. additional benchmarking results

    International Nuclear Information System (INIS)

    Shekhar Kumar; Koganti, S.B.

    2003-07-01

    Benchmarking and application of a computer code SIMPSEX for high plutonium FBR flowsheets was reported recently in an earlier report (IGC-234). Improvements and recompilation of the code (Version 4.01, March 2003) required re-validation with the existing benchmarks as well as additional benchmark flowsheets. Improvements in the high Pu region (Pu Aq >30 g/L) resulted in better results in the 75% Pu flowsheet benchmark. Below 30 g/L Pu Aq concentration, results were identical to those from the earlier version (SIMPSEX Version 3, code compiled in 1999). In addition, 13 published flowsheets were taken as additional benchmarks. Eleven of these flowsheets have a wide range of feed concentrations and few of them are β-γ active runs with FBR fuels having a wide distribution of burnup and Pu ratios. A published total partitioning flowsheet using externally generated U(IV) was also simulated using SIMPSEX. SIMPSEX predictions were compared with listed predictions from conventional SEPHIS, PUMA, PUNE and PUBG. SIMPSEX results were found to be comparable and better than the result from above listed codes. In addition, recently reported UREX demo results along with AMUSE simulations are also compared with SIMPSEX predictions. Results of the benchmarking SIMPSEX with these 14 benchmark flowsheets are discussed in this report. (author)

  19. Computational bone remodelling simulations and comparisons with DEXA results.

    Science.gov (United States)

    Turner, A W L; Gillies, R M; Sekel, R; Morris, P; Bruce, W; Walsh, W R

    2005-07-01

    Femoral periprosthetic bone loss following total hip replacement is often associated with stress shielding. Extensive bone resorption may lead to implant or bone failure and complicate revision surgery. In this study, an existing strain-adaptive bone remodelling theory was modified and combined with anatomic three-dimensional finite element models to predict alterations in periprosthetic apparent density. The theory incorporated an equivalent strain stimulus and joint and muscle forces from 45% of the gait cycle. Remodelling was simulated for three femoral components with different design philosophies: cobalt-chrome alloy, two-thirds proximally coated; titanium alloy, one-third proximally coated; and a composite of cobalt-chrome surrounded by polyaryletherketone, fully coated. Theoretical bone density changes correlated significantly with clinical densitometry measurements (DEXA) after 2 years across the Gruen zones (R2>0.67, p<0.02), with average differences of less than 5.4%. The results suggest that a large proportion of adaptive bone remodelling changes seen clinically with these implants may be explained by a consistent theory incorporating a purely mechanical stimulus. This theory could be applied to pre-clinical testing of new implants, investigation of design modifications, and patient-specific implant selection.

  20. Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Takanori Shono

    Full Text Available Glial cells missing 2 (gcm2 encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid, gills, and H(+-ATPase-rich cells (HRCs, a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+-Cl(- co-transporter-rich cells (NCCCs, another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes and fugu (Fugu niphobles, the extant primitive ray-finned fishes Polypterus (Polypterus senegalus and sturgeon (a hybrid of Huso huso × Acipenser ruhenus, and the amphibian Xenopus (Xenopus laevis. Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.

  1. Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2017-09-01

    Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.

  2. Monte Carlo simulations of silicon sputtering by argon ions and an approach for comparison with molecular dynamic results

    Energy Technology Data Exchange (ETDEWEB)

    Feder, Rene; Frost, Frank; Mayr, Stefan G.; Neumann, Horst; Bundesmann, Carsten [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputter processes deliver some intrinsic features influencing the growing film properties. Utilisation of these features needs to know how primary ion properties and geometrical process conditions influence the energy and spatial distribution of the sputtered and scattered particles. Beside complex experiments simulations are helpful to explain the correlation between primary parameters and thin film properties. The paper presents first results of two simulation codes with completely different approaches: Monte Carlo (MC) calculations with help of the well known TRIM.SP code and Molecular Dynamics calculations with an in-house developed code. First results of both simulation principles are compared for Argon ion bombardment on a Silicon target. Furthermore, a special experimental setup is outlined for validation of modelling. The setup allows the variation of ion beam parameters (ion species, ion energy, ion incidence angle on the target) and the measurement of the properties of sputtered and scattered particles.

  3. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results.

    Science.gov (United States)

    Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B

    2017-12-19

    Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  4. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results

    Directory of Open Access Journals (Sweden)

    Domingos M. C. Rodrigues

    2017-12-01

    Full Text Available Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli. Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  5. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  6. Impact of global warming on permafrost conditions in a coupled GCM

    DEFF Research Database (Denmark)

    Stendel, M.; Christensen, J. H.

    2002-01-01

    emissions (SRES A2 issued by IPCC), we estimate the amounts that the permafrost zones moves poleward and how the thickness of the active layer deepens in response to the global warming by the end of the 21st century. The simulation indicates a 30-40% increase in active-layer thickness for most...

  7. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    Science.gov (United States)

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  8. Ground potential rise on the high voltage substation during lightning strike measurement and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Wiater, Jaroslaw [Bialystok Technical University (Poland). Electrical Dept.], E-mail: jaroslawwiater@we.pb.edu.pl

    2007-07-01

    This paper will present a ground potential rise (GPR) measurement results. All measurements were made during normal work of the real high voltage substation and according a special procedure developed for this occasion. This procedure does not influence on the protection relays and ensures a proper work of the substation even for 6 kV surges. During measurements current and voltage surges were produced by the impulse generator - UCS 500M6B. Measurement results are compared to simulation results performed in CDEGS software for the same initial conditions. (author)

  9. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    Science.gov (United States)

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  10. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    Science.gov (United States)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  11. Does teaching of documentation of shoulder dystocia delivery through simulation result in improved documentation in real life?

    Science.gov (United States)

    Comeau, Robyn; Craig, Catherine

    2014-03-01

    Documentation of deliveries complicated by shoulder dystocia is a valuable communication skill necessary for residents to attain during residency training. Our objective was to determine whether the teaching of documentation of shoulder dystocia in a simulation environment would translate to improved documentation of the event in an actual clinical situation. We conducted a cohort study involving obstetrics and gynaecology residents in years 2 to 5 between November 2010 and December 2012. Each resident participated in a shoulder dystocia simulation teaching session and was asked to write a delivery note immediately afterwards. They were given feedback regarding their performance of the delivery and their documentation of the events. Following this, dictated records of shoulder dystocia deliveries immediately before and after the simulation session were identified through the Meditech system. An itemized checklist was used to assess the quality of residents' dictated documentation before and after the simulation session. All eligible residents (18) enrolled in the study, and 17 met the inclusion criteria. For 10 residents (59%) documentation of a delivery with shoulder dystocia was present before and after the simulation session, for five residents (29%) it was only present before the session, and for two residents (18%) it was only present after the session. When residents were assessed as a group, there were no differences in the proportion of residents recording items on the checklist before and after the simulation session (P > 0.05 for all). Similarly, analysis of the performance of the10 residents who had dictated documentation both before and after the session showed no differences in the number of elements recorded on dictations done before and after the simulation session (P > 0.05 for all). The teaching of shoulder dystocia documentation through simulation did not result in a measurable improvement in the quality of documentation of shoulder dystocia in

  12. Effects of land cover change on the tropical circulation in a GCM

    Science.gov (United States)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  13. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    Science.gov (United States)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  14. New Results on the Simulation of Particulate Flows

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2004-07-01

    We propose a new immersed boundary method for the simulation of particulate flows. The fluid solid interaction force is formulate din a direct manner, without resorting to a feed-back mechanisms and thereby avoiding the introduction of additional free parameters. The regularized delta function of Peskin (Acta Numerica, 2002) is used to pass variables between Lagrangian and Eulerian representations, providing for a smooth variation of the hydrodynamic forces while particles are in motion relative to the fixed grid. The application of this scheme to several benchmark problems in two space dimensions demonstrates its feasibility and efficiency. (Author) 9 refs.

  15. New Results on the Simulation of Particulate Flows

    International Nuclear Information System (INIS)

    Uhlmann, M.

    2004-01-01

    We propose a new immersed boundary method for the simulation of particulate flows. The fluid solid interaction force is formulated in a direct manner, without resorting to a feed-back mechanism and thereby avoiding the introduction of additional free parameters. The regularized delta function of Pekin (Acta Numerical, 2002) is used to pass variables between Lagrangian and Eulerian representations, providing for a smooth variation of the hydrodynamic forces while particles are in motion relative to the fixed grid. The application of this schemer to several benchmark problems in two space dimensions demonstrates its feasibility and efficiency. (Author) 9 refs

  16. Delayed hadrons in air showers observed in Chacaltaya

    International Nuclear Information System (INIS)

    Kakimoto, Fumio

    1984-01-01

    Bolivian Air Shower Joint Experiment group has studied high energy interaction by measuring the aspect of vertical growth of air showers of 10 16 eV or more at Mt. Chacaltaya Space Physics Observatory at 5200 m above sea level and atmospheric depth of 550 g/cm 2 . The aspect of vertical growth of electrons from about 100 g/cm 2 to about 400 g/cm 2 of atmospheric depth obtained by the measured results of the time of arrival distribution of air Cherenkov radiation at Mt. Chacaltaya agreed with the one predicted from the enhanced 1/2 power of E model. Since the vertical growth of electrons and muons in about 10 17 eV air showers from the atmospheric apex was difficult to give the unified explanation with known interaction models, the University of Tokyo group has proposed a two-component model for air shower growth. If this second component is formed from heavy particles or heavy quantum state as parents, it should be observed as the component which arrives later in air shower. Thus, the measurement and experiment on the delayed hadrons in air showers have been started. In this paper, the experiment, analysis and results are reported. It is clear that the parent particles which caused such a phenomenon were not pions which were multiply generated by the interaction generally known. Therefore, an exact simulating calculation must be performed and compared with the experimental results to obtain the final conclusion from the measured results of this time. (Wakatsuki, Y.)

  17. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  18. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    Science.gov (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  19. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    would have large effects on GCM simulations.

  20. Climate change analysis relevant to Jabiluka. Supervising Scientist report 141

    International Nuclear Information System (INIS)

    Jones, R.N.; Abbs, D.J.; Hennessy, K.J.

    1999-01-01

    The aim of the work presented here is to quantify the effects of climate change on rainfall and temperature, and its implications for parameters used in the design of water storage facilities to be used for the next 30 years at the Jabiluka Project, Northern Territory. Changes to average rainfall and temperature, and rainfall variability on decadal to scales of less than one day are investigated. Climate change scenarios have been constructed where projections of climate change can be quantified. Some submissions to the Draft Jabiluka Environmental Impact Statement (EIS) raised concerns about the impact of climate change on the design of hydrologic structures for the Jabiluka project (eg Supplement to the Draft EIS, Kinhill and ERAES 1997, p5-27; Wasson et al 1998). Six General Circulation Model (GCM) simulations were analysed to determine possible temperature and rainfall changes over the region surrounding the Jabiluka mine site: two simulations of the CSIRO GCM, one from the CSIRO limited area model, DARLAM, and single GCM simulations from the Deutsches Klimarechenzentrum (DKRZ), UK Meteorological Office (Hadley Centre) and Canadian Centre for Climate Modelling and Analysis. Due to uncertainties resulting from differing emission scenarios and climate sensitivities these climate models will give different answers. However, under climate change, the hydrological cycle is expected to become more intense (IPCC 1996) through higher evaporation, an increase in the water-holding capacity of the atmosphere and heavier rainfall. GCM output is required to show how this may change on the regional scale, so CSIRO has investigated the models listed above to create scenarios for seasonal rainfall. This involves deriving patterns of local change calculated from the models. The methods used are described in section 2.2. In addition to the enhanced greenhouse effect, natural climatic variability can also have implications for the design of water retention structures. Decadal

  1. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.

    2017-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation events.

  2. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  3. Chamber-transport simulation results for heavy-ion fusion drivers

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  4. Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM.

    Science.gov (United States)

    Codron, Francis; Vintzileos, Augustin; Sadourny, Robert

    2001-03-01

    This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change.

  5. A comparison study between observations and simulation results of Barghouthi model for O+ and H+ outflows in the polar wind

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2011-11-01

    Full Text Available To advance our understanding of the effect of wave-particle interactions on ion outflows in the polar wind region and the resulting ion heating and escape from low altitudes to higher altitudes, we carried out a comparison between polar wind simulations obtained using Barghouthi model with corresponding observations obtained from different satellites. The Barghouthi model describes O+ and H+ outflows in the polar wind region in the range 1.7 RE to 13.7 RE, including the effects of gravity, polarization electrostatic field, diverging geomagnetic field lines, and wave-particle interactions. Wave-particle interactions were included into the model by using a particle diffusion equation, which depends on diffusion coefficients determined from estimates of the typical electric field spectral density at relevant altitudes and frequencies. We provide a formula for the velocity diffusion coefficient that depends on altitude and velocity, in which the velocity part depends on the perpendicular wavelength of the electromagnetic turbulence λ⊥. Because of the shortage of information about λ⊥, it was included into the model as a parameter. We produce different simulations (i.e. ion velocity distributions, ions density, ion drift velocity, ion parallel and perpendicular temperatures for O+ and H+ ions, and for different λ⊥. We discuss the simulations in terms of wave-particle interactions, perpendicular adiabatic cooling, parallel adiabatic cooling, mirror force, and ion potential energy. The main findings of the simulations are as follows: (1 O+ ions are highly energized at all altitudes in the simulation tube due to wave-particle interactions that heat the ions in the perpendicular direction, and part of this gained energy transfer to the parallel direction by mirror force, resulting in accelerating O+ ions along geomagnetic field lines from lower altitudes to higher altitudes. (2 The effect of wave-particle interactions is negligible for H

  6. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    Science.gov (United States)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  7. Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions

    Directory of Open Access Journals (Sweden)

    M.-N. Woillez

    2013-03-01

    Full Text Available The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO and Heinrich (HE events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.

  8. Overview of urban growth simulation: With examples of results from three SA cities

    CSIR Research Space (South Africa)

    Waldeck, L

    2013-11-01

    Full Text Available This presentation provides an overview of Urban Growth Simulation as a risk free means of assessing the future outcome of major policy and investment decisions with some examples of scenarios that were simulated in different South African cities...

  9. Overview of DOS attacks on wireless sensor networks and experimental results for simulation of interference attacks

    Directory of Open Access Journals (Sweden)

    Željko Gavrić

    2018-01-01

    Full Text Available Wireless sensor networks are now used in various fields. The information transmitted in the wireless sensor networks is very sensitive, so the security issue is very important. DOS (denial of service attacks are a fundamental threat to the functioning of wireless sensor networks. This paper describes some of the most common DOS attacks and potential methods of protection against them. The case study shows one of the most frequent attacks on wireless sensor networks – the interference attack. In the introduction of this paper authors assume that the attack interference can cause significant obstruction of wireless sensor networks. This assumption has been proved in the case study through simulation scenario and simulation results.

  10. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    Science.gov (United States)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  11. Direct drive: Simulations and results from the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2016-05-15

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  12. First results from the IllustrisTNG simulations: matter and galaxy clustering

    Science.gov (United States)

    Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill

    2018-03-01

    Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.

  13. The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation

    Directory of Open Access Journals (Sweden)

    Marie Ekström

    2016-12-01

    Full Text Available Impact, adaptation and vulnerability (IAV research underpin strategies for adaptation to climate change and help to conceptualise what life may look like in decades to come. Research draws on information from global climate models (GCMs though typically post-processed into a secondary product with finer resolution through methods of downscaling. Through worked examples set in an Australian context we assess the influence of GCM sub-setting, geographic area sub-setting and downscaling method on the regional change signal. Examples demonstrate that choices impact on the final results differently depending on factors such as application needs, range of uncertainty of the projected variable, amplitude of natural variability, and size of study region. For heat extremes, the choice of emissions scenario is of prime importance, but for a given scenario the method of preparing data can affect the magnitude of the projection by a factor of two or more, strongly affecting the indicated adaptation decision. For catchment level runoff projections, the choice of emission scenario is less dominant. Rather the method of selecting and producing application-ready datasets is crucial as demonstrated by results with opposing sign of change, raising the real possibility of mal-adaptive decisions. This work illustrates the potential pitfalls of GCM sub-sampling or the use of a single downscaled product when conducting IAV research. Using the broad range of change from all available model sources, whilst making the application more complex, avoids the larger problem of over-confidence in climate projections and lessens the chance of mal-adaptation.

  14. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  15. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    International Nuclear Information System (INIS)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.

    2017-01-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  16. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  17. Tunable non-interacting free-energy functionals: development and applications to low-density aluminum

    Science.gov (United States)

    Trickey, Samuel; Karasiev, Valentin

    We introduce the concept of tunable orbital-free non-interacting free-energy density functionals and present a generalized gradient approximation (GGA) with a subset of parameters defined from constraints and a few free parameters. Those free parameters are tuned to reproduce reference Kohn-Sham (KS) static-lattice pressures for Al at T=8 kK for bulk densities between 0.6 and 2 g/cm3. The tuned functional then is used in OF molecular dynamics (MD) simulations for Al with densities between 0.1 and 2 g/cm3 and T between 6 and 50 kK to calculate the equation of state and generate configurations for electrical conductivity calculations. The tunable functional produces accurate results. Computationally it is very effective especially at elevated temperature. Kohn-Shiam calculations for such low densities are affordable only up to T=10 kK, while other OF approximations, including two-point functionals, fail badly in that regime. Work supported by US DoE Grant DE-SC0002139.

  18. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    Science.gov (United States)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  19. Climate change impact on water resource extremes in a headwater region of the Tarim basin in China

    Directory of Open Access Journals (Sweden)

    T. Liu

    2011-11-01

    Full Text Available The Tarim river basin in China is a huge inland arid basin, which is expected to be highly vulnerable to climatic changes, given that most water resources originate from the upper mountainous headwater regions. This paper focuses on one of these headwaters: the Kaidu river subbasin. The climate change impact on the surface and ground water resources of that basin and more specifically on the hydrological extremes were studied by using both lumped and spatially distributed hydrological models, after simulation of the IPCC SRES greenhouse gas scenarios till the 2050s. The models include processes of snow and glacier melting. The climate change signals were extracted from the grid-based results of general circulation models (GCMs and applied on the station-based, observed historical data using a perturbation approach. For precipitation, the time series perturbation involves both a wet-day frequency perturbation and a quantile perturbation to the wet-day rainfall intensities. For temperature and potential evapotranspiration, the climate change signals only involve quantile based changes. The perturbed series were input into the hydrological models and the impacts on the surface and ground water resources studied. The range of impact results (after considering 36 GCM runs were summarized in high, mean, and low results. It was found that due to increasing precipitation in winter, snow accumulation increases in the upper mountainous areas. Due to temperature rise, snow melting rates increase and the snow melting periods are pushed forward in time. Although the qualitive impact results are highly consistent among the different GCM runs considered, the precise quantitative impact results varied significantly depending on the GCM run and the hydrological model.

  20. Improvements of ENSO-monsoon relationship in CMIP5 models through statistical downscaling over India.

    Science.gov (United States)

    Akhter, J.; Das, L.; Deb, A.

    2017-12-01

    Present study has assessed the skills of global climate models (GCMS) from coupled model inter-comparison project phase five (CMIP5) in simulating ENSO-monsoon relationships over seven homogeneous zones of India. Observational sea surface temperature (SST) data has revealed that there has been a significant negative correlation between zonal precipitation and Nino 3.4 index over North Mountainous India, North West India, North Central India, West Peninsular India and South Peninsular India. First and third principal component (PC) of zonal precipitation explaining 44.4% and 14.2% variance respectively has also shown significant anti-correlation with Nino 3.4. Analysis with CMIP5 models revealed that majority of GCMs have failed to reproduce both magnitude and phase of such relationships mainly due to poor simulation of Nino 3.4 index. Therefore, an attempt has been made to improve the results through empirical orthogonal function (EOF) based statistical downscaling of CMIP5 GCMs. To downscale Nino 3.4 index, an optimal predictor combination of PCs extracted from EOF fields of large scale GCM predictors like Geo-potential height, u and v wind, Specific and relative humidity and air temperature at pressure levels 500, 850 and 1000 hpa, mean sea level pressure and atmospheric vapor content has been utilized. Results indicated improvements of downscaled CMIP5 models in simulating ENSO-monsoon relationship for zone wise precipitation. Multi-model ensemble (MME) of downscaled GCMs has better skill than individuals GCM. Therefore, downscaled MME may be used more reliably to investigate future ENSO-monsoon relationship under various warming scenarios