Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
Gaussian process based intelligent sampling for measuring nano-structure surfaces
Sun, L. J.; Ren, M. J.; Yin, Y. H.
2016-09-01
Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.
On the dependence structure of Gaussian queues
Es-Saghouani, A.; Mandjes, M.R.H.
2009-01-01
In this article we study Gaussian queues (that is, queues fed by Gaussian processes, such as fractional Brownian motion (fBm) and the integrated Ornstein-Uhlenbeck (iOU) process), with a focus on the dependence structure of the workload process. The main question is to what extent does the workload
Palm distributions for log Gaussian Cox processes
DEFF Research Database (Denmark)
Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge
2017-01-01
This paper establishes a remarkable result regarding Palm distributions for a log Gaussian Cox process: the reduced Palm distribution for a log Gaussian Cox process is itself a log Gaussian Cox process that only differs from the original log Gaussian Cox process in the intensity function. This new...... result is used to study functional summaries for log Gaussian Cox processes....
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
Gaussian processes for machine learning.
Seeger, Matthias
2004-04-01
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Detecting periodicities with Gaussian processes
Directory of Open Access Journals (Sweden)
Nicolas Durrande
2016-04-01
Full Text Available We consider the problem of detecting and quantifying the periodic component of a function given noise-corrupted observations of a limited number of input/output tuples. Our approach is based on Gaussian process regression, which provides a flexible non-parametric framework for modelling periodic data. We introduce a novel decomposition of the covariance function as the sum of periodic and aperiodic kernels. This decomposition allows for the creation of sub-models which capture the periodic nature of the signal and its complement. To quantify the periodicity of the signal, we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models. Although the method can be applied to many kernels, we give a special emphasis to the Matérn family, from the expression of the reproducing kernel Hilbert space inner product to the implementation of the associated periodic kernels in a Gaussian process toolkit. The proposed method is illustrated by considering the detection of periodically expressed genes in the arabidopsis genome.
Palm distributions for log Gaussian Cox processes
DEFF Research Database (Denmark)
Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus
This paper reviews useful results related to Palm distributions of spatial point processes and provides a new result regarding the characterization of Palm distributions for the class of log Gaussian Cox processes. This result is used to study functional summary statistics for a log Gaussian Cox...
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Rios, Gonzalo; Tobar, Felipe
2018-01-01
Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformation (or warping). However, overparametrising the kernel and the warping is known to, respectively, hin...
On Gaussian conditional independence structures
Czech Academy of Sciences Publication Activity Database
Lněnička, Radim; Matúš, František
2007-01-01
Roč. 43, č. 3 (2007), s. 327-342 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750603 Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate Gaussian distribution * positive definite matrices * determinants * gaussoids * covariance selection models * Markov perfectness Subject RIV: BA - General Mathematics Impact factor: 0.552, year: 2007
Gaussian process regression for geometry optimization
Denzel, Alexander; Kästner, Johannes
2018-03-01
We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Characterisation of random Gaussian and non-Gaussian stress processes in terms of extreme responses
Directory of Open Access Journals (Sweden)
Colin Bruno
2015-01-01
Full Text Available In the field of military land vehicles, random vibration processes generated by all-terrain wheeled vehicles in motion are not classical stochastic processes with a stationary and Gaussian nature. Non-stationarity of processes induced by the variability of the vehicle speed does not form a major difficulty because the designer can have good control over the vehicle speed by characterising the histogram of instantaneous speed of the vehicle during an operational situation. Beyond this non-stationarity problem, the hard point clearly lies in the fact that the random processes are not Gaussian and are generated mainly by the non-linear behaviour of the undercarriage and the strong occurrence of shocks generated by roughness of the terrain. This non-Gaussian nature is expressed particularly by very high flattening levels that can affect the design of structures under extreme stresses conventionally acquired by spectral approaches, inherent to Gaussian processes and based essentially on spectral moments of stress processes. Due to these technical considerations, techniques for characterisation of random excitation processes generated by this type of carrier need to be changed, by proposing innovative characterisation methods based on time domain approaches as described in the body of the text rather than spectral domain approaches.
Perfusion Quantification Using Gaussian Process Deconvolution
DEFF Research Database (Denmark)
Andersen, Irene Klærke; Have, Anna Szynkowiak; Rasmussen, Carl Edward
2002-01-01
The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated...
Continuous Disintegrations of Gaussian Processes
LaGatta, Tom
2010-01-01
The goal of this paper is to understand the conditional law of a stochastic process once it has been observed over an interval. To make this precise, we introduce the notion of a continuous disintegration: a regular conditional probability measure which varies continuously in the conditioned parameter. The conditioning is infinite-dimensional in character, which leads us to consider the general case of probability measures in Banach spaces. Our main result is that for a certain quantity $M$ b...
Log Gaussian Cox processes on the sphere
DEFF Research Database (Denmark)
Pacheco, Francisco Andrés Cuevas; Møller, Jesper
We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....
Gaussian Process-Mixture Conditional Heteroscedasticity.
Platanios, Emmanouil A; Chatzis, Sotirios P
2014-05-01
Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its performance to state-of-the-art methodologies.
Adaptive multiple importance sampling for Gaussian processes
Czech Academy of Sciences Publication Activity Database
Xiong, X.; Šmídl, Václav; Filippone, M.
2017-01-01
Roč. 87, č. 8 (2017), s. 1644-1665 ISSN 0094-9655 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Gaussian Process * Bayesian estimation * Adaptive importance sampling Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 0.757, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/smidl-0469804.pdf
Neutron inverse kinetics via Gaussian Processes
International Nuclear Information System (INIS)
Picca, Paolo; Furfaro, Roberto
2012-01-01
Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.
Large deviations for Gaussian processes in Hoelder norm
International Nuclear Information System (INIS)
Fatalov, V R
2003-01-01
Some results are proved on the exact asymptotic representation of large deviation probabilities for Gaussian processes in the Hoeder norm. The following classes of processes are considered: the Wiener process, the Brownian bridge, fractional Brownian motion, and stationary Gaussian processes with power-law covariance function. The investigation uses the method of double sums for Gaussian fields
First Passage Time Intervals of Gaussian Processes
Perez, Hector; Kawabata, Tsutomu; Mimaki, Tadashi
1987-08-01
The first passage time problem of a stationary Guassian process is theretically and experimentally studied. Renewal functions are derived for a time-dependent boundary and numerically calculated for a Gaussian process having a seventh-order Butterworth spectrum. The results show a multipeak property not only for the constant boundary but also for a linearly increasing boundary. The first passage time distribution densities were experimentally determined for a constant boundary. The renewal functions were shown to be a fairly good approximation to the distribution density over a limited range.
MCEM algorithm for the log-Gaussian Cox process
Delmas, Celine; Dubois-Peyrard, Nathalie; Sabbadin, Regis
2014-01-01
Log-Gaussian Cox processes are an important class of models for aggregated point patterns. They have been largely used in spatial epidemiology (Diggle et al., 2005), in agronomy (Bourgeois et al., 2012), in forestry (Moller et al.), in ecology (sightings of wild animals) or in environmental sciences (radioactivity counts). A log-Gaussian Cox process is a Poisson process with a stochastic intensity depending on a Gaussian random eld. We consider the case where this Gaussian random eld is ...
Finite Range Decomposition of Gaussian Processes
Brydges, C D; Mitter, P K
2003-01-01
Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0
Phase space structure of generalized Gaussian cat states
International Nuclear Information System (INIS)
Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.
2010-01-01
We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.
Gaussian process regression for tool wear prediction
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
Optimality of Poisson Processes Intensity Learning with Gaussian Processes
Kirichenko, A.; van Zanten, H.
2015-01-01
In this paper we provide theoretical support for the so-called "Sigmoidal Gaussian Cox Process" approach to learning the intensity of an inhomogeneous Poisson process on a d-dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational
Functional Dual Adaptive Control with Recursive Gaussian Process Model
International Nuclear Information System (INIS)
Prüher, Jakub; Král, Ladislav
2015-01-01
The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Convergence of posteriors for discretized log Gaussian Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge
2004-01-01
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....
DEFF Research Database (Denmark)
Møller, Jesper; Jacobsen, Robert Dahl
We introduce a promising alternative to the usual hidden Markov tree model for Gaussian wavelet coefficients, where their variances are specified by the hidden states and take values in a finite set. In our new model, the hidden states have a similar dependence structure but they are jointly Gaus...
Scalable Gaussian Processes and the search for exoplanets
CERN. Geneva
2015-01-01
Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.
Gaussian Process Regression for WDM System Performance Prediction
DEFF Research Database (Denmark)
Wass, Jesper; Thrane, Jakob; Piels, Molly
2017-01-01
Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....
Approximation problems with the divergence criterion for Gaussian variablesand Gaussian processes
A.A. Stoorvogel; J.H. van Schuppen (Jan)
1996-01-01
textabstractSystem identification for stationary Gaussian processes includes an approximation problem. Currently the subspace algorithm for this problem enjoys much attention. This algorithm is based on a transformation of a finite time series to canonical variable form followed by a truncation.
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.
Power variation for Gaussian processes with stationary increments
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Corcuera, J.M.; Podolskij, Mark
2009-01-01
We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path of the pr......We develop the asymptotic theory for the realised power variation of the processes X=•G, where G is a Gaussian process with stationary increments. More specifically, under some mild assumptions on the variance function of the increments of G and certain regularity conditions on the path...... a chaos representation....
Poisson and Gaussian approximation of weighted local empirical processes
Einmahl, J.H.J.
1995-01-01
We consider the local empirical process indexed by sets, a greatly generalized version of the well-studied uniform tail empirical process. We show that the weak limit of weighted versions of this process is Poisson under certain conditions, whereas it is Gaussian in other situations. Our main
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Standard sirens and dark sector with Gaussian process*
Directory of Open Access Journals (Sweden)
Cai Rong-Gen
2018-01-01
Full Text Available The gravitational waves from compact binary systems are viewed as a standard siren to probe the evolution of the universe. This paper summarizes the potential and ability to use the gravitational waves to constrain the cosmological parameters and the dark sector interaction in the Gaussian process methodology. After briefly introducing the method to reconstruct the dark sector interaction by the Gaussian process, the concept of standard sirens and the analysis of reconstructing the dark sector interaction with LISA are outlined. Furthermore, we estimate the constraint ability of the gravitational waves on cosmological parameters with ET. The numerical methods we use are Gaussian process and the Markov-Chain Monte-Carlo. Finally, we also forecast the improvements of the abilities to constrain the cosmological parameters with ET and LISA combined with the Planck.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
Representation and properties of a class of conditionally Gaussian processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Pedersen, Jan
2009-01-01
It is shown that the class of conditionally Gaussian processes with independent increments is stable under marginalisation and conditioning. Moreover, in general such processes can be represented as integrals of a time changed Brownian motion where the time change and the integrand are jointly in...
Bipower variation for Gaussian processes with stationary increments
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Corcuera, José Manuel; Podolskij, Mark
2009-01-01
Convergence in probability and central limit laws of bipower variation for Gaussian processes with stationary increments and for integrals with respect to such processes are derived. The main tools of the proofs are some recent powerful techniques of Wiener/Itô/Malliavin calculus for establishing...
Bayesian analysis of log Gaussian Cox processes for disease mapping
DEFF Research Database (Denmark)
Benes, Viktor; Bodlák, Karel; Møller, Jesper
We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis, and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence...... of the risk on the covariates. Instead of using the common area level approaches we consider a Bayesian analysis for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using markov chain Monte Carlo methods...
Neural pulse frequency modulation of an exponentially correlated Gaussian process
Hutchinson, C. E.; Chon, Y.-T.
1976-01-01
The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.
Robust Gaussian Process Regression with a Student-t Likelihood
Jylänki, P.P.; Vanhatalo, J.; Vehtari, A.
2011-01-01
This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model, which has a non-log-concave likelihood. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have
PSSGP : Program for Simulation of Stationary Gaussian Processes
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
This report describes the computer program PSSGP. PSSGP can be used to simulate realizations of stationary Gaussian stochastic processes. The simulation algorithm can be coupled with some applications. One possibility is to use PSSGP to estimate the first-passage density function of a given system...
Self-assembled structures of Gaussian nematic particles.
Nikoubashman, Arash; Likos, Christos N
2010-03-17
We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.
Tail behaviour of Gaussian processes with applications to the Brownian pillow
A.J. Koning (Alex); V. Protassov (Vladimir)
2001-01-01
textabstractIn this paper we investigate the tail behaviour of a random variable S which may be viewed as a functional T of a zero mean Gaussian process X, taking special interest in the situation where X obeys the structure which is typical for limiting processes ocurring in nonparametric testing
Stellar atmospheric parameter estimation using Gaussian process regression
Bu, Yude; Pan, Jingchang
2015-02-01
As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.
Gaussian beams in inhomogeneous anisotropic layered structures
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2010-01-01
Roč. 180, č. 2 (2010), s. 798-812 ISSN 0956-540X R&D Projects: GA ČR GA205/08/0332 Grant - others:GA ČR(CZ) GA205/07/0032 Institutional research plan: CEZ:AV0Z30120515 Keywords : body waves * seismic anisotropy * theoretical seismology * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.411, year: 2010
Predictive Active Set Selection Methods for Gaussian Processes
DEFF Research Database (Denmark)
Henao, Ricardo; Winther, Ole
2012-01-01
We propose an active set selection framework for Gaussian process classification for cases when the dataset is large enough to render its inference prohibitive. Our scheme consists of a two step alternating procedure of active set update rules and hyperparameter optimization based upon marginal...... high impact to the classifier decision process while removing those that are less relevant. We introduce two active set rules based on different criteria, the first one prefers a model with interpretable active set parameters whereas the second puts computational complexity first, thus a model...... with active set parameters that directly control its complexity. We also provide both theoretical and empirical support for our active set selection strategy being a good approximation of a full Gaussian process classifier. Our extensive experiments show that our approach can compete with state...
Calculations of Sobol indices for the Gaussian process metamodel
Energy Technology Data Exchange (ETDEWEB)
Marrel, Amandine [CEA, DEN, DTN/SMTM/LMTE, F-13108 Saint Paul lez Durance (France)], E-mail: amandine.marrel@cea.fr; Iooss, Bertrand [CEA, DEN, DER/SESI/LCFR, F-13108 Saint Paul lez Durance (France); Laurent, Beatrice [Institut de Mathematiques, Universite de Toulouse (UMR 5219) (France); Roustant, Olivier [Ecole des Mines de Saint-Etienne (France)
2009-03-15
Global sensitivity analysis of complex numerical models can be performed by calculating variance-based importance measures of the input variables, such as the Sobol indices. However, these techniques, requiring a large number of model evaluations, are often unacceptable for time expensive computer codes. A well-known and widely used decision consists in replacing the computer code by a metamodel, predicting the model responses with a negligible computation time and rending straightforward the estimation of Sobol indices. In this paper, we discuss about the Gaussian process model which gives analytical expressions of Sobol indices. Two approaches are studied to compute the Sobol indices: the first based on the predictor of the Gaussian process model and the second based on the global stochastic process model. Comparisons between the two estimates, made on analytical examples, show the superiority of the second approach in terms of convergence and robustness. Moreover, the second approach allows to integrate the modeling error of the Gaussian process model by directly giving some confidence intervals on the Sobol indices. These techniques are finally applied to a real case of hydrogeological modeling.
Calculations of Sobol indices for the Gaussian process metamodel
International Nuclear Information System (INIS)
Marrel, Amandine; Iooss, Bertrand; Laurent, Beatrice; Roustant, Olivier
2009-01-01
Global sensitivity analysis of complex numerical models can be performed by calculating variance-based importance measures of the input variables, such as the Sobol indices. However, these techniques, requiring a large number of model evaluations, are often unacceptable for time expensive computer codes. A well-known and widely used decision consists in replacing the computer code by a metamodel, predicting the model responses with a negligible computation time and rending straightforward the estimation of Sobol indices. In this paper, we discuss about the Gaussian process model which gives analytical expressions of Sobol indices. Two approaches are studied to compute the Sobol indices: the first based on the predictor of the Gaussian process model and the second based on the global stochastic process model. Comparisons between the two estimates, made on analytical examples, show the superiority of the second approach in terms of convergence and robustness. Moreover, the second approach allows to integrate the modeling error of the Gaussian process model by directly giving some confidence intervals on the Sobol indices. These techniques are finally applied to a real case of hydrogeological modeling
Pseudo inputs for pairwise learning with Gaussian processes
DEFF Research Database (Denmark)
Nielsen, Jens Brehm; Jensen, Bjørn Sand; Larsen, Jan
2012-01-01
We consider learning and prediction of pairwise comparisons between instances. The problem is motivated from a perceptual view point, where pairwise comparisons serve as an effective and extensively used paradigm. A state-of-the-art method for modeling pairwise data in high dimensional domains...... is based on a classical pairwise probit likelihood imposed with a Gaussian process prior. While extremely flexible, this non-parametric method struggles with an inconvenient O(n3) scaling in terms of the n input instances which limits the method only to smaller problems. To overcome this, we derive...... to other similar approximations that have been applied in standard Gaussian process regression and classification problems such as FI(T)C and PI(T)C....
Analysis of some methods for reduced rank Gaussian process regression
DEFF Research Database (Denmark)
Quinonero-Candela, J.; Rasmussen, Carl Edward
2005-01-01
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...
State-Space Inference and Learning with Gaussian Processes
Turner, R; Deisenroth, MP; Rasmussen, CE
2010-01-01
18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...
On the likelihood function of Gaussian max-stable processes
Genton, M. G.; Ma, Y.; Sang, H.
2011-01-01
We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.
Cautious NMPC with Gaussian Process Dynamics for Miniature Race Cars
Hewing, Lukas; Liniger, Alexander; Zeilinger, Melanie N.
2017-01-01
This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. ...
On the likelihood function of Gaussian max-stable processes
Genton, M. G.
2011-05-24
We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.
Stochastic Analysis of Gaussian Processes via Fredholm Representation
Directory of Open Access Journals (Sweden)
Tommi Sottinen
2016-01-01
Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.
International Nuclear Information System (INIS)
Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.
2013-01-01
Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability
Blind signal processing algorithms under DC biased Gaussian noise
Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok
2013-05-01
Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.
Terrain Mapping and Obstacle Detection Using Gaussian Processes
DEFF Research Database (Denmark)
Kjærgaard, Morten; Massaro, Alessandro Salvatore; Bayramoglu, Enis
2011-01-01
In this paper we consider a probabilistic method for extracting terrain maps from a scene and use the information to detect potential navigation obstacles within it. The method uses Gaussian process regression (GPR) to predict an estimate function and its relative uncertainty. To test the new...... show that the estimated maps follow the terrain shape, while protrusions are identified and may be isolated as potential obstacles. Representing the data with a covariance function allows a dramatic reduction of the amount of data to process, while maintaining the statistical properties of the measured...... and interpolated features....
Leveraging Gaussian process approximations for rapid image overlay production
CSIR Research Space (South Africa)
Burke, Michael
2017-10-01
Full Text Available value, xs = argmax x∗ [ K (x∗, x∗) − K (x∗, x)K (x, x)−1K (x, x∗) ] . (10) Figure 2 illustrates this sampling strategy more clearly. This selec- tion process can be slow, but could be bootstrapped using Latin hypercube sampling [16]. 3 RESULTS Empirical... point - a 240 sample Gaussian process approximation takes roughly the same amount of time to compute as the full blanked overlay. GP 50 GP 100 GP 150 GP 200 GP 250 GP 300 GP 350 GP 400 Full Itti-Koch 0 2 4 6 8 10 Method R at in g Boxplot of storyboard...
On Small Deviation Asymptotics In L2 of Some Mixed Gaussian Processes
Directory of Open Access Journals (Sweden)
Alexander I. Nazarov
2018-04-01
Full Text Available We study the exact small deviation asymptotics with respect to the Hilbert norm for some mixed Gaussian processes. The simplest example here is the linear combination of the Wiener process and the Brownian bridge. We get the precise final result in this case and in some examples of more complicated processes of similar structure. The proof is based on Karhunen–Loève expansion together with spectral asymptotics of differential operators and complex analysis methods.
Gaussian free turbulence: structures and relaxation in plasma models
International Nuclear Information System (INIS)
Gruzinov, A.V.
1993-01-01
Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)
Fault Tolerant Control Using Gaussian Processes and Model Predictive Control
Directory of Open Access Journals (Sweden)
Yang Xiaoke
2015-03-01
Full Text Available Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.
Case studies in Gaussian process modelling of computer codes
International Nuclear Information System (INIS)
Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony
2006-01-01
In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics
Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression
Directory of Open Access Journals (Sweden)
Stephen M. Akandwanaho
2014-01-01
Full Text Available This paper solves the dynamic traveling salesman problem (DTSP using dynamic Gaussian Process Regression (DGPR method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP tour and less computational time in nonstationary conditions.
Gaussian Process Regression Model in Spatial Logistic Regression
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Regression Analysis for Multivariate Dependent Count Data Using Convolved Gaussian Processes
Sofro, A'yunin; Shi, Jian Qing; Cao, Chunzheng
2017-01-01
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covarianc...
Multi-fidelity Gaussian process regression for computer experiments
International Nuclear Information System (INIS)
Le-Gratiet, Loic
2013-01-01
This work is on Gaussian-process based approximation of a code which can be run at different levels of accuracy. The goal is to improve the predictions of a surrogate model of a complex computer code using fast approximations of it. A new formulation of a co-kriging based method has been proposed. In particular this formulation allows for fast implementation and for closed-form expressions for the predictive mean and variance for universal co-kriging in the multi-fidelity framework, which is a breakthrough as it really allows for the practical application of such a method in real cases. Furthermore, fast cross validation, sequential experimental design and sensitivity analysis methods have been extended to the multi-fidelity co-kriging framework. This thesis also deals with a conjecture about the dependence of the learning curve (i.e. the decay rate of the mean square error) with respect to the smoothness of the underlying function. A proof in a fairly general situation (which includes the classical models of Gaussian-process based meta-models with stationary covariance functions) has been obtained while the previous proofs hold only for degenerate kernels (i.e. when the process is in fact finite- dimensional). This result allows for addressing rigorously practical questions such as the optimal allocation of the budget between different levels of codes in the multi-fidelity framework. (author) [fr
Inferring probabilistic stellar rotation periods using Gaussian processes
Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh
2018-02-01
Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.
Fast uncertainty reduction strategies relying on Gaussian process models
International Nuclear Information System (INIS)
Chevalier, Clement
2013-01-01
This work deals with sequential and batch-sequential evaluation strategies of real-valued functions under limited evaluation budget, using Gaussian process models. Optimal Stepwise Uncertainty Reduction (SUR) strategies are investigated for two different problems, motivated by real test cases in nuclear safety. First we consider the problem of identifying the excursion set above a given threshold T of a real-valued function f. Then we study the question of finding the set of 'safe controlled configurations', i.e. the set of controlled inputs where the function remains below T, whatever the value of some others non-controlled inputs. New SUR strategies are presented, together with efficient procedures and formulas to compute and use them in real world applications. The use of fast formulas to recalculate quickly the posterior mean or covariance function of a Gaussian process (referred to as the 'kriging update formulas') does not only provide substantial computational savings. It is also one of the key tools to derive closed form formulas enabling a practical use of computationally-intensive sampling strategies. A contribution in batch-sequential optimization (with the multi-points Expected Improvement) is also presented. (author)
Energy-Driven Image Interpolation Using Gaussian Process Regression
Directory of Open Access Journals (Sweden)
Lingling Zi
2012-01-01
Full Text Available Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical model adopted to mine underlying information, and second is an energy computation technique used to acquire information on pixel properties. We further demonstrate that our algorithm can not only achieve image interpolation, but also reduce noise in the original image. Our experiments show that the proposed algorithm can achieve encouraging performance in terms of image visualization and quantitative measures.
Modelling and control of dynamic systems using gaussian process models
Kocijan, Juš
2016-01-01
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior know...
DEFF Research Database (Denmark)
Jacobsen, Christian Robert Dahl; Møller, Jesper
2017-01-01
We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection...
Inferring time derivatives including cell growth rates using Gaussian processes
Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta
2016-12-01
Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.
Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines
DEFF Research Database (Denmark)
Candela, Joaquin Quinonero
2004-01-01
This thesis is concerned with Gaussian Processes (GPs) and Relevance Vector Machines (RVMs), both of which are particular instances of probabilistic linear models. We look at both models from a Bayesian perspective, and are forced to adopt an approximate Bayesian treatment to learning for two...... reasons. The first reason is the analytical intractability of the full Bayesian treatment and the fact that we in principle do not want to resort to sampling methods. The second reason, which incidentally justifies our not wanting to sample, is that we are interested in computationally efficient models...... approaches that ignore the accumulated uncertainty are way overconfident. Finally we explore a much harder problem: that of training with uncertain inputs. We explore approximating the full Bayesian treatment, which implies an analytically intractable integral. We propose two preliminary approaches...
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS
National Aeronautics and Space Administration — SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Biomass monitoring,...
A Scalable Gaussian Process Analysis Algorithm for Biomass Monitoring
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Biomass monitoring is vital for studying the carbon cycle of earth's ecosystem and has several significant implications, especially in the context of understanding climate change and its impacts. Recently, several change detection methods have been proposed to identify land cover changes in temporal profiles (time series) of vegetation collected using remote sensing instruments, but do not satisfy one or both of the two requirements of the biomass monitoring problem, i.e., {\\em operating in online mode} and {\\em handling periodic time series}. In this paper, we adapt Gaussian process regression to detect changes in such time series in an online fashion. While Gaussian process (GP) have been widely used as a kernel based learning method for regression and classification, their applicability to massive spatio-temporal data sets, such as remote sensing data, has been limited owing to the high computational costs involved. We focus on addressing the scalability issues associated with the proposed GP based change detection algorithm. This paper makes several significant contributions. First, we propose a GP based online time series change detection algorithm and demonstrate its effectiveness in detecting different types of changes in {\\em Normalized Difference Vegetation Index} (NDVI) data obtained from a study area in Iowa, USA. Second, we propose an efficient Toeplitz matrix based solution which significantly improves the computational complexity and memory requirements of the proposed GP based method. Specifically, the proposed solution can analyze a time series of length $t$ in $O(t^2)$ time while maintaining a $O(t)$ memory footprint, compared to the $O(t^3)$ time and $O(t^2)$ memory requirement of standard matrix manipulation based methods. Third, we describe a parallel version of the proposed solution which can be used to simultaneously analyze a large number of time series. We study three different parallel implementations: using threads, MPI, and a
Gaussian random-matrix process and universal parametric correlations in complex systems
International Nuclear Information System (INIS)
Attias, H.; Alhassid, Y.
1995-01-01
We introduce the framework of the Gaussian random-matrix process as an extension of Dyson's Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that depend on an external parameter. We classify the Gaussian processes according to the short-distance diffusive behavior of their energy levels and demonstrate that all parametric correlation functions become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian processes is identified as the relevant one for most physical systems. We reproduce the known spectral correlators and compute eigenfunction correlators in their universal form. Numerical evidence from both a chaotic model and weakly disordered model confirms our predictions
Test of the cosmic evolution using Gaussian processes
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ming-Jian [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing 100049 (China); Xia, Jun-Qing, E-mail: zhangmj@ihep.ac.cn, E-mail: xiajq@bnu.edu.cn [Department of Astronomy, Beijing Normal University, No. 19, XinJieKouWai St., Beijing 100875 (China)
2016-12-01
Much focus was on the possible slowing down of cosmic acceleration under the dark energy parametrization. In the present paper, we investigate this subject using the Gaussian processes (GP), without resorting to a particular template of dark energy. The reconstruction is carried out by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and dynamical Hubble parameter. It suggests that slowing down of cosmic acceleration cannot be presented within 95% C.L., in considering the influence of spatial curvature and Hubble constant. In order to reveal the reason of tension between our reconstruction and previous parametrization constraint for Union2 data, we compare them and find that slowing down of acceleration in some parametrization is only a ''mirage'. Although these parameterizations fits well with the observational data, their tension can be revealed by high order derivative of distance D. Instead, GP method is able to faithfully model the cosmic expansion history.
Gaussian process regression for forecasting battery state of health
Richardson, Robert R.; Osborne, Michael A.; Howey, David A.
2017-07-01
Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.
Bayesian site selection for fast Gaussian process regression
Pourhabib, Arash; Liang, Faming; Ding, Yu
2014-01-01
Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however, its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model, and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations. © 2014 Taylor and Francis Group, LLC.
Gaussian process regression for sensor networks under localization uncertainty
Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming
2013-01-01
In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.
Bayesian site selection for fast Gaussian process regression
Pourhabib, Arash
2014-02-05
Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however, its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model, and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations. © 2014 Taylor and Francis Group, LLC.
Computed tomography perfusion imaging denoising using Gaussian process regression
International Nuclear Information System (INIS)
Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna
2012-01-01
Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)
Hierarchical adaptive experimental design for Gaussian process emulators
International Nuclear Information System (INIS)
Busby, Daniel
2009-01-01
Large computer simulators have usually complex and nonlinear input output functions. This complicated input output relation can be analyzed by global sensitivity analysis; however, this usually requires massive Monte Carlo simulations. To effectively reduce the number of simulations, statistical techniques such as Gaussian process emulators can be adopted. The accuracy and reliability of these emulators strongly depend on the experimental design where suitable evaluation points are selected. In this paper a new sequential design strategy called hierarchical adaptive design is proposed to obtain an accurate emulator using the least possible number of simulations. The hierarchical design proposed in this paper is tested on various standard analytic functions and on a challenging reservoir forecasting application. Comparisons with standard one-stage designs such as maximin latin hypercube designs show that the hierarchical adaptive design produces a more accurate emulator with the same number of computer experiments. Moreover a stopping criterion is proposed that enables to perform the number of simulations necessary to obtain required approximation accuracy.
Bayesian Travel Time Inversion adopting Gaussian Process Regression
Mauerberger, S.; Holschneider, M.
2017-12-01
A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.
Asymptotic behaviour of time averages for non-ergodic Gaussian processes
Ślęzak, Jakub
2017-08-01
In this work, we study the behaviour of time-averages for stationary (non-ageing), but ergodicity-breaking Gaussian processes using their representation in Fourier space. We provide explicit formulae for various time-averaged quantities, such as mean square displacement, density, and analyse the behaviour of time-averaged characteristic function, which gives insight into rich memory structure of the studied processes. Moreover, we show applications of the ergodic criteria in Fourier space, determining the ergodicity of the generalised Langevin equation's solutions.
Probabilistic sensitivity analysis of system availability using Gaussian processes
International Nuclear Information System (INIS)
Daneshkhah, Alireza; Bedford, Tim
2013-01-01
The availability of a system under a given failure/repair process is a function of time which can be determined through a set of integral equations and usually calculated numerically. We focus here on the issue of carrying out sensitivity analysis of availability to determine the influence of the input parameters. The main purpose is to study the sensitivity of the system availability with respect to the changes in the main parameters. In the simplest case that the failure repair process is (continuous time/discrete state) Markovian, explicit formulae are well known. Unfortunately, in more general cases availability is often a complicated function of the parameters without closed form solution. Thus, the computation of sensitivity measures would be time-consuming or even infeasible. In this paper, we show how Sobol and other related sensitivity measures can be cheaply computed to measure how changes in the model inputs (failure/repair times) influence the outputs (availability measure). We use a Bayesian framework, called the Bayesian analysis of computer code output (BACCO) which is based on using the Gaussian process as an emulator (i.e., an approximation) of complex models/functions. This approach allows effective sensitivity analysis to be achieved by using far smaller numbers of model runs than other methods. The emulator-based sensitivity measure is used to examine the influence of the failure and repair densities' parameters on the system availability. We discuss how to apply the methods practically in the reliability context, considering in particular the selection of parameters and prior distributions and how we can ensure these may be considered independent—one of the key assumptions of the Sobol approach. The method is illustrated on several examples, and we discuss the further implications of the technique for reliability and maintenance analysis
Analysis of multi-species point patterns using multivariate log Gaussian Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus; Guan, Yongtao; Jalilian, Abdollah
Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address t...... of the data. The selected number of common latent fields provides an index of complexity of the multivariate covariance structure. Hierarchical clustering is used to identify groups of species with similar patterns of dependence on the common latent fields.......Multivariate log Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far only been applied in bivariate cases. In this paper we move beyond the bivariate case in order to model multi-species point patterns of tree locations. In particular we address...... the problems of identifying parsimonious models and of extracting biologically relevant information from the fitted models. The latent multivariate Gaussian field is decomposed into components given in terms of random fields common to all species and components which are species specific. This allows...
Identification and estimation of non-Gaussian structural vector autoregressions
DEFF Research Database (Denmark)
Lanne, Markku; Meitz, Mika; Saikkonen, Pentti
-Gaussian components is, without any additional restrictions, identified and leads to (essentially) unique impulse responses. We also introduce an identification scheme under which the maximum likelihood estimator of the non-Gaussian SVAR model is consistent and asymptotically normally distributed. As a consequence......, additional economic identifying restrictions can be tested. In an empirical application, we find a negative impact of a contractionary monetary policy shock on financial markets, and clearly reject the commonly employed recursive identifying restrictions....
Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis
Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates
Directory of Open Access Journals (Sweden)
Roland Preuss
2018-03-01
Full Text Available The simulation of complex physics models may lead to enormous computer running times. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. If for a few input parameter settings an output data set has been acquired, one could be interested in taking these data as a basis for finding an extremum and possibly an input parameter set for further computer simulations to determine it—a task which belongs to the realm of global optimization. Within the Bayesian framework we utilize Gaussian processes for the creation of a surrogate model function adjusted self-consistently via hyperparameters to represent the data. Although the probability distribution of the hyperparameters may be widely spread over phase space, we make the assumption that only the use of their expectation values is sufficient. While this shortcut facilitates a quickly accessible surrogate, it is somewhat justified by the fact that we are not interested in a full representation of the model by the surrogate but to reveal its maximum. To accomplish this the surrogate is fed to a utility function whose extremum determines the new parameter set for the next data point to obtain. Moreover, we propose to alternate between two utility functions—expected improvement and maximum variance—in order to avoid the drawbacks of each. Subsequent data points are drawn from the model function until the procedure either remains in the points found or the surrogate model does not change with the iteration. The procedure is applied to mock data in one and two dimensions in order to demonstrate proof of principle of the proposed approach.
Kozachenko, Yuriy; Troshki, Viktor
2015-01-01
We consider a measurable stationary Gaussian stochastic process. A criterion for testing hypotheses about the covariance function of such a process using estimates for its norm in the space $L_p(\\mathbb {T}),\\,p\\geq1$, is constructed.
High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps
International Nuclear Information System (INIS)
Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.; Chen, Xiao
2017-01-01
This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. It relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it
Sparse Inverse Gaussian Process Regression with Application to Climate Network Discovery
National Aeronautics and Space Administration — Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process...
Image interpolation and denoising for division of focal plane sensors using Gaussian processes.
Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor
2014-06-16
Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2015-01-01
Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure
On Sparse Multi-Task Gaussian Process Priors for Music Preference Learning
DEFF Research Database (Denmark)
Nielsen, Jens Brehm; Jensen, Bjørn Sand; Larsen, Jan
In this paper we study pairwise preference learning in a music setting with multitask Gaussian processes and examine the effect of sparsity in the input space as well as in the actual judgments. To introduce sparsity in the inputs, we extend a classic pairwise likelihood model to support sparse...... simulation shows the performance on a real-world music preference dataset which motivates and demonstrates the potential of the sparse Gaussian process formulation for pairwise likelihoods....
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
Energy Technology Data Exchange (ETDEWEB)
Stein, Michael [Univ. of Chicago, IL (United States)
2017-03-13
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead to predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the
International Nuclear Information System (INIS)
Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein
2014-01-01
In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology
Linear velocity fields in non-Gaussian models for large-scale structure
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
A Monte Carlo simulation model for stationary non-Gaussian processes
DEFF Research Database (Denmark)
Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.
2003-01-01
includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...
Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.
Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H
2016-11-01
Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.
MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES
Institute of Scientific and Technical Information of China (English)
程乾生
1990-01-01
The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).
Primordial Non-Gaussianity in the Large-Scale Structure of the Universe
Directory of Open Access Journals (Sweden)
Vincent Desjacques
2010-01-01
generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.
A Gaussian decision-support tool for engineering design process
Rajabali Nejad, Mohammadreza; Spitas, Christos
2013-01-01
Decision-making in design is of great importance, resulting in success or failure of a system (Liu et al., 2010; Roozenburg and Eekels, 1995; Spitas, 2011a). This paper describes a robust decision-support tool for engineering design process, which can be used throughout the design process in either
Probabilistic wind power forecasting with online model selection and warped gaussian process
International Nuclear Information System (INIS)
Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin
2014-01-01
Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms
Maxima estimate of non gaussian process from observation of time history samples
International Nuclear Information System (INIS)
Borsoi, L.
1987-01-01
The problem constitutes a formidable task but is essential for industrial applications: extreme value design, fatigue analysis, etc. Even for the linear Gaussian case, the process ergodicity does not prevent the observation duration to be long enough to make reliable estimates. As well known, this duration is closely related to the process autocorrelation. A subterfuge, which distorts a little the problem, consists in considering periodic random process and in adjusting the observation duration to a complete period. In the nonlinear case, the stated problem is as much important as time history simulation is presently the only practicable way for analysing structures. Thus it is always interesting to adjust a tractable model to rough time history observations. In some cases this can be done with a Gumble-Poisson model. Then the difficulty is to make reliable estimates of the parameters involved in the model. Unfortunately it seems that even the use of sophisticated Bayesian method does not permit to reduce as wanted the necessary observation duration. One of the difficulties lies in process ergodicity which is often assumed to be based on physical considerations but which is not always rigorously stated. An other difficulty is the confusion between hidden informations - which can be extracted - and missing informations - which cannot be extracted. Finally it must be recalled that the obligation of considering time histories long enough is not always embarrassing due to the current computer cost reduction. (orig./HP)
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan
2017-11-20
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan; Genton, Marc G.
2017-01-01
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
DEFF Research Database (Denmark)
Malzahn, Dorthe; Opper, Manfred
2003-01-01
We employ the replica method of statistical physics to study the average case performance of learning systems. The new feature of our theory is that general distributions of data can be treated, which enables applications to real data. For a class of Bayesian prediction models which are based...... on Gaussian processes, we discuss Bootstrap estimates for learning curves....
Czech Academy of Sciences Publication Activity Database
Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.
2016-01-01
Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016
Directory of Open Access Journals (Sweden)
Taehwan Kim
2017-05-01
Full Text Available By incorporating a growing number of sensors and adopting machine learning technologies, wearable devices have recently become a prominent health care application domain. Among the related research topics in this field, one of the most important issues is detecting falls while walking. Since such falls may lead to serious injuries, automatically and promptly detecting them during daily use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use of Gaussian process (GP methods for characterizing dynamic walking patterns and detecting falls while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose a novel approach called auto-encoded Gaussian process dynamical model, in which we combine a GP-based state space modeling method with a nonlinear dimensionality reduction method in a unique manner. The Gaussian process methods are fit for this task because one of the most import strengths of the Gaussian process methods is its capability of handling uncertainty in the model parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection, which can lead to an efficient and seamless solution to the detection task. Experimental results show that the combined use of these GP-based methods can yield promising results for characterizing dynamic walking patterns and detecting falls while walking with the wearable sensors.
A Bayesian optimal design for degradation tests based on the inverse Gaussian process
Energy Technology Data Exchange (ETDEWEB)
Peng, Weiwen; Liu, Yu; Li, Yan Feng; Zhu, Shun Peng; Huang, Hong Zhong [University of Electronic Science and Technology of China, Chengdu (China)
2014-10-15
The inverse Gaussian process is recently introduced as an attractive and flexible stochastic process for degradation modeling. This process has been demonstrated as a valuable complement for models that are developed on the basis of the Wiener and gamma processes. We investigate the optimal design of the degradation tests on the basis of the inverse Gaussian process. In addition to an optimal design with pre-estimated planning values of model parameters, we also address the issue of uncertainty in the planning values by using the Bayesian method. An average pre-posterior variance of reliability is used as the optimization criterion. A trade-off between sample size and number of degradation observations is investigated in the degradation test planning. The effects of priors on the optimal designs and on the value of prior information are also investigated and quantified. The degradation test planning of a GaAs Laser device is performed to demonstrate the proposed method.
A Gaussian process regression based hybrid approach for short-term wind speed prediction
International Nuclear Information System (INIS)
Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian
2016-01-01
Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.
Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series
Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth
2017-12-01
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.
Large-Deviation Results for Discriminant Statistics of Gaussian Locally Stationary Processes
Directory of Open Access Journals (Sweden)
Junichi Hirukawa
2012-01-01
Full Text Available This paper discusses the large-deviation principle of discriminant statistics for Gaussian locally stationary processes. First, large-deviation theorems for quadratic forms and the log-likelihood ratio for a Gaussian locally stationary process with a mean function are proved. Their asymptotics are described by the large deviation rate functions. Second, we consider the situations where processes are misspecified to be stationary. In these misspecified cases, we formally make the log-likelihood ratio discriminant statistics and derive the large deviation theorems of them. Since they are complicated, they are evaluated and illustrated by numerical examples. We realize the misspecification of the process to be stationary seriously affecting our discrimination.
Entropy of level-cut random Gaussian structures at different volume fractions.
Marčelja, Stjepan
2017-10-01
Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.
Entropy of level-cut random Gaussian structures at different volume fractions
Marčelja, Stjepan
2017-10-01
Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.
Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M
2012-01-01
In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.
Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Alonso, Luis; Moreno, José; Samson, Roeland
2014-05-05
Biochemical and structural leaf properties such as chlorophyll content (Chl), nitrogen content (N), leaf water content (LWC), and specific leaf area (SLA) have the benefit to be estimated through nondestructive spectral measurements. Current practices, however, mainly focus on a limited amount of wavelength bands while more information could be extracted from other wavelengths in the full range (400-2500nm) spectrum. In this research, leaf characteristics were estimated from a field-based multi-species dataset, covering a wide range in leaf structures and Chl concentrations. The dataset contains leaves with extremely high Chl concentrations (>100μgcm(-2)), which are seldom estimated. Parameter retrieval was conducted with the machine learning regression algorithm Gaussian Processes (GP), which is able to perform adaptive, nonlinear data fitting for complex datasets. Moreover, insight in relevant bands is provided during the development of a regression model. Consequently, the physical meaning of the model can be explored. Best estimates of SLA, LWC and Chl yielded a best obtained normalized root mean square error of 6.0%, 7.7%, 9.1%, respectively. Several distinct wavebands were chosen across the whole spectrum. A band in the red edge (710nm) appeared to be most important for the estimation of Chl. Interestingly, spectral features related to biochemicals with a structural or carbon storage function (e.g. 1090, 1550, 1670, 1730nm) were found important not only for estimation of SLA, but also for LWC, Chl or N estimation. Similar, Chl estimation was also helped by some wavebands related to water content (950, 1430nm) due to correlation between the parameters. It is shown that leaf parameter retrieval by GP regression is successful, and able to cope with large structural differences between leaves. Copyright © 2014 Elsevier B.V. All rights reserved.
Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering
Directory of Open Access Journals (Sweden)
Xianglin ZHU
2014-06-01
Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.
Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes
Haddadi, S.; Bouzid, O.; Fromager, M.; Hasnaoui, A.; Harfouche, A.; Cagniot, E.; Forbes, A.; Aït-Ameur, K.
2018-04-01
Many laser applications utilise a focused laser beam having a single-lobed intensity profile in the focal plane, ideally with the highest possible on-axis intensity. Conventionally, this is achieved with the lowest-order Laguerre-Gaussian mode (LG00), the Gaussian beam, in a tight focusing configuration. However, tight focusing often involves significant spherical aberration due to the high numerical aperture of the systems involved, thus degrading the focal quality. Here, we demonstrate that a high-order radial LG p0 mode can be tailored to meet and in some instances exceed the performance of the Gaussian. We achieve this by phase rectification of the mode using a simple binary diffractive optic. By way of example, we show that the focusing of a rectified LG50 beam is almost insensitive to a spherical aberration coefficient of over three wavelengths, in contrast with the usual Gaussian beam for which the intensity of the focal spot is reduced by a factor of two. This work paves the way towards enhanced focal spots using structured light.
On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process
DEFF Research Database (Denmark)
Ghane, Mahdi; Gao, Zhen; Blanke, Mogens
2018-01-01
of amplitude and period are limited to excursion through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration, for a narrow-band Gaussian process......The probability density of crest amplitude and of duration of exceeding a given level are used in many theoretical and practical problems in engineering. The joint density is essential for design of constructions that are subjected to waves and wind. The presently available joint distributions...... distribution, as expected, and that the marginal distribution of excursion duration works both for asymptotic and non-asymptotic cases. The suggested model is found to be a good replacement for the empirical distributions that are widely used. Results from simulations of narrow-band Gaussian processes, real...
Generalized Inferences about the Mean Vector of Several Multivariate Gaussian Processes
Directory of Open Access Journals (Sweden)
Pilar Ibarrola
2015-01-01
Full Text Available We consider in this paper the problem of comparing the means of several multivariate Gaussian processes. It is assumed that the means depend linearly on an unknown vector parameter θ and that nuisance parameters appear in the covariance matrices. More precisely, we deal with the problem of testing hypotheses, as well as obtaining confidence regions for θ. Both methods will be based on the concepts of generalized p value and generalized confidence region adapted to our context.
Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies.
Savitsky, Terrance; Vannucci, Marina; Sha, Naijun
2011-02-01
This paper presents a unified treatment of Gaussian process models that extends to data from the exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets with predictors that have an a priori unknown form of possibly nonlinear associations to the response. The modeling approach we describe incorporates Gaussian processes in a generalized linear model framework to obtain a class of nonparametric regression models where the covariance matrix depends on the predictors. We consider, in particular, continuous, categorical and count responses. We also look into models that account for survival outcomes. We explore alternative covariance formulations for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on the important problem of selecting variables from the set of possible predictors and describe a general framework that employs mixture priors. We compare alternative MCMC strategies for posterior inference and achieve a computationally efficient and practical approach. We demonstrate performances on simulated and benchmark data sets.
International Nuclear Information System (INIS)
Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A.
2017-01-01
This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)
Energy Technology Data Exchange (ETDEWEB)
Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A., E-mail: danilonai1992@poli.ufrj.br, E-mail: paulo@lmp.ufrj.br, E-mail: cmnap@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-11-01
This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)
Palacios, Julia A; Minin, Vladimir N
2013-03-01
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.
International Nuclear Information System (INIS)
Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial
2016-01-01
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the
Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial
2016-09-01
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the
Energy Technology Data Exchange (ETDEWEB)
Tripathy, Rohit, E-mail: rtripath@purdue.edu; Bilionis, Ilias, E-mail: ibilion@purdue.edu; Gonzalez, Marcial, E-mail: marcial-gonzalez@purdue.edu
2016-09-15
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the
Godolphin, E. J.
1980-01-01
It is shown that the estimation procedure of Walker leads to estimates of the parameters of a Gaussian moving average process which are asymptotically equivalent to the maximum likelihood estimates proposed by Whittle and represented by Godolphin.
Das, Siddhartha; Siopsis, George; Weedbrook, Christian
2018-02-01
With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.
Stochastic generation of explicit pore structures by thresholding Gaussian random fields
Energy Technology Data Exchange (ETDEWEB)
Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)
2014-11-15
We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.
International Nuclear Information System (INIS)
Bachoc, F.
2013-01-01
The parametric estimation of the covariance function of a Gaussian process is studied, in the framework of the Kriging model. Maximum Likelihood and Cross Validation estimators are considered. The correctly specified case, in which the covariance function of the Gaussian process does belong to the parametric set used for estimation, is first studied in an increasing-domain asymptotic framework. The sampling considered is a randomly perturbed multidimensional regular grid. Consistency and asymptotic normality are proved for the two estimators. It is then put into evidence that strong perturbations of the regular grid are always beneficial to Maximum Likelihood estimation. The incorrectly specified case, in which the covariance function of the Gaussian process does not belong to the parametric set used for estimation, is then studied. It is shown that Cross Validation is more robust than Maximum Likelihood in this case. Finally, two applications of the Kriging model with Gaussian processes are carried out on industrial data. For a validation problem of the friction model of the thermal-hydraulic code FLICA 4, where experimental results are available, it is shown that Gaussian process modeling of the FLICA 4 code model error enables to considerably improve its predictions. Finally, for a meta modeling problem of the GERMINAL thermal-mechanical code, the interest of the Kriging model with Gaussian processes, compared to neural network methods, is shown. (author) [fr
Clustering gene expression time series data using an infinite Gaussian process mixture model.
McDowell, Ian C; Manandhar, Dinesh; Vockley, Christopher M; Schmid, Amy K; Reddy, Timothy E; Engelhardt, Barbara E
2018-01-01
Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.
Clustering gene expression time series data using an infinite Gaussian process mixture model.
Directory of Open Access Journals (Sweden)
Ian C McDowell
2018-01-01
Full Text Available Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP, which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Using Gaussian Process Annealing Particle Filter for 3D Human Tracking
Directory of Open Access Journals (Sweden)
Michael Rudzsky
2008-01-01
Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.
International Nuclear Information System (INIS)
Kou, Peng; Liang, Deliang; Gao, Lin; Lou, Jianyong
2015-01-01
Highlights: • A novel active learning model for the probabilistic electricity price forecasting. • Heteroscedastic Gaussian process that captures the local volatility of the electricity price. • Variational Bayesian learning that avoids over-fitting. • Active learning algorithm that reduces the computational efforts. - Abstract: Electricity price forecasting is essential for the market participants in their decision making. Nevertheless, the accuracy of such forecasting cannot be guaranteed due to the high variability of the price data. For this reason, in many cases, rather than merely point forecasting results, market participants are more interested in the probabilistic price forecasting results, i.e., the prediction intervals of the electricity price. Focusing on this issue, this paper proposes a new model for the probabilistic electricity price forecasting. This model is based on the active learning technique and the variational heteroscedastic Gaussian process (VHGP). It provides the heteroscedastic Gaussian prediction intervals, which effectively quantify the heteroscedastic uncertainties associated with the price data. Because the high computational effort of VHGP hinders its application to the large-scale electricity price forecasting tasks, we design an active learning algorithm to select a most informative training subset from the whole available training set. By constructing the forecasting model on this smaller subset, the computational efforts can be significantly reduced. In this way, the practical applicability of the proposed model is enhanced. The forecasting performance and the computational time of the proposed model are evaluated using the real-world electricity price data, which is obtained from the ANEM, PJM, and New England ISO
A Gaussian process and derivative spectral-based algorithm for red blood cell segmentation
Xue, Yingying; Wang, Jianbiao; Zhou, Mei; Hou, Xiyue; Li, Qingli; Liu, Hongying; Wang, Yiting
2017-07-01
As an imaging technology used in remote sensing, hyperspectral imaging can provide more information than traditional optical imaging of blood cells. In this paper, an AOTF based microscopic hyperspectral imaging system is used to capture hyperspectral images of blood cells. In order to achieve the segmentation of red blood cells, Gaussian process using squared exponential kernel function is applied first after the data preprocessing to make the preliminary segmentation. The derivative spectrum with spectral angle mapping algorithm is then applied to the original image to segment the boundary of cells, and using the boundary to cut out cells obtained from the Gaussian process to separated adjacent cells. Then the morphological processing method including closing, erosion and dilation is applied so as to keep adjacent cells apart, and by applying median filtering to remove noise points and filling holes inside the cell, the final segmentation result can be obtained. The experimental results show that this method appears better segmentation effect on human red blood cells.
Nested polynomial trends for the improvement of Gaussian process-based predictors
Perrin, G.; Soize, C.; Marque-Pucheu, S.; Garnier, J.
2017-10-01
The role of simulation keeps increasing for the sensitivity analysis and the uncertainty quantification of complex systems. Such numerical procedures are generally based on the processing of a huge amount of code evaluations. When the computational cost associated with one particular evaluation of the code is high, such direct approaches based on the computer code only, are not affordable. Surrogate models have therefore to be introduced to interpolate the information given by a fixed set of code evaluations to the whole input space. When confronted to deterministic mappings, the Gaussian process regression (GPR), or kriging, presents a good compromise between complexity, efficiency and error control. Such a method considers the quantity of interest of the system as a particular realization of a Gaussian stochastic process, whose mean and covariance functions have to be identified from the available code evaluations. In this context, this work proposes an innovative parametrization of this mean function, which is based on the composition of two polynomials. This approach is particularly relevant for the approximation of strongly non linear quantities of interest from very little information. After presenting the theoretical basis of this method, this work compares its efficiency to alternative approaches on a series of examples.
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang
2016-01-01
The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang
2016-01-01
Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-06-01
Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
Directory of Open Access Journals (Sweden)
Tomoaki Nakamura
2017-12-01
Full Text Available Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM, the emission distributions of which are Gaussian processes (GPs. Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods.
Gaussian process tomography for soft x-ray spectroscopy at WEST without equilibrium information
Wang, T.; Mazon, D.; Svensson, J.; Li, D.; Jardin, A.; Verdoolaege, G.
2018-06-01
Gaussian process tomography (GPT) is a recently developed tomography method based on the Bayesian probability theory [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and Li et al., Rev. Sci. Instrum. 84, 083506 (2013)]. By modeling the soft X-ray (SXR) emissivity field in a poloidal cross section as a Gaussian process, the Bayesian SXR tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast magnetohydrodynamic control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, the GPT technique is validated using a synthetic data set expected from the WEST tokamak, and the results are shown of its application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the standard algorithm based on minimization of the Fisher information.
Multi-fidelity Gaussian process regression for prediction of random fields
Energy Technology Data Exchange (ETDEWEB)
Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)
2017-05-01
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.
Multi-fidelity Gaussian process regression for prediction of random fields
International Nuclear Information System (INIS)
Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.
2017-01-01
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes
Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET
2017-03-01
A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.
Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.
Mones, Letif; Bernstein, Noam; Csányi, Gábor
2016-10-11
Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.
The Prediction of Length-of-day Variations Based on Gaussian Processes
Lei, Y.; Zhao, D. N.; Gao, Y. P.; Cai, H. B.
2015-01-01
Due to the complicated time-varying characteristics of the length-of-day (LOD) variations, the accuracies of traditional strategies for the prediction of the LOD variations such as the least squares extrapolation model, the time-series analysis model, and so on, have not met the requirements for real-time and high-precision applications. In this paper, a new machine learning algorithm --- the Gaussian process (GP) model is employed to forecast the LOD variations. Its prediction precisions are analyzed and compared with those of the back propagation neural networks (BPNN), general regression neural networks (GRNN) models, and the Earth Orientation Parameters Prediction Comparison Campaign (EOP PCC). The results demonstrate that the application of the GP model to the prediction of the LOD variations is efficient and feasible.
International Nuclear Information System (INIS)
Bachoc, Francois
2014-01-01
Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail. (authors)
Laser Raman detection for oral cancer based on a Gaussian process classification method
International Nuclear Information System (INIS)
Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Zhang, Chijun; Chen, He; Luo, Yusheng; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Shen, Aiguo; Hu, Jiming; Jia, Jun
2013-01-01
Oral squamous cell carcinoma is the most common neoplasm of the oral cavity. The incidence rate accounts for 80% of total oral cancer and shows an upward trend in recent years. It has a high degree of malignancy and is difficult to detect in terms of differential diagnosis, as a consequence of which the timing of treatment is always delayed. In this work, Raman spectroscopy was adopted to differentially diagnose oral squamous cell carcinoma and oral gland carcinoma. In total, 852 entries of raw spectral data which consisted of 631 items from 36 oral squamous cell carcinoma patients, 87 items from four oral gland carcinoma patients and 134 items from five normal people were collected by utilizing an optical method on oral tissues. The probability distribution of the datasets corresponding to the spectral peaks of the oral squamous cell carcinoma tissue was analyzed and the experimental result showed that the data obeyed a normal distribution. Moreover, the distribution characteristic of the noise was also in compliance with a Gaussian distribution. A Gaussian process (GP) classification method was utilized to distinguish the normal people and the oral gland carcinoma patients from the oral squamous cell carcinoma patients. The experimental results showed that all the normal people could be recognized. 83.33% of the oral squamous cell carcinoma patients could be correctly diagnosed and the remaining ones would be diagnosed as having oral gland carcinoma. For the classification process of oral gland carcinoma and oral squamous cell carcinoma, the correct ratio was 66.67% and the erroneously diagnosed percentage was 33.33%. The total sensitivity was 80% and the specificity was 100% with the Matthews correlation coefficient (MCC) set to 0.447 213 595. Considering the numerical results above, the application prospects and clinical value of this technique are significantly impressive. (letter)
Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators.
Melis, Alessandro; Clayton, Richard H; Marzo, Alberto
2017-12-01
One-dimensional models of the cardiovascular system can capture the physics of pulse waves but involve many parameters. Since these may vary among individuals, patient-specific models are difficult to construct. Sensitivity analysis can be used to rank model parameters by their effect on outputs and to quantify how uncertainty in parameters influences output uncertainty. This type of analysis is often conducted with a Monte Carlo method, where large numbers of model runs are used to assess input-output relations. The aim of this study was to demonstrate the computational efficiency of variance-based sensitivity analysis of 1D vascular models using Gaussian process emulators, compared to a standard Monte Carlo approach. The methodology was tested on four vascular networks of increasing complexity to analyse its scalability. The computational time needed to perform the sensitivity analysis with an emulator was reduced by the 99.96% compared to a Monte Carlo approach. Despite the reduced computational time, sensitivity indices obtained using the two approaches were comparable. The scalability study showed that the number of mechanistic simulations needed to train a Gaussian process for sensitivity analysis was of the order O(d), rather than O(d×103) needed for Monte Carlo analysis (where d is the number of parameters in the model). The efficiency of this approach, combined with capacity to estimate the impact of uncertain parameters on model outputs, will enable development of patient-specific models of the vascular system, and has the potential to produce results with clinical relevance. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Laser Raman detection for oral cancer based on a Gaussian process classification method
Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Zhang, Chijun; Chen, He; Luo, Yusheng; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Jia, Jun; Shen, Aiguo; Hu, Jiming
2013-06-01
Oral squamous cell carcinoma is the most common neoplasm of the oral cavity. The incidence rate accounts for 80% of total oral cancer and shows an upward trend in recent years. It has a high degree of malignancy and is difficult to detect in terms of differential diagnosis, as a consequence of which the timing of treatment is always delayed. In this work, Raman spectroscopy was adopted to differentially diagnose oral squamous cell carcinoma and oral gland carcinoma. In total, 852 entries of raw spectral data which consisted of 631 items from 36 oral squamous cell carcinoma patients, 87 items from four oral gland carcinoma patients and 134 items from five normal people were collected by utilizing an optical method on oral tissues. The probability distribution of the datasets corresponding to the spectral peaks of the oral squamous cell carcinoma tissue was analyzed and the experimental result showed that the data obeyed a normal distribution. Moreover, the distribution characteristic of the noise was also in compliance with a Gaussian distribution. A Gaussian process (GP) classification method was utilized to distinguish the normal people and the oral gland carcinoma patients from the oral squamous cell carcinoma patients. The experimental results showed that all the normal people could be recognized. 83.33% of the oral squamous cell carcinoma patients could be correctly diagnosed and the remaining ones would be diagnosed as having oral gland carcinoma. For the classification process of oral gland carcinoma and oral squamous cell carcinoma, the correct ratio was 66.67% and the erroneously diagnosed percentage was 33.33%. The total sensitivity was 80% and the specificity was 100% with the Matthews correlation coefficient (MCC) set to 0.447 213 595. Considering the numerical results above, the application prospects and clinical value of this technique are significantly impressive.
Gaussian process regression based optimal design of combustion systems using flame images
International Nuclear Information System (INIS)
Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng
2013-01-01
Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process
Directory of Open Access Journals (Sweden)
Robert B. Gramacy
2007-06-01
Full Text Available The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages, are also provided for visualization of tgp objects.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Persistence of non-Markovian Gaussian stationary processes in discrete time
Nyberg, Markus; Lizana, Ludvig
2018-04-01
The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time n . Few results are known for the persistence P0(n ) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through P0(n ) ˜θn . Using a modified version of the independent interval approximation (IIA) that we developed before, we are able to calculate P0(n ) analytically in z -transform space in terms of the autocorrelation function A (n ) . If A (n )→0 as n →∞ , we extract θ numerically, while if A (n )=0 , for finite n >N , we find θ exactly (within the IIA). We apply our results to three special cases: the nearest-neighbor-correlated "first order moving average process", where A (n )=0 for n >1 , the double exponential-correlated "second order autoregressive process", where A (n ) =c1λ1n+c2λ2n , and power-law-correlated variables, where A (n ) ˜n-μ . Apart from the power-law case when μ <5 , we find excellent agreement with simulations.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Directory of Open Access Journals (Sweden)
Cheung Leo
2007-02-01
Full Text Available Abstract Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make
Bayesian soft X-ray tomography using non-stationary Gaussian Processes
International Nuclear Information System (INIS)
Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.
2013-01-01
In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods
Bayesian soft X-ray tomography using non-stationary Gaussian Processes
Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.
2013-08-01
In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
Directory of Open Access Journals (Sweden)
Michele Liguori
2010-01-01
Full Text Available The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.
Gaussian process tomography for the analysis of line-integrated measurements in fusion plasmas
International Nuclear Information System (INIS)
Li, Dong
2014-01-01
In nuclear fusion research, a variety of diagnostics have been devised for the measurements of different physical quantities, such as electromagnetic radiation in different wavelength intervals. The radiation, including the soft X-ray spectral range, H α emission as well as others, can be recorded by specifically designed detectors with different sampling frequencies. Commonly, only the line-integrated observations are possible due to the fact that the detectors have to view the plasma from a position outside of the plasma. Therefore, tomography algorithms have been developed to infer the local information of the targeted physical variable from a number of line-integrated data. This thesis presents a Bayesian Gaussian Process Tomographic (GPT) method applied to both soft X-ray and bolometer systems. For the ill-posed inversion problem of reconstructing a 2D emissivity distribution from a number of noisy line-integrated data, Bayesian probability theory can provide a posterior probability distribution about many possible solutions centered at a single most probable solution. The combination of Gaussian Process (GP) prior and multivariate normal (MVN) likelihood enables the posterior probability to be a MVN distribution which provides both the solution and its associated uncertainty. The GP prior enforces the regularization on smoothness by adjusting the length-scale defined in a covariance function. Particularly, a non-stationary GP has been developed to improve the accuracy of reconstruction by using locally adaptive length-scales to take into account the varying smoothness at different positions. The parameters embedded in the model assumption can be optimized through maximizing a joint probability of them based on a Bayesian Occam's razor formalism. In contrast with other tomographic techniques, this method is analytic and non-iterative, thus it can be fast enough for real-time applications under an approximate optimization state. The uncertainty of the
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Christensen, Bent Jesper
This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2016-01-01
Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure
A Novel Method for Generating Non-Stationary Gaussian Processes for Use in Digital Radar Simulators
National Research Council Canada - National Science Library
Boehm, James A; Debroux, Patrick S
2007-01-01
This report presents a novel and simple way to determine the transient response of the output of any linear system, described in the s-domain by an nth order polynomial, subjected to white Gaussian noise...
Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening
Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.
2017-12-01
Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.
Directory of Open Access Journals (Sweden)
H. Ru
2016-06-01
Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.
An adaptive Gaussian process-based iterative ensemble smoother for data assimilation
Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao
2018-05-01
Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.
Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator
Chang, Eugene T Y; Strong, Mark; Clayton, Richard H
2015-01-01
Models of electrical activity in cardiac cells have become important research tools as they can provide a quantitative description of detailed and integrative physiology. However, cardiac cell models have many parameters, and how uncertainties in these parameters affect the model output is difficult to assess without undertaking large numbers of model runs. In this study we show that a surrogate statistical model of a cardiac cell model (the Luo-Rudy 1991 model) can be built using Gaussian process (GP) emulators. Using this approach we examined how eight outputs describing the action potential shape and action potential duration restitution depend on six inputs, which we selected to be the maximum conductances in the Luo-Rudy 1991 model. We found that the GP emulators could be fitted to a small number of model runs, and behaved as would be expected based on the underlying physiology that the model represents. We have shown that an emulator approach is a powerful tool for uncertainty and sensitivity analysis in cardiac cell models. PMID:26114610
Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes
Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration
2015-11-01
A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
Gaussian Processes for Data-Efficient Learning in Robotics and Control.
Deisenroth, Marc Peter; Fox, Dieter; Rasmussen, Carl Edward
2015-02-01
Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
Energy Technology Data Exchange (ETDEWEB)
Czekala, Ian [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghosh, Sujit K. [Department of Statistics, NC State University, 2311 Stinson Drive, Raleigh, NC 27695 (United States); Montet, Benjamin T. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Newton, Elisabeth R., E-mail: iczekala@stanford.edu [Massachusetts Institute of Technology, Cambridge, MA 02138 (United States)
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes.
Alaa, Ahmed M; Yoon, Jinsung; Hu, Scott; van der Schaar, Mihaela
2018-01-01
In this paper, we develop a personalized real-time risk scoring algorithm that provides timely and granular assessments for the clinical acuity of ward patients based on their (temporal) lab tests and vital signs; the proposed risk scoring system ensures timely intensive care unit admissions for clinically deteriorating patients. The risk scoring system is based on the idea of sequential hypothesis testing under an uncertain time horizon. The system learns a set of latent patient subtypes from the offline electronic health record data, and trains a mixture of Gaussian Process experts, where each expert models the physiological data streams associated with a specific patient subtype. Transfer learning techniques are used to learn the relationship between a patient's latent subtype and her static admission information (e.g., age, gender, transfer status, ICD-9 codes, etc). Experiments conducted on data from a heterogeneous cohort of 6321 patients admitted to Ronald Reagan UCLA medical center show that our score significantly outperforms the currently deployed risk scores, such as the Rothman index, MEWS, APACHE, and SOFA scores, in terms of timeliness, true positive rate, and positive predictive value. Our results reflect the importance of adopting the concepts of personalized medicine in critical care settings; significant accuracy and timeliness gains can be achieved by accounting for the patients' heterogeneity. The proposed risk scoring methodology can confer huge clinical and social benefits on a massive number of critically ill inpatients who exhibit adverse outcomes including, but not limited to, cardiac arrests, respiratory arrests, and septic shocks.
Duan, Leo L; Wang, Xia; Clancy, John P; Szczesniak, Rhonda D
2018-01-01
A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal biomedical outcomes, including continuous measurements and binary outcomes, to achieve better prediction in disease progression. At the population level of the hierarchy, two independent GPs are used to capture the nonlinear trends in both the continuous biomedical marker and the binary outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal measurement model and the longitudinal binary model, induces the correlation between these two model components and strengthens information borrowing across individuals. The proposed model is particularly advantageous in personalized prediction. It is applied to the motivating clinical data on cystic fibrosis disease progression, for which lung function measurements and onset of acute respiratory events are monitored jointly throughout each patient's clinical course. The results from both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the shared individual-level GPs under the joint model framework leads to important improvements in personalized disease progression prediction.
Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.
2017-12-01
It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.
Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion
Directory of Open Access Journals (Sweden)
Chunlin Wang
2017-01-01
Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
Improvement on Exoplanet Detection Methods and Analysis via Gaussian Process Fitting Techniques
Van Ross, Bryce; Teske, Johanna
2018-01-01
Planetary signals in radial velocity (RV) data are often accompanied by signals coming solely from stellar photo- or chromospheric variation. Such variation can reduce the precision of planet detection and mass measurements, and cause misidentification of planetary signals. Recently, several authors have demonstrated the utility of Gaussian Process (GP) regression for disentangling planetary signals in RV observations (Aigrain et al. 2012; Angus et al. 2017; Czekala et al. 2017; Faria et al. 2016; Gregory 2015; Haywood et al. 2014; Rajpaul et al. 2015; Foreman-Mackey et al. 2017). GP models the covariance of multivariate data to make predictions about likely underlying trends in the data, which can be applied to regions where there are no existing observations. The potency of GP has been used to infer stellar rotation periods; to model and disentangle time series spectra; and to determine physical aspects, populations, and detection of exoplanets, among other astrophysical applications. Here, we implement similar analysis techniques to times series of the Ca-2 H and K activity indicator measured simultaneously with RVs in a small sample of stars from the large Keck/HIRES RV planet search program. Our goal is to characterize the pattern(s) of non-planetary variation to be able to know what is/ is not a planetary signal. We investigated ten different GP kernels and their respective hyperparameters to determine the optimal combination (e.g., the lowest Bayesian Information Criterion value) in each stellar data set. To assess the hyperparameters’ error, we sampled their posterior distributions using Markov chain Monte Carlo (MCMC) analysis on the optimized kernels. Our results demonstrate how GP analysis of stellar activity indicators alone can contribute to exoplanet detection in RV data, and highlight the challenges in applying GP analysis to relatively small, irregularly sampled time series.
Rajabi, Mohammad Mahdi; Ketabchi, Hamed
2017-12-01
Combined simulation-optimization (S/O) schemes have long been recognized as a valuable tool in coastal groundwater management (CGM). However, previous applications have mostly relied on deterministic seawater intrusion (SWI) simulations. This is a questionable simplification, knowing that SWI models are inevitably prone to epistemic and aleatory uncertainty, and hence a management strategy obtained through S/O without consideration of uncertainty may result in significantly different real-world outcomes than expected. However, two key issues have hindered the use of uncertainty-based S/O schemes in CGM, which are addressed in this paper. The first issue is how to solve the computational challenges resulting from the need to perform massive numbers of simulations. The second issue is how the management problem is formulated in presence of uncertainty. We propose the use of Gaussian process (GP) emulation as a valuable tool in solving the computational challenges of uncertainty-based S/O in CGM. We apply GP emulation to the case study of Kish Island (located in the Persian Gulf) using an uncertainty-based S/O algorithm which relies on continuous ant colony optimization and Monte Carlo simulation. In doing so, we show that GP emulation can provide an acceptable level of accuracy, with no bias and low statistical dispersion, while tremendously reducing the computational time. Moreover, five new formulations for uncertainty-based S/O are presented based on concepts such as energy distances, prediction intervals and probabilities of SWI occurrence. We analyze the proposed formulations with respect to their resulting optimized solutions, the sensitivity of the solutions to the intended reliability levels, and the variations resulting from repeated optimization runs.
Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong
2017-07-01
The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.
Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network
Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing
2016-01-01
Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Directory of Open Access Journals (Sweden)
Robert B. Gramacy
2010-02-01
Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.
International Nuclear Information System (INIS)
Bukhari, W; Hong, S-M
2015-01-01
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR + , implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR + algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR + implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR + in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR + . The experimental results show that the EKF-GPR + algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR + reduces the patient-wise RMS error to 37%, 39% and 42
Bukhari, W.; Hong, S.-M.
2015-01-01
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in
Bukhari, W; Hong, S-M
2015-01-07
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR(+), implements a gating function without pre-specifying a particular region of the patient's breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR(+) algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR(+) implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR(+) in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR(+). The experimental results show that the EKF-GPR(+) algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR(+) reduces the patient-wise RMS error to 37%, 39% and
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations
Petersson, T.; Hellsing, B.
2010-01-01
A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-12-01
The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.
Stable non-Gaussian self-similar processes with stationary increments
Pipiras, Vladas
2017-01-01
This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong
International Nuclear Information System (INIS)
Han, Y.P.; Cui, Z.W.; Gouesbet, G.
2012-01-01
An efficient numerical method based on the surface integral equations is introduced to simulate the scattering of Gaussian beam by complex particles that consist of an arbitrarily shaped host particle and multiple internal inclusions of arbitrary shape. In particular, the incident focused Gaussian beam is described by the Davis fifth-order approximate expressions in combination with rotation defined by Euler angles. The established surface integral equations are discretized with the method of moments, where the unknown equivalent electric and magnetic currents induced on the surfaces of the host particle and the internal inclusions are expanded using the Rao-Wilton-Glisson (RWG) basis functions. The resultant matrix equations are solved by using the parallel conjugate gradient method. The proposed numerical method is validated and its capability illustrated in several characteristic examples.
Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.
Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan
2017-09-01
The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.
International Nuclear Information System (INIS)
Giannantonio, Tommaso; Porciani, Cristiano
2010-01-01
We study structure formation in the presence of primordial non-Gaussianity of the local type with parameters f NL and g NL . We show that the distribution of dark-matter halos is naturally described by a multivariate bias scheme where the halo overdensity depends not only on the underlying matter density fluctuation δ but also on the Gaussian part of the primordial gravitational potential φ. This corresponds to a non-local bias scheme in terms of δ only. We derive the coefficients of the bias expansion as a function of the halo mass by applying the peak-background split to common parametrizations for the halo mass function in the non-Gaussian scenario. We then compute the halo power spectrum and halo-matter cross spectrum in the framework of Eulerian perturbation theory up to third order. Comparing our results against N-body simulations, we find that our model accurately describes the numerical data for wave numbers k≤0.1-0.3h Mpc -1 depending on redshift and halo mass. In our multivariate approach, perturbations in the halo counts trace φ on large scales, and this explains why the halo and matter power spectra show different asymptotic trends for k→0. This strongly scale-dependent bias originates from terms at leading order in our expansion. This is different from what happens using the standard univariate local bias where the scale-dependent terms come from badly behaved higher-order corrections. On the other hand, our biasing scheme reduces to the usual local bias on smaller scales, where |φ| is typically much smaller than the density perturbations. We finally discuss the halo bispectrum in the context of multivariate biasing and show that, due to its strong scale and shape dependence, it is a powerful tool for the detection of primordial non-Gaussianity from future galaxy surveys.
On some Filtration Procedure for Jump Markov Process Observed in White Gaussian Noise
Khas'minskii, Rafail Z.; Lazareva, Betty V.
1992-01-01
The importance of optimal filtration problem for Markov chain with two states observed in Gaussian white noise (GWN) for a lot of concrete technical problems is well known. The equation for a posterior probability $\\pi(t)$ of one of the states was obtained many years ago. The aim of this paper is to study a simple filtration method. It is shown that this simplified filtration is asymptotically efficient in some sense if the diffusion constant of the GWN goes to 0. Some advantages of this proc...
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Ditlevsen, Ove Dalager
2004-01-01
The object of study is a stationary Gaussian white noise excited multi-degree-of-freedom (MDOF) linear elastic, ideal plastic, linearly damped, statically determinate oscillator with several potential elements of ideal plastic yielding. Specifically the study is exemplified for a plane multistory...... shear frame with rigid traverses where all the connecting columns except the columns in one or more of the bottom floors have finite symmetrical yield limits. The white noise excitation acts on the mass of the first floor making the movement of the elastic bottom floors simulate a ground motion...
Resource theory of non-Gaussian operations
Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.
2018-05-01
Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.
Li, Tiejun; Min, Bin; Wang, Zhiming
2013-03-14
The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.
A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes
Martin, Rodney Alexander
2009-01-01
In many complex engineered systems, the ability to give an alarm prior to impending critical events is of great importance. These critical events may have varying degrees of severity, and in fact they may occur during normal system operation. In this article, we investigate approximations to theoretically optimal methods of designing alarm systems for the prediction of level-crossings by a zero-mean stationary linear dynamic system driven by Gaussian noise. An optimal alarm system is designed to elicit the fewest false alarms for a fixed detection probability. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. I
Zhao, Leihong; Qu, Xiaolu; Lin, Hongjun; Yu, Genying; Liao, Bao-Qiang
2018-03-01
Simulation of randomly rough bioparticle surface is crucial to better understand and control interface behaviors and membrane fouling. Pursuing literature indicated a lack of effective method for simulating random rough bioparticle surface. In this study, a new method which combines Gaussian distribution, Fourier transform, spectrum method and coordinate transformation was proposed to simulate surface topography of foulant bioparticles in a membrane bioreactor (MBR). The natural surface of a foulant bioparticle was found to be irregular and randomly rough. The topography simulated by the new method was quite similar to that of real foulant bioparticles. Moreover, the simulated topography of foulant bioparticles was critically affected by parameters correlation length (l) and root mean square (σ). The new method proposed in this study shows notable superiority over the conventional methods for simulation of randomly rough foulant bioparticles. The ease, facility and fitness of the new method point towards potential applications in interface behaviors and membrane fouling research.
Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.
2018-06-01
We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.
Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.
2018-04-01
Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared, X-ray and optically selected AGN - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGN are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole co-evolution and for cosmological studies.
Sraj, Ihab
2015-10-22
This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally achieved using the Karhunen-Loève expansion of a prior Gaussian process assuming covariance function with fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of the Karhunen-Loève coordinates is then inferred using available observations. The resulting inferred field is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Loève expansion is derived using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The inferred profiles were found closer to the true profiles when including the hyper-parameters’ uncertainty in the inference formulation.
Chen, Xin; Cao, Jianshu; Silbey, Robert J
2013-06-14
The recent experimental discoveries about excitation energy transfer (EET) in light harvesting antenna (LHA) attract a lot of interest. As an open non-equilibrium quantum system, the EET demands more rigorous theoretical framework to understand the interaction between system and environment and therein the evolution of reduced density matrix. A phonon is often used to model the fluctuating environment and convolutes the reduced quantum system temporarily. In this paper, we propose a novel way to construct complex-valued Gaussian processes to describe thermal quantum phonon bath exactly by converting the convolution of influence functional into the time correlation of complex Gaussian random field. Based on the construction, we propose a rigorous and efficient computational method, the covariance decomposition and conditional propagation scheme, to simulate the temporarily entangled reduced system. The new method allows us to study the non-Markovian effect without perturbation under the influence of different spectral densities of the linear system-phonon coupling coefficients. Its application in the study of EET in the Fenna-Matthews-Olson model Hamiltonian under four different spectral densities is discussed. Since the scaling of our algorithm is linear due to its Monte Carlo nature, the future application of the method for large LHA systems is attractive. In addition, this method can be used to study the effect of correlated initial condition on the reduced dynamics in the future.
International Nuclear Information System (INIS)
Farivar, Faezeh; Aliyari Shoorehdeli, Mahdi; Nekoui, Mohammad Ali; Teshnehlab, Mohammad
2012-01-01
Highlights: ► A systematic procedure for GPS of unknown heavy chaotic gyroscope systems. ► Proposed methods are based on Lyapunov stability theory. ► Without calculating Lyapunov exponents and Eigen values of the Jacobian matrix. ► Capable to extend for a variety of chaotic systems. ► Useful for practical applications in the future. - Abstract: This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to
Open problems in Gaussian fluid queueing theory
Dȩbicki, K.; Mandjes, M.
2011-01-01
We present three challenging open problems that originate from the analysis of the asymptotic behavior of Gaussian fluid queueing models. In particular, we address the problem of characterizing the correlation structure of the stationary buffer content process, the speed of convergence to
Directory of Open Access Journals (Sweden)
Liang Yan
2018-03-01
Full Text Available In this paper, we examine two widely-used approaches, the polynomial chaos expansion (PCE and Gaussian process (GP regression, for the development of surrogate models. The theoretical differences between the PCE and GP approximations are discussed. A state-of-the-art PCE approach is constructed based on high precision quadrature points; however, the need for truncation may result in potential precision loss; the GP approach performs well on small datasets and allows a fine and precise trade-off between fitting the data and smoothing, but its overall performance depends largely on the training dataset. The reproducing kernel Hilbert space (RKHS and Mercer’s theorem are introduced to form a linkage between the two methods. The theorem has proven that the two surrogates can be embedded in two isomorphic RKHS, by which we propose a novel method named Gaussian process on polynomial chaos basis (GPCB that incorporates the PCE and GP. A theoretical comparison is made between the PCE and GPCB with the help of the Kullback–Leibler divergence. We present that the GPCB is as stable and accurate as the PCE method. Furthermore, the GPCB is a one-step Bayesian method that chooses the best subset of RKHS in which the true function should lie, while the PCE method requires an adaptive procedure. Simulations of 1D and 2D benchmark functions show that GPCB outperforms both the PCE and classical GP methods. In order to solve high dimensional problems, a random sample scheme with a constructive design (i.e., tensor product of quadrature points is proposed to generate a valid training dataset for the GPCB method. This approach utilizes the nature of the high numerical accuracy underlying the quadrature points while ensuring the computational feasibility. Finally, the experimental results show that our sample strategy has a higher accuracy than classical experimental designs; meanwhile, it is suitable for solving high dimensional problems.
Breaking Gaussian incompatibility on continuous variable quantum systems
Energy Technology Data Exchange (ETDEWEB)
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kiukas, Jukka, E-mail: jukka.kiukas@aber.ac.uk [Department of Mathematics, Aberystwyth University, Penglais, Aberystwyth, SY23 3BZ (United Kingdom); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2015-08-15
We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.
Learning conditional Gaussian networks
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....
International Nuclear Information System (INIS)
Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Shen, Aiguo; Hu, Jiming; Jia, Jun
2013-01-01
The existing methods for early and differential diagnosis of oral cancer are limited due to the unapparent early symptoms and the imperfect imaging examination methods. In this paper, the classification models of oral adenocarcinoma, carcinoma tissues and a control group with just four features are established by utilizing the hybrid Gaussian process (HGP) classification algorithm, with the introduction of the mechanisms of noise reduction and posterior probability. HGP shows much better performance in the experimental results. During the experimental process, oral tissues were divided into three groups, adenocarcinoma (n = 87), carcinoma (n = 100) and the control group (n = 134). The spectral data for these groups were collected. The prospective application of the proposed HGP classification method improved the diagnostic sensitivity to 56.35% and the specificity to about 70.00%, and resulted in a Matthews correlation coefficient (MCC) of 0.36. It is proved that the utilization of HGP in LRS detection analysis for the diagnosis of oral cancer gives accurate results. The prospect of application is also satisfactory. (paper)
Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Jia, Jun; Shen, Aiguo; Hu, Jiming
2013-03-01
The existing methods for early and differential diagnosis of oral cancer are limited due to the unapparent early symptoms and the imperfect imaging examination methods. In this paper, the classification models of oral adenocarcinoma, carcinoma tissues and a control group with just four features are established by utilizing the hybrid Gaussian process (HGP) classification algorithm, with the introduction of the mechanisms of noise reduction and posterior probability. HGP shows much better performance in the experimental results. During the experimental process, oral tissues were divided into three groups, adenocarcinoma (n = 87), carcinoma (n = 100) and the control group (n = 134). The spectral data for these groups were collected. The prospective application of the proposed HGP classification method improved the diagnostic sensitivity to 56.35% and the specificity to about 70.00%, and resulted in a Matthews correlation coefficient (MCC) of 0.36. It is proved that the utilization of HGP in LRS detection analysis for the diagnosis of oral cancer gives accurate results. The prospect of application is also satisfactory.
Gaussian process based independent analysis for temporal source separation in fMRI
DEFF Research Database (Denmark)
Hald, Ditte Høvenhoff; Henao, Ricardo; Winther, Ole
2017-01-01
Functional Magnetic Resonance Imaging (fMRI) gives us a unique insight into the processes of the brain, and opens up for analyzing the functional activation patterns of the underlying sources. Task-inferred supervised learning with restrictive assumptions in the regression set-up, restricts...... the exploratory nature of the analysis. Fully unsupervised independent component analysis (ICA) algorithms, on the other hand, can struggle to detect clear classifiable components on single-subject data. We attribute this shortcoming to inadequate modeling of the fMRI source signals by failing to incorporate its...
Representation of Gaussian semimartingales with applications to the covariance function
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
2010-01-01
stationary Gaussian semimartingales and their canonical decomposition. Thirdly, we give a new characterization of the covariance function of Gaussian semimartingales, which enable us to characterize the class of martingales and the processes of bounded variation among the Gaussian semimartingales. We...
Gómez-Valent, Adrià; Amendola, Luca
2018-04-01
In this paper we present new constraints on the Hubble parameter H0 using: (i) the available data on H(z) obtained from cosmic chronometers (CCH); (ii) the Hubble rate data points extracted from the supernovae of Type Ia (SnIa) of the Pantheon compilation and the Hubble Space Telescope (HST) CANDELS and CLASH Multy-Cycle Treasury (MCT) programs; and (iii) the local HST measurement of H0 provided by Riess et al. (2018), H0HST=(73.45±1.66) km/s/Mpc. Various determinations of H0 using the Gaussian processes (GPs) method and the most updated list of CCH data have been recently provided by Yu, Ratra & Wang (2018). Using the Gaussian kernel they find H0=(67.42± 4.75) km/s/Mpc. Here we extend their analysis to also include the most released and complete set of SnIa data, which allows us to reduce the uncertainty by a factor ~ 3 with respect to the result found by only considering the CCH information. We obtain H0=(67.06± 1.68) km/s/Mpc, which favors again the lower range of values for H0 and is in tension with H0HST. The tension reaches the 2.71σ level. We round off the GPs determination too by taking also into account the error propagation of the kernel hyperparameters when the CCH with and without H0HST are used in the analysis. In addition, we present a novel method to reconstruct functions from data, which consists in a weighted sum of polynomial regressions (WPR). We apply it from a cosmographic perspective to reconstruct H(z) and estimate H0 from CCH and SnIa measurements. The result obtained with this method, H0=(68.90± 1.96) km/s/Mpc, is fully compatible with the GPs ones. Finally, a more conservative GPs+WPR value is also provided, H0=(68.45± 2.00) km/s/Mpc, which is still almost 2σ away from H0HST.
Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said
2018-06-01
Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.
Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro
2014-01-01
Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.
Directory of Open Access Journals (Sweden)
Douglas A. Fynan
2016-06-01
Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.
Yang, Duo; Zhang, Xu; Pan, Rui; Wang, Yujie; Chen, Zonghai
2018-04-01
The state-of-health (SOH) estimation is always a crucial issue for lithium-ion batteries. In order to provide an accurate and reliable SOH estimation, a novel Gaussian process regression (GPR) model based on charging curve is proposed in this paper. Different from other researches where SOH is commonly estimated by cycle life, in this work four specific parameters extracted from charging curves are used as inputs of the GPR model instead of cycle numbers. These parameters can reflect the battery aging phenomenon from different angles. The grey relational analysis method is applied to analyze the relational grade between selected features and SOH. On the other hand, some adjustments are made in the proposed GPR model. Covariance function design and the similarity measurement of input variables are modified so as to improve the SOH estimate accuracy and adapt to the case of multidimensional input. Several aging data from NASA data repository are used for demonstrating the estimation effect by the proposed method. Results show that the proposed method has high SOH estimation accuracy. Besides, a battery with dynamic discharging profile is used to verify the robustness and reliability of this method.
Directory of Open Access Journals (Sweden)
Viet Dung Cao
2013-10-01
Full Text Available Background: We extend the "Wedding Ring‟ agent-based model of marriage formation to include some empirical information on the natural population change for the United Kingdom together with behavioural explanations that drive the observed nuptiality trends. Objective: We propose a method to explore statistical properties of agent-based demographic models. By coupling rule-based explanations driving the agent-based model with observed data we wish to bring agent-based modelling and demographic analysis closer together. Methods: We present a Semi-Artificial Model of Population, which aims to bridge demographic micro-simulation and agent-based traditions. We then utilise a Gaussian process emulator - a statistical model of the base model - to analyse the impact of selected model parameters on two key model outputs: population size and share of married agents. A sensitivity analysis is attempted, aiming to assess the relative importance of different inputs. Results: The resulting multi-state model of population dynamics has enhanced predictive capacity as compared to the original specification of the Wedding Ring, but there are some trade-offs between the outputs considered. The sensitivity analysis allows identification of the most important parameters in the modelled marriage formation process. Conclusions: The proposed methods allow for generating coherent, multi-level agent-based scenarios aligned with some aspects of empirical demographic reality. Emulators permit a statistical analysis of their properties and help select plausible parameter values. Comments: Given non-linearities in agent-based models such as the Wedding Ring, and the presence of feedback loops, the uncertainty in the model may not be directly computable by using traditional statistical methods. The use of statistical emulators offers a way forward.
Reproducing kernel Hilbert spaces of Gaussian priors
Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.
2008-01-01
We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
International Nuclear Information System (INIS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-01-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise
Directory of Open Access Journals (Sweden)
David J. Savory
2017-07-01
Full Text Available Sub-Saharan Africa currently has the world’s highest urban population growth rate of any continent at roughly 4.2% annually. A better understanding of the spatiotemporal dynamics of urbanization across the continent is important to a range of fields including public health, economics, and environmental sciences. Nighttime lights imagery (NTL, maintained by the National Oceanic and Atmospheric Administration, offers a unique vantage point for studying trends in urbanization. A well-documented deficiency of this dataset is the lack of intra- and inter-annual calibration between satellites, which makes the imagery unsuitable for temporal analysis in their raw format. Here we have generated an ‘intercalibrated’ time series of annual NTL images for Africa (2000–2013 by building on the widely used invariant region and quadratic regression method (IRQR. Gaussian process methods (GP were used to identify NTL latent functions independent from the temporal noise signals in the annual datasets. The corrected time series was used to explore the positive association of NTL with Gross Domestic Product (GDP and urban population (UP. Additionally, the proportion of change in ‘lit area’ occurring in urban areas was measured by defining urban agglomerations as contiguously lit pixels of >250 km2, with all other pixels being rural. For validation, the IRQR and GP time series were compared as predictors of the invariant region dataset. Root mean square error values for the GP smoothed dataset were substantially lower. Correlation of NTL with GDP and UP using GP smoothing showed significant increases in R2 over the IRQR method on both continental and national scales. Urban growth results suggested that the majority of growth in lit pixels between 2000 and 2013 occurred in rural areas. With this study, we demonstrated the effectiveness of GP to improve conventional intercalibration, used NTL to describe temporal patterns of urbanization in Africa, and
International Nuclear Information System (INIS)
Chilenski, M.A.; Greenwald, M.; Howard, N.T.; White, A.E.; Rice, J.E.; Walk, J.R.; Marzouk, Y.
2015-01-01
The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts. (paper)
Directory of Open Access Journals (Sweden)
Meyfroidt Geert
2011-10-01
Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a
Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng
2017-08-01
Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.
Organizational strategy, structure, and process.
Miles, R E; Snow, C C; Meyer, A D; Coleman, H J
1978-07-01
Organizational adaptation is a topic that has received only limited and fragmented theoretical treatment. Any attempt to examine organizational adaptation is difficult, since the process is highly complex and changeable. The proposed theoretical framework deals with alternative ways in which organizations define their product-market domains (strategy) and construct mechanisms (structures and processes) to pursue these strategies. The framework is based on interpretation of existing literature and continuing studies in four industries (college textbook publishing, electronics, food processing, and health care).
Limit theorems for functionals of Gaussian vectors
Institute of Scientific and Technical Information of China (English)
Hongshuai DAI; Guangjun SHEN; Lingtao KONG
2017-01-01
Operator self-similar processes,as an extension of self-similar processes,have been studied extensively.In this work,we study limit theorems for functionals of Gaussian vectors.Under some conditions,we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
International Nuclear Information System (INIS)
Marrel, A.
2008-01-01
In the studies of environmental transfer and risk assessment, numerical models are used to simulate, understand and predict the transfer of pollutant. These computer codes can depend on a high number of uncertain input parameters (geophysical variables, chemical parameters, etc.) and can be often too computer time expensive. To conduct uncertainty propagation studies and to measure the importance of each input on the response variability, the computer code has to be approximated by a meta model which is build on an acceptable number of simulations of the code and requires a negligible calculation time. We focused our research work on the use of Gaussian process meta model to make the sensitivity analysis of the code. We proposed a methodology with estimation and input selection procedures in order to build the meta model in the case of a high number of inputs and with few simulations available. Then, we compared two approaches to compute the sensitivity indices with the meta model and proposed an algorithm to build prediction intervals for these indices. Afterwards, we were interested in the choice of the code simulations. We studied the influence of different sampling strategies on the predictiveness of the Gaussian process meta model. Finally, we extended our statistical tools to a functional output of a computer code. We combined a decomposition on a wavelet basis with the Gaussian process modelling before computing the functional sensitivity indices. All the tools and statistical methodologies that we developed were applied to the real case of a complex hydrogeological computer code, simulating radionuclide transport in groundwater. (author) [fr
Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali
2018-02-01
Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.
Monogamy inequality for distributed gaussian entanglement.
Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio
2007-02-02
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
Structural processing for wireless communications
Lu, Jianhua; Ge, Ning
2015-01-01
This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.
Aspects of second-order analysis of structured inhomogeneous spatio-temporal processes
DEFF Research Database (Denmark)
Møller, Jesper; Ghorbani, Mohammad
2012-01-01
Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for general inhomogeneous spatio-temporal point processes and for inhomogeneous spatio-temporal Cox processes. Assuming spatio......-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio-temporal Gaussian process. Another...... concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data....
Second-order analysis of structured inhomogeneous spatio-temporal point processes
DEFF Research Database (Denmark)
Møller, Jesper; Ghorbani, Mohammad
Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for first general inhomogeneous spatio-temporal point processes and second inhomogeneous spatio-temporal Cox processes. Assuming...... spatio-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates e.g. to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio......-temporal Gaussian process. Another concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data (the UK 2001 epidemic foot and mouth disease data)....
Some continual integrals from gaussian forms
International Nuclear Information System (INIS)
Mazmanishvili, A.S.
1985-01-01
The result summary of continual integration of gaussian functional type is given. The summary contains 124 continual integrals which are the mathematical expectation of the corresponding gaussian form by the continuum of random trajectories of four types: real-valued Ornstein-Uhlenbeck process, Wiener process, complex-valued Ornstein-Uhlenbeck process and the stochastic harmonic one. The summary includes both the known continual integrals and the unpublished before integrals. Mathematical results of the continual integration carried in the work may be applied in the problem of the theory of stochastic process, approaching to the finding of mean from gaussian forms by measures generated by the pointed stochastic processes
Shedding new light on Gaussian harmonic analysis
Teuwen, J.J.B.
2016-01-01
This dissertation consists out of two rather disjoint parts. One part concerns some results on Gaussian harmonic analysis and the other on an optimization problem in optics. In the first part we study the Ornstein–Uhlenbeck process with respect to the Gaussian measure. We focus on two areas. One is
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
2005-01-01
For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in expensive maintenance and repair actions. Further, a significant reduction of the load-bearing capacity can occur. One mode of corrosion initiation occurs when the chloride content...... is modeled by a 2-dimensional diffusion process by FEM (Finite Element Method) and the diffusion coefficient, surface chloride concentration and reinforcement cover depth are modeled by multidimensional stochastic fields, which are discretized using the EOLE (Expansion Optimum Linear Estimation) approach....... As an example a bridge pier in a marine environment is considered and the results are given in terms of the distribution of the time for initialization of corrosion...
Gaussian entanglement revisited
Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo
2018-02-01
We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.
A Gaussian Approximation Potential for Silicon
Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor
We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.
Statistically tuned Gaussian background subtraction technique for ...
Indian Academy of Sciences (India)
temporal median method and mixture of Gaussian model and performance evaluation ... to process the videos captured by unmanned aerial vehicle (UAV). ..... The output is obtained by simulation using MATLAB 2010 in a standalone PC with ...
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Wilson, Lorna R M; Hopcraft, Keith I
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
Wilson, Lorna R. M.; Hopcraft, Keith I.
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
Perspectival Structure and Vestibular Processing
DEFF Research Database (Denmark)
Alsmith, Adrian John Tetteh
2016-01-01
I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...
DEFF Research Database (Denmark)
Bennedsen, Mikkel
Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, α, of a time series. Our setup encompasses a large class of Gaussian...
DEFF Research Database (Denmark)
Møller, Jesper; Diaz-Avalos, Carlos
Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... dataset consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....
CSIR Research Space (South Africa)
Roux, FS
2009-01-01
Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...
Khan, Tariq Mahmood; Bailey, Donald G; Khan, Mohammad A U; Kong, Yinan
2017-05-01
A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.
Gaussian operations and privacy
International Nuclear Information System (INIS)
Navascues, Miguel; Acin, Antonio
2005-01-01
We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2017-01-01
Roč. 210, č. 2 (2017), s. 561-569 ISSN 0956-540X R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : body waves * seismic anisotropy * theoretical seismology * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.414, year: 2016
Gaussian maximally multipartite-entangled states
Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio
2009-12-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .
Gaussian maximally multipartite-entangled states
International Nuclear Information System (INIS)
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano
2009-01-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.
International Nuclear Information System (INIS)
Luo, Yusheng; Du, Z W; Yang, Y J; Chen, P; Wang, X H; Cheng, Y; Peng, J; Shen, A G; Hu, J M; Tian, Q; Shang, X L; Liu, Z C; Yao, X Q; Wang, J Z
2013-01-01
Early and differential diagnosis of Alzheimer’s disease (AD) has puzzled many clinicians. In this work, laser Raman spectroscopy (LRS) was developed to diagnose AD from platelet samples from AD transgenic mice and non-transgenic controls of different ages. An adaptive Gaussian process (GP) classification algorithm was used to re-establish the classification models of early AD, advanced AD and the control group with just two features and the capacity for noise reduction. Compared with the previous multilayer perceptron network method, the GP showed much better classification performance with the same feature set. Besides, spectra of platelets isolated from AD and Parkinson’s disease (PD) mice were also discriminated. Spectral data from 4 month AD (n = 39) and 12 month AD (n = 104) platelets, as well as control data (n = 135), were collected. Prospective application of the algorithm to the data set resulted in a sensitivity of 80%, a specificity of about 100% and a Matthews correlation coefficient of 0.81. Samples from PD (n = 120) platelets were also collected for differentiation from 12 month AD. The results suggest that platelet LRS detection analysis with the GP appears to be an easier and more accurate method than current ones for early and differential diagnosis of AD. (paper)
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-10-01
Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
sprotocols
2014-01-01
Authors: Spencer Reisbick & Patrick Willoughby ### Abstract This protocol describes an approach to preparing a series of Gaussian 09 computational input files for an ensemble of conformers generated in Spartan’14. The resulting input files are necessary for computing optimum geometries, relative conformer energies, and NMR shielding tensors using Gaussian. Using the conformational search feature within Spartan’14, an ensemble of conformational isomers was obtained. To convert the str...
Organizational structure in process-based organizations
Vanhaverbeke, W.P.M.; Torremans, H.P.M.
1999-01-01
This paper investigates the role of the organization structure in process-based organizations. We argue that companies cannot be designed upon organizational processes only or that process management can be simply imposed as an additional structural dimension on top of the existing functional or
Flexibility of Data-driven Process Structures
Muller, Dominic; Reichert, Manfred; Herbst, Joachim; Eder, Johann; Dustdar, Schahram
2006-01-01
The coordination of complex process structures is a fundamental task for enterprises, such as in the automotive industry. Usually, such process structures consist of several (sub-)processes whose execution must be coordinated and synchronized. Effecting this manually is both ineffective and
International Nuclear Information System (INIS)
Feller, D.; Peterson, K.A.
1998-01-01
The Gaussian-2 (G2) collection of atoms and molecules has been studied with Hartree endash Fock and correlated levels of theory, ranging from second-order perturbation theory to coupled cluster theory with noniterative inclusion of triple excitations. By exploiting the systematic convergence properties of the correlation consistent family of basis sets, complete basis set limits were estimated for a large number of the G2 energetic properties. Deviations with respect to experimentally derived energy differences corresponding to rigid molecules were obtained for 15 basis set/method combinations, as well as the estimated complete basis set limit. The latter values are necessary for establishing the intrinsic error for each method. In order to perform this analysis, the information generated in the present study was combined with the results of many previous benchmark studies in an electronic database, where it is available for use by other software tools. Such tools can assist users of electronic structure codes in making appropriate basis set and method choices that will increase the likelihood of achieving their accuracy goals without wasteful expenditures of computer resources. copyright 1998 American Institute of Physics
Nonclassicality by Local Gaussian Unitary Operations for Gaussian States
Directory of Open Access Journals (Sweden)
Yangyang Wang
2018-04-01
Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.
Statistics of peaks of Gaussian random fields
International Nuclear Information System (INIS)
Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references
Phase statistics in non-Gaussian scattering
International Nuclear Information System (INIS)
Watson, Stephen M; Jakeman, Eric; Ridley, Kevin D
2006-01-01
Amplitude weighting can improve the accuracy of frequency measurements in signals corrupted by multiplicative speckle noise. When the speckle field constitutes a circular complex Gaussian process, the optimal function of amplitude weighting is provided by the field intensity, corresponding to the intensity-weighted phase derivative statistic. In this paper, we investigate the phase derivative and intensity-weighted phase derivative returned from a two-dimensional random walk, which constitutes a generic scattering model capable of producing both Gaussian and non-Gaussian fluctuations. Analytical results are developed for the correlation properties of the intensity-weighted phase derivative, as well as limiting probability densities of the scattered field. Numerical simulation is used to generate further probability densities and determine optimal weighting criteria from non-Gaussian fields. The results are relevant to frequency retrieval in radiation scattered from random media
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
Processing of hierarchical syntactic structure in music.
Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian
2013-09-17
Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.
Kamath, Aditya; Vargas-Hernández, Rodrigo A.; Krems, Roman V.; Carrington, Tucker; Manzhos, Sergei
2018-06-01
For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy surface (PES) from a small number of (usually ab initio) energies at points. Many methods have been proposed in recent decades, each claiming a set of advantages. Unfortunately, there are few comparative studies. In this paper, we compare neural networks (NNs) with Gaussian process (GP) regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point set used to solve the vibrational Schrödinger equation, i.e., the only error that matters in quantum dynamics calculations. We also compare the vibrational spectra computed on the underlying reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed with exactly the same points, and the corresponding spectra are computed with the same points and the same basis. The GP fitting error is lower, and the GP spectrum is more accurate. The best NN fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square errors (RMSEs) of 6.53/2.54/0.86 cm-1, whereas the best GP surfaces have RMSE values of 3.87/1.13/0.62 cm-1, respectively. When fitting 625 symmetry unique points, the error in the first 100 vibrational levels is only 0.06 cm-1 with the best GP fit, whereas the spectrum on the best NN PES has an error of 0.22 cm-1, with respect to the spectrum computed on the reference PES. This error is reduced to about 0.01 cm-1 when fitting 2500 points with either the NN or GP. We also find that the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 points.
Non-Gaussian halo assembly bias
International Nuclear Information System (INIS)
Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro
2010-01-01
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively
Structural and Process Quality of Danish Preschools
DEFF Research Database (Denmark)
Slot, Pauline Louise; Bleses, Dorthe; Justice, Laura M.
2018-01-01
Structural quality in childcare centers is considered a precondition for process quality, which in turn is related to children’s outcomes. However, the evidence on relations between structural and process quality is mixed. Moreover, despite strong theoretical claims, empirical evidence supporting...
An approximate fractional Gaussian noise model with computational cost
Sørbye, Sigrunn H.
2017-09-18
Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.
AUTONOMOUS GAUSSIAN DECOMPOSITION
Energy Technology Data Exchange (ETDEWEB)
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)
2015-04-15
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.
AUTONOMOUS GAUSSIAN DECOMPOSITION
International Nuclear Information System (INIS)
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John
2015-01-01
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes
Integration of non-Gaussian fields
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille
1996-01-01
The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast....... and Randrup-Thomsen, S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation. Proc. IUTAM Symp., Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, USA, June 1993 (eds.: P. D. Spanos & Y.-T. Wu) pp. 134-162. Springer, Berlin...
Quantum information with Gaussian states
International Nuclear Information System (INIS)
Wang Xiangbin; Hiroshima, Tohya; Tomita, Akihisa; Hayashi, Masahito
2007-01-01
Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states
Structure, processing, and properties of potatoes
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.
1992-06-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
Structure, processing, and properties of potatoes
Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.
1992-01-01
The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.
International Nuclear Information System (INIS)
Ji, Se-Wan; Nha, Hyunchul; Kim, M S
2015-01-01
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit
International Nuclear Information System (INIS)
Bukhari, W; Hong, S-M
2016-01-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN + , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN + prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN + implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN + . The experimental results show that the EKF-GPRN + algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN + algorithm can further reduce the prediction error by employing the gating function
Amplitude structure of off-shell processes
International Nuclear Information System (INIS)
Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.
1984-01-01
The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process
Gaussian discriminating strength
Rigovacca, L.; Farace, A.; De Pasquale, A.; Giovannetti, V.
2015-10-01
We present a quantifier of nonclassical correlations for bipartite, multimode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in Farace et al., [New J. Phys. 16, 073010 (2014), 10.1088/1367-2630/16/7/073010]. As the latter the new measure exploits the quantum Chernoff bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam splitter a factorized two-mode thermal state. For these density matrices, we study how nonclassical correlations are related with the entanglement present in the system and with its total photon number.
Energy Technology Data Exchange (ETDEWEB)
Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2016-08-15
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.
Bayesian structural inference for hidden processes
Strelioff, Christopher C.; Crutchfield, James P.
2014-04-01
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Syntactic Structures as Descriptions of Sensorimotor Processes
Directory of Open Access Journals (Sweden)
Alistair Knott
2014-02-01
Full Text Available In this paper I propose a hypothesis linking elements of a model of theoretical syntax with neural mechanisms in the domain of sensorimotor processing. The syntactic framework I adopt to express this linking hypothesis is Chomsky’s Minimalism: I propose that the language-independent ’Logical Form’ (LF of a sentence reporting a concrete episode in the world can be interpreted as a detailed description of the sensorimotor processes involved in apprehending that episode. The hypothesis is motivated by a detailed study of one particular episode, in which an agent grasps a target object. There are striking similarities between the LF structure of transitive sentences describing this episode and the structure of the sensorimotor processes through which it is apprehended by an observer. The neural interpretation of Minimalist LF structure allows it to incorporate insights from empiricist accounts of syntax, relating to sentence processing and to the learning of syntactic constructions.
LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES
DEFF Research Database (Denmark)
Friis-Hansen, Peter; Ditlevsen, Ove Dalager
2004-01-01
The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....
Aerospace structural design process improvement using systematic evolutionary structural modeling
Taylor, Robert Michael
2000-10-01
A multidisciplinary team tasked with an aircraft design problem must understand the problem requirements and metrics to produce a successful design. This understanding entails not only knowledge of what these requirements and metrics are, but also how they interact, which are most important (to the customer as well as to aircraft performance), and who in the organization can provide pertinent knowledge for each. In recent years, product development researchers and organizations have developed and successfully applied a variety of tools such as Quality Function Deployment (QFD) to coordinate multidisciplinary team members. The effectiveness of these methods, however, depends on the quality and fidelity of the information that team members can input. In conceptual aircraft design, structural information is of lower quality compared to aerodynamics or performance because it is based on experience rather than theory. This dissertation shows how advanced structural design tools can be used in a multidisciplinary team setting to improve structural information generation and communication through a systematic evolution of structural detail. When applied to conceptual design, finite element-based structural design tools elevate structural information to the same level as other computationally supported disciplines. This improved ability to generate and communicate structural information enables a design team to better identify and meet structural design requirements, consider producibility issues earlier, and evaluate structural concepts. A design process experiment of a wing structural layout in collaboration with an industrial partner illustrates and validates the approach.
Interconversion of pure Gaussian states requiring non-Gaussian operations
Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.
2015-01-01
We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.
Geometry of perturbed Gaussian states and quantum estimation
International Nuclear Information System (INIS)
Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A
2011-01-01
We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)
Yurinsky, Vadim Vladimirovich
1995-01-01
Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.
Oracle Wiener filtering of a Gaussian signal
Babenko, A.; Belitser, E.
2011-01-01
We study the problem of filtering a Gaussian process whose trajectories, in some sense, have an unknown smoothness ß0 from the white noise of small intensity e. If we knew the parameter ß0, we would use the Wiener filter which has the meaning of oracle. Our goal is now to mimic the oracle, i.e.,
Oracle Wiener filtering of a Gaussian signal
Babenko, A.; Belitser, E.N.
2011-01-01
We study the problem of filtering a Gaussian process whose trajectories, in some sense, have an unknown smoothness β0 from the white noise of small intensity . If we knew the parameter β0, we would use the Wiener filter which has the meaning of oracle. Our goal is now to mimic the oracle, i.e.,
Ultrafast Optical Signal Processing with Bragg Structures
Directory of Open Access Journals (Sweden)
Yikun Liu
2017-05-01
Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.
Rotating quantum Gaussian packets
International Nuclear Information System (INIS)
Dodonov, V V
2015-01-01
We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)
PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC
International Nuclear Information System (INIS)
James, J. Berian
2012-01-01
We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity that appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.
Resensi Buku: Organization Strategy, Structure, and Process
Directory of Open Access Journals (Sweden)
Ayi Ahadiyat
2009-08-01
Full Text Available Book ReviewJudul Buku : Organization Strategy, Structure, and ProcessPenulis : Raymond E. Miles and Charles C. SnowPenerbit : McGraw-Hill Kogakusha, Ltd (International Student Edition, Tokyo, 274 hlm.Tahun : 1978
DEFF Research Database (Denmark)
Møller, Jesper; Diaz-Avalos, Carlos
2010-01-01
Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... data set consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....
Information processing for aerospace structural health monitoring
Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.
1998-06-01
Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.
Parallel processing of structural integrity analysis codes
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.
1996-01-01
Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab
On knowledge structures for process operators
International Nuclear Information System (INIS)
Wirstad, J.
1981-05-01
A conceptual framework for operator competency and job training planning and design being developed and used for operators in Swedish nuclear power stations is presented briefly. This conceptual framework represents a training technological approach. It uses terms which are system oriented and familiar to people working in the plant. Another conceptual framework is focusing on the information processing of the operator and its relation to physical, functional and abstract representations of the plant and the process. This conceptual framework has been developed by Risoe in Denmark especially for man process-interaction analysis and design. There are interesting relations between the two structures, e.g. human information processing in plant operation is largely a function of operator learning of the work, the processes and the plants units, its subsystems and components. The two framework are analysed and relations between them are indicated. (author)
GaussianCpG: a Gaussian model for detection of CpG island in human genome sequences.
Yu, Ning; Guo, Xuan; Zelikovsky, Alexander; Pan, Yi
2017-05-24
As crucial markers in identifying biological elements and processes in mammalian genomes, CpG islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation, chromosome inactivation and nuclesome retention. The generally accepted criteria of CGI rely on: (a) %G+C content is ≥ 50%, (b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6, and (c) the general length of CGI is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria. Experiments indicate that in many cases %G+C is human genome. We analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by balancing both sensitivity and specificity over known human CGI data sets. Compared with other models, GaussianCpG can achieve better performance in CGI detection. Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and artificial data sets.
International Nuclear Information System (INIS)
McFadden, Paul; Skenderis, Kostas
2011-01-01
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work
Rearrangement of cluster structure during fission processes
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.
2004-01-01
Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...
Processing and Structure of Carbon Nanofiber Paper
Directory of Open Access Journals (Sweden)
Zhongfu Zhao
2009-01-01
Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.
Geometry of Gaussian quantum states
International Nuclear Information System (INIS)
Link, Valentin; Strunz, Walter T
2015-01-01
We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)
A Gaussian graphical model approach to climate networks
Energy Technology Data Exchange (ETDEWEB)
Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)
2014-06-15
Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.
A Gaussian graphical model approach to climate networks
International Nuclear Information System (INIS)
Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus
2014-01-01
Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately
Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri
2018-01-01
This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).
Tax issues in structuring gas process arrangements
International Nuclear Information System (INIS)
Iverach, R.J.
1999-01-01
The current status of various tax issues regarding ownership, operation and financing of gas processing facilities in Canada was discussed. Frequently, energy companies are not taxed because of their large pools of un-depreciated capital cost and other resource related accounts. In addition, their time horizons for taxability are being extended in line with the expansion of their businesses. However, other investors are fully taxable, hence they wish to shelter their income through the use of tax efficient investment arrangements. This paper provides a detailed description of the tax treatment of gas processing facilities, tax implications of various structures between the producer and the investor such as lease, processing fee arrangements etc., and use of 'Canadian Renewable and Conservation Expense' (CRCE) for cogeneration projects within processing plants. All these need to be considered before completing a financing transaction involving a gas processing facility, since the manner in which the transaction is completed will determine the advantages and benefits from an income tax perspective. The accounting and legal aspects must be similarly scrutinized to ensure that the intended results for all parties are achieved. 8 figs
Baura, Alendu; Sen, Monoj Kumar; Goswami, Gurupada; Bag, Bidhan Chandra
2011-01-28
In this paper we have calculated escape rate from a meta stable state in the presence of both colored internal thermal and external nonthermal noises. For the internal noise we have considered usual gaussian distribution but the external noise may be gaussian or non-gaussian in characteristic. The calculated rate is valid for low noise strength of non-gaussian noise such that an effective gaussian approximation of non-gaussian noise wherein the higher order even cumulants of order "4" and higher are neglected. The rate expression we derived here reduces to the known results of the literature, as well as for purely external noise driven activated rate process. The latter exhibits how the rate changes if one switches from non-gaussian to gaussian character of the external noise.
Handbook of Gaussian basis sets
International Nuclear Information System (INIS)
Poirier, R.; Kari, R.; Csizmadia, I.G.
1985-01-01
A collection of a large body of information is presented useful for chemists involved in molecular Gaussian computations. Every effort has been made by the authors to collect all available data for cartesian Gaussian as found in the literature up to July of 1984. The data in this text includes a large collection of polarization function exponents but in this case the collection is not complete. Exponents for Slater type orbitals (STO) were included for completeness. This text offers a collection of Gaussian exponents primarily without criticism. (Auth.)
Legendre Duality of Spherical and Gaussian Spin Glasses
International Nuclear Information System (INIS)
Genovese, Giuseppe; Tantari, Daniele
2015-01-01
The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model
Legendre Duality of Spherical and Gaussian Spin Glasses
Energy Technology Data Exchange (ETDEWEB)
Genovese, Giuseppe, E-mail: giuseppe.genovese@math.uzh.ch [Universität Zürich, Institut für Mathematik (Switzerland); Tantari, Daniele, E-mail: daniele.tantari@sns.it [Scuola Normale Superiore di Pisa, Centro Ennio de Giorgi (Italy)
2015-12-15
The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model.
Image reconstruction under non-Gaussian noise
DEFF Research Database (Denmark)
Sciacchitano, Federica
During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... to the ill-posedness of the problem, the simple inversion of the degradation model does not give any good reconstructions. Therefore, to deal with the ill-posedness it is necessary to use some prior information on the solution or the model and the Bayesian approach. Additive Gaussian noise has been......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...
Institute of Scientific and Technical Information of China (English)
李修亮; 苏宏业; 褚健
2009-01-01
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee machine is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemi-cal processes.
Perturbative Gaussianizing transforms for cosmological fields
Hall, Alex; Mead, Alexander
2018-01-01
Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.
Fractional Gaussian noise: Prior specification and model comparison
Sø rbye, Sigrunn Holbek; Rue, Haavard
2017-01-01
Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.
Fractional Gaussian noise: Prior specification and model comparison
Sørbye, Sigrunn Holbek
2017-07-07
Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.
Expertise and processing distorted structure in chess.
Bartlett, James C; Boggan, Amy L; Krawczyk, Daniel C
2013-01-01
A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure-a kind of exploratory chunking-that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory.
Direct Importance Estimation with Gaussian Mixture Models
Yamada, Makoto; Sugiyama, Masashi
The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.
Extended Linear Models with Gaussian Priors
DEFF Research Database (Denmark)
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Decomposability and convex structure of thermal processes
Mazurek, Paweł; Horodecki, Michał
2018-05-01
We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.
Resonant non-Gaussianity with equilateral properties
International Nuclear Information System (INIS)
Gwyn, Rhiannon; Rummel, Markus
2012-11-01
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f NL ∝O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Resonant non-Gaussianity with equilateral properties
Energy Technology Data Exchange (ETDEWEB)
Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f{sub NL} {proportional_to}O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Information geometry of Gaussian channels
International Nuclear Information System (INIS)
Monras, Alex; Illuminati, Fabrizio
2010-01-01
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
Non-gaussianity versus nonlinearity of cosmological perturbations.
Verde, L
2001-06-01
Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.
Comparison of Gaussian and non-Gaussian Atmospheric Profile Retrievals from Satellite Microwave Data
Kliewer, A.; Forsythe, J. M.; Fletcher, S. J.; Jones, A. S.
2017-12-01
The Cooperative Institute for Research in the Atmosphere at Colorado State University has recently developed two different versions of a mixed-distribution (lognormal combined with a Gaussian) based microwave temperature and mixing ratio retrieval system as well as the original Gaussian-based approach. These retrieval systems are based upon 1DVAR theory but have been adapted to use different descriptive statistics of the lognormal distribution to minimize the background errors. The input radiance data is from the AMSU-A and MHS instruments on the NOAA series of spacecraft. To help illustrate how the three retrievals are affected by the change in the distribution we are in the process of creating a new website to show the output from the different retrievals. Here we present initial results from different dynamical situations to show how the tool could be used by forecasters as well as for educators. However, as the new retrieved values are from a non-Gaussian based 1DVAR then they will display non-Gaussian behaviors that need to pass a quality control measure that is consistent with this distribution, and these new measures are presented here along with initial results for checking the retrievals.
Gaussian entanglement distribution via satellite
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Revisiting non-Gaussianity from non-attractor inflation models
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
Tachyon mediated non-Gaussianity
International Nuclear Information System (INIS)
Dutta, Bhaskar; Leblond, Louis; Kumar, Jason
2008-01-01
We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.
Non-Gaussianity from inflation: theory and observations
Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A.
2004-11-01
This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.
Turbo Equalization Using Partial Gaussian Approximation
DEFF Research Database (Denmark)
Zhang, Chuanzong; Wang, Zhongyong; Manchón, Carles Navarro
2016-01-01
This letter deals with turbo equalization for coded data transmission over intersymbol interference (ISI) channels. We propose a message-passing algorithm that uses the expectation propagation rule to convert messages passed from the demodulator and decoder to the equalizer and computes messages...... returned by the equalizer by using a partial Gaussian approximation (PGA). We exploit the specific structure of the ISI channel model to compute the latter messages from the beliefs obtained using a Kalman smoother/equalizer. Doing so leads to a significant complexity reduction compared to the initial PGA...
Musical information processing reflecting its structure
Hiraga, Rumi
1999-01-01
In pursuit of generating expressive musical rendition with rules, the computer music project Psyche has greatly concerned musical structure. Although described implicitly, musical structure exists innately and absolutely in musical scores. This thesis demonstrates the successful introduction of musical structure to computer music systems that are related to performance synthesis. Two systems, a performance visualization system and a computer-assisted musical analysis system Daphne, are descri...
The Multivariate Gaussian Probability Distribution
DEFF Research Database (Denmark)
Ahrendt, Peter
2005-01-01
This technical report intends to gather information about the multivariate gaussian distribution, that was previously not (at least to my knowledge) to be found in one place and written as a reference manual. Additionally, some useful tips and tricks are collected that may be useful in practical ...
Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John
2003-12-31
Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.
Current inversion induced by colored non-Gaussian noise
International Nuclear Information System (INIS)
Bag, Bidhan Chandra; Hu, Chin-Kung
2009-01-01
We study a stochastic process driven by colored non-Gaussian noises. For the flashing ratchet model we find that there is a current inversion in the variation of the current with the half-cycle period which accounts for the potential on–off operation. The current inversion almost disappears if one switches from non-Gaussian (NG) to Gaussian (G) noise. We also find that at low value of the asymmetry parameter of the potential the mobility controlled current is more negative for NG noise as compared to G noise. But at large magnitude of the parameter the diffusion controlled positive current is higher for the former than for the latter. On increasing the noise correlation time (τ), keeping the noise strength fixed, the mean velocity of a particle first increases and then decreases after passing through a maximum if the noise is non-Gaussian. For Gaussian noise, the current monotonically decreases. The current increases with the noise parameter p, 0< p<5/3, which is 1 for Gaussian noise
Passivity and practical work extraction using Gaussian operations
International Nuclear Information System (INIS)
Brown, Eric G; Huber, Marcus; Friis, Nicolai
2016-01-01
Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary resources in the context of quantum thermodynamics. Conversely, states whose average energy cannot be lowered by unitary transformations are called passive. However, while work may be extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in practice. It is therefore pertinent to consider the passivity of states under restricted classes of operations that can be feasibly implemented. Here, we ask how restrictive the class of Gaussian unitaries is for the task of work extraction. We investigate the notion of Gaussian passivity, that is, we present necessary and sufficient criteria identifying all states whose energy cannot be lowered by Gaussian unitaries. For all other states we give a prescription for the Gaussian operations that extract the maximal amount of energy. Finally, we show that the gap between passivity and Gaussian passivity is maximal, i.e., Gaussian-passive states may still have a maximal amount of energy that is extractable by arbitrary unitaries, even under entropy constraints. (paper)
Design and Processing of Structural Composite Batteries
National Research Council Canada - National Science Library
Wong, E. L; Baechle, D. M; Xu, K; Carter, R. H; Snyder, J. F; Wetzel, E. D
2007-01-01
...) 2007 Symposium and Exhibition held in Baltimore, MD, on 3-7 June 2007. Multifunctional structural composites are being developed to simultaneously bear mechanical loads and store electrochemical energy...
Laguerre Gaussian beam multiplexing through turbulence
CSIR Research Space (South Africa)
Trichili, A
2014-08-17
Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...
Gaussian beam-to-slab waveguide coupler by graded index photonic crystal lens
International Nuclear Information System (INIS)
Bahari, B; Abrishamian, M S
2013-01-01
In this numerical study, a Gaussian beam-to-slab waveguide coupler for both modes of TM and TE has been studied. For this purpose, a concrete structure is suggested, in which the graded index photonic crystal lens and the slab waveguide are in the same structure composed of Si material, and can be fabricated with a single-step lithography process. For maximum power coupling, half-holes have been used as an input matching layer. Power coupling of 80% over a 450 nm bandwidth for the TM mode, and 60% over a 180 nm bandwidth for the TE mode is achieved. (paper)
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Gaussian statistics for palaeomagnetic vectors
Love, J. J.; Constable, C. G.
2003-03-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
SR 97 - Identification and structuring of process
International Nuclear Information System (INIS)
Pers, K.; Skagius, K.; Soedergren, S.; Wiborgh, M.; Hedin, A.; Moren, L.; Sellin, P.; Stroem, A.; Pusch, R.; Bruno, J.
1999-12-01
This report documents work conducted in recent years to identify processes and interactions of importance to the evaluation of long-term safety of a KBS 3 type deep repository for spent nuclear fuel. Previous, partly undocumented work regarding interaction matrices is described as well as the THMC diagrams that have been used in the safety assessment SR 97. The coupling between the two sources of information is documented in a database. In the same database, the interaction matrices are briefly documented, while the processes in the THMC diagrams are more thoroughly documented in a special so called Process Report, which forms an important supporting document for SR 97
SR 97 - Identification and structuring of process
Energy Technology Data Exchange (ETDEWEB)
Pers, K.; Skagius, K.; Soedergren, S.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden); Hedin, A.; Moren, L.; Sellin, P.; Stroem, A. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Pusch, R. [Geodevelopment AB, Lund (Sweden); Bruno, J. [QuantiSci SL, Barcelona (Spain)
1999-12-01
This report documents work conducted in recent years to identify processes and interactions of importance to the evaluation of long-term safety of a KBS 3 type deep repository for spent nuclear fuel. Previous, partly undocumented work regarding interaction matrices is described as well as the THMC diagrams that have been used in the safety assessment SR 97. The coupling between the two sources of information is documented in a database. In the same database, the interaction matrices are briefly documented, while the processes in the THMC diagrams are more thoroughly documented in a special so called Process Report, which forms an important supporting document for SR 97.
In-situ observation of structure formation in polymer processing
International Nuclear Information System (INIS)
Murase, Hiroki
2009-01-01
In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)
Automated simulation and study of spatial-structural design processes
Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.
2013-01-01
A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are
Stable Lévy motion with inverse Gaussian subordinator
Kumar, A.; Wyłomańska, A.; Gajda, J.
2017-09-01
In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.
Inflation in random Gaussian landscapes
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2017-05-01
We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.
General Galilei Covariant Gaussian Maps
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Gaussian Embeddings for Collaborative Filtering
Dos Santos , Ludovic; Piwowarski , Benjamin; Gallinari , Patrick
2017-01-01
International audience; Most collaborative ltering systems, such as matrix factorization, use vector representations for items and users. Those representations are deterministic, and do not allow modeling the uncertainty of the learned representation, which can be useful when a user has a small number of rated items (cold start), or when there is connict-ing information about the behavior of a user or the ratings of an item. In this paper, we leverage recent works in learning Gaussian embeddi...
Damage and failure processes in structural materials
International Nuclear Information System (INIS)
Embury, J.D.
1993-01-01
At large plastic strains consideration must be given not only to the descriptions of work hardening and texture evolution but also to the process of damage accumulation and the documentation of the various modes of failure which may terminate the plastic history. In this presentation consideration is given first to documenting the various modes of failure and their dependence on stress state. It is then shown that damage accumulation can be studied in a quantitative manner by using model systems in conjunction with FEM calculations. Finally consideration is given to complex forming processes such as ironing to show how studies of damage initiation and accumulation relate to practical engineering problems. (orig.)
Process of obtaining the multilayer structure
International Nuclear Information System (INIS)
Buzdugan, A.; Dolghieru, V.; Jitari, V.; Colomeico, E.; Popescu, A.
1997-01-01
The invention relates to the multilayer structures of glassy semiconductors with the refractive index abrupt and smooth variation at the bound between the layers and may be used for manufacturing the optical information transmission and recording media. With a view to simplify the technology, compositionally different layers of chalcogenide glassy semiconductors having various refractive indexes from As 2 S 3 , are being by thermal vacuum evaporation, changing the vaporization temperature thereof from 120 to 280 C
Organizational structure features supporting knowledge management processes
Claver-Cortés, Enrique; Zaragoza Sáez, Patrocinio del Carmen; Pertusa-Ortega, Eva
2007-01-01
Purpose – The idea that knowledge management can be a potential source of competitive advantage has gained strength in the last few years. However, a number of business actions are needed to generate an appropriate environment and infrastructure for knowledge creation, transfer and application. Among these actions there stands out the design of an organizational structure, the link of which with knowledge management is the main concern here. More specifically, the present paper has as its aim...
Scaled unscented transform Gaussian sum filter: Theory and application
Luo, Xiaodong
2010-05-01
In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to
Linking neural and symbolic representation and processing of conceptual structures
van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.
2017-01-01
We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual
Integrating personality structure, personality process, and personality development
Baumert, Anna; Schmitt, Manfred; Perugini, Marco; Johnson, Wendy; Blum, Gabriela; Borkenau, Peter; Costantini, Giulio; Denissen, J.J.A.; Fleeson, William; Grafton, Ben; Jayawickreme, Eranda; Kurzius, Elena; MacLeod, Colin; Miller, Lynn C.; Read, Stephen J.; Robinson, Michael D.; Wood, Dustin; Wrzus, Cornelia
2017-01-01
In this target article, we argue that personality processes, personality structure, and personality development have to be understood and investigated in integrated ways in order to provide comprehensive responses to the key questions of personality psychology. The psychological processes and
Coronal Structures as Tracers of Sub-Surface Processes
Indian Academy of Sciences (India)
tribpo
dramatic differences in appearance and physical processes, all these structures share a common ... mena that indicate a close relationship between coronal and sub-photo- spheric processes. .... 8) maintaining the same chirality. Large scale ...
Spin structure in high energy processes: Proceedings
Energy Technology Data Exchange (ETDEWEB)
DePorcel, L.; Dunwoodie, C. [eds.
1994-12-01
This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.
Spin structure in high energy processes: Proceedings
International Nuclear Information System (INIS)
DePorcel, L.; Dunwoodie, C.
1994-12-01
This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere
Adaptive Filtering for Non-Gaussian Processes
DEFF Research Database (Denmark)
Kidmose, Preben
2000-01-01
A new stochastic gradient robust filtering method, based on a non-linear amplitude transformation, is proposed. The method requires no a priori knowledge of the characteristics of the input signals and it is insensitive to the signals distribution and to the stationarity of the signals. A simulat...
Energy Technology Data Exchange (ETDEWEB)
Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com
2014-10-01
Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.
Synthesis of computational structures for analog signal processing
Popa, Cosmin Radu
2011-01-01
Presents the most important classes of computational structures for analog signal processing, including differential or multiplier structures, squaring or square-rooting circuits, exponential or Euclidean distance structures and active resistor circuitsIntroduces the original concept of the multifunctional circuit, an active structure that is able to implement, starting from the same circuit core, a multitude of continuous mathematical functionsCovers mathematical analysis, design and implementation of a multitude of function generator structures
Perturbative corrections for approximate inference in gaussian latent variable models
DEFF Research Database (Denmark)
Opper, Manfred; Paquet, Ulrich; Winther, Ole
2013-01-01
Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact b...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....
Space structure of hadrons and soft processes
International Nuclear Information System (INIS)
Nyiri, J.
1980-12-01
A semi-phenomenological description of soft hadronic processes is given based on the picture of spatially separated quarks and on the spectator mechanism. It is pointed out that the data on the production of secondary mesons support the assumption of quark combinatorics. It is shown that the baryon production can be described roughly by the hypothesis of the dominance of the lowest SU(6)baryon multiplet. Two ways of explaining the slight discrepancy between the experimental data and the theoretical predictions on the increase of baryon multiplicities with the increase of energy are given. (P.L.)
Lifting Primordial Non-Gaussianity Above the Noise
Welling, Yvette; Woude, Drian van der; Pajer, Enrico
2016-01-01
Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen
Specific "scientific" data structures, and their processing
Directory of Open Access Journals (Sweden)
Jerzy Karczmarczuk
2011-09-01
Full Text Available Programming physicists use, as all programmers, arrays, lists, tuples, records, etc., and this requires some change in their thought patterns while converting their formulae into some code, since the "data structures" operated upon, while elaborating some theory and its consequences, are rather: power series and Padé approximants, differential forms and other instances of differential algebras, functionals (for the variational calculus, trajectories (solutions of differential equations, Young diagrams and Feynman graphs, etc. Such data is often used in a [semi-]numerical setting, not necessarily "symbolic", appropriate for the computer algebra packages. Modules adapted to such data may be "just libraries", but often they become specific, embedded sub-languages, typically mapped into object-oriented frameworks, with overloaded mathematical operations. Here we present a functional approach to this philosophy. We show how the usage of Haskell datatypes and - fundamental for our tutorial - the application of lazy evaluation makes it possible to operate upon such data (in particular: the "infinite" sequences in a natural and comfortable manner.
Indentification and structuring of data for automatic processing
International Nuclear Information System (INIS)
Wohland, H.; Rexer, G.; Ruehle, R.
1976-01-01
The data structure of a technical and scientific application system is described. The description of the structure is divided in different sections where the user can describe his own data. By fixing a section of this structure, a high degree of automation of the problem solving process can be achieved while preserving flexibility. (orig.) [de
Permutation entropy of fractional Brownian motion and fractional Gaussian noise
International Nuclear Information System (INIS)
Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.
2008-01-01
We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid
2016-01-13
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah
2016-01-01
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Situational Script Management of Business Processes with Changeable Structure
Chaliy, Sergey; Chala, Oksana
2008-01-01
In the presented work the problem of management business-processes with changeable structure is considered and situational based approach to its decision is offered. The approach is based on situational model of management business-process according to which process is represented as a set of situations. The script defining necessary actions is connected with each situation. Management of process is carried out by means of the rules formalizing functional requirements to processes.
Non-equilibrium quasiparticle processes in superconductor tunneling structures
International Nuclear Information System (INIS)
Perold, W.J.
1990-01-01
A broad overview is presented of the phenomenon of superconductivity. The tunneling of quasiparticles in superconducter-insulator structures is described. Related non-equilibrium processes, such as superconductor bandgap suppresion, quasiparticle diffusion and recombination, and excess quasiparticle collection are discussed. The processes are illustrated with numerical computer simulation data. The importance of the inter-relationship between these processes in practical multiple tunneling junction superconducting device structures is also emphasized. 14 refs., 8 figs
Detection of range migrating targets in compound-Gaussian clutter
Petrov, N.; le Chevalier, F.; Yarovyi, O.
2018-01-01
This paper deals with the problem of coherent radar detection of fast moving targets in a high range resolution mode. In particular, we are focusing on the spiky clutter modeled as a compound Gaussian process with rapidly varying power along range. Additionally, a fast moving target of interest has
Cognitive Structures in Vocational Information Processing and Decision Making.
Nevill, Dorothy D.; And Others
1986-01-01
Tested the assumptions that the structural features of vocational schemas affect vocational information processing and career self-efficacy. Results indicated that effective vocational information processing was facilitated by well-integrated systems that processed information along fewer dimensions. The importance of schematic organization on the…
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
Directory of Open Access Journals (Sweden)
Frank van der Velde
2017-08-01
Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.
Phase coherence among the Fourier modes and non-Gaussian characteristics in the Alfvén chaos system
Nariyuki, Yasuhiro; Sasaki, Makoto; Kasuya, Naohiro; Hada, Tohru; Yagi, Masatoshi
2017-03-01
Non-Gaussian characteristics in time series of the Alfvén chaos system are discussed. The phase coherence index, a measure defined by using the surrogate data method and the structure function, is used to evaluate the phase coherence among the Fourier modes. Through Monte Carlo significance testing, it is found that the phase coherence decays monotonically with increasing dissipative parameter and time scale. By applying the Mori projection operator method assuming the Markov process, a model equation for the time correlation function is derived from the generalized Langevin equation. As opposed to the result of the phase coherence analysis, it is concluded that the difference between the direct numerical simulation and the model equation becomes pronounced as the dissipative parameters are increased. This suggests that, even when the phase coherence index is not significant, the underlying physical system may be a non-Gaussian process.
Processing of three-dimensional structures of Nuclear Medicine in PET modality
International Nuclear Information System (INIS)
Pacheco, Edward Florez; Furuie, Sergio Shiguemi
2013-01-01
The nuclear medicine, as a specialty to obtain medical images is very important, and it has became one of the main procedures utilized in health care centers to analyze the metabolic behavior of the patient. This project was based on medical images obtained by the PET modality (Positron Emission Tomography). Thus, we developed a framework for processing Nuclear Medicine three-dimensional images of the PET modality, which is composed of consecutive steps that start with the generation of standard images (gold standard) by using simulated images of the Left Ventricular Heart, such as phantoms obtained from the NCAT-4D software. Then, Poisson quantum noise was introduced into the whole volume to simulate the characteristic noises in PET images. Subsequently, the pre-processing step was executed by using specific 3D filters, such as the median filter, the weighted Gaussian filter, and the Anscombe/Wiener filter. Then the segmentation process, which is based on the fuzzy connectedness theory, was implemented. For that purpose four different 3D approaches were implemented: Generic, LIFO, kTetaFOEMS, and dynamic weight algorithm. Finally, an assessment procedure was used as a measurement tool to quantify three parameters (true positive, false positive and maximum distance) that determined the level of efficiency and precision of our process. It was found that the pair filter - segmenter formed by the Anscombe/Wiener filter together with the Fuzzy segmenter based on dynamic weights provided the best results, with VP and FP rates of 98.49 ±0.27% and 2.19 ±0.19%, respectively, for the simulation of the left ventricular volume. Along with the set of choices made during the processing structure, the project was finished with the analysis of a small number of volumes that belonged to a real PET test, thus the quantification of the volumes was obtained. (author)
Scattering and Gaussian Fluctuation Theory for Semiflexible Polymers
Directory of Open Access Journals (Sweden)
Xiangyu Bu
2016-09-01
Full Text Available The worm-like chain is one of the best theoretical models of the semiflexible polymer. The structure factor, which can be obtained by scattering experiment, characterizes the density correlation in different length scales. In the present review, the numerical method to compute the static structure factor of the worm-like chain model and its general properties are demonstrated. Especially, the chain length and persistence length involved multi-scale nature of the worm-like chain model are well discussed. Using the numerical structure factor, Gaussian fluctuation theory of the worm-like chain model can be developed, which is a powerful tool to analyze the structure stability and to predict the spinodal line of the system. The microphase separation of the worm-like diblock copolymer is considered as an example to demonstrate the usage of Gaussian fluctuation theory.
White Gaussian Noise - Models for Engineers
Jondral, Friedrich K.
2018-04-01
This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.
Novel cost controlled materials and processing for primary structures
Dastin, S. J.
1993-01-01
Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.
Structure, health benefits, antioxidant property and processing and ...
African Journals Online (AJOL)
Structure, health benefits, antioxidant property and processing and storage of carotenoids. ... It is sensitive to heat, light and oxygen. Enzymatic ... Thermal treatment and freezing increases the extractability of b-carotene from the food matrices.
Structural design considerations for a radwaste processing facility
International Nuclear Information System (INIS)
Foelber, S.C.; Sabbe, M.A.
1985-01-01
The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures
International Nuclear Information System (INIS)
McHugh, Derek; Buzek, Vladimir; Ziman, Mario
2006-01-01
We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case
Quantum beamstrahlung from gaussian bunches
International Nuclear Information System (INIS)
Chen, P.
1987-08-01
The method of Baier and Katkov is applied to calculate the correction terms to the Sokolov-Ternov radiation formula due to the variation of the magnetic field strength along the trajectory of a radiating particle. We carry the calculation up to the second order in the power expansion of B tau/B, where tau is the formation time of radiation. The expression is then used to estimate the quantum beamstrahlung average energy loss from e + e - bunches with gaussian distribution in bunch currents. We show that the effect of the field variation is to reduce the average energy loss from previous calculations based on the Sokolov-Ternov formula or its equivalent. Due to the limitation of our method, only an upper bound of the reduction is obtained. 18 refs
Bureaucratic Structure, Organizational Processes, and Three Dimensions of School Effectiveness.
Miskel, Cecil; And Others
The purpose of this study was to test the hypotheses that schools with more participative processes and less structure have higher levels of perceived organizational effectiveness, teacher job satisfaction, and student achievement than schools with less participative climates and more structure. A sample of 114 school units and 1,632 teachers…
Spin structure of nucleon in QCD: inclusive and exclusive processes
International Nuclear Information System (INIS)
Teryaev, O.V.
2001-01-01
There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes
On the thermodynamic properties of the generalized Gaussian core model
Directory of Open Access Journals (Sweden)
B.M.Mladek
2005-01-01
Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.
Statistical imitation system using relational interest points and Gaussian mixture models
CSIR Research Space (South Africa)
Claassens, J
2009-11-01
Full Text Available The author proposes an imitation system that uses relational interest points (RIPs) and Gaussian mixture models (GMMs) to characterize a behaviour. The system's structure is inspired by the Robot Programming by Demonstration (RDP) paradigm...
Structural properties of reflected Lévy processes
DEFF Research Database (Denmark)
Andersen, Lars Nørvang; Mandjes, Michel
This paper considers a number of structural properties of reflected Lévy processes, where both one-sided reflection (at 0) and two-sided reflection (at both 0 and K > 0) are examined. With Vt being the position of the reflected process at time t, we focus on the analysis of ζ(t) := EVt and ξ(t) :...
Gaussian limit of compact spin systems
International Nuclear Information System (INIS)
Bellissard, J.; Angelis, G.F. de
1981-01-01
It is shown that the Wilson and Wilson-Villain U(1) models reproduce, in the low coupling limit, the gaussian lattice approximation of the Euclidean electromagnetic field. By the same methods it is also possible to prove that the plane rotator and the Villain model share a common gaussian behaviour in the low temperature limit. (Auth.)
Strategic Planning Process and Organizational Structure: Impacts, Confluence and Similarities
Directory of Open Access Journals (Sweden)
Dyogo Felype Neis
2017-01-01
Full Text Available This article aims to analyze the relationship between the strategic planning process and organizational structure in the reality of a complex organization: the Public Prosecutor’s Office of Santa Catarina (MPSC. The research is set by the single case study research strategy and data were collected through the following instruments: bibliographical research, documentary research, semi-structured interviews and systematic observation. The conclusion indicates that the phases of the strategic planning process influence and are influenced by the elements of the organizational structure and highlights the confluences, the impacts and similarities between the stages of formulation and implementation of the strategic process with the various constituent elements of the organizational structure.
Entanglement in Gaussian matrix-product states
International Nuclear Information System (INIS)
Adesso, Gerardo; Ericsson, Marie
2006-01-01
Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
DEFF Research Database (Denmark)
Berg, Jacob; Natarajan, Anand; Mann, Jakob
2016-01-01
taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...
Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.
2014-12-01
Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.
Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere
Lukin, Igor P.
2017-11-01
In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.
Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís
2013-10-25
The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.
Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter
2017-11-01
Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.
Modelling and estimating degradation processes with application in structural reliability
International Nuclear Information System (INIS)
Chiquet, J.
2007-06-01
The characteristic level of degradation of a given structure is modeled through a stochastic process called the degradation process. The random evolution of the degradation process is governed by a differential system with Markovian environment. We put the associated reliability framework by considering the failure of the structure once the degradation process reaches a critical threshold. A closed form solution of the reliability function is obtained thanks to Markov renewal theory. Then, we build an estimation methodology for the parameters of the stochastic processes involved. The estimation methods and the theoretical results, as well as the associated numerical algorithms, are validated on simulated data sets. Our method is applied to the modelling of a real degradation mechanism, known as crack growth, for which an experimental data set is considered. (authors)
Increasing Entanglement between Gaussian States by Coherent Photon Subtraction
DEFF Research Database (Denmark)
Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa
2007-01-01
We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...
ACToR Chemical Structure processing using Open Source ...
ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d
Global tree network for computing structures enabling global processing operations
Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.
2010-01-19
A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.
Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation
Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet
2015-01-01
When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating
The properties of the dark matter halo distribution in non-Gaussian scenarios
International Nuclear Information System (INIS)
Carbone, C.; Branchini, E.; Dolag, K.; Grossi, M.; Iannuzzi, F.; Matarrese, S.; Moscardini, L.; Verde, L.
2009-01-01
The description of halo abundance and clustering for non-Gaussian initial conditions has recently received renewed interest, motivated by the forthcoming large galaxy and cluster surveys, which can potentially detect primordial non-Gaussianity of the local form with a non-Gaussianity parameter |f NL | of order unity. This is particularly exciting because, while the simplest single-field slow-roll models of inflation predict a primordial |f NL | NL of large-scale structures that are expected to be above the predicted detection threshold [C. Carbone, L. Verde, and S. Matarrese, ApJL 684 (2008) L1]. We present tests on N-body simulations of analytical formulae describing the halo abundance and clustering for non-Gaussian initial conditions. In particular, when we calibrate the analytic non-Gaussian mass function of [S. Matarrese, L. Verde, L. and R. Jimenez, ApJL 541 (2000) 10] and [M. LoVerde, A. Miller, S. Shandera and L. Verde, JCAP 04 (2008) 014] and the analytic description of halo clustering for non-Gaussian initial conditions on N-body simulations, we find excellent agreement between the simulations and the analytic predictions if we make the substitutions δ c →δ c x√(q) and δ c →δ c xq where q≅0.75, in the density threshold for gravitational collapse and in the non-Gaussian fractional correction to the halo bias, respectively. We discuss the implications of these corrections on present and forecasted primordial non-Gaussianity constraints. We confirm that the non-Gaussian halo bias offers a robust and highly competitive test of primordial non-Gaussianity.
Charging/discharging processes in nanocrystaline MOS structures - Theoretical study
International Nuclear Information System (INIS)
Tanous, D; Mazurak, A; Majkusiak, B
2016-01-01
We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)
Hollmann, Ferdinand
2013-01-01
This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.
Structure to self-structuring: infrastructures and processes in neurobehavioural rehabilitation.
Jackson, Howard F; Hague, Gemma; Daniels, Leanne; Aguilar, Ralph; Carr, Darren; Kenyon, William
2014-01-01
The importance of structure in post-acute brain injury rehabilitation is repeatedly mentioned in clinical practice. However, there has been little exploration of the key elements of structure that promote greater levels of functioning and emotional/behavioural stability and how these elements are optimally integrated within the infrastructure of a rehabilitation service. The nature of structure and why it is helpful is explored initially. Thereafter, the processes involved in transition from externally supported structure to the client 'self-structuring' are described. The infrastructure for facilitating these transitional processes are considered in terms of the design of services for systemic neurorehabilitation encompassing environmental factors (e.g. living environments, vocational and recreational options, step-up services and social milieus), therapeutic alliances (rehabilitation professionals, family, friends), organisational structures (service delivery, rehabilitation coaching, transdisciplinary teams) and rehabilitation philosophies and practice. It is concluded that the process of supporting individuals to transition from the 'structure' of the environment and other people towards self-structuring skills is a critical process in rehabilitation. This is reliant upon a comprehensive and robust organisational infrastructure that can successfully and flexibly integrate the core elements of structure across a transitional pathway towards increased independence and self-structuring.
Continuation-like semantics for modeling structural process anomalies
Directory of Open Access Journals (Sweden)
Grewe Niels
2012-09-01
Full Text Available Abstract Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions, gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets.
Structural health monitoring an advanced signal processing perspective
Chen, Xuefeng; Mukhopadhyay, Subhas
2017-01-01
This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.
Out-of-order event processing in kinetic data structures
DEFF Research Database (Denmark)
Abam, Mohammad; de Berg, Mark; Agrawal, Pankaj
2011-01-01
’s for the maintenance of several fundamental structures such as kinetic sorting and kinetic tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short......We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS...
QuikForm: Intelligent deformation processing of structural alloys
Energy Technology Data Exchange (ETDEWEB)
Bourcier, R.J.; Wellman, G.W.
1994-09-01
There currently exists a critical need for tools to enhance the industrial competitiveness and agility of US industries involved in deformation processing of structural alloys. In response to this need, Sandia National Laboratories has embarked upon the QuikForm Initiative. The goal of this program is the development of computer-based tools to facilitate the design of deformation processing operations. The authors are currently focusing their efforts on the definition/development of a comprehensive system for the design of sheet metal stamping operations. The overall structure of the proposed QuikForm system is presented, and the focus of their thrust in each technical area is discussed.
Binaural hearing in children using Gaussian enveloped and transposed tones.
Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y
2016-04-01
Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.
A new planetary structure fabrication process using phosphoric acid
Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit
2018-02-01
Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Gaussian Mixture Model of Heart Rate Variability
Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario
2012-01-01
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386
Non-Gaussianity from isocurvature perturbations
Energy Technology Data Exchange (ETDEWEB)
Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)
2008-11-15
We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they
Improving design processes through structured reflection : a prototype software tool
Reymen, I.M.M.J.; Melby, E.
2001-01-01
A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype software tool and the design method are developed as part of the Ph.D. project of Isabelle Reymen. The goal of the design method is supporting designers with reflection on design processes in a systemati...
A Structural Reliability Business Process Modelling with System Dynamics Simulation
Lam, C. Y.; Chan, S. L.; Ip, W. H.
2010-01-01
Business activity flow analysis enables organizations to manage structured business processes, and can thus help them to improve performance. The six types of business activities identified here (i.e., SOA, SEA, MEA, SPA, MSA and FIA) are correlated and interact with one another, and the decisions from any business activity form feedback loops with previous and succeeding activities, thus allowing the business process to be modelled and simulated. For instance, for any company that is eager t...
A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems
Energy Technology Data Exchange (ETDEWEB)
Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2017-11-02
We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the other hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.
Array processors based on Gaussian fraction-free method
Energy Technology Data Exchange (ETDEWEB)
Peng, S; Sedukhin, S [Aizu Univ., Aizuwakamatsu, Fukushima (Japan); Sedukhin, I
1998-03-01
The design of algorithmic array processors for solving linear systems of equations using fraction-free Gaussian elimination method is presented. The design is based on a formal approach which constructs a family of planar array processors systematically. These array processors are synthesized and analyzed. It is shown that some array processors are optimal in the framework of linear allocation of computations and in terms of number of processing elements and computing time. (author)
Time rescaling and Gaussian properties of the fractional Brownian motions
International Nuclear Information System (INIS)
Maccone, C.
1981-01-01
The fractional Brownian motions are proved to be a class of Gaussian (normal) stochastic processes suitably rescaled in time. Some consequences affecting their eigenfunction expansion (Karhunen-Loeve expansion) are inferred. A known formula of Cameron and Martin is generalized. The first-passage time probability density is found. The partial differential equation of the fractional Brownian diffusion is obtained. And finally the increments of the fractional Brownian motions are proved to be independent for nonoverlapping time intervals. (author)
Improving design processes through structured reflection : a prototype software tool
Reymen, I.M.M.J.; Melby, E.
2001-01-01
A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype
Combinatorial structures and processing in neural blackboard architectures
van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto
2015-01-01
We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.
Buying business services : towards a structured service purchasing process
Valk, van der W.; Rozemeijer, F.A.
2009-01-01
Abstract: Purpose – This paper aims to uncover the specific difficulties associated with buying services and proposes a structured purchasing process which can help organisational buyers to overcome the problems associated with services purchasing. Design/methodology/approach – The authors
Some recent work on lattice structures for digital signal processing
Indian Academy of Sciences (India)
Digital signal processing (DSP); lattice structures; finite impulse ... fascinated this author for a long time, and for the known non-canonical ...... where M
Review of "Conceptual Structures: Information Processing in Mind and Machine."
Smoliar, Stephen W.
This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…
Effective Organizational Structures and Processes: Addressing Issues of Change
Andrade, Maureen Snow
2016-01-01
This chapter describes organizational structures and processes at the institutional and project levels for the development and support of distance learning initiatives. It addresses environmental and stakeholder issues and explores principles and strategies of effective leadership for change creation and management.
Partial summations of stationary sequences of non-Gaussian random variables
DEFF Research Database (Denmark)
Mohr, Gunnar; Ditlevsen, Ove Dalager
1996-01-01
The distribution of the sum of a finite number of identically distributed random variables is in many cases easily determined given that the variables are independent. The moments of any order of the sum can always be expressed by the moments of the single term without computational problems...... of convergence of the distribution of a sum (or an integral) of mutually dependent random variables to the Gaussian distribution. The paper is closely related to the work in Ditlevsen el al. [Ditlevsen, O., Mohr, G. & Hoffmeyer, P. Integration of non-Gaussian fields. Prob. Engng Mech 11 (1996) 15-23](2)....... lognormal variables or polynomials of standard Gaussian variables. The dependency structure is induced by specifying the autocorrelation structure of the sequence of standard Gaussian variables. Particularly useful polynomials are the Winterstein approximations that distributionally fit with non...
Resin infusion of large composite structures modeling and manufacturing process
Energy Technology Data Exchange (ETDEWEB)
Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)
2006-07-01
The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)
Processes, data structures, and apparatuses for representing knowledge
Hohimer, Ryan E [West Richland, WA; Thomson, Judi R [Guelph, CA; Harvey, William J [Richland, WA; Paulson, Patrick R [Pasco, WA; Whiting, Mark A [Richland, WA; Tratz, Stephen C [Richland, WA; Chappell, Alan R [Seattle, WA; Butner, R Scott [Richland, WA
2011-09-20
Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.
Optimal unitary dilation for bosonic Gaussian channels
International Nuclear Information System (INIS)
Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.
2011-01-01
A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.
Galaxy bias and primordial non-Gaussianity
Energy Technology Data Exchange (ETDEWEB)
Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)
2015-12-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.
Optimal cloning of mixed Gaussian states
International Nuclear Information System (INIS)
Guta, Madalin; Matsumoto, Keiji
2006-01-01
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states
Encoding information using laguerre gaussian modes
CSIR Research Space (South Africa)
Trichili, A
2015-08-01
Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...
Interweave Cognitive Radio with Improper Gaussian Signaling
Hedhly, Wafa; Amin, Osama; Alouini, Mohamed-Slim
2018-01-01
Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS
Galaxy bias and primordial non-Gaussianity
International Nuclear Information System (INIS)
Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian
2015-01-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation
A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families
Dutta, Subhajit
2014-07-28
Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.
A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families
Dutta, Subhajit; Genton, Marc G.
2014-01-01
Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.
Modeling process-structure-property relationships for additive manufacturing
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-02-01
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.
Innovation management and performance evaluation: structured process of literature review
Directory of Open Access Journals (Sweden)
Julieta Scheidt Dienstmann
2014-03-01
Full Text Available This article aims to provide a process for the construction of knowledge demanded by researchers at the initial stage of their work on innovation management. To meet this need, the process adopted was the ProKnow-C (Knowledge Development Process - Constructivist, which proposes the construction of researchers knowledge considering their perceptions on the subject, and the recognition of scientific articles analyzed. The knowledge generated in the researcher means, for this article, knowing what are the main journals, articles, authors and keywords associated with 15 articles with scientific recognition and aligned with the perception of the researcher on innovation management, with focus on results. Through this application, the process ProKnow-C is presented demonstrating how it can be used by researchers to meet their initial demands of building knowledge about innovation management and aims to instill future works based on structured processes for selecting a theoretical framework in this field of knowledge.
American Option Pricing using GARCH models and the Normal Inverse Gaussian distribution
DEFF Research Database (Denmark)
Stentoft, Lars Peter
In this paper we propose a feasible way to price American options in a model with time varying volatility and conditional skewness and leptokurtosis using GARCH processes and the Normal Inverse Gaussian distribution. We show how the risk neutral dynamics can be obtained in this model, we interpret...... properties shows that there are important option pricing differences compared to the Gaussian case as well as to the symmetric special case. A large scale empirical examination shows that our model outperforms the Gaussian case for pricing options on three large US stocks as well as a major index...
Gaussian sum rules for optical functions
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new (Gaussian) type of sum rules (GSR) for several optical functions, is presented. The functions considered are: dielectric permeability, refractive index, energy loss function, rotatory power and ellipticity (circular dichroism). While reducing to the usual type of sum rules in a certain limit, the GSR contain in general, a Gaussian factor that serves to improve convergence. GSR might be useful in analysing experimental data. (Author) [pt
Creation of structured documentation templates using Natural Language Processing techniques.
Kashyap, Vipul; Turchin, Alexander; Morin, Laura; Chang, Frank; Li, Qi; Hongsermeier, Tonya
2006-01-01
Structured Clinical Documentation is a fundamental component of the healthcare enterprise, linking both clinical (e.g., electronic health record, clinical decision support) and administrative functions (e.g., evaluation and management coding, billing). One of the challenges in creating good quality documentation templates has been the inability to address specialized clinical disciplines and adapt to local clinical practices. A one-size-fits-all approach leads to poor adoption and inefficiencies in the documentation process. On the other hand, the cost associated with manual generation of documentation templates is significant. Consequently there is a need for at least partial automation of the template generation process. We propose an approach and methodology for the creation of structured documentation templates for diabetes using Natural Language Processing (NLP).
Process to make core-shell structured nanoparticles
Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N
2014-01-07
Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.
Primordial non-Gaussianity from LAMOST surveys
International Nuclear Information System (INIS)
Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng
2010-01-01
The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.
Huh, Joonsuk; Yung, Man-Hong
2017-08-07
Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.
Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.
2011-04-01
In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.
Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.
Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel
2009-11-01
A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
A Decentralized Receiver in Gaussian Interference
Directory of Open Access Journals (Sweden)
Christian D. Chapman
2018-04-01
Full Text Available Bounds are developed on the maximum communications rate between a transmitter and a fusion node aided by a cluster of distributed receivers with limited resources for cooperation, all in the presence of an additive Gaussian interferer. The receivers cannot communicate with one another and can only convey processed versions of their observations to the fusion center through a Local Array Network (LAN with limited total throughput. The effectiveness of each bound’s approach for mitigating a strong interferer is assessed over a wide range of channels. It is seen that, if resources are shared effectively, even a simple quantize-and-forward strategy can mitigate an interferer 20 dB stronger than the signal in a diverse range of spatially Ricean channels. Monte-Carlo experiments for the bounds reveal that, while achievable rates are stable when varying the receiver’s observed scattered-path to line-of-sight signal power, the receivers must adapt how they share resources in response to this change. The bounds analyzed are proven to be achievable and are seen to be tight with capacity when LAN resources are either ample or limited.
Selection of power market structure using the analytic hierarchy process
International Nuclear Information System (INIS)
Subhes Bhattacharyya; Prasanta Kumar Dey
2003-01-01
Selection of a power market structure from the available alternatives is an important activity within an overall power sector reform program. The evaluation criteria for selection are both subjective as well as objective in nature and the selection of alternatives is characterised by their conflicting nature. This study demonstrates a methodology for power market structure selection using the analytic hierarchy process, a multiple attribute decision- making technique, to model the selection methodology with the active participation of relevant stakeholders in a workshop environment. The methodology is applied to a hypothetical case of a State Electricity Board reform in India. (author)
Detecting Difference between Process Models Based on the Refined Process Structure Tree
Directory of Open Access Journals (Sweden)
Jing Fan
2017-01-01
Full Text Available The development of mobile workflow management systems (mWfMS leads to large number of business process models. In the meantime, the location restriction embedded in mWfMS may result in different process models for a single business process. In order to help users quickly locate the difference and rebuild the process model, detecting the difference between different process models is needed. Existing detection methods either provide a dissimilarity value to represent the difference or use predefined difference template to generate the result, which cannot reflect the entire composition of the difference. Hence, in this paper, we present a new approach to solve this problem. Firstly, we parse the process models to their corresponding refined process structure trees (PSTs, that is, decomposing a process model into a hierarchy of subprocess models. Then we design a method to convert the PST to its corresponding task based process structure tree (TPST. As a consequence, the problem of detecting difference between two process models is transformed to detect difference between their corresponding TPSTs. Finally, we obtain the difference between two TPSTs based on the divide and conquer strategy, where the difference is described by an edit script and we make the cost of the edit script close to minimum. The extensive experimental evaluation shows that our method can meet the real requirements in terms of precision and efficiency.
Nonlinear and non-Gaussian Bayesian based handwriting beautification
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2013-03-01
A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.
New gaussian points for the solution of first order ordinary ...
African Journals Online (AJOL)
Numerical experiments carried out using the new Gaussian points revealed there efficiency on stiff differential equations. The results also reveal that methods using the new Gaussian points are more accurate than those using the standard Gaussian points on non-stiff initial value problems. Keywords: Gaussian points ...
A proposal of business processes management (BPM structure and use
Directory of Open Access Journals (Sweden)
Rafael Araujo Kluska
2015-09-01
Full Text Available The organizational processes, also known as business processes, have became a fundamental structure for the management of the modern organizations. Knowing the work flow of the organization is a necessary condition for the development of continuous improvement processes. The benefits and advantages provided by the use of an approach based on BPM (Business Processes Management are evident. The benefits include improvements in efficiency, quality and flexibility, besides other aspects generating sustainable competitive advantages. There is a wide range of studies on BPM, which display several definitions and elements characterizing the various applications. This work aims to propose a conceptual framework for interconnection between BPM elements, thus providing a better understanding of organizational processes and performance in organizational management environment. As a result, a group of BPM elements is identified and classified in: methodologies, techniques and tools which are a part of or can be efficiently connected to BPM conceptual structure. A framework for conceptual interconnection between those elements is also provided. The results of BPM application are not limited to the search for operational efficiency, but might also be considered as an element to support the organizational management.
Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure
Jurčišinová, E.; Jurčišin, M.
2017-11-01
We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.
Adding structure to the transition process to advanced mathematical activity
Engelbrecht, Johann
2010-03-01
The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.
Sasaki, Misao; Wands, David
2010-06-01
In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.
Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes
Pai, Shantaram S.; Nagpal, Vinod K.
2007-01-01
An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.
Persistent current through a semiconductor quantum dot with Gaussian confinement
International Nuclear Information System (INIS)
Boyacioglu, Bahadir; Chatterjee, Ashok
2012-01-01
The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.
Structural Prospects and Challenges for Bio Commodity Processes
Directory of Open Access Journals (Sweden)
Michael Narodoslawsky
2010-01-01
Full Text Available The current discussion about dwindling reserves of crude oil, rising fuel prices, global warming and supply disruption of natural gas has renewed interest in the provision of bioenergy and bio-based commodity products. There is a growing consensus that the 21st century will see a profound change in the resource base for industry and society, with less emphasis on fossil coal, oil and gas and more emphasis on renewable resources. This new resource base may take the form either of direct solar energy like photovoltaics and thermal solar energy or indirect utilisation of solar energy via biomass. Such a change in the raw material base, however, entails a profound revolution in the structure of processes, technologies employed and the economical framework of industry and society. Renewable resources constitute 'limited infinity': although they may be provided for infinite time, their yield is limited. This paper explores the strategic challenges for society in general and process industry in particular, and indicates some methodological approaches to meet these challenges, exemplified in case studies about decentralised bioethanol production and decentralised multifunctional production centres. The paper shows that utilising renewable resources enlarges the process concept by including resource provision and logistics into the process design. It also highlights a new balance between economy and ecology of scale when resource provision and logistics are taken into account. Ecological process evaluation as analytical methods and process synthesis as design methods will gain increasing importance for process technology as the share of renewable resources is increased.
Nano-structured polymer composites and process for preparing same
Hillmyer, Marc; Chen, Liang
2013-04-16
A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.
Mass movement processes associated with volcanic structures in Mexico City
Directory of Open Access Journals (Sweden)
Víctor Carlos Valerio
2012-11-01
Full Text Available Mexico City, one of the most populated areas of the world, has been affected by various hazards of natural origin, such as subsidence and cracking of the soil, seismicity, floods and mass movement processes (MMPs. Owing to the lack of space on the plain, in recent years urban growth has been concentrated particularly on the slopes of the surrounding mountain ranges, and this has significantly modified the dynamics of the relief as well as the hydrogeological conditions. The specific character of natural susceptibility to mass movements is strongly dependent on the geological–structural and morphological characteristics of the volcanic bodies that form the mountainous relief. This natural susceptibility, combined with the characteristics of vulnerability of the society, creates risk conditions that can generate severe consequences for the population and the economy. Hence, based on an inventory of mass movement processes comprising 95 data points, the present study aimed to achieve a zoning of the areas susceptible to these processes, as well as to characterize the mechanisms of instability in the volcanic structures that form the relief of the area in question. The results of this work clearly show the role of the lithology, the mode of emplacement and the morpho–structural characteristics of the volcanic structures, in the types of mass movement processes. In addition, it identifies the diverse activities of anthropogenic origin that favour slope instability in the zone: deforestation and burning of rubbish, felling of timber on the slopes for building infrastructure and dwellings, leakages of water, vibrations of vehicles, rotating machinery and the use of explosives in mining works, overloading the heads of the slopes, disturbance of the geohydrological regime, generation of rubbish tips, terracing of the slopes for cultivation, inadequate building regulations, and the use of counterproductive or ineffectual stabilization measures.
Tensor products of process matrices with indefinite causal structure
Jia, Ding; Sakharwade, Nitica
2018-03-01
Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.
Process, structure, property and applications of metallic glasses
Directory of Open Access Journals (Sweden)
B. Geetha Priyadarshini
2016-07-01
Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.
Framework of care: communicating the structure and processes of care.
Robertson-Malt, Suzanne; Norton-Westwood, Deborah
2017-09-01
This article attempts to present a 'macro view' of the role and nature of an organization's Framework of Care (FrOC). This 'view' arises from a critical reflection on the available literature and the combined professional experience of the authors, who have worked in a variety of healthcare systems and settings in Australia, North America, United Kingdom, and the Middle East. FrOC can be defined as the systems and processes within an organization that structure the delivery of care. These systems and processes are made evident in a series of documents, such as the Mission and Vision statement, Policies and Procedures, Standards of Care, Clinical Practice Guidelines, Clinical Pathways, and Protocols. These frameworks can provide structure for important organizational activities such as clinical audits, quality management and clinical information system (CIS) 'decision support', thereby supporting clinicians in their efforts to deliver high-quality, evidence-based care. How a healthcare organization structures its systems and processes of care directly impacts the patient and caregiver experience - made evident in patient and staff satisfaction with the services provided. Mapping out and understanding an organization's FrOC is a critical first step for interprofessional teams attempting to implement evidence into practice and/or accreditation teams and expert consultants critiquing the performance of an organization.
Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.
Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D
2001-12-17
Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.
Multipoint propagators for non-Gaussian initial conditions
International Nuclear Information System (INIS)
Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin
2010-01-01
We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.
Productive interactions: heavy particles and non-Gaussianity
International Nuclear Information System (INIS)
Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva
2017-01-01
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇ 1/2 , much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.
Productive interactions: heavy particles and non-Gaussianity
Energy Technology Data Exchange (ETDEWEB)
Flauger, Raphael [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Senatore, Leonardo; Silverstein, Eva, E-mail: flauger@physics.ucsd.edu, E-mail: mehrdadm@ias.edu, E-mail: senatore@stanford.edu, E-mail: evas@slac.stanford.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)
2017-10-01
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇{sup 1/2}, much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.
Global sensitivity analysis using a Gaussian Radial Basis Function metamodel
International Nuclear Information System (INIS)
Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua
2016-01-01
Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.
Discretisation Schemes for Level Sets of Planar Gaussian Fields
Beliaev, D.; Muirhead, S.
2018-01-01
Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.
Implications of confining force field structures in hard hadronic processes
International Nuclear Information System (INIS)
Bengtsson, H.-U.
1983-04-01
This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)
Founder takes all: density-dependent processes structure biodiversity.
Waters, Jonathan M; Fraser, Ceridwen I; Hewitt, Godfrey M
2013-02-01
Density-dependent processes play a key role in the spatial structuring of biodiversity. Specifically, interrelated demographic processes, such as gene surfing, high-density blocking, and competitive exclusion, can generate striking geographic contrasts in the distributions of genes and species. Here, we propose that well-studied evolutionary and ecological biogeographic patterns of postglacial recolonization, progressive island colonization, microbial sectoring, and even the 'Out of Africa' pattern of human expansion, are fundamentally similar, underpinned by a 'founder takes all' density-dependent principle. Additionally, we hypothesize that older historic constraints of density-dependent processes are seen today in the dramatic biogeographic shifts that occur in response to human-mediated extinction events, whereby surviving lineages rapidly expand their ranges to replace extinct sister taxa. Copyright © 2012 Elsevier Ltd. All rights reserved.
Graphical calculus for Gaussian pure states
International Nuclear Information System (INIS)
Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van
2011-01-01
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Mode entanglement of Gaussian fermionic states
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
Directory of Open Access Journals (Sweden)
Fan Meng
Full Text Available This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the l(1-norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image.
Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.
de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos
2011-01-01
In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hermite-Gaussian beams with self-forming spiral phase distribution
Zinchik, Alexander A.; Muzychenko, Yana B.
2014-05-01
Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).
Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
Martínez, C A; Khare, K; Rahman, S; Elzo, M A
2017-10-01
Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Hard and soft acids and bases: structure and process.
Reed, James L
2012-07-05
Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.
Non-Gaussianity in island cosmology
International Nuclear Information System (INIS)
Piao Yunsong
2009-01-01
In this paper we fully calculate the non-Gaussianity of primordial curvature perturbation of the island universe by using the second order perturbation equation. We find that for the spectral index n s ≅0.96, which is favored by current observations, the non-Gaussianity level f NL seen in an island will generally lie between 30 and 60, which may be tested by the coming observations. In the landscape, the island universe is one of anthropically acceptable cosmological histories. Thus the results obtained in some sense mean the coming observations, especially the measurement of non-Gaussianity, will be significant to clarify how our position in the landscape is populated.
Entanglement negativity bounds for fermionic Gaussian states
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Post-processing of structural MRI for individualized diagnostics
Bender, Benjamin; Focke, Niels K.
2015-01-01
Currently, a relevant proportion of all histopathologically proven focal cortical dysplasia (FCD) escape visual detection; this shows the need for additional improvements in analyzing MRI data. A positive MRI is still the strongest prognostic factor for postoperative freedom of seizures. Among several post-processing methods voxel-based morphometry (VBM) of T1- and T2-weighted sequences and T2 relaxometry are routinely applied in pre-surgical diagnostics of cryptogenic epilepsy in epilepsy centers. VBM is superior to conventional visual analysis with 9-15% more identified epileptogenic foci, while T2 relaxometry has its main application in (mesial) temporal lobe epilepsy. Further methods such as surface-based morphometry (SBM) or diffusion tensor imaging are promising but there is a lack of current studies comparing their individual diagnostic value. Post-processing methods represent an important addition to conventional visual analysis but need to be interpreted with expertise and experience so that they should be apprehended as a complementary tool within the context of the multi-modal evaluation of epilepsy patients. This review will give an overview of existing post-processing methods of structural MRI and outline their clinical relevance in detection of epileptogenic structural changes. PMID:25853079
Maturation processes and structures of small secreted peptides in plants
Directory of Open Access Journals (Sweden)
Ryo eTabata
2014-07-01
Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.
Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures
Huser, Raphaël
2017-06-23
Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.