WorldWideScience

Sample records for gasoline hcci particulate

  1. Chemistry Impacts in Gasoline HCCI

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  2. Dual-fuel HCCI operation with DME/LPG/gasoline/hydrogen

    International Nuclear Information System (INIS)

    Bae, C.

    2009-01-01

    The advantages of homogeneous charge compression ignition (HCCI) engines include usage of the different type of fuels, ultra low nitrogen oxide and particulate matter emissions and improved fuel economy. Disadvantages include an excessive combustion rate, engine noise, and hydrocarbon and carbon emissions. An experiment on dual-fuel HCCI operation with dimethyl ether (DME)/liquefied petroleum gas (LPG)/gasoline/hydrogen was presented. The advantages and disadvantages were first presented and the dual-fuel HCCI combustion engine was illustrated through an experimental apparatus. The experimental conditions were also presented in terms of engine speed, DME injection quantity, LPC injection quantity, and LPC composition. Experimental results were discussed for output performance and indicated mean effective pressure (IMEP). It was concluded that the effect of LPG composition in a DME-LPG dual-fueled HCCI engine at various injection quantity and injective timing were observed. Specifically, it was found that propane was a more effective way to increase IMEP in this study, and that in a DME HCCI engine, higher load limit was extended by using LPG as an ignition inhibitor. tabs., figs.

  3. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle

    2017-10-10

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline. In the present work, a three-stage fuel-air stratification development process was observed during the transition from HCCI to PPC. Moreover, a transition stage was observed between the HCCI and PPC stages. Within this transition stage, both the combustion and emission characteristics deteriorated. The allocation of this transition area was mainly determined by the geometric design of the fuel injector and combustion chamber. Some differences in charge stratification were observed between the PRF and gasoline. The NO emissions of the PRF were comparable to those of gasoline. However, the NO emissions surged during the transition stage, indicating that the PRF combustion was probably more stratified. The soot emissions from PRF and gasoline were both much higher in the PPC than the HCCI mode, though the PRF produced much less soot than did gasoline in the PPC mode.

  4. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  5. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol–gasoline

  6. Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline

    KAUST Repository

    Vedharaj, S.

    2017-10-10

    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition.

  7. Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline

    KAUST Repository

    Vedharaj, S.; Vallinayagam, R; An, Yanzhao; Izadi Najafabadi, Mohammad; Somers, Bart; Chang, Junseok; Johansson, Bengt

    2017-01-01

    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition.

  8. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  9. An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Canakci [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2008-07-15

    As an alternative combustion mode, the HCCI combustion has some benefits compared to conventional SI and CI engines, such as low NOx emission and high thermal efficiency. However, this combustion mode can produce higher UHC and CO emissions than those of conventional engines. In the naturally aspirated HCCI engines, the low engine output power limits its use in the current engine technologies. Intake air pressure boosting is a common way to improve the engine output power which is widely used in high performance SI and CI engine applications. Therefore, in this study, the effect of inlet air pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine has been investigated after converting a heavy-duty diesel engine to a HCCI direct-injection gasoline engine. The experiments were performed at three different inlet air pressures while operating the engine at the same equivalence ratio and intake air temperature as in normally aspirated HCCI engine condition at different engine speeds. The SOI timing was set dependently to achieve the maximum engine torque at each test condition. The effects of inlet air pressure both on the emissions such as CO, UHC and NOx and on the performance parameters such as BSFC, torque, thermal and combustion efficiencies have been discussed. The relationships between the emissions are also provided. 34 refs., 19 figs., 4 tabs.

  10. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  11. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  12. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  13. AN EXPERIMENTAL NOX REDUCTION POTENTIAL INVESTIGATION OF THE PARTIAL HCCI APPLICATION, ON A HIGH PRESSURE FUEL INJECTION EQUIPPED DIESEL ENGINE BY IMPLEMENTING FUMIGATION OF GASOLINE PORT INJECTION

    OpenAIRE

    ERGENÇ, Alp Tekin; YÜKSEK, Levent; ÖZENER, Orkun; IŞIN, Övün

    2016-01-01

    This work investigates the effects of partial HCCI (Homogeneous charge compression ignition) application on today's modern diesel engine tail pipe NOx emissions. Gasoline fumigation is supplied via a port fuel injection system located in the intake port of DI(Direct injection) diesel engine to maintain partial HCCI conditions and also diesel fuel injected directly into the combustion chamber before TDC(Top dead center). A single cylinder direct injection diesel research engine equipped w...

  14. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    . - So far, HCCI operation is only possible at light engine loads. - Engine-out emissions of HC and CO are not low. A low-temperature exhaust catalyst is required. Because it is possible to operate HCCI engines using a wide range of fuels, the conventional fuel specifications are not appropriate for HCCI engines. A fuel characteristic like cetane number for example, which is important for fuels in conventional diesel engines, has lost its significance for HCCI engines. Fuels like gasoline and natural gas, for which no cetane number is defined, can be used in HCCI engines. Research to establish the fuel requirements for HCCI engines has commenced. The first results indicate that the auto-ignition temperature of the fuel is important, because it has to be below the temperature that is reached in the combustion chamber after compression. The auto-ignition temperature is not specified for conventional fuel applications. Also fuel characteristics that affect the formation of a homogeneous air/fuel mixture are important, because inhomogeneities in the mixture lead to increased emission of NOx and particulates from HCCI engines. Consequently, volatility of the fuel and also boiling point may be considered important. Volatility of diesel fuel is low for example. To obtain a homogeneous air/fuel mixture with diesel, the inlet charge must be heated. A low sulphur content of the fuel is important in order to obtain high exhaust gas aftertreatment conversion efficiency. HCCI operation of internal combustion engines if possible with the fuels that are currently considered for automotive use. There are minor operational differences between the fuels, but no fundamental barriers seem to exist. This means that the conventional fuels from crude oil can be used in HCCI engines. Because the infrastructure to produce and distribute these fuels already exists, this is a plus for market introduction of HCCI engines. Fuel specifications for conventional fuels are becoming more and more

  15. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer

    2017-09-04

    The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis. LTHR formation depended on the base fuel type and the engine operating conditions suggesting that the base fuel composition has an important role in the formation of LTHR. The effect of ethanol on LTHR was explained by low temperature chemistry reactions and OH/HO evolution. A strong correlation of low temperature oxidation reactions of base fuels with ethanol was found to be responsible for the observed blending effects.

  16. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Bromberg, L. [Massachusetts Institute of Technology (MIT)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  17. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  18. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  19. A new technology to overcome the limits of HCCI engine through fuel modification

    International Nuclear Information System (INIS)

    Bahng, GunWoong; Jang, Dongsoon; Kim, Youngtae; Shin, Misoo

    2016-01-01

    Highlights: • Problems of HCCI engine can be overcome by adopting fuel modification. • Gasoline vapor with HHO gas showed drastic improvement of fuel efficiency. • Performance of single cylinder engine shows fuel efficiency more than double. - Abstract: The energy efficiency of internal combustion engine reached to about 30% only recently. To increase the efficiency, homogeneous charge compression ignition (HCCI) has been proposed, however, there is no available commercial engine yet. The main problem lies in the delayed heating rate in spite of fast reaction of homogeneous charged state of HCCI with excess air. To overcome this difficulty, a modification of fuel by vaporization of liquid gasoline with water electrolysis gas and air was adopted in order to warrant the fast and high temperature rise. Experiments were carried out with single cylinder engines supplied from the four different manufacturers. Experimental results show that fuel consumption was decreased by more than 50% compared to the case of supplying liquid fuel. It is believed it was due to the combined effects of the high and fast heating potential of water electrolysis gas together with the efficient turbulence mixing effect of vaporized fuel with excess air. By this method, the drawbacks caused by lean burn in the HCCI engine such as small power range can be overcome.

  20. Effect of lubricant oil properties on the performance of gasoline particulate filter (GPF)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Huifang; Lam, William; Remias, Joseph; Roos, Joseph; Seong, HeeJe; Choi, Seungmok

    2016-10-17

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level and detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.

  1. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  2. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  3. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  4. GM's HCCI. In-vehicle experience with a future combustion system; GM's HCCI. Erfahrungen mit einem zukuenftigen Verbrennungssystem im Fahrzeugeinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Pritze, Stefan; Koenigstein, Achim [Adam Opel GmbH, Ruesselsheim (Germany); Rayl, Allen; Chang, Chen-Fang; Najt, Paul; Grebe, Uwe D. [General Motors LLC, Warren/Ponitac, MI (United States)

    2010-07-01

    Homogeneous Charge Compression Ignition (HCCI) stands at General Motors (GM) for the auto-ignition of a homogeneous air-fuel mixture in a gasoline engine. HCCI enables unthrottle operation under part load conditions with the high potential for fuel consumption reduction at lowest NO{sub x} emission levels even with lean mixtures. It is capable to use worldwide available fuel qualities with conventional exhaust aftertreatment. Important requirements for the application in a vehicle are the realization of a large usable steady state map covering lowest engine loads including idle operation and an outstanding transient combustion performance in terms of robustness and responsiveness. The prerequisites to achieve this were set based on a spray-guided gasoline direct injection with a strategy to control the residuals by trapping and recompressing them in the combustion chamber and sensing of individual cylinder pressure. The main characteristics of the combustion system will be discussed. The application in a vehicle sets new targets in terms of engine controller requirements and the complexity of the control algorithms. Considering only indirect control of combustion being very sensitive against extraneous impacts, it becomes extremely challenging to realize robust transitions among the various operation modes. The results achieved with the integration of the presented HCCI combustion system in prototype vehicles of the midsize segment support the chosen development path. Further improvements can be expected considering the latest achievements of the combustion system development. (orig.)

  5. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  6. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  7. HCCI engine control and optimization

    OpenAIRE

    Killingsworth, Nicholas J.

    2007-01-01

    Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...

  8. HCCI Engine Optimization and Control

    Energy Technology Data Exchange (ETDEWEB)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  9. MTU series 1600 HCCI engine with extremely low exhaust emissions over the entire engine map; HCCI-Motor der MTU Baureihe 1600 mit extrem niedrigen Abgasemissionen im gesamten Motorkennfeld

    Energy Technology Data Exchange (ETDEWEB)

    Teetz, Christoph; Bergmann, Dirk; Sauer, Christina; Schneemann, Arne [MTU, Friedrichshafen (Germany); Eichmeier, Johannes; Spicher, Ulrich [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). IFKM

    2012-11-01

    The main challenge when developing off-highway engines is to keep emissions within the limits to apply in the future while maintaining low fuel consumption and low CO{sub 2} output. In the USA in particular, diesel engines in the 130 - 560 kW power range are to be subject from 2014 to EPA Tier 4 legislation, which imposes limits of 0.4 g/kWh for NO{sub x} and 0.02 g/kWh for particulate matter. Diesel units can only satisfy those requirements using a combination of in-engine measures and exhaust aftertreatment systems (SCR, particulate filters), which makes them a good deal more complex and expensive. In the face of CO{sub 2} emissions regulations and the growing demand for diesel fuel, greater emphasis is now being placed on alternative fuels. Homogeneous Charge Compression Ignition or 'HCCI' provides an alternative to complex exhaust aftertreatment systems which generates virtually no soot or nitrous oxide emissions. It does, however, present new challenges with respect to combustion control and engine load. Up to the present, it has not been possible to exploit the full potential of this combustion process over the entire engine map, since the high ignition performance of diesel fuel at high loads results in excessively early combustion and inadmissible pressure gradients. The pre-development department of MTU Friedrichshafen worked with the Institute of Internal Combustion Engines at the Karlsruhe Institute of Technology (KIT) to devise a research prototype for an industrial application which would allow semi-homogenous combustion with controlled self-ignition over the full engine map. The engine is based on a 6-cylinder version of the MTU Series 1600 unit and has a rated output of 300 kW. The fuels - gasoline or ethanol and diesel - are mixed in such a way as to avoid the disadvantages associated with most HCCI processes. Since the use of ethanol also enhances combustion efficiency, it has a two-fold positive effect on the CO{sub 2} situation. With

  10. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  11. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle; Tunestal, Per; Tuner, Martin; Johansson, Bengt

    2017-01-01

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic

  12. Effects of cetane number on HCCI combustion efficiency and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, V.; Neill, W.S.; Guo, H.; Chippior, W.L. [National Research Council of Canada, Ottawa, ON (Canada); Fairbridge, C. [Natural Resources Canada, Ottawa, ON (Canada); Mitchell, K. [Shell Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. This exothermic reaction releases chemical energy into a sensible form that can be transformed in an engine into work and heat. The effects of cetane number on HCCI combustion efficiency and emissions were examined in this presentation. The presentation discussed the experimental setup, fuels, experimental procedures, and results. The setup included an enhanced fuel injector/vaporizer consisting of an OEM gasoline port fuel injector, air blast for improved atomization, and heated section to improved vaporization. A minimally processed and low cetane number fuel derived from oil sands was used as the base fuel in the study. Two sets of experiments were devised and described to evaluate each test fuel. One set used controlled input conditions exhaust gas recirculation (EGR)-air-fuel ratio (AFR) while the other set employed controlled engine outputs (such as speed and load). Results were presented for hydroprocessing; cetane improver addition; blending with supercetane renewable diesel; and a comparison of fuels with similar cetane numbers. It was concluded that increasing the fuel cetane number shifted the AFR-EGR operating window for HCCI combustion towards higher AFT (leaner mixtures) and reduced the cyclic variations. tabs., figs.

  13. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.

    Science.gov (United States)

    Janakiraman, Vijay Manikandan; Nguyen, XuanLong; Sterniak, Jeff; Assanis, Dennis

    2015-01-01

    Homogeneous charge compression ignition (HCCI) is a futuristic automotive engine technology that can significantly improve fuel economy and reduce emissions. HCCI engine operation is constrained by combustion instabilities, such as knock, ringing, misfires, high-variability combustion, and so on, and it becomes important to identify the operating envelope defined by these constraints for use in engine diagnostics and controller design. HCCI combustion is dominated by complex nonlinear dynamics, and a first-principle-based dynamic modeling of the operating envelope becomes intractable. In this paper, a machine learning approach is presented to identify the stable operating envelope of HCCI combustion, by learning directly from the experimental data. Stability is defined using thresholds on combustion features obtained from engine in-cylinder pressure measurements. This paper considers instabilities arising from engine misfire and high-variability combustion. A gasoline HCCI engine is used for generating stable and unstable data observations. Owing to an imbalance in class proportions in the data set, the models are developed both based on resampling the data set (by undersampling and oversampling) and based on a cost-sensitive learning method (by overweighting the minority class relative to the majority class observations). Support vector machines (SVMs) and recently developed extreme learning machines (ELM) are utilized for developing dynamic classifiers. The results compared against linear classification methods show that cost-sensitive nonlinear ELM and SVM classification algorithms are well suited for the problem. However, the SVM envelope model requires about 80% more parameters for an accuracy improvement of 3% compared with the ELM envelope model indicating that ELM models may be computationally suitable for the engine application. The proposed modeling approach shows that HCCI engine misfires and high-variability combustion can be predicted ahead of time

  14. On Cyclic Variability in a Residual Effected HCCI Engine with Direct Gasoline Injection during Negative Valve Overlap

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2014-01-01

    Full Text Available This study contributes towards describing the nature of cycle-by-cycle variability in homogeneous charge compression ignition (HCCI engines. Experimental measurements were performed using a single cylinder research engine operated in the negative valve overlap (NVO mode and fuelled with direct gasoline injection. Both stoichiometric and lean mixtures were applied in order to distinguish between different exhaust-fuel reactions during the NVO period and their propagation into the main event combustion. The experimental results show that the mode of cycle-by-cycle variability depends on the NVO phenomena. Under stoichiometric mixture conditions, neither variability in the main event indicated mean effective pressure (IMEP nor the combustion timing was affected by the NVO phenomena; however, long period oscillations in IMEP were observed. In contrast, for lean mixture, where fuel oxidation during the NVO period took place, distinctive correlations between NVO phenomena and the main event combustion parameters were observed. A wavelet analysis revealed the presence of both long-term and short-term oscillations in IMEP, in accordance with the extent of NVO phenomena. Characteristic patterns in IMEP were recognized using an in-house algorithm.

  15. Experimental optimization of a direct injection homogeneous charge compression ignition gasoline engine using split injections with fully automated microgenetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli Univ., Izmit (Turkey); Reitz, R.D. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2003-03-01

    Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NO{sub x} and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60 deg spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies. (Author)

  16. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer; Atef, Nour; Singh, Eshan; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry

  17. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  18. Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions

    International Nuclear Information System (INIS)

    Bedoya, Iván D.; Saxena, Samveg; Cadavid, Francisco J.; Dibble, Robert W.; Wissink, Martin

    2012-01-01

    Highlights: ► In this paper, we study biogas combustion in an HCCI engine operating at 1800 rpm. ► At low loads, slight changes in inlet conditions strongly affect cyclic variations. ► At high loads, slight changes in inlet conditions strongly affect ringing intensity. ► Indicated efficiency at high loads is close to 45% and IMEP g is close to 7.5 bar. ► NO x emissions are below the US-2010 limit of 0.27 g/kW h. - Abstract: Combustion parameters and the main exhaust emissions from a biogas fueled HCCI engine are investigated in this study. The study was conducted on a 4-cylinder, 1.9L Volkswagen TDI Diesel engine, which was modified to run in HCCI mode with biogas by means of inlet charge temperature control, boosted intake pressure, and a sonic flow device upstream of the inlet manifold to control biogas composition and the equivalence ratio. For simulating typical power generation conditions, the engine was coupled to an AC motor generator operating at 1800 rpm. In the startup process, gasoline was used in HCCI mode for all cylinders. During the tests, biogas was used in cylinders 2 and 3, and gasoline was used in cylinders 1 and 4 to allow for more stable engine coolant and oil temperatures. The tests were performed through an experimental factorial design to evaluate the effect of inlet charge temperature, boost pressures, and the equivalence ratio of the biogas–air mixture on HCCI combustion parameters and emissions. For biogas at lower equivalence ratios, slight increases in inlet charge temperature and boost pressures enhanced combustion parameters and reduced CO and HC emissions. For biogas at higher equivalence ratios, the effects of inlet charge conditions on HCCI combustion and CO and HC emissions were attenuated; however, ringing intensities and NO x emissions were increased with higher inlet charge temperature and higher boosted pressures. The maximum gross indicated mean effective pressure was 7.4 bar, the maximum gross indicated

  19. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  20. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  1. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg; Bedoya, Ivá n D.

    2013-01-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  2. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  3. Particulate emissions from road transportation (gasoline and diesel). Chemical and granulometric characteristics; relative contribution; Emissions particulaires par les transports routiers (essence et diesel) caracteristiques chimiques et granulometriques contribution relative

    Energy Technology Data Exchange (ETDEWEB)

    Belot, G. [PSA-Peugiot-Citroen, 92 - La Garenne-Colombes (France)

    1996-12-31

    The formation process and chemical composition of diesel, leaded and lead-free gasoline combustion particulates are presented, and the effects of engine technology, post-treatments (oxidative catalysis), automobile speed and fuel type (more especially diesel type), on the granulometry of gasoline and diesel automotive particulates are studied. The emission contributions from the various diesel vehicle types (automobiles, trucks, buses), gasoline and diesel automobiles and other natural and anthropogenic particulate sources, are presented and compared

  4. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.

    Science.gov (United States)

    Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto

    2015-10-06

    The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and

  5. Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

    KAUST Repository

    An, Yanzhao; Vallinayagam, R; Vedharaj, S; Masurier, Jean-Baptiste; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NO) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release. Soot mass concentration was measured and linked with the combustion stratification and the integrated red channel intensity of the high-speed images for the soot emissions. The nucleation nanoscale particle number and the particle size distribution were sampled to understand the effect of combustion mode switch.

  6. Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

    KAUST Repository

    An, Yanzhao

    2017-10-10

    In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NO) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release. Soot mass concentration was measured and linked with the combustion stratification and the integrated red channel intensity of the high-speed images for the soot emissions. The nucleation nanoscale particle number and the particle size distribution were sampled to understand the effect of combustion mode switch.

  7. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.

    2018-03-20

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel + 55% RON 97 gasoline) with derived cetane number (DCN) of 36 are selected for experimentation in an optical engine. Besides naphtha and dieseline, PRF60 is also tested as a surrogate fuel for naphtha. For the reported fuel with same RON = 60, the effect of physical properties on combustion homogeneity when moving from homogenized charge compression ignition (HCCI) to compression ignition (CI) combustion is studied.The combustion phasing of naphtha at an intake air temperature of 95 °C is taken as the baseline data. The engine experimental results show that higher and lower intake air temperature is required for dieseline mixtures to have same combustion phasing as that of naphtha at HCCI and CI conditions due to the difference in the physical properties. Especially at HCCI mode, due to wider distillation range of dieseline, the evaporation of the fuel is affected so that the gas phase mixture becomes too lean to auto-ignite. However, at partially premixed combustion (PPC) conditions, all test fuels required almost same intake air temperature to match up with the combustion phasing of baseline naphtha. From the rate of heat release and combustion images, it was found that naphtha and PRF60 showed improved premixed combustion when compared dieseline mixtures. The stratification analysis shows that combustion is more stratified for dieseline whereas it is premixed for naphtha and PRF60. The level of stratification linked with soot emission showed that soot concentration is higher at stratified CI combustion whereas near zero soot emissions were noted at PPC mode.

  8. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad

    2017-03-28

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  9. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad; Bhavani Shankar, Vijai Shankar; Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  10. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  11. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  12. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    Science.gov (United States)

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  13. Flex Fuel Optimized SI and HCCI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guoming [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Schock, Harold [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Yang, Xiaojian [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Huisjen, Andrew [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Stuecken, Tom [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Moran, Kevin [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhen, Ren [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhang, Shupeng [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Opra, John [Chrysler Corporation, Auburn Hill, MI (United States); Reese, Ron [Chrysler Corporation, Auburn Hill, MI (United States)

    2013-12-20

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for

  14. Evaluation of heat transfer correlations for HCCI engine modeling

    NARCIS (Netherlands)

    Soyhan, H.S.; Yasar, H.; Walmsley, H.; Head, B.; Kalghatgi, G.T.; Sorusbay, C.

    2009-01-01

    Combustion in HCCI engines is a controlled auto-ignition of well-mixed fuel, air and residual gas. The thermal conditions of the combustion chamber are governed by chemical kinetics strongly coupled with heat transfer from the hot gas to the walls. The heat losses have a critical effect on HCCI

  15. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    OpenAIRE

    S. Sendilvelan; S.Mohanamurugan

    2011-01-01

    Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA) in a Homogeneous Charge Compression Ignition (HCCI) engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combus...

  16. Development of HCCI Engines for Dimethyl Ether

    DEFF Research Database (Denmark)

    Hansen, Kim Rene; Pedersen, Troels Dyhr; Schramm, Jesper

    This report has been prepared for the Danish Energy Agency. It summarizes the results of the project entitled: “Development of HCCI engines for DME”. The project has been financed by “EFP 06”. The chapters about theoretical and experimental studies have been written using the language and termino......This report has been prepared for the Danish Energy Agency. It summarizes the results of the project entitled: “Development of HCCI engines for DME”. The project has been financed by “EFP 06”. The chapters about theoretical and experimental studies have been written using the language...

  17. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  18. Universal autoignition models for designer fuels in HCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Boulouchos, K.; Wright, Y.M. [LAV - Aerothermochemistry and Combustion Systems Laboratory - Institute of Energy Technology, ETH Zurich (Switzerland)], email: vandersickel@lav.mavt.ethz.ch

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, homogeneous charge compression ignition (HCCI), can improve the emissions performance of an engine in terms of NOx and soot release over that of diesel while maintaining the same efficiencies. However, problems of ignition timing control arise with HCCI. The aim of this paper is to determine how fuel properties impact the HCCI ignition process and operating range. This study was carried out as part of a collaboration among several universities and automotive companies and 10 fuels were investigated experimentally and numerically using Arrhenius' model and a lumped reaction model. The two ignition models were successfully adapted to describe the behavior of the studied fuels; atomizer engine experiments validated their results. Further work will be conducted to optimize the reaction mechanism for the remaining process fuels.

  19. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey

    2011-01-01

    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  20. Investigation of a wet ethanol operated HCCI engine based on first and second law analyses

    International Nuclear Information System (INIS)

    Khaliq, Abdul; Trivedi, Shailesh K.; Dincer, Ibrahim

    2011-01-01

    In this paper, a conceptual wet ethanol operated homogeneous charge compression ignition (HCCI) engine is proposed to shift the energy balance in favor of ethanol. The investigated option, HCCI engine is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Combined first and second law of thermodynamic approach is applied for a HCCI engine operating on wet ethanol and computational analysis is performed to investigate the effects of turbocharger compressor ratio, ambient temperature, and compressor adiabatic efficiency on first law efficiency, second law efficiency, and exergy destruction in each component. First law and second law efficiencies are found to be an increasing function of the turbocharger pressure ratio, while they are found to be a decreasing function of the ambient temperature. The effect of turbocharger pressure ratio on exergy destruction is found to be more significant than compressor efficiency and ambient temperature. Exergy analysis indicates that maximum exergy is destroyed in HCCI engine which represents about 90.09% of the total exergy destruction in the overall system. Around 4.39% exergy is destroyed by the process of heat transfer in fuel vaporizer and heat exchanger. Catalytic converter contributes about 4.08% of the total exergy destruction. This will provide some original information on the role of operating variables and will be quite useful in obtaining the optimum design of ethanol fuelled HCCI engines. - Highlights: → Direct utilization of wet ethanol in HCCI engines shift the energy balance in favor of ethanol. → First and second law efficiencies of wet ethanol operated HCCI engine increases with the increase in the turbocharger pressure ratio and its polytropic efficiency. → Second law analysis provides a suitable ranking among the components of the system in terms of exergy destruction. → Analysis of the results clearly showed that the highest irreversibility sources

  1. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan

    2017-03-28

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  2. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan; Waqas, Muhammad; Johansson, Bengt; Sarathy, Mani

    2017-01-01

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  3. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  4. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2016-04-05

    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  5. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  6. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  7. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  8. Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles

    Science.gov (United States)

    2017-12-01

    In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...

  9. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  10. Thermodynamic analysis of an HCCI engine based system running on natural gas

    International Nuclear Information System (INIS)

    Djermouni, Mohamed; Ouadha, Ahmed

    2014-01-01

    Highlights: • A thermodynamic analysis of an HCCI based system has been carried out. • A thermodynamic model has been developed taking into account the gas composition resulting from the combustion process. • The specific heat of the working fluid is temperature dependent. - Abstract: This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine

  11. Evaluation of technological alternative for low emission gasoline in PETROBRAS; Avaliacao de alternativas tecnologicas para gasolina de baixa emissao na PETROPBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, William Richard [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Tecnologia de Catalisadores de FCC - TFCC

    2004-07-01

    More than 30% of the total NO and CO emitted to the atmosphere and up to 20% of the CO{sub 2} are produced by automobiles. New smart fuel injection systems and the three-way catalytic converter in the automobile tail pipes have dramatically reduced NO and CO emissions, but have also required a profound change in gasoline specifications, particularly in the case of sulfur content. In Brazil, the refining of Campos basin heavy crude oils with a high concentration of nitrogen and the gasoline production strongly dependent of the FCC process, have introduced additional challenges. In this work, classic solutions such as FCC feed hydrotreatment, cracked naphta post-treatment, and the use of FCC gasoline sulfur reduction catalyst additives applied to the PETROBRAS scenario will be discussed. Changes to the FCC process to produce future fuels with lower aromaticity and lower emissions in new HCCI motors, which have hybrid characteristics between Diesel and Otto power-trains will also be discussed. (author)

  12. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  13. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  14. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    Science.gov (United States)

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were

  15. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  16. A numerical study of HCCI combustion of PRF mixtures compared with PCCI experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijngaarden, B.

    2008-09-15

    For automotive applications engines that produce less soot and NOx are desired. For that reason the Homogeneous Charge Compression Ignition (HCCI) principle is investigated all over the world, including the technical universities of Berlin (TUB) and Eindhoven. HCCI combines a homogeneous charge, as in an Otto engine with the autoignition principle of a Diesel engine. Auto-ignition and almost instantaneous combustion of a homogeneous charge leads to almost zero soot emissions, lower temperatures and thereby much lower NOx emissions. Auto-ignition timing however, depends on the fuel and its chemistry, which is very sensitive to the applied conditions, being pressure, temperature, equivalence ratio ({phi}), dilution with EGR and engine speed. To study this systematically a 0D model with PRF fuels is used (Primary Reference Fuels are n-heptane, iso-octane and mixtures). A 0D model is chosen because it excludes complex fluid dynamics and thereby allows the use of detailed combustion mechanisms, describing the (PRF) chemistry. Furthermore the model has a multi zone possibility to evaluate in-homogeneities of the charge. PRF fuels are used because n-heptane (CN=55) auto-ignites like a diesel and iso-octane (ON=100) approaches gasoline. For the PRF chemistry three combustion mechanisms were selected, of which two were validated showing a great difference in predicted ignition delay and sensitivity to changes. Furthermore the model was validated with a PCCI (Premixed Charge Compression Ignition) experiment. Extensive comparisons with PCCI experiments from the TUB showed that when the moment of injection was used to launch the chemistry in the model, only the Soyhan mechanism predicted the ignition close to the experimental ignition moment. Furthermore a 7 zone model was able to approach the experimental CO and NOX emissions. Finally none of the mechanisms was able to predict a pressure profile similar to the experiments. More zones and or a better mechanism could improve

  17. Validation of a reduced chemical mechanism coupled to CFD model in a 2-stroke HCCI engine

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Somers, B.; Nuraini, A.

    2015-01-01

    Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a

  18. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  19. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.

    2018-04-03

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at 180 CAD (aTDC) and 30 CAD (aTDC), respectively. In the presented work, intake air temperature is used as control parameter to maintain combustion stability at idle and low load condition, while the intake air pressure is maintained at 1 bar (ambient). The engine is equipped with variable valve cam phasers that can phase both inlet and exhaust valves from the original timing. For the maximum cam phasing range (56 CAD) at a valve lift of 0.3 mm, the maximum allowable positive valve overlap was 20 CAD. In the present study, the exhaust cam is phased to 26 CAD and 6 CAD and the corresponding NVO is noted to be 10 CAD and 30 CAD, respectively. With exhaust cam phasing adjustment, the exhaust valve is closed early to retain hot residual gases inside the cylinder. As such, the in-cylinder temperature is increased and a reduction in the required intake air temperature to control combustion phasing is possible. For a constant combustion phasing of 3 CAD (aTDC), a minimum load of indicated mean effective pressure (IMEP) = 1 bar is attained for gasoline (RON = 91) at HCCI and PPC modes. The coefficient of variance was observed to below 5% at these idle and low load conditions. At the minimum load point, the

  20. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  1. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  2. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  3. Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice.

    Science.gov (United States)

    Campen, Matthew J; McDonald, Jacob D; Reed, Matthew D; Seagrave, Jeanclare

    2006-01-01

    Fresh vehicular emissions potentially represent a ubiquitous environmental concern for cardiovascular health. We compared electrocardiographic effects of fresh gasoline engine emissions with resuspended paved road dust in a mouse model of coronary insufficiency. Apolipoprotein E (ApoE)-/- mice on a high fat diet were exposed by whole-body inhalation to either gasoline emissions at 60 microg/m3 particulate matter (PM), an equivalent atmosphere with particles filtered out of the whole exhaust, or paved road dust at 0.5 and 3.5 mg /m3 for 6 h/d for 3 d. Radiotelemetry recordings of electrocardiogram (ECG) were analyzed for changes in T-wave morphology (QT interval, T-wave amplitude, and T-wave Area). Following exposures, lung lavage and blood samples were obtained to assay for markers of pulmonary and systemic inflammation. No exposure induced significant changes in heart rate and only the high concentration of road dust induced signs of pulmonary inflammation. T-wave area exhibited significant deviation from baseline values during exposure to gasoline exhaust particulates, but not to either concentration of road dust or gasoline emissions sans particulates. Gasoline-exposed mice demonstrated elevated plasma endothelin-1, but did not cause systemic inflammation. These data support the hypothesis that freshly-generated engine emissions, as opposed to resuspended paved road dust, may drive cardiac effects that have been observed at road-sides in the environment. The absence of ECG effects for both very high concentrations of road dust PM and equivalent concentrations of the vapor/gas phase of gasoline engine exhaust further indicate the specific risk conferred by fresh vehicular PM.

  4. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-04-15

    Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air-fuel ratios at constant engine speed of 1500 rpm and P-{theta} diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are 'maximum rate of pressure rise' and 'COV of indicated mean effective pressure (IMEP)'. (author)

  5. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  6. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  7. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    Directory of Open Access Journals (Sweden)

    Caitlin L. Maikawa

    2018-03-01

    Full Text Available Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group. Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH metabolism (Cyp1b1 and inflammation (TNFα in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  8. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    Science.gov (United States)

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  9. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends

    International Nuclear Information System (INIS)

    Li, Gang; Zhang, Chunhua; Zhou, Jiawang

    2017-01-01

    Highlights: • The HCCI combustion was achieved on an engine fueled by n-butanol/n-heptane blends. • The knock tendency and cyclical variation of the HCCI combustion were studied. • The knock tendency can be weakened by increasing the blending ratio of n-butanol. • The knock tendency and cyclical variation are sensitive to the combustion phasing. • Cyclical variation always shows an opposite trend with the knock tendency. - Abstract: The homogeneous charge compression ignition (HCCI) combustion operation is conducted in the 2nd cylinder of a natural-aspirated four-stroke diesel engine. In the HCCI combustion mode, the n-butanol, n-heptane and their blends are injected into the intake port to form a lean homogeneous air-fuel mixture, which is consumed by the autoignition after compression. The objective of this study is to investigate the knock tendency and the cyclical variations of the HCCI engine. Experimental results show that the volume fraction of n-butanol affects the knock tendency greatly, which obviously decreases as the n-butanol volume fraction increases. The knocking combustion in the HCCI combustion is characterized by the high heat release rate (HRR). Both elevating the engine speed and raising the intake temperature contributes to an obvious increase in HRR and the knock tendency. But the HRR and knock tendency may slightly decrease when the engine speed reaches to 1400 rev/min and intake temperature reaches to 160 °C. Furthermore, the knock tendency can be weakened by increasing the excess air-fuel ratio. Cyclical variations of the HCCI engine are quantified by the coefficient of variation for the peak pressure (COV_P_m_a_x) and it exhibits an almost opposite trend to the knock tendency. The COV_P_m_a_x may considerably increase along with either increasing the blending ratio of n-butanol or increasing the excess air-fuel ratio. Moreover, it is reveled that the COV_P_m_a_x is sensitive to the relative position of peak HRR. The cyclical

  10. Development of a new reduced hydrogen combustion mechanism with NO_x and parametric study of hydrogen HCCI combustion using stochastic reactor model

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2017-01-01

    Highlights: • PDF based stochastic reactor model used for study of hydrogen HCCI engine. • New reduced hydrogen combustion mechanism with NOx developed (30 species and 253 reactions). • Mechanism predicts cylinder pressure and captures NO_x emission trend with sufficient accuracy. • Parametric study of hydrogen HCCI engine over wide range of speed and load conditions. • Hydrogen HCCI operating range increases with compression ratio & decreases with engine speed. - Abstract: Hydrogen is a potential alternative and renewable fuel for homogenous charge compression ignition (HCCI) engine to achieve higher efficiency and zero emissions of CO, unburned hydrocarbons as well as other greenhouse gases such as CO_2 and CH_4. In this study, a detailed hydrogen oxidation mechanism with NO_x was developed by incorporating additional species and NO_x reactions to the existing hydrogen combustion mechanism (10 species and 40 reactions). The detailed hydrogen combustion mechanism used in this study consists of 39 species and 311 reactions. A reduced mechanism consisting 30 species and 253 reactions was also developed by using directed relation graph (DRG) method from detailed mechanism. Developed mechanisms were validated with experimental data by HCCI engine simulation using stochastic reactor model. Sensitivity analysis was performed to identify the most important reactions in hydrogen combustion and NO_x formation in HCCI engine. Pathway analysis was also performed to analyze the important reaction pathways at different temperatures. Results revealed that H2 + HO2 [=] H + H2O2 and O2 + NNH [=] N2 + HO2 are the most significant reactions in the hydrogen HCCI combustion and NO_x formation respectively. Detailed parametric study of HCCI combustion was conducted using developed chemical kinetic model. Numerical simulations are performed at different engine operating condition by varying engine speed (1000–3000 rpm), intake air temperature (380–460 K), and compression

  11. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  12. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  13. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  14. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  15. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lyford-Pike, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  16. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines.

    Science.gov (United States)

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-09-02

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.

  17. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2015-09-01

    Full Text Available Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC. It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work and to determine the oxygen storage capacity (OSC without unnecessary emissions.

  18. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming

    Energy Technology Data Exchange (ETDEWEB)

    Peucheret, S.; Wyszynski, M.L.; Lehrle, R.S. [Future Power Systems Group, Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Golunski, S. [Johnson Matthey, Technology Centre, Blount' s Court, Sonning Common, Reading RG4 9NH (United Kingdom); Xu, H. [Jaguar Land Rover Research, Jaguar Land Rover W/2/021, Abbey Road, Coventry CV3 4LF (United Kingdom)

    2005-12-01

    The potential of the homogeneous charge compression ignition (HCCI) combustion process to deliver drastically reduced emissions of NO{sub x} and improved fuel economy from internal combustion engines is well known. The process is, however, difficult to initiate and control, especially when methane or natural gas are used as fuel. To aid the HCCI combustion of natural gas, hydrogen addition has been successfully used in this study. This hydrogen can be obtained from on-line reforming of natural gas. Methane reforming is achieved here by reaction with engine exhaust gas and air in a small scale monolith catalytic reactor. The benchmark quantity of H{sub 2} required to enhance the feasibility and engine load range of HCCI combustion is 10%. For low temperature engine exhaust gas, typical for HCCI engine operating conditions, experiments show that additional air is needed to produce this quantity. Experimental results from an open-loop fuel exhaust gas reforming system are compared with two different models of basic thermodynamic equilibria calculations. At the low reactor inlet temperatures needed for the HCCI application (approx. 400 deg C) the simplified three-reaction thermodynamic equilibrium model is in broad agreement with experimental results, while for medium (550-650 deg C) inlet temperature reforming with extra air added, the high hydrogen yields predicted from the multi-component equilibrium model are difficult to achieve in a practical reformer. (author)

  19. Lean-burn stratified combustion at gasoline engines; Magere Schichtverbrennung beim Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Breitbach, Hermann [Daimler AG, Stuttgart (Germany). Entwicklung Einspritzung und Betriebsstoffe; Waltner, Anton [Daimler AG, Stuttgart (Germany). Verbrennungsentwicklung Pkw-Ottomotoren; Landenfeld, Tilo [Robert Bosch GmbH, Schwieberdingen (Germany). Hochdruckeinspritzung Piezo; Porten, Guido [Robert Bosch GmbH, Schwieberdingen (Germany). Systementwicklung Benzindirekteinspritzung

    2013-05-01

    Spray-guided lean-burn combustion is an integral part of the Mercedes-Benz technology strategy for highly efficient and clean gasoline engines. With regard to the excellent fuel efficiency combined with outstanding specific power, a good combustion system robustness and the low particulate emissions, the concept offers a very good cost/benefit ratio especially for the Euro 6 emission legislation. Thus, Mercedes-Benz believes, that the sprayguided lean-burn combustion offers the by far highest future viability of gasoline engine combustion systems.

  20. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  1. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma

    International Nuclear Information System (INIS)

    Ye Dan; Gao Dengshan; Yu Gang; Shen Xianglin; Gu Fan

    2005-01-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 μm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions

  2. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  3. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  4. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  5. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  6. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  7. Danger of the participate matter emitted by gasoline-engine cars

    International Nuclear Information System (INIS)

    Abdul-Razzaq, W.; Ismael, N.

    2005-01-01

    Inhaling magnetic particles could be hazardous as they could interact with man-made electromagnetic signals producing resonance of the inhaled particles inside lung cells causing cell damage. Since many epidemiologic studies have shown associations between pollutants from motor vehicle traffic and adverse health effects, it becomes necessary to investigate these pollutants for magnetic particles. In this preliminary study, magnetic particles were detected in the particulate matter collected from the exhaust of a gasoline engine. Magnetization measurements were used to identify critical magnetic particulate matter that could explain some of the health hazards

  8. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Herman, Andrew [CTS Corporation; Bromberg, L. [Massachusetts Institute of Technology (MIT); Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL; Storey, John Morse [ORNL

    2017-01-01

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.

  9. A turbulent time scale based k–ε model for probability density function modeling of turbulence/chemistry interactions: Application to HCCI combustion

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Pommier, Pierre-Lin

    2013-01-01

    Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale

  10. Emissions from Road Vehicles Fuelled by Fischer Tropsch Based Diesel and Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U; Lundorf, P; Ivarsson, A; Schramm, J [Technical University of Denmark (Denmark); Rehnlund, B [Atrax Energi AB (Sweden); Blinge, M [The Swedish Transport Institute (Sweden)

    2006-11-15

    The described results were carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was supposed to be very similar, in many ways, to FT fuel. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.

  11. Analysis of benefits of using internal exhaust gas recirculation in biogas-fueled HCCI engines

    International Nuclear Information System (INIS)

    Kozarac, Darko; Vuilleumier, David; Saxena, Samveg; Dibble, Robert W.

    2014-01-01

    Highlights: • The influence of EGR on combustion of biogas fueled HCCI was investigated. • The aim was to reduce intake temperature requirement by internal EGR. • Combustion products caused the delay of combustion in similar conditions. • Internal EGR enabled by negative valve overlap increased cylinder temperature. • This increase was not enough to significantly reduce the intake temperature. - Abstract: This paper describes a numerical study that analyzed the influence of combustion products (CP) concentration on the combustion characteristics (combustion timing and combustion duration) of a biogas fueled homogeneous charge compression ignition (HCCI) engine and the possibility of reducing the high intake temperature requirement necessary for igniting biogas in a HCCI engine by using internal exhaust gas recirculation (EGR) enabled by negative valve overlap (NVO). An engine model created in AVL Boost, and validated against experimental engine data, was used in this study. The results show, somewhat counter-intuitively, that when CP concentrations are increased the required intake temperature for maintaining the same combustion timing must be increased. When greater NVO is used to increase the in-cylinder CP concentration, the in-cylinder temperature does increase, but the chemical dilution influence of CP almost entirely counteracts this thermal effect. Additionally, it has been observed that with larger fractions of CP some instability of combustion in the calculation was obtained which indicates that the increase of internal EGR might produce some combustion instability

  12. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  13. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  14. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  15. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  16. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Newly developed reduced ethanol mechanism (47 species and 272 reactions) used. • Engine maps over wide range are developed for performance and emissions parameters. • HCCI operating range increases with compression ratio & decreases with engine speed. • Maximum combustion efficiency up to 99% and thermal efficiency up to 50% is achieved. • Maximum N_2O emission found up to 2.7 ppm and lower load have higher N_2O emission. - Abstract: Ethanol fuelled homogenous charge compression ignition engine offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions using renewable fuel. Present study computationally investigates the HCCI operating range of ethanol at different compression ratios by varying inlet air temperature and engine speed using stochastic reactor model. A newly developed reduced ethanol oxidation mechanism with NO_x having 47 species and 272 reactions is used for simulation. HCCI operating range for compression ratios 17, 19 and 21 are investigated and found to be increasing with compression ratio. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365–465 K). Parametric study of combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms). In HCCI operating range, higher efficiency is found at higher engine loads and lower engine speeds. Emission characteristics of species (NO_x, N_2O, CO, CH_4, C_2H_4, C_2H_6, CH_3CHO, and HCHO) found in significant amount is also analysed for ethanol fulled HCCI engine. Emission maps for different species are presented and discussed for wide range of speed and load conditions. Some of unregulated species such as aldehydes are emitted in significantly higher quantities from ethanol fuelled HCCI engine at higher load

  17. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  18. Mixture preparation and combustion in an optically-accessible HCCI, diesel engine; La preparation du melange et de la combustion dans un moteur Diesel, HCCI a acces optique

    Energy Technology Data Exchange (ETDEWEB)

    Kashdan, J.; Bruneaux, G. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    2006-07-01

    Planar laser-induced fluorescence (LIF) imaging techniques have been applied in order to study the mixture preparation and combustion process in a single cylinder, optically-accessible homogeneous charge, compression ignition (HCCI) engine. In particular, the influence of piston bowl geometry on the in-cylinder mixture distribution and subsequent combustion process has been investigated. A new optically-accessible piston design enabled the application of LIF diagnostics directly within the combustion chamber bowl. Firstly, laser-induced exciplex fluorescence (LIEF) was exploited in order to characterise the in-cylinder fuel spray and vapour distribution. Subsequently a detailed study of the two-stage HCCI combustion process was conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH{sub 2}O) which is present during the cool flame and LIF of the OH radical which is subsequently present in the reaction and burned gas zones at higher temperature. Finally, spectrometry measurements were performed with the objective of determining the origin of the emitting species of the chemiluminescence signal. The experiments were performed on a single cylinder optical engine equipped with a direct-injection, common rail injection system and narrow angle injector. The experimental results presented reveal the significant role of the combustion chamber geometry on the mixture preparation and combustion characteristics for late HCCI injection strategies particularly in such cases where liquid impingement is unavoidable. Planar LIF 355 imaging revealed the presence of the intermediate species formaldehyde allowing the temporal and spatial detection of auto-ignition precursors prior to the signal observed by chemiluminescence in the early stages of the cool flame. Formaldehyde was then rapidly consumed at the start of main combustion which was marked not only by the increase in the main heat release

  19. A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine Une étude numérique complète sur les effets de la composition du gaz naturel carburant sur le réglage d’un moteur HCCI

    Directory of Open Access Journals (Sweden)

    Jahanian O.

    2011-11-01

    Full Text Available Homogeneous Charge Compression Ignition (HCCI engine is a promising idea to reduce fuel consumption and engine emissions. Natural Gas (NG, usually referred as clean fuel, is an appropriate choice for HCCI engines due to its suitable capability of making homogenous mixture with air. However, varying composition of Natural Gas strongly affects the auto-ignition characteristics of in-cylinder mixture and the performance of the HCCI engine. This paper has focused on the influence of Natural Gas composition on engine operation in HCCI mode. Six different compositions of Natural Gas (including pure methane have been considered to study the engine performance via a thermo-kinetic zero-dimensional model. The simulation code covers the detailed chemical kinetics of Natural Gas combustion, which includes Zeldovich extended mechanism to evaluate NOx emission. Validations have been made using experimental data from other works to ensure the accuracy needed for comparison study. The equivalence ratio and the compression ratio are held constant but the engine speed and mixture initial temperature are changed for comparison study. Results show that the peak value of pressure/temperature of in-cylinder mixture is dependent of fuel Wobbe number. Furthermore, engine gross indicated power is linearly related to fuel Wobbe number. Gross indicated work, gross mean effective pressure, and NOx are the other parameters utilized to compare the performance of engine using different fuel compositions. Le moteur HCCI (Homogeneous Charge Compression Ignition, ou à allumage par compression d’une charge homogène est une idée prometteuse pour réduire la consommation de carburant et les émissions polluantes. Le gaz naturel, considéré généralement comme un carburant propre, est un choix approprié pour les moteurs HCCI en raison de sa capacité à former avec l’air un mélange homogène. Cependant, la composition du gaz naturel influe fortement sur les caract

  20. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  1. Chemical Transport Model Simulations of Organic Aerosol in Southern California: Model Evaluation and Gasoline and Diesel Source Contributions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that...

  2. DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions

    Science.gov (United States)

    Wang, Yunliang; Rutland, Christopher J.

    2004-11-01

    Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.

  3. Gasoline marketing

    International Nuclear Information System (INIS)

    England-Joseph, J.

    1991-06-01

    This paper is a discussion of two reports. One, issued in April 1990, addresses gasoline octane mislabeling, and the other, issued in February 1991, addresses possible consumer overbuying of premium gasoline. Consumers can purchase several grades of unleaded gasoline with different octane ratings regular (87 octane), mid-grade (89 octane), and premium (91 octane or above). A major concern of consumer buying gasoline is that they purchase gasoline with an octane rating that meets their vehicles' octane requirements. In summary, it was found that consumers may unknowingly be purchasing gasoline with lower octane than needed because octane ratings are mislabeled on gasoline pumps. At the same time, other consumers, believing they may get better performance, may be knowingly buying higher priced premium gasoline when regular gasoline would meet their vehicles' needs. These practices could be coasting consumers hundred of millions of dollars each year

  4. Gasoline marketing

    International Nuclear Information System (INIS)

    Metzenbaum, H.M.

    1991-02-01

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline

  5. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  6. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  7. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Wang, Qingxin; Zhou, Chengzhong; Mo, Chunlan; Wang, Xueqiang

    2016-01-01

    Highlights: • The effects of EGR and blend fuels on particulate emission were studied in CI engine. • EGR ⩽ 20%, gasoline or n-butanol increases total particulate number concentration. • EGR ⩾ 30%, gasoline or n-butanol reduces total particulate number concentration. • As EGR ratio increased, the particulate mass concentrations of four fuels increased. • Gasoline or n-butanol increases the ratio of sub-25 nm particles number concentration. - Abstract: The particle emission characteristics of a high-pressure common-rail engine under different EGR conditions were investigated, using pure diesel (D100), diesel/gasoline (with a volume ratio of 70:30, D70G30), diesel/n-butanol (with a volume ratio of 70:30, D70B30) and diesel/gasoline/n-butanol (with a volume ratio of 70:15:15, D70G15B15) for combustion. Our results show that, with increasing EGR ratios, the in-cylinder pressure peak decreases and the heat release is delayed for the combustion of each fuel. At an EGR ratio of 30%, the combustion pressure peaks of D70G30, D70B30, D70G15B15 and D100 have similar values; with an EGR ratio of 40%, the combustion pressure peaks and release rate peaks of D70G30 and D70G15B15 are both lower with respect to D100. For small and medium EGR ratios (⩽20%), after the addition of gasoline and/or n-butanol to the fuel, the total particle number concentration (TPNC) increases, while both the soot emissions and the average geometric size of particles decrease. At large EGR ratios (30% and 40%), the TPNC of D70B30, D70G15B15 and D70G20 compared to D100 are reduced by a maximum amount of 74.7%, 66.7% and 28.6%, respectively. As the EGR ratio increases, the total particle mass concentration increases gradually for all four fuels. Blending gasoline or/and n-butanol into diesel induces an increase in the number concentration of sub-25 nm particles (PN25) which may be harmful in terms of health. However, the PN25 decreases with increasing the EGR ratio for all the tested fuels

  8. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer; Morganti, Kai; Masurier, Jean-Baptiste; Johansson, Bengt

    2017-01-01

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  9. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer

    2017-10-08

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  10. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  11. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  12. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  13. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    Science.gov (United States)

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  14. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    Science.gov (United States)

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  15. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  16. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  17. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kameya, Yuki, E-mail: ykameya@anl.gov; Lee, Kyeong O. [Argonne National Laboratory, Center for Transportation Research (United States)

    2013-10-15

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  18. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  19. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    Science.gov (United States)

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  20. GTLine – Gasoline as a potential CN suppressant for GTL

    KAUST Repository

    Reijnders, Jos; Boot, Michael; Johansson, Bengt; de Goey, Philip

    2018-01-01

    The main driver to investigate low temperature combustion concepts, such as partially premixed combustion (PPC), is the promise of low particulate matter (PM) and nitric oxide (NOx) emissions. A critical prerequisite for PPC is to temporally isolate the fuel injection and combustion events. In practice, exhaust gas recirculation (EGR) is applied in order to sufficiently extend the ignition delay to that effect. Hereby, in general, higher EGR rates are necessary for fuels with higher cetane numbers (CN). Against this background, the objective of this paper is to investigate the efficacy, with respect to PM-NOx emissions and engine efficiency, of gasoline as a potential gas-to-liquid (GTL) CN suppressant in various dosages. The performance of the resulting GTLine blend will be evaluated under PPC operating conditions in a heavy-duty direct-injected diesel engine. Setting aside for a moment any potential practical issues (e.g., flash point, vapor pressure) that fall outside the scope of this study, our data suggest that blending gasoline to otherwise high CN GTL appears to be a promising route to improve not only the efficiency, but also PM and NOx emissions, particularly when operating in PPC mode. Interestingly, this benefit is notwithstanding the high aromaticity of the gasoline compared to GTL. Given the ongoing dieselization trend and associated surplus of gasoline in many regions, notably Europe, along with the fact that the cost price of gasoline is significantly lower than that of GTL, the proposed GTLine approach promises to be a cost effective way to accommodate GTL in a world wherein low temperature combustion concepts, such as PPC, appear to be really taking off.

  1. GTLine – Gasoline as a potential CN suppressant for GTL

    KAUST Repository

    Reijnders, Jos

    2018-03-23

    The main driver to investigate low temperature combustion concepts, such as partially premixed combustion (PPC), is the promise of low particulate matter (PM) and nitric oxide (NOx) emissions. A critical prerequisite for PPC is to temporally isolate the fuel injection and combustion events. In practice, exhaust gas recirculation (EGR) is applied in order to sufficiently extend the ignition delay to that effect. Hereby, in general, higher EGR rates are necessary for fuels with higher cetane numbers (CN). Against this background, the objective of this paper is to investigate the efficacy, with respect to PM-NOx emissions and engine efficiency, of gasoline as a potential gas-to-liquid (GTL) CN suppressant in various dosages. The performance of the resulting GTLine blend will be evaluated under PPC operating conditions in a heavy-duty direct-injected diesel engine. Setting aside for a moment any potential practical issues (e.g., flash point, vapor pressure) that fall outside the scope of this study, our data suggest that blending gasoline to otherwise high CN GTL appears to be a promising route to improve not only the efficiency, but also PM and NOx emissions, particularly when operating in PPC mode. Interestingly, this benefit is notwithstanding the high aromaticity of the gasoline compared to GTL. Given the ongoing dieselization trend and associated surplus of gasoline in many regions, notably Europe, along with the fact that the cost price of gasoline is significantly lower than that of GTL, the proposed GTLine approach promises to be a cost effective way to accommodate GTL in a world wherein low temperature combustion concepts, such as PPC, appear to be really taking off.

  2. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines.

    Science.gov (United States)

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2015-05-01

    The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  4. The effect of the composition of hydrocarbon streams on physical properties and HCCI combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Gieleciak, R. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Advanced combustion engines have been developed in tandem with evolving fuels and combustion strategies. Advanced analytical methods such as NMR and two dimensional gas chromatography (2D-GC) are also becoming both more powerful and easier to use. Statistical analysis can be used to link the very complex fuel analysis data sets from these methods to fuel chemistry, fuel properties and engine performance. This poster highlighted a study that applied an advanced statistical analysis technique to 2D-GC data for 17 oil sands derived fuels and correlated results to measured fuel chemical/physical properties, and then to HCCI engine performance. In the HCCI mode, ignition occurs by compression of the homogeneous fuel/air mixture. Advanced combustion strategies must satisfy the need for high efficiency, low emissions, and drivability. The 2D-GC was shown to be an emerging analytical technique which separates compounds in fuels to enable the identification of individual compounds and group compounds by chemistry and boiling points. The Q(2d)RPR technique allows correlations to be developed between the 2D-GC data and fuel chemical / physical properties and engine performance data. tabs., figs.

  5. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  6. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  7. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    Science.gov (United States)

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

  8. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hee Je [Argonne National Lab. (ANL), Argonne, IL (United States); Choi, Seungmok [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  9. Recovery of gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-27

    The abstract describes a process for recovering a maximum quantity of commercial gasoline from a composite hydrocarbon stream containing hydrocarbons within and below the gasoline boiling range, including olefins. The hydrocarbon stream is separated into low vapor pressure gasoline and a gas fraction consisting of hydrocarbons of the 4 carbon atom group and some of the 3 carbon atom group. The gas fraction is subjected to a polymerization operation, characterized by utilizing the products of the polymerization procedure - both liquid polymers and unconverted gases - to increase the yield of gasoline and to adjust the low vapor pressure gasoline to the vapor pressure of commercial gasoline. A fraction of the gaseous products of the polymerization procedure are used for this purpose. The remainder of the gaseous products are recycled through the polymerization operation.

  10. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  11. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  12. Investigation the performance of 0-D and 3-d combustion simulation softwares for modelling HCCI engine with high air excess ratios

    Directory of Open Access Journals (Sweden)

    Gökhan Coşkun

    2017-10-01

    Full Text Available In this study, performance of zero and three dimensional simulations codes that used for simulate a homogenous charge compression ignition (HCCI engine fueled with Primary Reference Fuel PRF (85% iso-octane and 15% n-heptane were investigated. 0-D code, called as SRM Suite (Stochastic Reactor Model which can simulate engine combustion by using stochastic reactor model technique were used. Ansys-Fluent which can simulate computational fluid dynamics (CFD was used for 3-D engine combustion simulations. Simulations were evaluated for both commercial codes in terms of combustion, heat transfer and emissions in a HCCI engine. Chemical kinetic mechanisms which developed by Tsurushima including 33 species and 38 reactions for surrogate PRF fuel were used for combustion simulations. Analysis showed that both codes have advantages over each other.

  13. Gasoline sniffing multifocal neuropathy.

    Science.gov (United States)

    Burns, T M; Shneker, B F; Juel, V C

    2001-11-01

    The polyneuropathy caused by chronic gasoline inhalation is reported to be a gradually progressive, symmetric, sensorimotor polyneuropathy. We report unleaded gasoline sniffing by a female 14 years of age that precipitated peripheral neuropathy. In contrast with the previously reported presentation of peripheral neuropathy in gasoline inhalation, our patient developed multiple mononeuropathies superimposed on a background of sensorimotor polyneuropathy. The patient illustrates that gasoline sniffing neuropathy may present with acute multiple mononeuropathies resembling mononeuritis multiplex, possibly related to increased peripheral nerve susceptibility to pressure in the setting of neurotoxic components of gasoline. The presence of tetraethyl lead, which is no longer present in modern gasoline mixtures, is apparently not a necessary factor in the development of gasoline sniffer's neuropathy.

  14. Comparisons of Particulate Size Distributions from Multiple Combustion Strategies

    Science.gov (United States)

    Zhang, Yizhou

    In this study, a comparison of particle size distribution (PSD) measurements from eight different combustion strategies was conducted at four different load-speed points. The PSDs were measured using a scanning mobility particle sizer (SMPS) together with a condensation particle counter (CPC). To study the influence of volatile particles, PSD measurements were performed with and without a volatile particle remover (thermodenuder, TD) at both low and high dilution ratios. The common engine platform utilized in the experiment helps to eliminate the influence of background particulate and ensures similarity in dilution conditions. The results show a large number of volatile particles were present under LDR sample conditions for most of the operating conditions. The use of a TD, especially when coupled with HDR, was demonstrated to be effective at removing volatile particles and provided consistent measurements across all combustion strategies. The PSD comparison showed that gasoline premixed combustion strategies such as HCCI and GCI generally have low PSD magnitudes for particle sizes greater than the Particle Measurement Programme (PMP) cutoff diameter (23 nm), and the PSDs were highly nuclei-mode particle dominated. The strategies using diesel as the only fuel (DLTC and CDC) generally showed the highest particle number emissions for particles larger than 23 nm and had accumulation-mode particle dominated PSDs. A consistent correlation between the increase of the direct-injection of diesel fuel and a higher fraction of accumulation-mode particles was observed over all combustion strategies. A DI fuel substitution study and injector nozzle geometry study were conducted to better understand the correlation between PSD shape and DI fueling. It was found that DI fuel properties has a clear impact on PSD behavior for CDC and NG DPI. Fuel with lower density and lower sooting tendency led to a nuclei-mode particle dominated PSD shape. For NG RCCI, accumulation

  15. The Low Load Limit of Gasoline Partially Premixed Combustion (PPC) - Experiments in a Light Duty Diesel Engine

    OpenAIRE

    Borgqvist, Patrick

    2013-01-01

    The decreasing oil supply, more stringent pollutant legislations and strong focus on decreasing carbon dioxide emissions drives the research of more efficient and clean combustion engines. One such combustion engine concept is Homogeneous Charge Compression Ignition (HCCI) which potentially achieves high efficiency and low NOx and soot emissions. One practical realization of HCCI in SI engines is to use a variable valve train to trap hot residual gases in order to increase the temperature of ...

  16. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of Sao Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25% ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5%

  17. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  18. Gasoline poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002806.htm Gasoline poisoning To use the sharing features on this ... This article discusses the harmful effects from swallowing gasoline or breathing in its fumes. This article is ...

  19. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  20. Oxygenated gasolines according to European specifications for quality and ecological clean gasoline

    International Nuclear Information System (INIS)

    Panovska, Vesna; Tomanovikj, Violeta

    1999-01-01

    With the phasing out of lead additives from gasoline, the interest for oxygenates as a gasoline components grows up. However, since these materials are not hydrocarbons their behaviour in terms of blending differs from the gasoline which consists of hydrocarbons only. Therefore, it is important to explain their role in blending gasolines according to European specification for motor fuels. It is important to emphasize the oxygenate contribution in production more clean gasoline. In this paper, the oxygenate types and there basic specification features followed by manufacture, laboratory testing and blending specifications with refinery components is presented. (Author)

  1. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  2. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  3. Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Carlos A. [Posgrado en Ingenieria Energetica, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Col. Centro, Apartado Postal 34, 62580 Temixco, Morelos (Mexico); Manzini, Fabio; Islas, Jorge [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Col. Centro, Apartado Postal 34, 62580 Temixco, Morelos (Mexico)

    2010-12-15

    The Mexican Biofuel Introduction Program states that during year 2010 the three biggest Mexican cities will have a gasoline blending with 6% ethanol available for all gasoline on-road vehicle fleet. Also in 2010 Mexican government has programmed to start the substitution of Tier 1 - the adopted US emission standards - by Tier 2, which are more stringent emission standards for motor vehicles and gasoline sulfur control requirements. How will the air emissions in the Mexico City Metropolitan Area (MCMA) be modified by using this blending? Four scenarios up to year 2030 were constructed and simulated using the Long-Range Energy Alternatives Planning model. Beginning with a BAU or reference scenario, in this scenario the current available fuel is a blending composed by 5% methyl tertiary butyl ether and 95% gasoline (MTBE5). Then, three alternative scenarios that use ethanol as an oxygenate are considered, one with the already programmed E6 blending (6% anhydride ethanol, 94% gasoline), for the sake of comparison the E10 blending (10% anhydride ethanol, 90% gasoline), and the other alternative to compare, ETBE13.7 (13.7% ethyl tertiary butyl ether, 86.3% gasoline; where ETBE is an ether composed by 48% anhydride ethanol and 52% isobutene). Emissions of carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM10), sulfur dioxide (SO{sub 2}), total hydrocarbons (THC), benzene, formaldehyde, acetaldehyde and 1,3-butadiene were calculated using emission factors previously calculated using the adapted US-EPA computer model called MOBILE6-Mexico. Results show that Tier 1 and Tier 2 standards effectively lowers all emissions in all studied scenarios with the exception of PM10 and CO{sub 2} emissions. The alternative scenario E10 has the most total avoided emissions by weight but it is not the best when considering some individual pollutants. The greatest environmental benefit of ethanol in its final use as a gasoline oxygenate is for

  4. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 %

  5. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  6. Auto-ignition modelling: analysis of the dilution effects by the unburnt gases and of the interactions with turbulence for diesel homogeneous charge compression ignition (HCCI) engines; Modelisation de l'auto-inflammation: analyse des effets de la dilution par les gaz brules et des interactions avec la turbulence dediee aux moteurs Diesel a charge homogene

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, G.

    2005-09-15

    Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was

  7. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  8. Experimental and numerical investigation of ion signals in boosted HCCI combustion using cesium and potassium acetate additives

    International Nuclear Information System (INIS)

    Mack, J. Hunter; Butt, Ryan H.; Chen, Yulin; Chen, Jyh-Yuan; Dibble, Robert W.

    2016-01-01

    Highlights: • HCCI engine experiments show that CsOAc and KOAc additives increased the ion SNR. • The ion signal is more apparent at higher equivalence ratios. • An increase in intake pressure produces a decrease in the ion signal. • Use of metal acetates as additives yielded reductions in IMEP g and maximum ROHR. • A numerical model predicted peak ion signal, CA50, and p intake dependence. - Abstract: A sparkplug ion sensor can be used to measure the ion current in a homogeneous charge compression ignition (HCCI) engine, providing insight into the ion chemistry inside the cylinders during combustion. HCCI engines typically operate at lean equivalence ratios (ϕ) at which the ion current becomes increasingly indistinguishable from background noise. This paper investigates the effect of fuel additives on the ion signal at low equivalence ratios, determines side effects of metal acetate addition, and validates numerical model for ionization chemistry. Cesium acetate (CsOAc) and potassium acetate (KOAc) were used as additives to ethanol as the primary fuel. Concentration levels of 100, 200, and 400 mg/L of metal acetate-in-ethanol are investigated at equivalence ratios of 0.08, 0.20, and 0.30. The engine experiments were conducted at a boosted intake pressure of 1.8 bar absolute and compared to naturally aspirated results. Combustion timing was maintained at 2.5° after top-dead-center (ATDC), as defined by the crank angle degree (CAD) where 50% of the cumulative heat release occurs (CA50). CsOAc consistently produced the strongest ion signals at all conditions when compared to KOAc. The ion signal was found to decrease with increased intake pressure; an increase in the additive concentration increased the ion signal for all cases. However, the addition of the metal acetates decreased the gross indicated mean effective pressure (IMEP g ), maximum rate of heat release (ROHR), and peak cylinder pressure. Experimental results were used to validate ion chemistry

  9. Climate change and health costs of air emissions from biofuels and gasoline

    Science.gov (United States)

    Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego

    2009-01-01

    Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587

  10. Reduction of HCCI combustion noise through piston crown design

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2010-01-01

    . The largest and most consistent reduction in noise level was however achieved with a diesel bowl type piston. The increased surface area as well as the larger crevice volumes of the experimental piston crowns generally resulted in lower IMEP than the flat piston. While the crevice volumes can be reduced...... away from the engine. The experiments were conducted in a diesel engine that was run in HCCI combustion mode with a fixed quantity of DME as fuel. The results show that combustion knock is effectively suppressed by limiting the size of the volume in which the combustion occurs. Splitting...... the compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise. The noise...

  11. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  12. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  13. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  14. Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries

    International Nuclear Information System (INIS)

    Burke, Paul J.; Nishitateno, Shuhei

    2013-01-01

    Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between − 0.2 and − 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes. - Highlights: ► We estimate the determinants of gasoline demand and new-vehicle fuel economy. ► Estimates are for a large sample of countries for the period 1995–2008. ► We instrument for gasoline prices using oil reserves and the world crude oil price. ► Gasoline demand and fuel economy are inelastic with respect to the gasoline price. ► Large energy efficiency gains are possible via higher gasoline prices

  15. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2015-01-01

    Highlights: • iso-Butanol–gasoline blends (iB) using up to 10 vol.% butanol were examined in SIE. • iB extensively decrease the greenhouse effect of SI engine. • iB without engine tuning led to a drop in engine performance at all speeds. • iB provide higher performance and lower CO and CO 2 emissions than n-butanol blends. • iB grant lower CO and UHC than gasoline at <2900 r/min, but overturn at >2900 r/min. - Abstract: Experimental investigation on pollutant emissions and performance of SI engine fueled with gasoline and iso-butanol–gasoline blends is carried out. Engine was operated at speed range of 2600–3400 r/min for each blend (3, 7 and 10 vol.% iso-butanol) and neat gasoline. Results declare that the CO and UHC emissions of neat gasoline are higher than those of the blended fuels for speeds less than or equal to 2900 r/min; however, for speeds higher than 2900 r/min, we have an opposite impact where the blended fuels produce higher level of CO and UHC emissions than the gasoline fuel. The CO 2 emission at using iso-butanol–gasoline blends is always lower than the neat gasoline at all speeds by up to 43%. The engine performance results demonstrate that using iso-butanol–gasoline blends in SI engine without any engine tuning lead to a drop in engine performance within all speed range. Without modifying the engine system, overall fuel combustion of iso-butanol–gasoline blends was quasi-complete. However, when engine system is optimized for blended fuels, iso-butanol has significant oxygen content and that can lead to a leaner combustion, which improves the completeness of combustion and therefore high performance and less emissions would be obtained. Finally, the performance and emissions of iso-butanol–gasoline blends are compared with those of n-butanol–gasoline blends at similar blended rates and engine working conditions. Such comparison is directed to evaluate the combustion dissimilarity of the two butanol isomers and also to

  16. Production of aviation gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-25

    A process is described for preparing gasoline possessing properties for use as a fuel, particularly for aviation motors, beginning with gasolines composed among others of cyclic hydrocarbons, especially aromatics, consisting in treating the gasoline by means of selective solvents of aromatic hydrocarbons, especially aromatics, and preferably at the same time employing liquid hydrocarbons which are gaseous under normal conditions and adding to the refined product nonaromatics which boil in the range of the gasoline and have an actane number above 95 or which give the mixture an octane number of 82.5.

  17. A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine

    International Nuclear Information System (INIS)

    Bahlouli, Keyvan; Atikol, Ugur; Khoshbakhti Saray, R.; Mohammadi, Vahid

    2014-01-01

    Highlights: • A two-stage reduction process is used to produce two reduced mechanisms. • The mechanisms are combined to develop a reaction mechanism for a fuel blend. • The genetic algorithm is used for optimization of reaction constants. • The developed reduced mechanism can be used to predict the ignition timing in HCCI engine for a fuel blend. - Abstract: One of the main challenges associated with homogeneous charge compression ignition (HCCI) combustion engine application is the lack of direct control on ignition timing. One of the solutions to this problem is mixing two fuels with various properties at a variety of ratios on a cycle-by-cycle basis. In the current study, a reduced mechanism for a fuel blend of natural-gas and n-heptane is proposed. The approach is validated for the prediction of ignition timing in the HCCI combustion engine. A single-zone combustion model is used to simulate the HCCI engine. A two-stage reduction process is used to produce two reduced mechanisms of existing semi-detailed GRI-Mech. 3.0 mechanism that contains 53 species and 325 reactions and Golovichev’s mechanism consisting of 57 species and 290 reactions for natural gas and n-heptane fuels, respectively. Firstly, the unimportant species and related reactions are identified by employing the directed relation graph with error propagation (DRGEP) reduction method and then, to extend reduction, the principal component analysis (PCA) method is utilized. To evaluate the validity of the reduced mechanism, representative engine combustion parameters such as peak pressure, maximum heat release, and CA50 are used. The reduced mechanism of GRI-Mech. 3.0 mechanism, containing 19 species and 39 reactions, and the reduced mechanism of Golovichev’s mechanism, consisting of 40 species and 95 reactions, provide good prediction for the mentioned parameters in comparison with those of detailed mechanisms. The combination of the generated reduced mechanisms is used to develop a

  18. Evaporation characteristics of ETBE-blended gasoline.

    Science.gov (United States)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Standby Gasoline Rationing Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  20. A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine

    Directory of Open Access Journals (Sweden)

    Davide D. Sciortino

    2017-09-01

    Full Text Available The latest generation of high-efficiency gasoline direct injection (GDI engines continues to be a significant source of dangerous ultra-fine particulate matter (PM emissions. The forthcoming advent in the 2017–2020 timeframe of the real driving emission (RDE standards affords little time for the identification of viable solutions. The present research work aims to contribute towards a much-needed improved understanding of the process of PM formation in theoretically-homogeneous stoichiometric spark-ignition combustion. Experimental measurements of engine-out PM have been taken from a wall-guided GDI engine operated at part-load; through parallel computational fluid dynamics (CFD simulations of the test-engine, the process of mixture preparation was investigated. About 80% of the total particle number is emitted on average in the 5–50 nm range, with the vast majority being below the regulated lower limit of 23 nm. The results suggest that both improved charge homogeneity and lower peak combustion temperature contribute to lower particle number density (PNDen and larger particle size, as engine speed and load increase. The effect of engine load is stronger and results from greater injection pressure through better fuel droplet atomisation. Increases in pre-combustion homogeneity of 6% are associated with one order of magnitude reductions of PNDen. A simplified two-equation functional model was developed, which returns satisfactory qualitative predictions of PNDen as a function of basic engine control variables.

  1. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  2. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  3. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    International Nuclear Information System (INIS)

    1999-03-01

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they're rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears

  4. Measures to comply with future particulate number standards with GDI engines; Massnahmen zum Erreichen zukuenftiger Grenzwerte fuer Partikelanzahl beim direkteinspritzenden Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Thomas; Fraidl, Guenter K.; Hollerer, Peter; Kapus, Paul E.; Ogris, Martin; Riener, Markus [AVL List GmbH, Graz (Austria)

    2011-07-01

    With the ongoing general discussion on fine particulates, also the particulates of Gasoline engines are now a focus of public interest. Compared to conventional Diesel engine, where due to the heterogeneous combustion, a certain amount of particles cannot be avoided; Gasoline engines a substantial reduction of particle number towards a level that does not compromise environmental aspects can be expected even without particle filter, however, with respective high development effort. Certainly the particle number emission is the most complex emission component with Gasoline engines both with regard to measurement technology, conditioning, reproducibility, tolerance sensitivity, long term stability, and OBD as well as development methodology. Thus a comprehensive development methodology - ranging from the detail optimization of individual injection parameters to mastering oil consumption and deposit formation over the whole vehicle lifetime, is most essential for an effective reduction of particle emission. Within this complex subject, the particulate counter itself proves to be uncritical whereas the sufficient conditioning of engine and vehicle and dilution tunnel, comprehensive base investigations have to be performed. All the established know how already generated for gaseous emission components is not sufficient to handle the particulate number issue properly. In spite of the fact, that very low particle numbers can be shown with single prototype vehicles, a reliable transfer into robust production solutions, comprehensive basic investigations especially with regard to tolerance sensitivity and robustness against fuel quality impacts and deposit formation have to be performed. Both for these open issues as well as for robust OBD solutions, actual field experience with a first generation of low particle engines is required. Thus, when introducing enhanced particle limits, the respective increased development durations and significantly enhanced efforts both for

  5. Feasibility study on reduction of gasoline emissions from oil depots and gasoline stations in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A field survey was conducted of oil shipment depots in Java and Bali islands owned by Indonesia's state-run oil company to study measures for reduction in greenhouse effect gas emissions. Studies were made on the grasp of the amount of the hydrocarbon vapor emitted into the air, the amount of the gasoline recovered in case of adopting the vapor emission preventive technology, equipment cost/operational cost, etc. Concretely, the following three were studied: change of the gasoline storage tank to the inner floating roof type, and prevention of evaporation loss at the time of receiving and breathing loss caused by temperature changes; replacement with the vapor recovery type loading arm to recover gasoline vapor generated at the time of shipment/filling, and installation of the vapor recovery unit to recover vapor as gasoline; vapor balance system to recover in underground tank the gasoline vapor generated at the time of filling gasoline at gas station. As a result of the study, the recovered gasoline amount was 66,393 Kl/y and the CO2 reduction amount was 14,474 t/y at oil shipment depots and approximately 650 gasoline stations in Jakarta and Surabaya. (NEDO)

  6. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    Science.gov (United States)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  7. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul

    2017-08-14

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.

  8. Leaded gasoline - an environmental problem

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    2001-01-01

    In the European countries it is a clear trend towards the increasing consumption of unleaded gasolines. Driving force of this trend is, on the one hand the high toxicity of lead compounds and on the other, the necessity of purification of exhaust gases by catalytic converters, for which the lead represent a catalyst poison. In Macedonia, the limit lead content in the leaded gasolines is relatively high (0,6 g/l), as well as the consumption of the leaded gasolines. Rapid and complete transition to unleaded gasolines can be realized by the concept of step by step reduction of lead in our gasolines. (Original)

  9. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  10. 40 CFR 1065.710 - Gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  11. The gasoline retail market in Quebec

    International Nuclear Information System (INIS)

    Lapointe, A.

    1998-06-01

    A comprehensive study of the current status of the gasoline market in Quebec was presented. The study includes: (1) a review of the evolution of the retail market since the 1960s, (2) the development of a highly competitive sales environment, (3) a discussion of governmental interventions in the retail sales of gasoline, and (4) a discussion of the problems associated with the imposition of a minimum gasoline price. The low increase in demand for gasoline in Quebec since the 1980s has led to a considerable restructuring of the gasoline market. Consumers have little loyalty to specific brands but seek the lowest prices or prefer the outlets that offer the widest variety of associated services such as convenience stores, fast-food and car washes. Gasoline has clearly become a commodity in Quebec. An econometric model of gasoline price adjustments for the Montreal and Toronto urban areas and a summary of government interventions in the retail marketing of gasoline in Canada and the USA are included as appendices. tabs

  12. Standby Gasoline Rationing Plan. Contingency gasoline rationing regulations

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Economic Regulatory Administration issues final rules with respect to standby gasoline rationing. The plan is designed for and would be used only in the event of a severe gasoline shortage. The plan provides that eligibility for ration allotments will be primarily on the basis of motor vehicle registrations. DOE will mail government ration checks to the parties named in a national vehicle registration file to be maintained by DOE. Ration recipients may cash these checks for ration coupons at various designated coupon issuance points. Retail outlets and other suppliers will be required to redeem the ration coupons received in exchange for gasoline sold. Supplemental gas will be given to high-priority activities. A ration banking system will be established with two separate and distinct of ration accounts: retail outlets and other suppliers will open redemption accounts for the deposit of redeemed ration rights; and individuals or firms may open ration rights accounts, which will operate in much the same manner as monetary checking accounts. A white market will be permitted for the sale of transfer of ration rights. A percentage of the total ration rights to be issued will be reserved for distribution to the states as a State Ration Reserve, to be used by the states primarily for the relief of hardship. A National Ration Reserave will also be established. All sections of the Standby Gasoline Rationing Regulations are analyzed. (MCW)

  13. Asian gasoline and diesel fuel quality

    International Nuclear Information System (INIS)

    Yamaguchi, Nancy D.

    2000-01-01

    Despite the economic slowdown in the late 1990s, gasoline and diesel demand in the Asia-Pacific region has increased significantly. Regional demand is the highest in the world and most new refinery projects worldwide during the 1990s have been here. Generalisations are difficult because the region contains countries at different stages of economic development and environmental quality standards. Gasoline and diesel demand for 1985-2005 for Australasia, Southeast Asia, South Asia and East Asia is shown in four histograms. The trend towards unleaded gasoline, average gasoline aromatics levels and the quality of gasoline in Australasia, South Asia, Southeast Asia and East Asia are examined. A further three histograms show the growth in Asia-Pacific unleaded gasoline market share 1991-2000, the rise in octane levels as lead levels fall (1991-2005) and the calculated aromatics content of gasoline in 11 Asia-Pacific countries

  14. Reformulated gasoline: lessons from America

    International Nuclear Information System (INIS)

    Seymour, A.

    1995-01-01

    Regulating fuel quality is one of the few politically feasible options for improving air quality in the short and medium term. This book explores and studies the reformulated gasoline programme currently underway in the USA. Despite the smoothness of the initial implementation of the programme, difficulties may arise in the future. It is concluded that reformulated gasoline prices are more independent of crude oil price changes than conventional unleaded gasoline. Finally, the study suggests that refiners will not reap great profit from investment in the supply of reformulated gasoline because of government restrictions. (UK)

  15. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    Science.gov (United States)

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 27 CFR 21.109 - Gasoline.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  17. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko; Taritas, Ivan; Vuilleumier, David; Saxena, Samveg; Dibble, Robert W.

    2016-01-01

    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  18. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko

    2016-09-12

    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  19. Oxygenates to hike gasoline price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that cost of achieving required US gasoline formulations this winter in Environmental Protection Agency carbon monoxide (CO) nonattainment areas could reach 3-5 cents/gal, an Energy Information Administration analysis has found. EIA says new winter demand for gasoline blending oxygenates such as methyl tertiary butyl ether (MTBE) or ethanol created by 190 amendments to the Clean Air Act (CAA) will exceed US oxygenate production by 140,000-220,000 b/d. The shortfall must be made up from inventory or imports. EIA estimates the cost of providing incremental oxygenate to meet expected gasoline blending demand likely will result in a price premium of about 20 cents/gal of MTBE equivalent over traditional gasoline blend octane value. That cost likely will be added to the price of oxygenated gasoline

  20. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  1. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  2. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Tassel, Patrick; Perret, Pascal; Chaumond, Agnès; André, Michel

    2016-09-01

    Although implementing Diesel particulate filters (DPF) and other novel aftertreatment technologies makes it possible to achieve significant reductions in particle mass emissions, it may induce the release of ultrafine particles and emissions of many other unregulated compounds. This paper focuses on (i) ultrafine particles, black carbon, BTEX, PAH, carbonyl compounds, and NO2 emissions from Euro 4 and Euro 5 Diesel and gasoline passenger cars, (ii) the influence of driving conditions (e.g., cold start, urban, rural and motorway conditions), and (iii) the impact of additive and catalysed DPF devices on vehicle emissions. Chassis dynamometer tests were conducted on four Euro 5 vehicles and two Euro 4 vehicles: gasoline vehicles with and without direct injection system and Diesel vehicles equipped with additive and catalysed particulate filters. The results showed that compared to hot-start cycles, cold-start urban cycles increased all pollutant emissions by a factor of two. The sole exception was NO2, which was reduced by a factor of 1.3-6. Particulate and black carbon emissions from the gasoline engines were significantly higher than those from the Diesel engines equipped with DPF. Moreover, the catalysed DPF emitted about 3-10 times more carbonyl compounds and particles than additive DPF, respectively, during urban driving cycles, while the additive DPF vehicles emitted 2 and 5 times more BTEX and carbonyl compounds during motorway driving cycles. Regarding particle number distribution, the motorway driving cycle induced the emission of particles smaller in diameter (mode at 15 nm) than the urban cold-start cycle (mode at 80-100 nm). The results showed a clear positive correlation between particle, black carbon, and BTEX emissions, and a negative correlation between particles and NO2.

  3. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  4. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  5. Diesel emission control: Catalytic filters for particulate removal

    Directory of Open Access Journals (Sweden)

    Debora Fino

    2007-01-01

    Full Text Available The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO, hydrocarbons (HC and oxides of nitrogen (NOx. Diesel engines also produce significant levels of particulate matter (PM, which consists mostly of carbonaceous soot and a soluble organic fraction (SOF of hydrocarbons that have condensed on the soot.

  6. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    Science.gov (United States)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  7. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  8. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  9. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  10. Fine-particle Mn and other metals linked to the introduction of MMT into gasoline in Sydney, Australia: Results of a natural experiment

    Science.gov (United States)

    Cohen, D. D.; Gulson, B. L.; Davis, J. M.; Stelcer, E.; Garton, D.; Hawas, O.; Taylor, A.

    Using a combination of accelerator-based ion beam methods we have analysed PM 2.5 particulates for a suite of 21 species (H, C, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Pb) to evaluate the contribution to Sydney (New South Wales, Australia) air associated with the introduction of MMT as a replacement for lead. MMT was discontinued in 2004. Teflon filters representing continuous sampling for a 7 year period from 1998 to 2004 were analysed from two sites: one from Mascot, a suburb close to the Central Business District [CBD ( n=718)] and a high trafficked area, and the other, a relatively rural (background) setting at Richmond, ˜20 km west of the CBD ( n=730). Manganese concentrations in air at the background site increased from a mean of 1.5-1.6 ng m -3 to less than 2 ng m -3 at the time of greatest MMT use whereas those at Mascot increased from about 2 to 5 ng m -3. From the maximum values, the Mn showed a steady decrease at both sites concomitant with the decreasing use of MMT. Lead concentrations in air at both sites decreased from 1998 onwards, concomitant with the phase out of leaded gasoline, attained in 2002. Employing previously determined elemental signatures it was possible to adjust effects from season along with auto emissions and soil. A high correlation was obtained for the relationship between Mn in air and lead replacement gasoline use ( R2 0.83) and an improved correlation for Mn/ Al+Si+K and lead replacement gasoline use ( R2 0.93). In addition, using Mn concentrations normalized to background values of Al+Si+K or Ti to account for the lithogenically derived Mn, the proportion of anthropogenic Mn was approximately 70%. The changes for Mn and Pb detected in the particulates are attributed to the before-during-after use of MMT and decreasing use of lead in gasoline. The values measured in Sydney air are well below the reference concentration of 50 ng Mn m -3. The incremental increases in air, however, are larger than

  11. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam T.

    2017-01-01

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  12. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani

    2017-12-06

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  13. Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity

    Directory of Open Access Journals (Sweden)

    J. Y. Lee

    2007-07-01

    Full Text Available Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul, Korea, is a megacity in Northeast Asia. Its emissions of air pollutants can affect the region, and in turn it is also affected by regional emissions. To understand the extent of these influences, major sources of ambient particulate PAHs in Seoul were identified and quantified based on measurements made between August 2002 and December 2003. The chemical mass balance (CMB model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, residential coal use, coke ovens, coal power plants, biomass burning, and natural gas (NG combustion. The major sources of particulate PAHs in Seoul during the whole measurement period were gasoline and diesel vehicles, together accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct daily and seasonal variations. High contributions of biomass burning and coal (residential and coke oven were observed in fall and winter, accounting for 63% and 82% of the total concentration of PAHs, respectively. Since these sources were not strong in and around Seoul, they are likely to be related to transport from outside of Seoul, from China and/or North Korea. This implies that the air quality in a mega-city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.

  14. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2008-01-01

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO 2 emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N 2 and CO 2 from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 deg. C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH 2 O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH 2 O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv

  15. 40 CFR 80.141 - Interim detergent gasoline program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Interim detergent gasoline program. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.141 Interim detergent gasoline... apply to: (i) All gasoline sold or transferred to a party who sells or transfers gasoline to the...

  16. 27 CFR 21.110 - Gasoline, unleaded.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are considered...

  17. Gasoline from Kumkol deposit petroleum

    International Nuclear Information System (INIS)

    Nadirov, A.N.; Zhizhin, N.I.; Musaeva, Z.G.

    1997-01-01

    Samples of gasoline from petroleum of Kumkol deposit are investigated by chromatographic analysis. It is found, that gasoline is characterizing by increased content of iso-paraffin hydrocarbons. (author)

  18. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David

    2014-03-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  19. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David; Kozarac, Darko; Mehl, Marco; Saxena, Samveg; Pitz, William J.; Dibble, Robert W.; Chen, Jyhyuan; Sarathy, Mani

    2014-01-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  20. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    OpenAIRE

    Xiaochen Wang; Zhenbin Chen; Jimin Ni; Saiwu Liu; Haijie Zhou

    2015-01-01

    Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W), ethanol gasoline (E10) and pure gasoline (E0). The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the op...

  1. Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine

    International Nuclear Information System (INIS)

    Sadeghi, Mohsen; Mahmoudi, S.M.S.; Khoshbakhti Saray, R.

    2015-01-01

    Highlights: • Ejector refrigeration systems powered by HCCI engine is proposed. • A new two-dimensional model is developed for the ejector. • Multi-objective optimization is performed for the proposed system. • Pareto frontier is plotted for multi-objective optimization. - Abstract: Ejector refrigeration systems powered by low-grade heat sources have been an attractive research subject for a lot of researchers. In the present work the waste heat from exhaust gases of a HCCI (homogeneous charge compression ignition) engine is utilized to drive the ejector refrigeration system. Considering the frictional effects on the ejector wall, a new two-dimensional model is developed for the ejector. Energy, exergy and exergoeconomic analysis performed for the proposed system using the MATLAB software. In addition, considering the exergy efficiency and the product unit cost of the system as objective functions, a multi-objective optimization is performed for the system to find the optimum design variables including the generator, condenser and evaporator temperatures. The product unit cost is minimized while the exergy efficiency is maximized using the genetic algorithm. The optimization results are obtained as a set of optimal points and the Pareto frontier is plotted for multi-objective optimization. The results of the optimization show that ejector refrigeration cycle is operating at optimum state based on exergy efficiency and product unit cost when generator, condenser and evaporator work at 94.54 °C, 33.44 °C and 0.03 °C, respectively

  2. Batteries: Lower cost than gasoline?

    International Nuclear Information System (INIS)

    Werber, Mathew; Fischer, Michael; Schwartz, Peter V.

    2009-01-01

    We compare the lifecycle costs of an electric car to a similar gasoline-powered vehicle under different scenarios of required driving range and cost of gasoline. An electric car is cost competitive for a significant portion of the scenarios: for cars of lower range and for higher gasoline prices. Electric cars with ∼150 km range are a technologically viable, cost competitive, high performance, high efficiency alternative that can presently suit the vast majority of consumers' needs.

  3. Who Pays the Gasoline Tax?

    OpenAIRE

    Chernick, Howard; Reschovsky, Andrew

    1997-01-01

    Analyzes panel data over 11 years (both backward from 1982 and forward from 1982) to determine the average gasoline tax burden. Considers links between economic mobility, gasoline consumption, and excise tax increases.

  4. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  5. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  6. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  7. Gasoline ingestion: a rare cause of pancytopenia.

    Science.gov (United States)

    Rahman, Ifad; Narasimhan, Kanakasabai; Aziz, Shahid; Owens, William

    2009-11-01

    The majority of reported cases of gasoline intoxication involves inhalation or percutaneous absorption. Data are scarce on complications and outcomes after gasoline poisoning by oral ingestion. The major cause of mortality and morbidity associated with the ingestion of gasoline is related to pulmonary aspiration. Despite the high frequency of the ingestions, there is little documentation of nonpulmonary toxic effects of gasoline. After ingestion, the principal toxicity is aspiration pneumonia, but any documented extra pulmonary manifestations of this condition may be important in the overall management of these patients. We are reporting a rare case of pancytopenia along with aspiration pneumonia and multisystem organ failure in a 58-year-old male after prolonged intentional ingestion of gasoline. To our knowledge, this is the only reported case of gasoline toxicity causing pancytopenia.

  8. 40 CFR 63.11088 - What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... § 63.11088 What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

  9. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul; Ahmed, Ahfaz; Nasir, Ehson Fawad; Badra, Jihad; Kalghatgi, Gautam; Sarathy, Mani; Curran, Henry; Farooq, Aamir

    2017-01-01

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components

  10. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    Science.gov (United States)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  11. Using biofuel tracers to study alternative combustion regimes

    International Nuclear Information System (INIS)

    Mack, J.H.; Flowers, D.L.; Buchholz, B.A.; Dibble, R.W.

    2007-01-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO 2 emissions are countered with higher nitrogen oxides (NO x ) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NO x formation. Altering the combustion regime to burn at temperatures below the NO x threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NO x and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling

  12. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [LGPPTS, Ecole Nationale Superieure de Chimie de Paris/ Universite Pierre et Marie Curie (Paris 6), 11, rue de Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2008-11-15

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO{sub 2} emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N{sub 2} and CO{sub 2} from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH{sub 2}O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH{sub 2}O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv. (author)

  13. Understanding gasoline pricing in Canada

    International Nuclear Information System (INIS)

    2001-04-01

    This brochure is designed to help consumers understand how gasoline is priced and explained why prices increase, fluctuate and vary by location, city or region. The price of a litre of gasoline reflects the costs of crude oil, refining, retailing and taxes. Taxes are usually the largest single component of gasoline prices, averaging 40 to 50 per cent of the pump price. The cost of crude oil makes up another 35 to 45 per cent of the price. Refining costs make up 10 to 15 per cent while the remaining 5 to 10 per cent represents retail costs. Gasoline retailers make a profit of about 1 cent per litre. The latest network technology allows national and regional retail chains to constantly monitor price fluctuations to change their prices at gasoline stations at a moments notice to keep up with the competition and to protect their market shares. Several government studies, plus the Conference Board of Canada, have reported that competition is working in favour of Canadian motorists. This brochure also explained the drawbacks of regulating crude and pump prices with the reminder that crude prices were regulated in the 1970s with many negative consequences. 2 tabs., 1 fig

  14. Evaporative Gasoline Emissions and Asthma Symptoms

    Science.gov (United States)

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  15. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  16. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  17. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  18. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.

    Science.gov (United States)

    Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta

    2017-12-01

    Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  20. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  1. Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine

    International Nuclear Information System (INIS)

    Wei, Mingrui; Li, Song; Xiao, Helin; Guo, Guanlun

    2017-01-01

    Highlights: • The diesel/gasoline/iso-butanol blends were investigated in a CI engine. • Blend with gasoline or iso-butanol produce higher HC emission. • CO increase at low loads and decrease at medium and high loads with blend fuels. • Gasoline or iso-butanol decrease large particles but increase small particles. • Blend fuels reduce total PM number and mass concentrations. - Abstract: In this study, the effects of diesel/gasoline/iso-butanol blends, including pure diesel (D100), diesel (70%)/gasoline (30%) (D70G30, by mass), diesel (70%)/iso-butanol (30%) (D70B30) and diesel (70%)/gasoline (15%)/iso-butanol (15%) (D70G15B15), on combustion and exhaust pollutant emissions characteristics in a four-cylinder diesel engine were experimentally investigated under various engine load conditions with a constant speed of 1800 rpm. The results indicated that D70G30, D70G15B15 and D70B30 delayed the ignition timing and shortened the combustion duration compared to D100. Additionally, CA50 was retarded when engine fuelled with D70G30, D70G15B15 and D70B30 at low engine load conditions, but it was advanced at medium and high engine loads. The maximum pressure rise rates (MPRRs) of D70G30, D70G15B15 and D70B30 were increased compared with D100 except for at engine load of 0.13 MPa BMEP (brake mean effective pressure). Meanwhile, D70G15B15 and D70B30 produced higher brake specific fuel consumption (BSFC) than that of D100. The effects of diesel blend with gasoline or iso-butanol on exhaust pollutant emissions were varied with loads. CO emissions were increased obviously and NOx emissions were decreased under low engine loads. However, CO emissions were decreased and NOx emissions were slightly increased under the medium and high engine load conditions. However, D70G30, D70G15B15 and D70B30 leaded to higher HC emissions than D100 regardless the variation of engine load. Moreover, the particulate matter (PM) (diameter, number and mass concentrations) emissions by using

  2. Cointegration and the demand for gasoline

    International Nuclear Information System (INIS)

    Bhaskara Rao, B.; Rao, Gyaneshwar

    2009-01-01

    Since the early 1970s, there has been a worldwide upsurge in the price of energy and in particular of gasoline. Therefore, demand functions for energy and its components like gasoline have received much attention. However, since confidence in the estimated demand functions is important for use in policy and forecasting, following [Amarawickrama, H.A., Hunt, L.C., 2008. Electricity demand for Sri Lanka: A time series analysis. Energy Economics 33, 724-739], this paper estimates the demand for gasoline is estimated with five alternative time series techniques with data from Fiji. Estimates with these alternative techniques are very close, and thus increase our confidence in them. We found that gasoline demand is both price and income inelastic.

  3. Cointegration and the demand for gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskara Rao, B. [University of Western Sydney, Sydney1797 (Australia); Rao, Gyaneshwar [University of the South Pacific (Fiji)

    2009-10-15

    Since the early 1970s, there has been a worldwide upsurge in the price of energy and in particular of gasoline. Therefore, demand functions for energy and its components like gasoline have received much attention. However, since confidence in the estimated demand functions is important for use in policy and forecasting, following [Amarawickrama, H.A., Hunt, L.C., 2008. Electricity demand for Sri Lanka: A time series analysis. Energy Economics 33, 724-739], this paper estimates the demand for gasoline is estimated with five alternative time series techniques with data from Fiji. Estimates with these alternative techniques are very close, and thus increase our confidence in them. We found that gasoline demand is both price and income inelastic. (author)

  4. 40 CFR 80.540 - How may a refiner be approved to produce gasoline under the GPA gasoline sulfur standards in 2007...

    Science.gov (United States)

    2010-07-01

    ... produce gasoline under the GPA gasoline sulfur standards in 2007 and 2008? 80.540 Section 80.540... Marine Fuel Geographic Phase-in Provisions § 80.540 How may a refiner be approved to produce gasoline under the GPA gasoline sulfur standards in 2007 and 2008? (a) A refiner that has been approved by EPA...

  5. Successful outcome after intravenous gasoline injection.

    Science.gov (United States)

    Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz

    2007-12-01

    Gasoline, ingested intentionally or accidentally, is toxic. The majority of reported cases of gasoline intoxication involve oral ingestion or inhalation. Data are scarce on complications and outcomes following hydrocarbon poisoning by intravenous injection. Following a suicide attempt by intravenous self-injection of 10 ml of gasoline, a 26-year-old medical student was admitted to the intensive care unit (ICU) with hemoptysis, symptoms of acute respiratory failure, chest pain, and severe abdominal cramps. Gas exchange was severely impaired and a chest x-ray indicated chemical pneumonitis. Initial treatment consisted of mechanical ventilation, supportive hyperventilation, administration of nitrogen oxide (NO), and prednisone. Unfortunately, the patient developed multi-organ dysfunction syndrome (MODS) complicated by life-threatening severe vasoplegia within 24 hours after gasoline injection. High doses of vasopressors along with massive amounts of parenteral fluids were necessary. Despite fluid replacement, renal function worsened and required hemofiltration on 5 sequential days. After 12 days of intensive care management, the patient recovered completely and was discharged to a psychiatric care facility. Intravenous gasoline injection causes major injury to the lungs, the organ bearing the first capillary bed encountered. Treatment of gasoline poisoning is symptomatic because no specific antidote is available. Early and aggressive supportive care may be conducive to a favorable outcome with minimal residual pulmonary sequelae.

  6. 40 CFR 79.32 - Motor vehicle gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  7. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2010-04-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel

  8. Toxicological Assessments of Rats Exposed Prenatally to Inhaled Vapors of Gasoline and Gasoline-Ethanol Blends

    Science.gov (United States)

    The primary alternative to petroleum-based fuels is ethanol, which is blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ...

  9. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  10. Production of high anti-knock gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1935-09-20

    A process is described for producing gasoline of high antiknock value by separating from the gasoline of low antiknock value by treating the gasoline in the vapor phase under pressure equal to or slightly above atmospheric and at a temperature at which it does not form essentially hydrocarbons gaseous at the operating temperature and in contact with catalysts, the process being characterized by the utilization of catalysts of silicates or phosphates except pumice stone and fullers earth.

  11. Investigation of fatalities due to acute gasoline poisoning.

    Science.gov (United States)

    Martínez, María A; Ballesteros, Salomé

    2005-10-01

    This paper presents a simple, rapid, reliable, and validated method suited for forensic examination of gasoline in biological samples. The proposed methodology has been applied to the investigation of four fatal cases due to gasoline poisoning that occurred in Spain in 2003 and 2004. Case histories and pathological and toxicological findings are described in order to illustrate the danger of gasoline exposure under several circumstances. Gasoline's tissular distribution, its quantitative toxicological significance, and the possible mechanisms leading to death are also discussed. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography (GC) with flame-ionization detection, and confirmation was performed using GC-mass spectrometry in total ion chromatogram mode. m,p-Xylene peak was selected to estimate gasoline in all biological samples. Gasoline analytical methodology was validated at five concentration levels from 1 to 100 mg/L. The method provided extraction recoveries between 77.6% and 98.3%. The limit of detection was 0.3 mg/L, and the limit of quantitation was 1.0 mg/L. The linearity of the blood calibration curves was excellent with r2 values of > 0.997. Intraday and interday precisions had a coefficient of variation inhalation of gasoline vapor inside a small enclosed space. Case 3 is a death by recreational gasoline inhalation in a male adolescent. Heart blood concentrations were 28.4, 18.0, and 38.3 mg/L, respectively; liver concentrations were 41.4, 52.9, and 124.2 mg/kg, respectively; and lung concentrations were 5.6, 8.4, and 39.3 mg/kg, respectively. Case 4 was an accidental death due to gasoline ingestion of a woman with senile dementia. Peripheral blood concentration was 122.4 mg/L, the highest in our experience. Because pathological findings were consistent with other reports of gasoline intoxication and constituents of gasoline were found in the body, cause of death was attributed to acute gasoline

  12. 46 CFR 169.613 - Gasoline fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b) Each...

  13. The US gasoline situation and crude oil prices

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Before and during the United States' summer driving season, concern over the country's gasoline supply can potentially influence the direction of the petroleum market. There are three causes of concern: a persistent lack of gasoline-producing capacity; a patchwork of as many as 18 different kinds of gasoline specifications; and the introduction of stringent new specifications for reformulated gasoline. However, gasoline stocks should be able to meet the needs of this year's driving season, at a time of ample crude oil availability, with strong imports. But, unplanned outages in the US logistics system and refining centres, or major disruptions in external gasoline supplies, could trigger price spikes that would, in turn, lead to frequently stronger crude oil prices, especially with the observed robust oil demand growth in China. (Author)

  14. Gasoline Prices and Their Relationship to Drunk-Driving Crashes

    OpenAIRE

    Guangqing Chi; Xuan Zhou; Timothy McClure; Paul Gilbert; Arthur Cosby; Li Zhang; Angela Robertson; David Levinson

    2010-01-01

    This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by age, gender, and race from 2004Ð2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk- driving crashes among younger...

  15. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  16. Evaluation for leaded and unleaded Gasoline as Hazardous Waste

    International Nuclear Information System (INIS)

    Abou El Naga, H.H.

    1999-01-01

    With the phase out of alkyl lead compounds as necessary additives for gasoline in order to raise its octane number , the alternative is to reformulate gasoline to have nearly same octane number but with other chemical structures. Such reformulated gasoline (RFG) is found to contain higher aromatics, benzene, iso paraffins, in comparison to leaded gasoline. Additionally, this reformulated gasoline can also contain oxygenated additives. Accordingly, this paper is aiming at evaluation of emitted hazardous chemical compounds from car engines at fuel combustion. Role of chemical structures for reformulated gasoline in emission of volatile organic compounds (VOC) and poisoning materials are considered

  17. 26 CFR 48.4081-6 - Gasoline; gasohol.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; gasohol. 48.4081-6 Section 48.4081-6... Fuel Taxable Fuel § 48.4081-6 Gasoline; gasohol. (a) Overview. This section provides rules for determining the applicability of reduced rates of tax on a removal or entry of gasohol or of gasoline used to...

  18. Gasoline toxicology: overview of regulatory and product stewardship programs.

    Science.gov (United States)

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand

    OpenAIRE

    Coglianese, John; Davis, Lucas W; Kilian, Lutz; Stock, James H

    2015-01-01

    Traditional least squares estimates of the responsiveness of gasoline consumption to changes in gasoline prices are biased toward zero, given the endogeneity of gasoline prices. A seemingly natural solution to this problem is to instrument for gasoline prices using gasoline taxes, but this approach tends to yield implausibly large price elasticities. We demonstrate that anticipatory behavior provides an important explanation for this result. We provide evidence that gasoline buyers increase g...

  20. Atmospheric particulate pollution in Kenitra (Morocco)

    International Nuclear Information System (INIS)

    Zghaid, Mustapha; Noack, Yves; Boukla, Moussa; Benyaich, Fouad

    2009-01-01

    Cities of Morocco are exposed to a high atmospheric particulate pollution due to automobile traffic, industrialization, but also to soil dusts (in relation with aridity and desert proximity). Monitoring networks and data about air pollution still rare. The present study is a preliminary work about particulate and heavy metals pollution in Kenitra city. Aerosols had been collected with a PM10 sampler (Partisol), a dichotomous sampler (P M2.5 and P M2.5-10 fractions) and stacked filter unit (Gent type) with a fine fraction (below 2.5 um) and a coarse fraction. In summer, the average PM10 concentration is near 80 u g/N m 3 , above the EEC rule and OMS recommendations, but similar to some other african towns. The ratio P M2.5/PM 10 is low (below 0.5), with seasonal variation in relation with meteorology. The lead and nickel concentrations are also very low, in relation with the use of leaded gasoline and the oldness of many vehicles. This preliminary work reveals high levels of pollution (especially PM10, Pb and Ni) in the town of Kenitra. The major sources are traffic, soil dusts and resuspension of deposited particles. It is necessary to develop monitoring network and sanitary and and environmental impact studies in these cities [fr

  1. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells.

    Science.gov (United States)

    Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Machala, Miroslav; Topinka, Jan

    2018-04-01

    Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Persulfate injection into a gasoline source zone

    Science.gov (United States)

    Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.

  3. MVMA's 1991 summer gasoline survey and air quality

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In a previous newsletter (September 1991 issue of this journal), the results of MVMA's 1990 Summer Gasoline Survey were discussed. It was noted that many gasolines containing high concentrations of olefins (over 15 percent volume) were being marketed in the northeast corridor between Washington, D.C. and Boston. Also noted was the finding that the composition of gasoline plays an important role in determining the emissions from vehicles on the road. In this newsletter, the potential effects on air quality of the more recently surveyed gasolines are discussed. Three grades of unleaded gasoline were covered in the survey (premium, intermediate, and regular). 1 tab

  4. Phase-out of leaded gasoline: a prescription for Lebanon

    International Nuclear Information System (INIS)

    Hashisho, Z.; El-Fadel, M.; Ayoub, G.; Baaj, H.

    2000-01-01

    Full text.Lead is a toxic heavy metal. Nevertheless, it has been mined and used for more than 800 years. Among the different contemporary sources of lead pollution, emissions from the combustion of leaded gasoline is of particular concern, as it can constitutes more than 90 percent of total lead emissions into the atmosphere in congested urban areas. Concentrations of lead in air and blood are strongly correlated with gasoline lead content and traffic volume. As a result of the increasing awareness about the dangers of lead to human health and the measures to manage urban air pollution, the use of leaded gasoline has been decreasing worldwide. In Lebanon, in the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline is the predominant grade. The objective of this research work is to analyze the current status of gasoline, and to assess the feasibility and prospect of such action. For this purpose, background information are presented, data about gasoline usage and specifications have been collected, field measurements have been performed and a public survey has been conducted. The comparison of the expected cost savings from phasing out leaded gasoline with the potential costs indicates that such action is economically highly justified. If effective regulatory measures are undertaken, leaded gasoline can be phased-out immediately without a significant cost

  5. Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine

    Science.gov (United States)

    Smallwood, Bryden Alexander

    The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.

  6. Survey of benzene and aromatics in Canadian Gasoline - 1994

    International Nuclear Information System (INIS)

    Tushingham, M.

    1996-01-01

    A comprehensive database of the benzene and aromatics levels of gasoline produced in or imported into Canada during 1994, was presented. Environment Canada conducted a survey that requested refineries and importers to report quarterly on benzene and aromatics levels in gasoline. Benzene, which has been declared toxic by the Canadian Environmental Protection Act, is found in gasoline and is formed during the combustion of the aromatic components of gasoline. It was shown that benzene and aromatics levels differ regionally and seasonally. There are also variations in benzene levels between batches of gasoline produced at any one refinery. This report listed the responses to the benzene/aromatics survey. It also described the analytical procedures used to measure benzene and aromatics levels in gasoline, and provided guidelines for reporting gasoline benzene and total aromatics data. 7 tabs., 21 figs

  7. New evidence on the asymmetry in gasoline price: volatility versus margin?

    International Nuclear Information System (INIS)

    Abosedra, S.; Radchenko, S.

    2006-01-01

    This paper examines recent evidence on the role that gasoline margins and volatility play in the asymmetric response of gasoline prices to changes in oil prices at different stages of distribution process. In a regression model with margins, we find that margins are statistically significant in explaining asymmetry between crude oil and spot gasoline prices, spot gasoline prices and wholesale gasoline prices, and wholesale gasoline prices and retail prices. In a regression model with input volatility, we find evidence that volatility is responsible for asymmetry between wholesale gasoline prices and retail gasoline prices. When both, gasoline margins and gasoline volatility are included in the regression, we find evidence supporting margins, the search theory, volatility, the oligopolistic coordination theory and an explanation of asymmetry. (author)

  8. Gasoline sales post minimal gain in 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-22

    Despite the continuing emphasis on conservation and the growing trend to smaller sized automobiles, sales of motor gasoline across Canada posted a gain of 0.4% in 1986. Figures are included in this survey for Canadian motor gasoline sales categorized by province, type of gasoline, and months of 1985 and 1986. Sales of refiners' diesel fuel oil are also categorized by province and by months of 1985 and 1986. Motor gasoline disposition for 1983-1986 is categorized into retail pump sales, road and urban transport, agriculture, public administration, and commercial and other institutional markets. Also included are figures for refiners' propane sales for 1983-1986 by province.

  9. Gasoline Prices, Transport Costs, and the U.S. Business Cycles

    OpenAIRE

    Hakan Yilmazkuday

    2014-01-01

    The e¡èects of gasoline prices on the U.S. business cycles are investigated. In order to distinguish between gasoline supply and gasoline demand shocks, the price of gasoline is endogenously determined through a transportation sector that uses gasoline as an input of production. The model is estimated for the U.S. economy using five macroeconomic time series, including data on transport costs and gasoline prices. The results show that although standard shocks in the literature (e.g., technolo...

  10. Tiered gasoline pricing: A personal carbon trading perspective

    International Nuclear Information System (INIS)

    Li, Yao; Fan, Jin; Zhao, Dingtao; Wu, Yanrui; Li, Jun

    2016-01-01

    This paper proffers a tiered gasoline pricing method from a personal carbon trading perspective. An optimization model of personal carbon trading is proposed, and then, an equilibrium carbon price is derived according to the market clearing condition. Based on the derived equilibrium carbon price, this paper proposes a calculation method of tiered gasoline pricing. Then, sensitivity analyses and consumers' surplus analyses are conducted. It can be shown that a rise in gasoline price or a more generous allowance allocation would incur a decrease in the equilibrium carbon price, making the first tiered price higher, but the second tiered price lower. It is further verified that the proposed tiered pricing method is progressive because it would relieve the pressure of the low-income groups who consume less gasoline while imposing a greater burden on the high-income groups who consume more gasoline. Based on these results, implications, limitations and suggestions for future studies are provided. - Highlights: • Tiered gasoline pricing is calculated from the perspective of PCT. • Consumers would be burdened with different actual gasoline costs. • A specific example is provided to illustrate the calculation of TGP. • The tiered pricing mechanism is a progressive system.

  11. Persulfate injection into a gasoline source zone.

    Science.gov (United States)

    Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Anpassning av ett avgassystem för en motkolvstvåtaktsmotor med HCCI-förbränning

    OpenAIRE

    LAINEZ MARTÍ, JAVIER

    2010-01-01

    Målet för detta examensarbete har varit att förbättra driften av en motkolvs tvåtaktsmotormed HCCI-förbränning. Huvudfokus för arbetet har varit på gasväxlingsprocessen, dåfrämst avgasprocessen.Motorn har studerats med utgångspunkt från hur en tvåtakts Otto-cykel fungerar.Gasväxlingsprocessen i tvåtaktsmotorer kännetecknas av behovet av att snabbt få ut denförbrända gasen och införa ny blandning vid varje expansionstakt, samt avsaknaden avventiler. Behovet att kunna kontrollera gasflödet geno...

  13. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall be...

  14. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  15. Ambitious coal to gasoline plan

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, P

    1979-06-20

    A design study carried out by Badger Energy concludes that the first US commercial gasoline from coal facility could be completed in eight years. The cost of gasoline would be 1.09 US dollars/gal. in 1990 with coal at 25 US dollars/ton. The process involves oxygen-blown coal gasification, conversion to methanol by the Mobil process, gas fractionation and HF alkylation.

  16. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  17. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    Science.gov (United States)

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  18. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  19. Unleaded gasoline with reduction in benzene and aromatics

    International Nuclear Information System (INIS)

    Ahmed, I.

    2003-01-01

    The trend today is towards making gasoline more environment and human friendly or in other words making gasoline a really clean fuel. This paper covers the ill effects of benzene and aromatics and the driving force behind their reduction in gasoline worldwide. It addresses health concerns specifically, and the theme is unleaded gasoline without simultaneously addressing reduction in benzene and aromatics is more harmful. The paper cites worldwide case studies, and also the World Bank (WB), Government of Pakistan (GoP), and United Nations (UN) efforts in this area in Pakistan. (author)

  20. 40 CFR 80.375 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  1. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  2. 40 CFR 80.845 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  3. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  4. 46 CFR 56.50-70 - Gasoline fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel systems. 56.50-70 Section 56.50-70... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-70 Gasoline fuel systems. (a) Material.... Outlets in fuel lines for drawing gasoline for any purpose are prohibited. Valved openings in the bottom...

  5. Understanding gasoline pricing in Canada

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Pricing policies for gasoline by Canadian oil companies are discussed. An attempt is made to demonstrate that competition between oil companies is extremely keen, and markups are so small that to stay in business, retail outlets have to sell huge volumes and sell non-fuel products, as a means to increase revenues and margins. An explanation is provided for why gasoline prices move in unison, and why what appears to the public as collusion and gouging is, in fact, the result of retail dealers attempting to stay in business. The high prices are attributed mainly to taxes by municipalities, the provinces and the federal government; taxes are said to account for 40 to 50 per cent of the pump price. The cost of crude makes up another 35 to 45 per cent, refining adds 10 to 15 per cent, with the remaining 5 to 10 per cent representing retail costs. (Taxes in the United States average 20 to 30 per cent). Over the longer term, gasoline prices consistently reflect the cost of crude oil, dominated by the OPEC countries which supply about 41 per cent of daily world production. Another factor is the rise of global and regional commodity markets for refined products such as gasoline. Commodity traders buy wholesale gasoline cheaply whenever it is in oversupply, and sell it for a profit into markets where the demand is greater. While this is claimed to ensure competitive prices in all markets, the practice can also trigger abrupt changes in regional markets

  6. The elasticity of demand for gasoline in China

    International Nuclear Information System (INIS)

    Lin, C.-Y. Cynthia; Zeng, Jieyin

    2013-01-01

    This paper estimates the price and income elasticities of demand for gasoline in China. Our estimates of the intermediate-run price elasticity of gasoline demand range between −0.497 and −0.196, and our estimates of the intermediate-run income elasticity of gasoline demand range between 1.01 and 1.05. We also extend previous studies to estimate the vehicle miles traveled (VMT) elasticity and obtain a range from −0.882 to −0.579. - highlights: • The price elasticity of demand for gasoline in China is between −0.497 and −0.196. • The income elasticity of demand for gasoline in China is between 1.01 and 1.05. • The price elasticity of demand for VMT in China is between −0.882 and −0.579

  7. Evaluation of Motor Gasoline Stability

    Science.gov (United States)

    1990-12-01

    CAMPINNE AIR POLLUTION CONTROL I LABORATOIRE MECANIQUE TRANSPORT 2565 PLYMOUTH ROAD AVENUE DE LA RENAISSANCE, 3D ANN ARBOR MI 48105 B-1040 BRUSSELS 5...CUARTEL GENERAL DEL EJERCITO ATTN: MR K LAURINSEN ATTN: MAJ M ENGO NOGUES GADHOLTVEJ 11 DIVISION DE LOGISTICA (DIAM/LABCAMVE) DK-9900 FREDERIKSHAVN...Gum for Typical Civilian Gasolines Transported by CEPS and F-46 Gasolines Stored by CEPS ...................................... 47 B. Potential Gum

  8. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  9. Gasoline taxes or efficiency standards? A heterogeneous household demand analysis

    International Nuclear Information System (INIS)

    Liu, Weiwei

    2015-01-01

    Using detailed consumer expenditure survey data and a flexible semiparametric dynamic demand model, this paper estimates the price elasticity and fuel efficiency elasticity of gasoline demand at the household level. The goal is to assess the effectiveness of gasoline taxes and vehicle fuel efficiency standards on fuel consumption. The results reveal substantial interaction between vehicle fuel efficiency and the price elasticity of gasoline demand: the improvement of vehicle fuel efficiency leads to lower price elasticity and weakens consumers’ sensitivity to gasoline price changes. The offsetting effect also differs across households due to demographic heterogeneity. These findings imply that when gasoline taxes are in place, tightening efficiency standards will partially offset the strength of taxes on reducing fuel consumption. - Highlights: • Model household gasoline demand using a semiparametric approach. • Estimate heterogeneous price elasticity and fuel efficiency elasticity. • Assess the effectiveness of gasoline taxes and efficiency standards. • Efficiency standards offset the impact of gasoline taxes on fuel consumption. • The offsetting effect differs by household demographics

  10. Inventories and upstream gasoline price dynamics

    NARCIS (Netherlands)

    Kuper, Gerard H.

    This paper sheds new light on the asymmetric dynamics in upstream U.S. gasoline prices. The model is based on Pindyck's inventory model of commodity price dynamics. We show that asymmetry in gasoline price dynamics is caused by changes in the net marginal convenience yield: higher costs of marketing

  11. Environment and Energy. Phase out of gasoline

    International Nuclear Information System (INIS)

    Magaudda, G.

    2000-01-01

    The european recommendation 98/07/EEC gives the technical specification of automotive fuels quality, gasoline and diesel fuel and forbid for member countries the commercialization of lead gasoline from 01/01/2001 [it

  12. Projected reformulated gasoline and AFV use in California

    International Nuclear Information System (INIS)

    Bemis, G.R.

    1995-01-01

    In the spring to summer of 1996, California will switch from conventional and oxygenated gasolines to reformulated gasoline. This gasoline will be a designer fuel, and generally not available from sources outside California, since California's fuel specifications then will be unique. Thus, it will be important for California refiners to be able to meet the California reformulated gasoline (Cal-RFG) demand. California refiners are investing over $4 billion to upgrade their facilities for Cal-RFG. This represents approximately 40% of the total cost of making Cal-RFG, and is expected to cost 5--15 cents/gallon more than conventional gasoline to produce. Starting in the year 2000, EPA will require use of a similar fuel in seven geographical areas outside of California. The discussion below focuses on the supply, demand and price projections for Cal-RFG

  13. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON

    KAUST Repository

    Mannaa, Ossama

    2015-06-01

    The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.

  14. Hydrocarbon control strategies for gasoline marketing operations

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R.L.; Sakaida, R.R.; Yamada, M.M.

    1978-05-01

    This informational document provides basic and current descriptions of gasoline marketing operations and methods that are available to control hydrocarbon emissions from these operations. The three types of facilities that are described are terminals, bulk plants, and service stations. Operational and business trends are also discussed. The potential emissions from typical facilities, including transport trucks, are given. The operations which lead to emissions from these facilities include (1) gasoline storage, (2) gasoline loading at terminals and bulk plants, (3) gasoline delivery to bulk plants and service stations, and (4) the refueling of vehicles at service stations. Available and possible methods for controlling emissions are described with their estimated control efficiencies and costs. This report also includes a bibliography of references cited in the text, and supplementary sources of information.

  15. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  16. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  17. Transport gasoline demand in Canada

    International Nuclear Information System (INIS)

    Eltony, M.N.

    1993-01-01

    This paper provides an estimate of household gasoline demand in Canada by applying a detailed model to pool time-series (1969-1988) and cross-sectional provincial data. The model recognises three major behavioural changes that households can make in response to gasoline price changes: drive fewer miles, purchase fewer cars, and buy more fuel-efficient vehicles. In the model, fuel economy is treated in considerable detail. The two components of the fuel economy of new cars sold-the technical fuel efficiency of various classes of cars and the distribution of new car sales according to their interior volume rather than their weight - are estimated as functions of economic variables. Car manufacturers are assumed to improve the technical fuel economy according to their expectation of consumer's response to future changes in gasoline prices and general economic conditions. (author)

  18. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  19. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    Directory of Open Access Journals (Sweden)

    Xiaochen Wang

    2015-09-01

    Full Text Available Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W, ethanol gasoline (E10 and pure gasoline (E0. The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the operating conditions. The usage of E10W increased NOX emissions at a wide load range. However, at low load conditions, E10W reduced HC, CO and CO2 emissions significantly. E10W also produced slightly less HC and CO emissions, while CO2 emissions were not significantly affected at higher operating points. Compared with E10, E10W showed higher peak in-cylinder pressures and peak heat release rates at the tested operating conditions. In addition, decreases in NOX emissions were observed for E10W from 5 Nm to 100 Nm, while HC, CO and CO2 emissions were slightly higher at low and medium load conditions. From the results, it can be concluded that E10W fuel can be regarded as a potential alternative fuel for gasoline engine applications.

  20. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  1. Taking the mystery out of gasoline prices

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Gasoline price variations in different markets of Canada are primarily driven by market forces, not necessarily by costs, according to a petroleum valuation consultant of the Newfoundland Department of Mines and Energy. Market forces include wholesale prices, the number and efficiency of stations in an area, companies' marketing strategies and customer buying preferences. Prices can be affected by any one of these forces at any time. The prediction is that wholesale prices will continue to be volatile in the next few months as the market adjusts to the changes in crude oil prices determined by OPEC as well as the summer season for gasoline. Changes in crude oil prices are usually reflected in the price of gasoline at the pump, although they do not necessarily move together. Demand which is an important factor in price, is cyclical in both the US and Canada, being lowest in the first quarter of the year, picking up during the second and third quarters with increased driving during good weather, and usually declining again in the fourth quarter with the onset of colder weather. Taxes are also a very significant component of the retail price of gasoline; in July 1998 the combined federal and provincial taxes accounted for 54 per cent of the average retail price of regular unleaded gasoline in Canada. Refining and marketing costs, the distance gasoline has to be transported to market, also influence prices at the pump

  2. Development of synthetic gasoline production process

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T; Fujita, H; Yamada, K; Suzuki, T; Tsuchida, Y

    1986-01-01

    As oil deposits are limited, it is very important to develop techniques for manufacturing petroleum alternatives as substitute energy sources to brighten the outlook for the future. The Research Association for Petroleum Alternatives Development (RAPAD) in Japan is engaged in the research and development of production techniques for light hydrocarbon oils such as gasoline, kerosene, and light oil from synthesis gas (CO, H/sub 2/) obtained from the raw materials of natural gas, coal, etc. Regarding the MTG process of synthesizing gasoline via methanol from synthesis gas and the STG process of directly synthesizing gasoline from synthesis gas, Cosmo Oil Co., Ltd. and Mitsubishi Heavy Industries, Ltd., members of RAPAD, have sought jointly to develop catalysts and processes. As a result of this co-operation, the authors have recently succeeded in developing a new catalyst with a long life span capable of providing a high yield and high selectivity. Additionally, the authors are currently on the verge of putting into effect a unique two-step STG process of synthesizing high octane gasoline via dimethyl ether, referred to as the AMSTG process.

  3. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Science.gov (United States)

    2010-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  4. Examining Methods to Reduce Wall-Wetting under HCCI conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Erp, D.D.T.M.

    2009-01-15

    HCCI engines (Homogeneous Charge Compression Ignition) are very promising in the reduction of soot and NOx, but several problems must be tackled. Collision of the liquid fuel spray against the cylinder wall (Wall-wetting) is a major problem. Low gas temperatures and low gas densities (typical 600 - 800 K and 5 - 7.4 kg/m{sup 3}) at the moment of the fuel injection slow down the evaporation process of the liquid fuel in the spray and causes wall-wetting. This report investigates different promising measures that can reduce the penetration of the liquid fuel core, in order to prevent wall-wetting. From literature it turns out that the measures, listed below, are the most promising for liquid core length (LL) reduction without changing the design of the injector or the engine design: Increasing the fuel temperature, Changing the fuel pressure, Decrease of injector hole diameter, Multiple injections (first very short injections are examined). Each of the measures will be investigated by a liquid length prediction model (Siebers) and in an experimental setup, the EHPC (Eindhoven High Pressure Cell). A high pressure vessel with optical access makes it possible to visualize the liquid core and the vapor phase of the fuel spray by Mie and Schlieren, respectively. Changes to the setup are made to heat up the fuel up to 120C. Furthermore, changes to the fuel spray visualization techniques have been made. Where in previous experiments the Mie and Schlieren techniques were carried out separately from each other, in this work both visualization techniques are combined to save measurement time and to deal with the same experimental conditions. The combined recording of Mie and Schlieren works well for high gas temperatures and densities. But the combined technique fails for low gas temperatures and densities (below 700K and 7.4 kg/m3), due to the poor contrast between the liquid core and the vapor phase. In further examination of liquid length reducing measures, only the Mie

  5. Impact of dedicated E85 vehicle use on ozone and particulate matter in the US

    Science.gov (United States)

    Nopmongcol, Uarporn; Griffin, W. Michael; Yarwood, Greg; Dunker, Alan M.; MacLean, Heather L.; Mansell, Gerard; Grant, John

    2011-12-01

    Increased use of ethanol as a vehicle fuel worldwide warrants the need to understand air quality impacts of replacing gasoline with ethanol. This study evaluates the impacts of dedicated E85 (85% ethanol/15% gasoline) light-duty vehicles on emissions, ozone and particulate matter (PM) concentrations in the United States for a future year (2022) using a 3-D photochemical model, detailed emissions inventories that account for changes in all sectors studied, and winter and summer meteorology that occurred in 2002. Use of E85 introduces new emissions from ethanol production and distribution, reduces petrochemical industry emissions due to lower gasoline consumption, changes on-road vehicle emissions and alters biogenic emissions due to land use changes. Three scenarios with increased ethanol production for dedicated E85 light-duty vehicles were compared to a base case without increased ethanol production. Increased use of E85 caused both increases and decreases in ozone and PM, driven mainly by changes in NO x emissions related to biogenic and upstream petrochemical industry sources. In all states modeled, adoption of dedicated E85 vehicles caused negligible change in average higher ozone and PM concentrations of importance for air quality management strategies. Ozone and PM changes are relatively insensitive to how land area is allocated for switchgrass production. The findings are subject to various uncertainties, especially those in vehicle technology and emissions from cellulosic ethanol production.

  6. Competition in the retail gasoline industry

    Science.gov (United States)

    Brewer, Jedidiah

    2007-05-01

    This dissertation examines competition in the retail gasoline industry. The first chapter highlights the importance of gasoline in modern society, introduces my work, and places it in the context of the existing academic literature. The second chapter details the institutional structure and profitability of the industry. The vast majority of retail gasoline stations are not directly owned and operated by major oil companies. Instead, most stations are set up under other contractual relationships: lessee-dealer, open-dealer, jobber-owned-and-operated, and independent. Gasoline retailers make relatively low profits, as is the case in many other retail industries, and are substantially less profitable than major oil companies. Gas stations also make less money when retail prices are climbing than when they are falling. As prices rise, total station profits are near zero or negative. When retail prices are constant or falling, retailers can make positive profits. The third chapter describes the entry of big-box stores into the retail gasoline industry over the last decade. The growth of such large retailers, in all markets, has led to a great deal of controversy as smaller competitors with long-term ties to the local community have become less common. I estimate the price impact that big-box stores have on traditional gasoline retailers using cross-sectional data in two geographically diverse cities. I also examine changes in pricing following the entry of The Home Depot into a local retail gasoline market. The results show that big-box stores place statistically and economically significant downward pressure on the prices of nearby gas stations, offering a measure of the impact of the entry of a big-box store. Chapter 4 examines the nature of price competition in markets where some competing retailers sell the same brand. The price effect of having more retailers selling the same brand is theoretically unclear. High brand diversity could give individual retailers

  7. Recent Trends and Patterns of Gasoline Consumption in Nigeria ...

    African Journals Online (AJOL)

    This article analyses recent trends and spatial patterns of gasoline consumption in Nigeria. In particular, it shows that the volume of gasoline consumption in the country fluctuates with changes in economic growth. The pattern of distribution of gasoline consumption indicates that the largest consumption centres are in the ...

  8. Degradation of tetraethyllead during the degradation of leaded gasoline hydrocarbons in soil

    International Nuclear Information System (INIS)

    Mulroy, P.T.; Ou, L.T.

    1998-01-01

    For over 50 years, leaded gasoline was the only fuel for automobiles, and tetraethyllead (TEL) was the major octane number enhancer used in leaded gasoline. Ample information is available on the fate and remediation of gasoline hydrocarbons in contaminated subsoils and groundwater. However, little is known regarding the fate of TEL in leaded gasoline-contaminated subsoils and groundwater. In soil not contaminated with gasoline, TEL was rapidly degraded and completely disappeared in 14 d. In gasoline-contaminated soil, TEL degradation was slower; after 77 d, 4 to 17% of the applied TEL still remained in the contaminated soil. Disappearance of total petroleum hydrocarbons (TPH) was initially rapid but slowed appreciably after 7 to 14 d. As a result, after 77 d, 33 to 51% of the applied gasoline still remained in soil. The retardation of TEL degradation in leaded gasoline-contaminated soil is due to the presence of gasoline hydrocarbons. As long as gasoline hydrocarbons remain in soil, TEL may also remain in soil, most likely in the gasoline hydrocarbon phase

  9. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  10. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  11. Performance of a hybrid hydrogen–gasoline engine under various operating conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Wang, Shuofeng; Zhang, Bo

    2012-01-01

    Highlights: ► We develop a combustion strategy for the hybrid hydrogen–gasoline engine (HHGE). ► The HHGE produced much lower HC and CO emissions at cold start. ► The H 2 -gasoline blends were effective for improving engine performance at idle and part loads. ► The HHGE could run smoothly at lean conditions. -- Abstract: This paper proposed a new combustion strategy for the spark-ignited (SI) engines. A gasoline engine was converted into a hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen injection system and a hybrid electronic control unit. Different from the conventional gasoline and hydrogen–enriched gasoline engines, the HHGE is fueled with the pure hydrogen at cold start to produce almost zero emissions, with the hydrogen–gasoline blends at idle and part loads to further improve thermal efficiency and reduce emissions, and with the pure gasoline to ensure the engine power output at high loads. Because the HHGE is fueled with the pure gasoline at high loads and speeds, experiments are only conducted at clod start, idle and part load conditions. Since lean combustion avails the further improvement of the engine performance, the HHGE was fueled with the lean mixtures in all tests. The experimental results showed that the hybrid hydrogen–gasoline engine was started successfully with the pure hydrogen, which produced 94.7% and 99.5% reductions in HC and CO emissions within 100 s from the onset of the cold start, compared with the original gasoline engine. At an excess air ratio of 1.37 and idle conditions, indicated thermal efficiency of the 3% hydrogen–blended gasoline engine was 46.3% higher than that of the original engine. Moreover, the engine cyclic variation was eased, combustion duration was shortened and HC, CO and NOx emissions were effectively reduced for the hybrid hydrogen–gasoline engines.

  12. Gasoline tax best path to reduced emissions

    International Nuclear Information System (INIS)

    Brinner, R.E.

    1991-01-01

    Lowering gasoline consumption is the quickest way to increase energy security and reduce emissions. Three policy initiatives designed to meet such goals are current contenders in Washington, DC: higher gasoline taxes; higher CAFE (Corporate Average Fuel Economy) standards; and an auto registration fee scheme with gas-guzzler taxes and gas-sipper subsidies. Any of these options will give us a more fuel-efficient auto fleet. The author feels, however, the gasoline tax holds several advantages: it is fair, flexible, smart, and honest. But he notes that he is proposing a substantial increase in the federal gasoline tax. Real commitment would translate into an additional 50 cents a gallon at the pump. While the concept of increasing taxes at the federal level is unpopular with voters and, thus, with elected officials, there are attractive ways to recycle the $50 billion in annual revenues that higher gas taxes would produce

  13. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  14. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad; AlRamadan, Abdullah S.; Sarathy, Mani

    2017-01-01

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  15. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  16. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to gasoline...

  17. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use.

    Science.gov (United States)

    Salvo, Alberto; Brito, Joel; Artaxo, Paulo; Geiger, Franz M

    2017-07-18

    Despite ethanol's penetration into urban transportation, observational evidence quantifying the consequence for the atmospheric particulate burden during actual, not hypothetical, fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and consumer behavior data and find, empirically, that ambient number concentrations of 7-100-nm diameter particles rise by one-third during the morning commute when higher ethanol prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to gasoline use (95% confidence intervals: +4,154 to +13,272 cm -3 ). Similarly, concentrations fall when consumers return to ethanol. Changes in larger particle concentrations, including US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased biofuel use and mounting evidence on ultrafines' health effects make our result acutely policy relevant, to be weighed against possible ozone increases. The finding motivates further studies in real-world environments. We innovate in using econometrics to quantify a key source of urban ultrafine particles.The biofuel ethanol has been introduced into urban transportation in many countries. Here, by measuring aerosols in São Paulo, the authors find that high ethanol prices coincided with an increase in harmful nanoparticles by a third, as drivers switched from ethanol to cheaper gasoline, showing a benefit of ethanol.

  19. Environmental Life Cycle Implications of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in Mumbai (Bombay)

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K.

    2000-12-07

    Bagasse is the fibrous residue generated during sugar production and can be a desirable feedstock for fuel ethanol production. About 15%--25% of the bagasse is left after satisfying the mills' energy requirements, and this excess bagasse can be used in a bioconversion process to make ethanol. It is estimated that a 23 million L/yr ({approximately}6 million gal/yr) ethanol facility is feasible by combining excess bagasse from three larger sugar mills in Maharashtra state. The plant could supply about half of the ethanol demand in Mumbai, assuming that all gasoline is sold as an E10 fuel, a blend of 90% gasoline and 10% ethanol by volume. The life cycle assessment (LCA) performed in this study demonstrated the potentially significant benefits of diverting excess bagasse in Maharashtra to ethanol production, as opposed to disposing it by burning. In particular, lower net values for the ethanol production scenario were observed for the following: fossil energy consumption, and emissions of carbon monoxide , hydrocarbons (except methane), SOx, NOx, particulates, carbon dioxide, and methane. The lower greenhouse potential of the ethanol scenario is also important in the context of Clean Development Mechanism and Joint Implementation because India is a developing country.

  20. Impact of unleaded gasoline in reducing emissions in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, S.H.

    2001-01-15

    Saudi Arabia is dealing progressively with tighter restrictions on refined product qualities. Efforts are ongoing within the country concerning the phase-out of lead in motor gasoline and the reduction of sulfur in diesel as well. The removal of lead is the main characteristic of environmental friendly gasoline. The detrimental health effects of using leaded gasoline are many, and lead exposure can cause kidney failure, brain dysfunction, behavioral problems, and neurological impairment. Saudi Arabia is moving towards using unleaded gasoline, and efforts are being put forward by research organizations to produce lead-free gasoline in the Kingdom. A high severity fluid catalytic cracking process is being developed for converting vacuum gas oil into high-octane gasoline components. This process requires high temperature and pressure and low contact time as compared to the conventional FCC process. (author)

  1. Stream remediation following a gasoline spill

    International Nuclear Information System (INIS)

    Owens, E.H.; Reiter, G.A.; Challenger, G.

    2000-01-01

    On June 10, 1999, a pipe ruptured on the Olympic Pipe Line causing the release, explosion and fire of up to one million litres of gasoline in Bellingham, Washington. It affected approximately 5 km of the Whatcom Creek ecosystem. Following the incident, several concurrent activities in the source area and downstream occurred. This paper discussed the remediation of the affected stream bed sections. During the period July 6 - August 16, an interagency project was implemented. It involved mechanical, manual, and hydraulic in-situ treatment techniques to remove the gasoline from the stream bed and the banks. In addition, a series of controlled, hydraulic flushes were conducted. The sluice or control gates at the head of the Whatcom Creek were opened each night, and bigger flushes took place before and after the treatments. Simultaneously, water and sediment were sampled and analysed. The data obtained provided information on the state of the initial stream water and stream sediment and on the effects that the remediation had had. The residual gasoline was successfully removed from the sediments and river banks in six weeks. No downstream movement of the released gasoline towards Bellingham was detected. 3 refs., 2 tabs., 11 figs

  2. Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation

    OpenAIRE

    O?Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell

    2014-01-01

    Sprague?Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from ?baseline gasoline? (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrati...

  3. Do Daily Retail Gasoline Prices adjust Asymmetrically?

    NARCIS (Netherlands)

    L.J.H. Bettendorf (Leon); S.A. van der Geest (Stéphanie); G. Kuper

    2005-01-01

    textabstractThis paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH model. It turns out the

  4. Understanding retail gasoline pricing : An empirical approach

    NARCIS (Netherlands)

    Bruzikas, Tadas

    2017-01-01

    Retail gasoline markets offer an abundance of price data at the daily and, more recently, hourly level. Firms in this industry use sophisticated price strategies. Moreover, there have been a number of important recent market developments. All this makes retail gasoline a promising industry to study

  5. The Impact of Ethanol Blending on U.S. Gasoline Prices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  6. Economic and environmental benefits of higher-octane gasoline.

    Science.gov (United States)

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  7. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  8. Do daily retail gasoline prices adjust asymmetrically?

    NARCIS (Netherlands)

    Bettendorf, L.; van der Geest, S. A.; Kuper, G. H.

    2009-01-01

    This paper analyses adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004, taking care of volatility clustering by estimating an EGARCH model. It turns out that the volatility

  9. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  10. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Science.gov (United States)

    2010-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  11. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  12. Closing the gasoline system

    International Nuclear Information System (INIS)

    Hutcheson, R.C.

    1992-01-01

    In this paper, a representative of the Oil Companies' European Organization for Environmental and Health Protection (CONCAWE), argues the advantages of closing the gasoline system. Because this decouples the product from the environment, health risks and environmental damage are reduced. It is also more effective than changing the composition of gasoline because it offers better cost effectiveness, energy efficiency and the minimization of carbon dioxide release into the environment. However it will take time and political will to change until all European vehicles are fitted with three way catalysts and carbon canisters: control systems to monitor such systems will also need to be set up. However CONCAWE still recommends its adoption. (UK)

  13. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  14. Gasoline prices and traffic crashes in Alabama, 1999-2009.

    Science.gov (United States)

    Chi, Guangqing; McClure, Timothy E; Brown, David B

    2012-09-01

    The price of gasoline has been found to be negatively associated with traffic crashes in a limited number of studies. However, most of the studies have focused either on fatal crashes only or on all crashes but measured over a very short time period. In this study, we examine gasoline price effects on all traffic crashes by demographic groups in the state of Alabama from 1999 to 2009. Using negative binomial regression techniques to examine monthly data from 1999 to 2009 in the state of Alabama, we estimate the effects of changes in gasoline price on changes in automobile crashes. We also examine how these effects differ by age group (16-20, 21-25, 26-30, 31-64, and 65+), gender (male and female), and race/ethnicity (non-Hispanic white, non-Hispanic black, and Hispanic). The results show that gasoline prices have both short-term and long-term effects on reducing total traffic crashes and crashes of each age, gender, and race/ethnicity group (except Hispanic due to data limitations). The short-term and long-term effects are not statistically different for each individual demographic group. Gasoline prices have a stronger effect in reducing crashes involving drivers aged 16 to 20 than crashes involving drivers aged 31 to 64 and 65+ in the short term; the effects, however, are not statistically different across other demographic groups. Although gasoline price increases are not favored, our findings show that gasoline price increases (or decreases) are associated with reductions (or increases) in the incidence of traffic crashes. If gasoline prices had remained at the 1999 level of $1.41 from 1999 to 2009, applying the estimated elasticities would result in a predicted increase in total crashes of 169,492 (or 11.3%) from the actual number of crashes. If decision makers wish to reduce traffic crashes, increasing gasoline taxes is a possible option-however, doing so would increase travel costs and lead to equity concerns. These findings may help to shape transportation

  15. Gasoline risk management: a compendium of regulations, standards, and industry practices.

    Science.gov (United States)

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. 40 CFR 80.27 - Controls and prohibitions on gasoline volatility.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls and prohibitions on gasoline... prohibitions on gasoline volatility. (a)(1) Prohibited activities in 1991. During the 1991 regulatory control... shall sell, offer for sale, dispense, supply, offer for supply, or transport gasoline whose Reid vapor...

  17. A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements.

    Science.gov (United States)

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2003-10-01

    An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.

  18. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  19. Quantifying the emissions reduction effectiveness and costs of oxygenated gasoline

    International Nuclear Information System (INIS)

    Lyons, C.E.

    1993-01-01

    During the fall, winter, and spring of 1991-1992, a measurement program was conducted in Denver, Colorado to quantify the technical and economic effectiveness of oxygenated gasoline in reducing automobile carbon monoxide (CO) emissions. Emissions from 80,000 vehicles under a variety of operating conditions were measured before, during, and after the seasonal introduction of oxygenated gasoline into the region. Gasoline samples were taken from several hundred vehicles to confirm the actual oxygen content of the fuel in use. Vehicle operating conditions, such as cold starts and warm operations, and ambient conditions were characterized. The variations in emissions attributable to fuel type and to operating conditions were then quantified. This paper describes the measurement program and its results. The 1991-1992 Colorado oxygenated gasoline program contributed to a reduction in carbon monoxide (CO) emissions from gasoline-powered vehicles. The measurement program demonstrated that most of the reduction is concentrated in a small percentage of the vehicles that use oxygenated gasoline. The remainder experience little or not reduction in emissions. The oxygenated gasoline program outlays are approximately $25 to $30 million per year in Colorado. These are directly measurable costs, incurred through increased government expenditures, higher costs to private industry, and losses in fuel economy. The measurement program determined the total costs of oxygenated gasoline as an air pollution control strategy for the region. Costs measured included government administration and enforcement, industry production and distribution, and consumer and other user costs. This paper describes the ability of the oxygenated gasoline program to reduce pollution; the overall cost of the program to government, industry, and consumers; and the effectiveness of the program in reducing pollution compared to its costs

  20. Gasoline prices and the public interest

    International Nuclear Information System (INIS)

    1997-12-01

    The concerns that have been raised about gasoline prices in Newfoundland were addressed and the reasons why they differ significantly from one part of Newfoundland to another were examined. A research and investigation program was established to identify the factors contributing to the price of, and price variation in gasoline sold in the province. Companies directly involved in the gasoline retail business in the province were invited to answer an extensive questionnaire which asked detailed, confidential information concerning the company's operations. This report contains the results of the analysis of the responses, and provides a comprehensive picture of the operation of the petroleum industry. It also contains a series of recommendations for the government with respect to monitoring price fluctuations, gathering data about the industry, and constructing an independently owned and operated terminal storage facility. The report recommends against direct regulation. tabs., figs

  1. The butane as a component for the gasoline blending

    International Nuclear Information System (INIS)

    Gicheva, Ljubica

    2002-01-01

    In OKTA Crude Oil Refinery - Skopje the production of butane as a pure component is based on a liquid phase and it is used for both TNG (propane-butane gas) and motor gasoline production with a quality that satisfy the standard. By using the butane as a gasoline component the quality of the MB-98 and BMB has been improved. The butane itself ensures octane improvement of the pool, by what the content of the lead additives or the octane of the main component - reformat decreases. Also, the butane addition decreases the density of the final products by what the financial effects have been improved. It is also interesting to explain the usage of butane for gasoline production concerning the new proposed standard. The paper presents the practical results, through tables and diagrams, of the butane usage as a component for gasoline production, as well as the butane influence to the quality of the produced gasoline. (Original)

  2. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  3. Reporting a sudden death due to accidental gasoline inhalation.

    Science.gov (United States)

    Martínez, María Antonia; Ballesteros, Salomé; Alcaraz, Rafael

    2012-02-10

    The investigation of uncertain fatalities requires accurate determination of the cause of death, with assessment of all factors that may have contributed to it. Gasoline is a complex and highly variable mixture of aliphatic and aromatic hydrocarbons that can lead to cardiac arrhythmias due to sensitization of the myocardium to catecholamines or acts as a simple asphyxiant if the vapors displace sufficient oxygen from the breathing atmosphere. This work describes a sudden occupational fatality involving gasoline. The importance of this petroleum distillate detection and its quantitative toxicological significance is discussed using a validated analytical method. A 51 year-old Caucasian healthy man without significant medical history was supervising the repairs of the telephone lines in a manhole near to a gas station. He died suddenly after inhaling gasoline vapors from an accidental leak. Extensive blistering and peeling of skin were observed on the skin of the face, neck, anterior chest, upper and lower extremities, and back. The internal examination showed a strong odor of gasoline, specially detected in the respiratory tract. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography with flame ionization detector and confirmation was performed using gas chromatography-mass spectrometry. Disposition of gasoline in different tissues was as follows: heart blood, 35.7 mg/L; urine, not detected; vitreous humor, 1.9 mg/L; liver, 194.7 mg/kg; lung, 147.6 mg/kg; and gastric content, 116,6 mg/L (2.7 mg total). Based upon the toxicological data along with the autopsy findings, the cause of death was determined to be gasoline poisoning and the manner of death was accidental. We would like to alert on the importance of testing for gasoline, and in general for volatile hydrocarbons, in work-related sudden deaths involving inhalation of hydrocarbon vapors and/or exhaust fumes. Copyright © 2011 Elsevier Ireland Ltd. All rights

  4. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  5. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  7. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  8. Polycaprolactone-Polydiacetylene Electrospun Fibers for Colorimetric Detection of Fake Gasoline

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-04-01

    Full Text Available PCDA (Pentacosadiynoic Acid monomers were successfully embedded in PCL (Poly ?-Caprolactone polymer matrix by electrospinning process for the first time. The resultant EFM (Electrospun Fibers Mat was photo-polymerized under 254 nm UV light that enables colorimetric detection of fake gasoline. Results revealed that the fake gasoline develops a red color mat within 5 sec. FE-SEM images showed that the fake gasoline treatment dissolved the PCL EFM that give access to interact with PDA polymer. The proposed litmus-type sensor based on PCL-PDA EFM is highly sensitive to fake gasoline and can be fabricated easily

  9. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Science.gov (United States)

    2010-07-01

    ... volume of gasoline produced by a small refiner's refinery up to the lesser of: (i) 105% of the baseline gasoline volume as determined under § 80.250(a)(1); or (ii) The volume of gasoline produced at that... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the small refiner gasoline...

  10. The crisis of gasoline consumption in the Iran's transportation sector

    International Nuclear Information System (INIS)

    Houri Jafari, H.; Baratimalayeri, A.

    2008-01-01

    Fossil fuels have the greatest share in supplying the world's energy demands. Regarding the limited natural resources, fuel consumption management and energy planning in the end-user sectors are two great matters of importance. Among the fossil fuels, gasoline is the principal fuel for light-duty vehicles. In Iran, fuel consumption, especially that of gasoline, has increased sharply with the growth rate of 10.2% for the year 2006 in comparison with that in 2005, turning into a big crisis in the recent years. On the other hand, enormous subsidies for importing 40% of domestic demands, which have reached more than 10 billion US$, are too much to be supplied. In this study, we have assessed the gasoline consumption, production, import and prices; reviewed main causes of the tremendous growth rate of consumption, current conservation policies and their advantages or disadvantages (SWOT analysis); proposed short- to long-term solutions and strategies for efficient gasoline consumption management; and finally, current strategies and proposed solutions are analyzed and evaluated. A foregone conclusion strongly suggests that not only the low price of motor gasoline but also mass production of vehicles with the conventional technology, likewise, affects motor gasoline demand. A second conclusion is that gasoline crisis in Iran has no straight solution, and that fundamental strategies and policies are needed to solve the problem. (author)

  11. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  12. 75 FR 74044 - Agency Information Collection Activities; Proposed Collection; Comment Request; Gasoline Volatility

    Science.gov (United States)

    2010-11-30

    ...; Gasoline Volatility AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance... entities: Entities potentially affected by this action are those who produce or import gasoline containing... Additives: Gasoline Volatility, Reporting Requirements for Parties Which Produce of Import Gasoline...

  13. The economics of gasoline subsidy cost reduction policy: Case study of Indonesia

    Science.gov (United States)

    Akimaya, Muhammad I.

    A gasoline subsidy distorts the gasoline market with the resulting inefficiencies and takes substantial revenues that arguably could be spent elsewhere with a better impact on economic growth. Governments with such subsidies are aware of their cost yet face difficulties in removing the policy because of strong resistance from the public. This thesis discusses in three essays the problem faced by the government in removing the gasoline subsidy and provides an alternative policy in reducing the subsidy cost applied to the case of Indonesia. In the first essay, we examine the decision-making process from the government's perspective that has an objective of generating savings to fund other programs while maintaining political power, and the influence that the general population has over the decision. Despite the immense literature on political power, there has yet to be any research that mathematically models the decision-making process of a government with influences from the general population. Under the benchmark scenario, the equilibrium strategy is to keep the subsidy intact. However, the results are found to be very sensitive to the magnitude of the shift in political power as well as the preferences of both the government and the people. In the second essay, we estimate the cross-price elasticity of regular gasoline with respect to premium gasoline price. The importance of such knowledge is to accurately determine the impact of fuel pricing policy that tends to have different rates of tax or subsidy depending on the grade of gasoline. Using data on the Mexican gasoline market, regular gasoline demand is estimated with an Autoregressive Distributed Lag (ARDL) model. Endogeneity of the price and structural break are also investigated. The cross-price elasticities between regular and premium gasoline is found to be -0.895, which confirms high substitutability among gasoline with different grades. In the third essay, we look at the unique case of Indonesia that

  14. Rising gasoline prices increase new motorcycle sales and fatalities.

    Science.gov (United States)

    Zhu, He; Wilson, Fernando A; Stimpson, Jim P; Hilsenrath, Peter E

    2015-12-01

    We examined whether sales of new motorcycles was a mechanism to explain the relationship between motorcycle fatalities and gasoline prices. The data came from the Motorcycle Industry Council, Energy Information Administration and Fatality Analysis Reporting System for 1984-2009. Autoregressive integrated moving average (ARIMA) regressions estimated the effect of inflation-adjusted gasoline price on motorcycle sales and logistic regressions estimated odds ratios (ORs) between new and old motorcycle fatalities when gasoline prices increase. New motorcycle sales were positively correlated with gasoline prices (r = 0.78) and new motorcycle fatalities (r = 0.92). ARIMA analysis estimated that a US$1 increase in gasoline prices would result in 295,000 new motorcycle sales and, consequently, 233 new motorcycle fatalities. Compared to crashes on older motorcycle models, those on new motorcycles were more likely to be young riders, occur in the afternoon, in clear weather, with a large engine displacement, and without alcohol involvement. Riders on new motorcycles were more likely to be in fatal crashes relative to older motorcycles (OR 1.14, 95 % confidence interval (CI) 1.02-1.28) when gasoline prices increase. Our findings suggest that, in response to increasing gasoline prices, people tend to purchase new motorcycles, and this is accompanied with significantly increased crash risk. There are several policy mechanisms that can be used to lower the risk of motorcycle crash injuries through the mechanism of gas prices and motorcycle sales such as raising awareness of motorcycling risks, enhancing licensing and testing requirements, limiting motorcycle power-to-weight ratios for inexperienced riders, and developing mandatory training programs for new riders.

  15. Electrokinetic enhanced bioventing of gasoline in clayey soil: A case history

    International Nuclear Information System (INIS)

    Loo, W.W.; Wang, I.S.; Fan, J.

    1994-01-01

    This paper presents a case history on the bioventing of gasoline in soil with electrokinetic enhancement. The gasoline in soil was related to a 10,000-gallon underground storage tank spill, San Diego, California. The gasoline soil plume covers an area of about 2,400 square feet and to a depth of about 30 feet. The upper 15 feet of the soil plume consists of highly conductive marine clay. The lower 15 feet of the soil plume consists of dense cemented conglomerate sandstone. The gasoline concentration in the soil plume range from 100 to 2,200 mg/Kg(ppm) and the target cleanup level is below 100 ppm. Total gasoline in soil plume is estimated at about 1,000 pounds of gasoline in about 3,500 tons of soil. The soil remediation effort was completed after about 90 days of treatment. The concentration of gasoline in soil after treatment was way below the proposed cleanup level of less than 100 mg/Kg(ppm). The cost of treatment is about $50 per ton for this advanced soil treatment process which provides a cost effective solution to this soil plume with minimum disruption to business operation at the facility

  16. Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles

    International Nuclear Information System (INIS)

    Khaljani, M.; Saray, R. Khoshbakhti; Bahlouli, K.

    2016-01-01

    In this work, a combined power cycle which includes a HCCI (Homogenous Charge Compression Ignition) engine and two ORCs (Organic Rankine Cycles) is introduced. In the proposed cycle, the waste heats from the engine cooling water and exhaust gases are utilized to drive the ORCs. A parametric study is conducted to show the effects of decision parameters on the performance and on the total cost rate of cycle. Results of the parametric study reveal that increasing the pinch point temperature difference of evaporator and temperature of the condenser leads to reduction in both exergy efficiency and total cost rate of the bottoming cycle. There is a specific evaporator temperature where exergy efficiency is improved, but the total cost rate of the bottoming cycle is maximized. Also, a multi-objective optimization strategy is performed to achieve the best system design parameters from both thermodynamic and economic aspects. The exergy efficiency and the total cost rate of the system have been considered as objective functions. Optimization results indicate that the exergy efficiency of the cycle increases from 44.96% for the base case to 46.02%. Also, approximately1.3% reduction in the cost criteria is achieved. Results of the multi-objective optimization justify the results obtained through the parametric study and demonstrate that the design parameters of both ORCs have conflict effect on the objective functions. - Highlights: • Two Organic Rankine bottoming cycles are coupled with an HCCI Engine. • Exergetic and Exergo-economic analysis of the bottoming cycle are reported. • The system is optimized using multi-objective genetic algorithm. • Objective functions are exergy efficiency and total cost rate of the system. • The exergy efficiency of the cycle increases from 44.96% to 46.02%.

  17. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  18. 40 CFR 63.650 - Gasoline loading rack provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Gasoline loading rack provisions. 63... loading rack provisions. (a) Except as provided in paragraphs (b) through (c) of this section, each owner or operator of a Group 1 gasoline loading rack classified under Standard Industrial Classification...

  19. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  20. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks. 169.629 Section 169.629 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural...

  1. Misunderstood markets: The case of California gasoline

    Science.gov (United States)

    Thompson, Jennifer Ruth

    In 1996, the California Air Resources Board (CARB) implemented a new benchmark for cleaner burning gasoline that is unique to California. Since then, government officials have often expressed concern that the uniqueness of petroleum products in California segregates the industry, allowing for gasoline prices in the State that are too high and too volatile. The growing concern about the segmentation of the California markets lends itself to analysis of spatial pricing. Spatial price spreads of wholesale gasoline within the state exhibit some characteristics that seem, on the surface, inconsistent with spatial price theory. Particularly, some spatial price spreads of wholesale gasoline appear larger than accepted transportation rates and other spreads are negative, giving a price signal for transportation against the physical flow of product. Both characteristics suggest some limitation in the arbitrage process. Proprietary data, consisting of daily product prices for the years 2000 through 2002, disaggregated by company, product, grade, and location is used to examine more closely spatial price patterns. My discussion of institutional and physical infrastructure outlines two features of the industry that limit, but do not prohibit, arbitrage. First, a look into branding and wholesale contracting shows that contract terms, specifically branding agreements, reduces the price-responsiveness of would-be arbitrageurs. Second, review of maps and documents illustrating the layout of physical infrastructure, namely petroleum pipelines, confirms the existence of some connections among markets. My analysis of the day-of-the-week effects on wholesale prices demonstrates how the logistics of the use of transportation infrastructure affect market prices. Further examination of spatial price relationships shows that diesel prices follow closely the Augmented Law of One Price (ALOP), and that branding agreements cause gasoline prices to deviate substantially ALOP. Without branding

  2. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)

  3. Using stable isotope analysis to discriminate gasoline on the basis of its origin.

    Science.gov (United States)

    Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik

    2012-03-15

    Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    Science.gov (United States)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  5. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2014-01-01

    Highlights: • Using of 3 and 7 vol.% n-butanol blends in SI engine is studied for the first time. • Engine performance and emissions depend on both engine speed and blend rates. • CO and UHC for blended fuels are maximum at 3000–3100 r/min. • The higher the rate of n-butanol, the lower the emissions and performance. • This study strongly supports using low blend rates of n-butanol (<10 vol.%) in ICE. - Abstract: In this paper, exhaust emissions and engine performance have been experimentally studied for neat gasoline and gasoline/n-butanol blends in a wide range of working speeds (2600–3400 r/min) without any tuning or modification on the gasoline engine systems. The experiment has the ability of evaluating performance and emission characteristics, such as break power, torque, in-cylinder pressure, volumetric efficiency, exhaust gas temperature and concentrations of CO 2 , CO and UHC. Results of the engine test indicated that using n-butanol–gasoline blended fuels slightly decrease the output torque, power, volumetric efficiency, exhaust gas temperature and in-cylinder pressure of the engine as a result of the leaning effect caused by the n-butanol addition; CO, CO 2 and UHC emissions decrease dramatically for blended fuels compared to neat gasoline because of the improved combustion since n-butanol has extra oxygen, which allows partial reduction of the CO and UHC through formation of CO 2 . It was also noted that the exhaust emissions depend on the engine speed rather than the n-butanol contents

  6. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  7. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.

    2016-11-10

    This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier Ltd

  8. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers.

    Science.gov (United States)

    Shaikh, Amrin; Barot, Darshana; Chandel, Divya

    2018-04-01

    Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation of gasoline fumes. The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  9. Investigation of bifunctional ester additives for methanol-gasoline system

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, C.; Tang, Y.; Du, Q.; Song, N.; Zhang, Z.

    2014-01-01

    To explore new and multifunctional additives for methanol-gasoline, tartaric ester were synthesized and screened as phase stabilizer and saturation vapor pressure depressor for methanol-gasoline. The effect of the esters structure on the efficiency was discussed. The results show that the stabilities of the blends depend on the length of the glycolic esters alkoxy group. In addition, the tartaric esters also can depress the saturation vapor pressure of methanol-gasoline effectively in M15. Effect of the structure on the efficiency was also discussed. (author)

  10. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  11. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  12. An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters

    OpenAIRE

    Machrafi, Hatim; Cavadias, Simeon; Gilbert, Philippe

    2008-01-01

    For a future HCCI engine to operate under conditions that adhere to environmental restrictions, reducing fuel consumption and maintaining or increasing at the same time the engine efficiency, the choice of the fuel is crucial. For this purpose, this paper presents an auto-ignition investigation concerning the primary reference fuels, toluene reference fuels and diesel fuel, in order to study the effect of linear alkanes, branched alkanes and aromatics on the auto-ignition. The auto-ignition o...

  13. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT; FINAL

    International Nuclear Information System (INIS)

    Pienkos, Philip T.

    2002-01-01

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  14. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Science.gov (United States)

    2009-01-01

    Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats. PMID:19930677

  15. Phasing out lead from gasoline in Pakistan: a benefit cost analysis

    International Nuclear Information System (INIS)

    Martin, R.P.; Zaman, Q.U.

    1999-01-01

    Medical research has established a clear link between elevated blood lead levels nd adverse health effects in humans including the retardation of neurological development, hypertension, and cardiovascular ailments. Due to this, a large number of countries now restrict the sale of leaded gasoline. In contrast, only highly leaded gasoline is readily available in Pakistan, resulting in serious health concerns in certain areas. This paper presents the findings of a study to evaluate consumers' perceived benefits and actual costs of switching to unleaded gasoline in Pakistan. Policy implications are noted. The study indicates a concentration of adverse health effects in the major urban centers. Of special interest is the loss of approximately 2,5000 IQ points annually in Karachi and Lahore as a result of gasoline linked lead exposure. Consumers' willingness to pay for the removal of lead from gasoline, as estimated using a contingent valuation technique, is shown to be positively related to both educational attainment and income. Once consumers are informed of the adverse health effects associated with lead exposure, their willingness to pay for a switch to unleaded gasoline for exceeds the costs incurred. This suggests that significant gains in social welfare may be obtained by phasing out lead from gasoline in Pakistan. The benefits are most pronounced in urban areas, while in rural villages and small cities the costs are likely to out weight the benefits. A flexible program to restrict the sale of leaded gasoline in urban areas is thus recommended. (author)

  16. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats.

    Science.gov (United States)

    Kinawy, Amal A

    2009-11-24

    This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  17. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Directory of Open Access Journals (Sweden)

    Kinawy Amal A

    2009-11-01

    Full Text Available Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel. The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD, acetylcholinesterase (AChE, total protein, reduced glutathione (GSH, and lipid peroxidation (TBARS in the cerebral cortex, and monoamine neurotransmitters dopamine (DA, norepinephrine (NE and serotonin (5-HT in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  18. Reformulated gasoline: Costs and refinery impacts

    International Nuclear Information System (INIS)

    Hadder, G.R.

    1994-02-01

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region

  19. Residential proximity to gasoline service stations and preterm birth.

    Science.gov (United States)

    Huppé, Vicky; Kestens, Yan; Auger, Nathalie; Daniel, Mark; Smargiassi, Audrey

    2013-10-01

    Preterm birth (PTB) is a growing public health problem potentially associated with ambient air pollution. Gasoline service stations can emit atmospheric pollutants, including volatile organic compounds potentially implicated in PTB. The objective of this study was to evaluate the relationship between residential proximity to gasoline service stations and PTB. Singleton live births on the Island of Montreal from 1994 to 2006 were obtained (n=267,478). Gasoline service station locations, presence of heavy-traffic roads, and neighborhood socioeconomic status (SES) were determined using a geographic information system. Multivariable logistic regression was used to analyze the association between PTB and residential proximity to gasoline service stations (50, 100, 150, 200, 250, and 500 m), accounting for maternal covariates, neighborhood SES, and heavy-traffic roads. For all distance categories beyond 50 m, presence of service stations was associated with a greater odds of PTB. Associations were robust to adjustment for maternal covariates for distance categories of 150 and 200 m but were nullified when adjusting for neighborhood SES. In analyses accounting for the number of service stations, the likelihood of PTB within 250 m was statistically significant in unadjusted models. Associations were, however, nullified in models accounting for maternal covariates or neighborhood SES. Our results suggest that there is no clear association between residential proximity to gasoline service stations in Montreal and PTB. Given the correlation between proximity of gasoline service stations and SES, it is difficult to delineate the role of these factors in PTB.

  20. Gasoline on hands: preliminary study on collection and persistence.

    Science.gov (United States)

    Darrer, Melinda; Jacquemet-Papilloud, Joëlle; Delémont, Olivier

    2008-03-05

    The identification of an arsonist remains one of the most difficult challenges a fire investigation has to face. Seeking and detection of traces of gasoline could provide a valuable information to link a suspect with an arson scene where gasoline was used to set-up the fire. In this perspective, a first study was undertaken to evaluate a simple, fast and efficient method for collecting gasoline from hands, and to assess its persistence over time. Four collection means were tested: PVC, PE and Latex gloves, as well as humidified filter paper. A statistical assessment of the results indicates that Latex and PVC gloves worn for about 20 min, as well as paper filter rubbed on hands, allow an efficient collection of gasoline applied to hands. Due to ease of manipulation and to a reduced amount of volatile compounds detected from the matrix, PVC gloves were selected for the second set of experiments. The evaluation of the persistence of gasoline on hands was then carried out using two initial quantities (500 and 1000 microl). Collection was made with PVC gloves after 0, 30 min, 1, 2 and 4h, on different volunteers. The results show a common tendency of massive evaporation of gasoline during the first 30 min: a continued but non-linear decrease was observed along different time intervals. The results of this preliminary study are in agreement with other previous researches conducted on the detection of flammable liquid residues on clothes, shoes and skin.

  1. 78 FR 20102 - Proposed Information Collection Request; Comment Request; Reformulated Gasoline Commingling...

    Science.gov (United States)

    2013-04-03

    ... Request; Comment Request; Reformulated Gasoline Commingling Provisions AGENCY: Environmental Protection... information collection request (ICR), ``Reformulated Gasoline Commingling Provisions'' (EPA ICR No.2228.04.... Abstract: EPA would like to continue collecting notifications from gasoline retailers and wholesale...

  2. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  3. Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22% of anhydrous ethanol.

    Science.gov (United States)

    Ferreira da Silva, Moacir; Vicente de Assunção, João; de Fátima Andrade, Maria; Pesquero, Célia R

    2010-01-01

    Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM(10)) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM(2.5)), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM(10) emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

  4. Gasoline-related injuries and fatalities in the United States, 1995-2014.

    Science.gov (United States)

    Drago, Dorothy A

    2018-02-12

    This descriptive study examines twenty years of gasoline-related fatalities and emergency department treated injuries in the United States, based on data from the US Consumer Product Safety Commission. Thermal burns consistently accounted for the majority (56%) of gasoline-related injuries and for most (82%) gasoline-related deaths, and were commonly (57-71%) associated with the use of gasoline as an accelerant. Poisoning accounted for 13% of injuries and 17% of deaths. The primary poisoning injury pattern was ingestion; the primary fatality pattern was inhalation, with about half of those associated with deliberate abuse. The estimated number of ingestions decreased from 60 to 23% of poisoning-related injuries, while injuries associated with inhalation abuse increased from 6 to 23%. Chemical burns and dermatitis were less represented in the injury data and were primarily associated with gasoline spills or splashes. Gasoline cans reportedly ignited or exploded in about 5% of thermal burn injuries and fatalities. While mandatory requirements for child resistant closures on gasoline cans (a primary intervention) have potentially impacted poisonings, the use of flame mitigation devices to address thermal injuries, if successful, would be a secondary intervention, and could address only a small percentage (about 5%) of injuries and deaths.

  5. Zinc-aluminates for an in situ sulfur reduction in cracked gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Quintana-Solorzano, R.; Valente, J.S.; Hernandez-Beltran, F.J.; Castillo-Araiza, C.O. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152 C.P., 07730 Mexico, D.F. (Mexico)

    2008-05-30

    Using additives remains as an attractive alternative for an in situ sulfur reduction in cracked gasoline since it is a practical, flexible and economical option. Zinc-aluminates prepared by the sol-gel method are used as additives for reducing sulfur in gasoline from the cracking of a high-sulfur feed in a fixed-bed bench reactor. Products distribution and feed conversion are not dramatically altered after incorporating the additive to the base catalyst with some effect on gasoline and its octane number and coke. A decrease in the gasoline sulfur content of up to 35 wt% including benzothiophene, and up to 50% excluding benzothiophene, is observed when blending the zinc-aluminates to the base catalyst, which is caused by lowering the C{sub 1} to C{sub 4} alkyl-thiophenes content. The zinc content of the zinc-aluminates has a positive effect on the gasoline sulfur reduction. It is suggested that together with the direct cracking of adsorbed thiophenic species on the additive, a further gasoline sulfur decrease is possible through cracking of saturated thiophenic species formed by hydrogenation of adsorbed thiophenic species with hydrogen produced in situ in the additive. The obtained results also demonstrate that solids with higher Lewis acidity are not unfailingly the most effective for gasoline sulfur reduction. (author)

  6. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  7. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  8. [Inhalation of gasoline and damage to health in workers at gas stations].

    Science.gov (United States)

    Pranjić, Nurka; Mujagić, H; Pavlović, S

    2003-01-01

    The aim of this study was to made assessment of chronic health effects in 37 workers exposed to gasoline, and its constituents at gasoline stations between 1985 and 1996. By the study we have involved thirty-seven persons who had been exposed to gasoline for more than five years were examined. The evaluation included a medical/occupational history, hematological and biochemical examination, a physical exam, standardized psychological tests, and ultrasound examination of kidneys and liver. The groups were identical in other common parameters including age, gender (all men), and level of education (P gasoline unexposed controls and 25 workers at gasoline stations exposed to organic lead for only nine months. Peripheral smear revealed basophilic punctuated eritrocytes and reticulocytosis. We found in chronic exposed gasoline workers haematological disorders: mild leukocytosis (7 of 37), lymphocytosis (20 of 37), mild lymhocytopenia (3 of 37), decrease of red blood cells count (11 of 37). Results indicated that they have suffered from liver disorders: lipoid degeneration of liver (14 of 37), chronic functional damages of liver (3 of 37), cirrhosis (1 of 37). Ultrasound examination indicated chronic kidney damages (8 of 37). These results significantly differed from those of controls (P gasoline stations exposed to gasoline for more than 5 years the symptom of depression and decreased reaction time and motor abilities were identified. The summary of diseases of workers exposed to organic lead and gasoline are discussed.

  9. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    Directory of Open Access Journals (Sweden)

    Amrin Shaikh

    2018-04-01

    Full Text Available Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group and 70 healthy age-matched individuals with no known exposure (comparison group. Buccal micronucleus cytome assay (BMCyt was performed to check the genotoxicity caused due to inhalation of gasoline fumes. Results: The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Conclusion: Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  10. 40 CFR Appendix B to Part 80 - Test Methods for Lead in Gasoline

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Test Methods for Lead in Gasoline B... in Gasoline Method 1—Standard Method Test for Lead in Gasoline by Atomic Absorption Spectrometry 1. Scope. 1.1. This method covers the determination of the total lead content of gasoline. The procedure's...

  11. Proposed standby gasoline rationing plan: public comments

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Under the proposed plan, DOE would allocate ration rights (rights to purchase gasoline) to owners of registered vehicles. All vehicles in a given class would receive the same entitlement. Essential services would receive supplemental allotments of ration rights as pririty firms. Once every 3 months, ration checks would be mailed out to all vehicle registrants, allotting them a certain amount of ration rights. These checks would then be cashed at Coupon Issuance Points, where the bearer would receive ration coupons to be used at gasoline stations. Large users of gasoline could deposit their allotment checks in accounts at ration banks. Coupons or checks would be freely exchangeable in a white market. A certain percentage of the gasoline supply would be set aside in reserve for use in national emergencies. When the plan was published in the Federal Register, public comments were requested. DOE also solicited comments from private citizens, public interest groups, business and industry, state and local governments. A total of 1126 responses were reveived and these are analyzed in this paper. The second part of the report describes how the comments were classified, and gives a statistical breakdown of the major responses. The last section is a discussion and analysis of theissue raised by commenting agencies, firms, associations, and individuals. (MCW)

  12. Utilization of Renewable Oxygenates as Gasoline Blending Components

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  13. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    Science.gov (United States)

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-04-20

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Long term durability tests of small engines fueled with bio-ethanol / gasoline blends

    International Nuclear Information System (INIS)

    Tippayawong, N.; Kundhawiworn, N.; Jompakdee, W.

    2006-01-01

    The paper presents the result of an ongoing research to evaluate performance and wear of small, single cylinder, naturally aspirated, agricultural spark ignition engines using biomass-derived ethanol and gasoline blends. The reference gasoline fuel was selected to be representative of gasoline typically available in Thailand. Long-term engine tests of 10% and 20% ethanol / gasoline blends as well as the reference fuel were performed at a constant speed of 2300 rpm under part load condition up to 200 operation hours for each fuel type. Engine brake power, specific fuel consumption, carbon deposits and surface wear were measured and compared between neat gasoline and ethanol/ gasoline blends. It was found that blended fuels appeared to affect the engine performance in a similar way and compared well with the base gasoline fuel. From the results obtained, it was found that engine brake power and specific fuel consumption changed slightly with running time and were not found to have any significant change between different fuel blends. There were carbon deposits buildup on the spark plug, the intake port and exhaust valve stem for all fuels used. Surface wear was not significantly different in the test engines between neat gasoline or ethanol/gasoline blend fuelling

  15. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  16. Investigation of split injection in a single cylinder optical diesel engine

    OpenAIRE

    Díez Rodríguez, Álvaro

    2009-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxide (NOx) and particulate matter (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes like homogeneous charge compression ignition (HCCI) combustion and...

  17. 40 CFR 80.131 - Agreed upon procedures for GTAB, certain conventional gasoline imported by truck, previously...

    Science.gov (United States)

    2010-07-01

    ..., certain conventional gasoline imported by truck, previously certified gasoline used to produce gasoline... gasoline used to produce gasoline, and butane blenders. (a) Attest procedures for GTAB. The following are... conventional gasoline and of RFG produced. Agree the volumes from the tank activity records to the batch volume...

  18. On the road to recovery: Gasoline content regulations and child health.

    Science.gov (United States)

    Marcus, Michelle

    2017-07-01

    Gasoline content regulations are designed to curb pollution and improve health, but their impact on health has not been quantified. By exploiting both the timing of regulation and spatial variation in children's exposure to highways, I estimate the effect of gasoline content regulation on pollution and child health. The introduction of cleaner-burning gasoline in California in 1996 reduced asthma admissions by 8% in high exposure areas. Reductions are greatest for areas downwind from highways and heavy traffic areas. Stringent gasoline content regulations can improve child health, and may diminish existing health disparities. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 40 CFR 80.73 - Inability to produce conforming gasoline in extraordinary circumstances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Inability to produce conforming gasoline in extraordinary circumstances. 80.73 Section 80.73 Protection of Environment ENVIRONMENTAL... Gasoline § 80.73 Inability to produce conforming gasoline in extraordinary circumstances. In appropriate...

  20. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.

    2016-09-16

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited (SI) engine. Terpineol is a bio-derived oxygenated fuel obtained from pine tree resin, and has the advantage of higher calorific value than ethanol. The ignition delay time (IDT) of terpineol was first investigated in an ignition quality tester (IQT). The IQT results demonstrated a long ignition delay of 24.7 ms for terpineol and an estimated research octane number (RON) of 104, which was higher than commercial European (Euro V) gasoline. The octane boosting potential of terpineol was further investigated by blending it with a non-oxygenated gasoline (FACE F), which has a RON (94) lower than Euro V gasoline (RON = 97). The operation of a gasoline direct injection (GDI) SI engine fueled with terpineol-blended FACE F gasoline enabled spark timing advancement and improved engine combustion. The knock intensity of FACE F + 30% terpineol was lower than FACE F gasoline at both maximum brake torque (MBT) and knock limited spark advance (KLSA) operating points. Increasing proportions of terpineol in the blend caused peak heat release rate, in-cylinder pressure, CA50, and combustion duration to be closer to those of Euro V gasoline. Furthermore, FACE F + 30% terpineol displayed improved combustion characteristics when compared to Euro V gasoline. © 2016

  1. Effect of honey supplementation on toxicity of gasoline vapor exposure in rats

    OpenAIRE

    M B Abubakar; W Z Abdullah; S A Sulaiman; F E Uboh; B S Ang

    2013-01-01

    Summary. Different health risks including haematotoxicity and weight loss have been reported for gasoline. Supplementation with antioxidants such as vitamins A, C, and E has been shown to ameliorate the toxicity effects of gasoline vapours exposure. Honey contains vitamins, and polyphenols that possess good antioxidant properties. The potential role of honey in preventing gasoline-induced haematotoxicity and weight loss was assessed in male rats. The rats were exposed to gasoline (11.13±1.1cm...

  2. Characteristics of lead isotope ratios and elemental concentrations in PM 10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline

    Science.gov (United States)

    Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci

    The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.

  3. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Science.gov (United States)

    2010-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  4. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  5. Benzene in Canadian gasoline : report on the effect of the benzene in gasoline regulations 2002

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, J. [Environment Canada, Ottawa, ON (Canada); Sabourin, R. [Carleton Univ., Ottawa, ON (Canada); Brunet, E. [Waterloo Univ., ON (Canada)

    2003-11-01

    The response of primary suppliers to Benzene in Gasoline Regulations was reviewed, and a summary of the effects of those regulations on the composition of gasoline in Canada in 2002 was offered. These regulations, effective July 1, 1999, were designed to provide a new approach to control fuel composition. It allowed suppliers, as a basis for compliance, the option to elect to use a yearly pool average. The benzene emission number (BEN) of gasoline was regulated, and a limit imposed on a per-litre limit for benzene at point of sale. The results indicated that reported benzene levels were significantly reduced, while aromatic levels remained practically unchanged from 1994. Since 1998, rural ambient benzene concentrations decreased by more than 32 per cent, while in urban areas, they decreased by 47 per cent over the same period. The regulated requirements for benzene concentration were met by primary suppliers in Canada in 2002 (with one exception), as were BEN levels. A number of instances of non-compliance with laboratory procedures were discovered during independent audits required for those suppliers who elected to be on on a yearly pool average. Corrective action designed to address these issues was implemented. 41 tabs., 24 figs.

  6. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  7. Motor Gasoline Market Model documentation report

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level

  8. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    Directory of Open Access Journals (Sweden)

    Aline Jaime Leal

    Full Text Available Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.

  9. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    Science.gov (United States)

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... specified in this paragraph (a). (5) Gasoline produced at foreign refineries that is subject to the gasoline... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline...

  11. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  12. Effects of policy characteristics and justifications on acceptance of a gasoline tax increase

    International Nuclear Information System (INIS)

    Kaplowitz, Stan A.; McCright, Aaron M.

    2015-01-01

    Many economists argue that increasing the gasoline tax is an effective way to reduce fuel consumption. Yet, public support for such a tax increase has been rather low among US residents. We performed eight survey experiments (total N approximately 3000) to examine how selected policy characteristics and persuasive messages influence support for a gasoline tax increase. Several policy characteristics significantly increased support for a gasoline tax increase. Having the increase phased in over five years modestly increased support. Compared with giving the extra revenue to the US Treasury’s General Fund, both refunding the extra revenue equally to all American families and having this revenue used for energy efficient transportation strongly increased support. Support for a gasoline tax increase was not affected by the nature of the mechanism to achieve revenue neutrality. Most people supported a 20 cent per gallon tax increase to repair roads and bridges. Explaining how the gasoline tax increase would reduce fuel consumption slightly increased support for a gasoline tax increase, but neither being informed of the high gasoline prices in other advanced industrial countries nor the actual pump price of gasoline at the time of the experiment influenced support for a gasoline tax increase. - Highlights: • Phasing in the tax increase modestly raised support. • Making the tax increase revenue-neutral increased support. • Using the extra revenue for energy efficiency increased support. • Information on high gasoline prices elsewhere did not influence support. • Variation in actual fuel prices did not influence support.

  13. PENINGKATAN KADAR GERANIOL DALAM MINYAK SEREH WANGI DAN APLIKASINYA SEBAGAI BIO ADDITIVE GASOLINE

    Directory of Open Access Journals (Sweden)

    Widi Astuti

    2014-10-01

    Full Text Available Sereh wangi merupakan salah satu tanaman penghasil minyak atsiri yang banyak mengandung geraniol. Geraniol merupakan senyawa penyedia oksigen sehingga minyak sereh wangi dimungkinkan dapat digunakan sebagai bio additive gasoline. Penelitian ini bertujuan  meningkatkan kadar geraniol dalam minyak sereh wangi dan menggunakannya sebagai bio additive gasoline.Penelitian dilakukan dalam  tiga tahap, yaitu  pemungutan minyak sereh wangi dari daun sereh wangi, peningkatan kadar geraniol dalam minyak sereh wangi dan aplikasi minyak sereh wangi yang mengandung geraniol tinggi sebagai bio aditive gasoline.Hasil penelitian menunjukkan bahwa pemungutan minyak sereh wangi yang dilakukan dengan metode distilasi uap menghasilkan rendemen sebesar 0,76% dengan kadar geraniol 5,36%.Kadar geraniol dapat ditingkatkan menjadi 21,78% melalui proses distilasi vakum pada suhu 120oC. Pengujian minyak sereh wangi dengan kadar geraniol tinggi sebagai bio additive gasoline meliputi uji performa dan efisiensi konsumsi bahan bakar dengan variasi perbandingan volume gasoline dengan bio additive. Hasilnya, penambahan minyak sereh wangi dengan perbandingan volume gasoline ; minyak sereh wangi = 1000:2 mampu meningkatkan power mesin dari 7,8HP menjadi 8,6HP. Sementara, pada pengujian efisiensi bahan bakar, penambahan minyak sereh wangi dengan perbandingan volume gasoline : minyak sereh wangi = 1000:2 dapat meningkatkan efisiensi mesin sebesar 10,8%. Citronella contains geraniol which is an oxygen provider substances, so it may be used as bio additive. The purpose of this research  is to increase geraniol content in citronella oil and use it as a gasoline bio additive. This research is conducted  in three steps including take the citronella oil from citronella leaf, increase geraniol content in citronella oil and use citronella oil as a gasoline bio additive. The result show that citronella oil produced from citronella leaf using vapor distillation method contains geraniol

  14. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ...) The gasoline sulfur standards for refiners and importers, excluding gasoline produced by small... must include in its corporate pool all of the gasoline produced at any refineries owned by the parent... includes in its corporate pool the gasoline produced by any refineries owned by the parent company, and...

  15. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  16. the reproductive dysfunction effects of gasoline inhalation in albino

    African Journals Online (AJOL)

    admin

    exposure to inhalation gasoline, which generally saturate the ambient air of their workplaces. In this study, we challenged male and female albino rats with gasoline vapour and monitored the endocrine disruptive effects as part of a comprehensive study of the health risks faced by refinery workers in Nigeria. The ultimate.

  17. Testing the Alchian-Allen Theorem: A Study of Consumer Behavior in the Gasoline Market

    OpenAIRE

    Robert Lawson; Lauren Raymer

    2006-01-01

    This paper uses a data set of daily sales at a single gasoline station over a seven year period to determine if consumers respond to relative price changes among the three grades of gasoline. Based on the reasoning of Alchian and Allen (1964) and Barzel (1976), market shares of higher quality gasoline should increase at the expense of regular grade gasoline when overall gasoline prices increase. The empirical results do not conform to this expectation. We find instead that the consumers in th...

  18. Gasoline from Kumkol deposit petroleum; Benzin nefti Kumkol`skogo mestorozhdeniya

    Energy Technology Data Exchange (ETDEWEB)

    Nadirov, A N; Zhizhin, N I; Musaeva, Z G

    1997-11-04

    Samples of gasoline from petroleum of Kumkol deposit are investigated by chromatographic analysis. It is found, that gasoline is characterizing by increased content of iso-paraffin hydrocarbons. (author) 2 tabs., 1 fig. Suppl. Neft` i gaz Kazakhstana

  19. Optimal gasoline tax in developing, oil-producing countries: The case of Mexico

    International Nuclear Information System (INIS)

    Antón-Sarabia, Arturo; Hernández-Trillo, Fausto

    2014-01-01

    This paper uses the methodology of Parry and Small (2005) to estimate the optimal gasoline tax for a less-developed oil-producing country. The relevance of the estimation relies on the differences between less-developed countries (LDCs) and industrial countries. We argue that lawless roads, general subsidies on gasoline, poor mass transportation systems, older vehicle fleets and unregulated city growth make the tax rates in LDCs differ substantially from the rates in the developed world. We find that the optimal gasoline tax is $1.90 per gallon at 2011 prices and show that the estimate differences are in line with the factors hypothesized. In contrast to the existing literature on industrial countries, we show that the relative gasoline tax incidence may be progressive in Mexico and, more generally, in LDCs. - Highlights: • We estimate the optimal gasoline tax for a typical less-developed, oil-producing country like Mexico. • The relevance of the estimation relies on the differences between less-developed and industrial countries. • The optimal gasoline tax is $1.90 per gallon at 2011 prices. • Distance-related pollution damages, accident costs and gas subsidies account for the major differences. • Gasoline tax incidence may be progressive in less developed countries

  20. Effects of gasoline engine emissions on preexisting allergic airway responses in mice.

    Science.gov (United States)

    Day, Kimberly C; Reed, Matthew D; McDonald, Jacob D; Seilkop, Steven K; Barrett, Edward G

    2008-10-01

    Gasoline-powered vehicle emissions contribute significantly to ambient air pollution. We hypothesized that exposure to gasoline engine emissions (GEE) may exacerbate preexisting allergic airway responses. Male BALB/c mice were sensitized by injection with ovalbumin (OVA) and then received a 10-min aerosolized OVA challenge. Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day to air (control, C) or GEE containing particulate matter (PM) at low (L), medium (M), or high (H) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after GEE exposure mice received another 10-min aerosol OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air or GEE exposure. Measurements of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed approximately 24 h after the last exposure. In both protocols, M, H, and HF GEE exposure significantly decreased BAL neutrophils from nonsensitized mice but had no significant effect on BAL cells from OVA-sensitized mice. In the pre-OVA protocol, GEE exposure increased OVA-specific IgG(1) but had no effect on BAL interleukin (IL)-2, IL-4, IL-13, or interferon (IFN)-gamma in OVA-sensitized mice. Nonsensitized GEE-exposed mice had increased OVA-specific IgG(2a), IgE, and IL-2, but decreased total IgE. In the post-OVA protocol, GEE exposure reduced BAL IL-4, IL-5, and IFN-gamma in nonsensitized mice but had no effect on sensitized mice. These results suggest acute exposure to the gas-vapor phase of GEE suppressed inflammatory cells and cytokines from nonsensitized mice but did not substantially exacerbate allergic responses.

  1. Product differentiation, competition and prices in the retail gasoline industry

    Science.gov (United States)

    Manuszak, Mark David

    This thesis presents a series of studies of the retail gasoline industry using data from Hawaii. This first chapter examines a number of pricing patterns in the data and finds evidence that gasoline stations set prices which are consistent with a number of forms of price discrimination. The second chapter analyzes various patterns of cross-sectional, cross-market and intertemporal variation in the data to investigate their suitability for use in structural econometric estimation. The remainder of the dissertation consists of specification and estimation of a structural model of supply and demand for retail gasoline products sold at individual gasoline stations. This detailed micro-level analysis permits examination of a number of important issues in the industry, most notably the importance of spatial differentiation in the industry. The third chapter estimates the model and computes new equilibria under a number of asymmetric taxation regimes in order to examine the impact of such tax policies on producer and consumer welfare as well as tax revenue. The fourth chapter examines whether there is any evidence of tacitly collusive behavior in the Hawaiian retail gasoline industry and concludes that, in fact, conduct is fairly competitive in this industry and market.

  2. THE EFFECT OF GASOLINE PRICE ON ECONOMIC SECTORS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Philip Ifeakachukwu Nwosa

    2013-01-01

    Full Text Available This paper examined the long-run and short-run relationship between gasoline price and sectoral output in Nigeria for the period from 1980 to 2010. Six sectors (agriculture; manufacturing; building and construction; wholesale and retail; transportation and communication of the economy were examined. The long run regression estimate showed that gasoline price is a significant determinant output in all sectors examined with exception to the building and construction sector while the short run error correction estimate revealed that only output of the agriculture and the manufacturing sectors of the Nigerian economy is affect by gasoline price increase in the short run. The study recommended among others the need for the government to ensure adequate power supply in order to reduce the over reliance of economics sectors on gasoline as a prime source of power.

  3. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2015-12-01

    Full Text Available This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.% in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled with ethanol–methanol–gasoline blends, the concentrations of CO and UHC (unburnt hydrocarbons emissions were significantly decreased, compared to the neat gasoline. Methanol–gasoline blends presented the lowest emissions of CO and UHC among all test fuels. Ethanol–gasoline blends showed a moderate emission level between the neat gasoline and ethanol–methanol–gasoline blends, e.g., ethanol–gasoline blends presented lower CO and UHC emissions than those of the neat gasoline but higher emissions than those of the ethanol–methanol–gasoline blends. In addition, the CO and UHC decreased and CO2 increased when ethanol and/or methanol contents increased in the fuel blends. Furthermore, the effects of blended fuels on engine performance were investigated and results showed that methanol–gasoline blends presents the highest volumetric efficiency and torque; ethanol–gasoline blends provides the highest brake power, while ethanol–methanol–gasoline blends showed a moderate level of volumetric efficiency, torque and brake power between both methanol–gasoline and ethanol–gasoline blends; gasoline, on the other hand, showed the lowest volumetric efficiency, torque and brake power among all test fuels.

  4. Gasoline demand in Europe. New insights

    International Nuclear Information System (INIS)

    Pock, Markus

    2010-01-01

    This study utilizes a panel data set from 14 European countries over the period 1990-2004 to estimate a dynamic model specification for gasoline demand. Previous studies estimating gasoline consumption per total passenger cars ignore the recent increase in the number of diesel cars in most European countries leading to biased elasticity estimates. We apply several common dynamic panel estimators to our small sample. Results show that specifications neglecting the share of diesel cars overestimate short-run income, price and car ownership elasticities. It appears that the results of standard pooled estimators are more reliable than common IV/GMM estimators applied to our small data set. (author)

  5. Gasoline demand in Europe. New insights

    Energy Technology Data Exchange (ETDEWEB)

    Pock, Markus [Department of Economics and Finance, HealthEcon IHS - Institute for Advanced Studies, Vienna Stumpergasse 56, 1060 Vienna (Austria)

    2010-01-15

    This study utilizes a panel data set from 14 European countries over the period 1990-2004 to estimate a dynamic model specification for gasoline demand. Previous studies estimating gasoline consumption per total passenger cars ignore the recent increase in the number of diesel cars in most European countries leading to biased elasticity estimates. We apply several common dynamic panel estimators to our small sample. Results show that specifications neglecting the share of diesel cars overestimate short-run income, price and car ownership elasticities. It appears that the results of standard pooled estimators are more reliable than common IV/GMM estimators applied to our small data set. (author)

  6. Effect Of Ginger Extract On Gasoline Associated Immunitoxicities In ...

    African Journals Online (AJOL)

    Effect of ginger extracts on gasoline associated immunotoxicities in wistar rats was studied. Fifteen wistar rats were randomly assigned into three study groups. Group 1 was the control, while groups 2 and 3 received daily treatment by inhalation of gasoline vapour. The animals in group3 were also treated with 100mg ...

  7. 26 CFR 1.164-5 - Certain retail sales taxes and gasoline taxes.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Certain retail sales taxes and gasoline taxes. 1....164-5 Certain retail sales taxes and gasoline taxes. For taxable years beginning before January 1...) and tax on the sale of gasoline, diesel fuel or other motor fuel paid by the consumer (other than in...

  8. Proceedings of IEA combustion 2009 : IEA 31. task leaders meeting on energy conservation and emissions reduction in combustion

    International Nuclear Information System (INIS)

    2009-01-01

    The International Energy Agency (IEA) supports research and development in energy technology. This meeting provided a forum to discuss combustion processes, which is fundamental to achieving further improvements in fuel use efficiency, reducing the production of pollutants such as nitrogen oxides, and facilitating the transition to alternative fuels. The presentations demonstrated recent studies in improving the efficiency and fuel flexibility of automotive engines; improving the performance of industrial furnaces; emissions formation and control mechanisms; and fuel injection and fuel/air mixing. The conference also highlighted studies involving hydrogen combustion, alternative fuels, particulate diagnostics, fuel sprays, gas turbines, and advanced combustion processes such as homogeneous charge compression ignition (HCCI). The sessions were entitled: HCCI fuels; sprays; nanoparticle diagnostics; alternative fuels; hydrogen internal combustion engines; turbines; energy security; and collaborative task planning. All 45 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  9. Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Nemati, Peyman; Khodaie, Rana

    2015-01-01

    Highlights: • The exergy efficiency decreases by 41.3%. • The irreversibility increases by 46.80%. • The cumulative heat loss exergy decreases by 68.10%. • The cumulative work exergy decreases by 63.4%. • The exhaust losses exergy increases by 28.79%. - Abstract: One of the most important issues in HCCI engines is auto-ignition timing control. EGR introduction into intake charge can be a method to control combustion phasing and its duration. In the current study, a FORTRAN-based code which includes 10 species (O_2, N_2, H_2O, CO_2, CO, H_2, OH, O, N, NO) associated with combustion products was employed to study the exergy analysis in a dual fuel (natural gas + diesel) HCCI engine at four EGR (exhaust gas recirculation) mass fractions (0%, 10%, 20%, and 30%) while the diesel fuel amount was held constant. In order to achieve this task, a 3-D CFD code was employed to model the energy balance during a closed cycle of running engine simulation. Moreover, an efficient Extend Coherent Flame Model-Three Zone model (ECFM-3Z) method was employed to analyze the combustion process. With crank positions at different EGR mass fractions, the exergy terms were identified and calculated separately. It was found that as EGR mass fraction increased from 0% to 30% (in 10% increment steps), exergy efficiency decreased from 48.9% to 28.7%. Furthermore, with the change in EGR mass fraction, the cumulative heat loss exergy decreased from 10.1% to 5.64% of mixture fuels chemical exergy.

  10. 76 FR 9013 - Agency Information Collection Activities; Proposed Collection; Comment Request; Detergent Gasoline

    Science.gov (United States)

    2011-02-16

    ... Activities; Proposed Collection; Comment Request; Detergent Gasoline AGENCY: Environmental Protection Agency... this action are those who (1) Manufacture gasoline, post-refinery component, or detergent additives, (2) blend detergent additives into gasoline or post-refinery component, or (3) transport or receive a...

  11. The taxation effect on gasoline price asymmetry nexus: Evidence from both sides of the Atlantic

    International Nuclear Information System (INIS)

    Polemis, Michael L.; Fotis, Panagiotis N.

    2014-01-01

    This paper explores the degree of competition in various gasoline markets and infers possible causes of price asymmetry across the globe. For this purpose we use the Dynamic Ordinary Least Square method in order to estimate price asymmetry in twelve European countries and the United States for a sample of weekly observations which spans the period from June 1996 to August 2011. The results indicate the common perception that less competitive gasoline markets exhibit price asymmetry, while highly competitive gasoline markets follow a symmetric price adjustment path. Finally, the inclusion of taxes (VAT and excise tax) into retail gasoline prices, supports the existence of price asymmetry in many European countries. - Highlights: • We examine the possible causes of gasoline price asymmetry across the globe. • We investigate the effect of taxation on the retail gasoline price adjustments. • There is a symmetric gasoline price response in the EU wholesale level. • Less competitive gasoline markets exhibit price asymmetry. • The oligopolistic structure of the gasoline markets inflates price asymmetry

  12. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    OpenAIRE

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patr?cia Lopes; J?lio, Aline Daniela Lopes; Fernandes, Rita de C?ssia Rocha; Borges, Arnaldo Chaer; T?tola, Marcos Rog?rio

    2016-01-01

    Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gas...

  13. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    OpenAIRE

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleade...

  14. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    OpenAIRE

    Kinawy Amal A

    2009-01-01

    Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in ...

  15. physiological changes induced by inhalation of unleaded gasoline in adult male albino rats

    International Nuclear Information System (INIS)

    Ali, E.A.R.

    2006-01-01

    air pollution is the most dangerous form of pollution as it can expose a person to about 10.000 times more mass of an environmental pollutant than does food or water gasoline is the primary product of petroleum refining and it perhaps the most widely used energy source in the world. in addition to industrial applications, the ready availability of gasoline to power automotive engines, there are increasing opportunities for occupational and environment exposure to this liquid fuel. with the removal of lead from gasoline and the use of new technologies, it is very important to conduct studies of toxic effects of reformulated gasoline (unleaded gasoline) which will shed the light on this new formula and either it is more or less benefit than the old one. the objective of this work was to asses the health effects of unleaded gasoline refined and used in Egypt

  16. Comparative exergy analyses of gasoline and hydrogen fuelled ices

    International Nuclear Information System (INIS)

    Nieminen, J.; Dincer, I.; Yang, Y.

    2009-01-01

    Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second laws of thermodynamics. A thorough graphical analysis of heat transfer, work, thermo mechanical, and intake charge exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a proportional exergy distribution as a fraction of the intake charge exergy. It was found that the hydrogen fuelled engine had a greater proportion of the intake charge exergy converted into work exergy, indicating a second law efficiency of 50.13% as opposed to 44.34% for a gasoline fuelled engine. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine is postulated to be a part of the reason for decreased work output of a hydrogen engine. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches. (author)

  17. Emission consequences of introducing bio ethanol as a fuel for gasoline cars

    DEFF Research Database (Denmark)

    Winther, Morten Mentz; Møller, Flemming; Jensen, Thomas Christian

    2012-01-01

    This article describes the direct vehicle emission impact of the future use of bio ethanol as a fuel for gasoline cars in Denmark arising from the vehicle specific fuel consumption and emission differences between neat gasoline (E0) and E5/E85 gasoline-ethanol fuel blends derived from emission......% in 2030. As predicted by the vehicle specific emission differences the calculated emission impacts of using bio ethanol are small for NOx, VOC and CO. Instead, for FS, BS1 and BS2 large emission reductions are due to the gradually cleaner new sold gasoline cars and the decline in total mileage until...

  18. Comparative analysis of the Performance and Emission Characteristics of ethanol-butanol-gasoline blends

    Science.gov (United States)

    Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej

    2018-02-01

    Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.

  19. Gasoline reformulation to reduce exhaust emissions in Finnish conditions. Influence of sulphur and benzene contents of gasoline on exhaust emissions

    International Nuclear Information System (INIS)

    Kytoe, M.; Aakko, P.; Lappi, M.

    1994-01-01

    At earlier stages of the study it was found that the exhaust emissions from cars are reduced when using fuels with no more than 4 wt% of oxygen. At this stage of the study the work focused on impacts of the sulphur and benzene content of gasoline on exhaust emissions in Finland. Sulphur in gasoline retards the operation of the catalyst, and consequently the exhaust emissions of catalyst cars increase if the sulphur content of the fuel increases. In the present study, evaporation during refuelling were measured for fuels with varying vapour pressures and benzene contents of gasoline. The total hydrocarbon evaporation was reduced by 22 % (10 g) when the vapour pressure of gasoline was reduced from 85 kPa to 65 kPa. Correspondingly, benzene evaporation during refuelling was reduced to a third when the benzene content of the fuel was reduced from the level of 3 wt% to 1 wt%. The reduction of the sulphur content of gasoline from 500 ppm to 100 ppm affected regulated exhaust emissions from the catalyst car at +22 deg C as follows: CO emission was reduced on average by 14 % (0.175 g/km), CH emission by 7 % (0.010 g/km) and NO x emission by 9 % (0.011 g/km). At-7 deg C the percentual changes were smaller. When the benzene content of the fuel was reduced from 3 wt% to 1 wt%, the benzene emission from the catalyst cars was reduced by 20-30 % and from the non-catalyst cars on average by 30 % both at +22 deg C and -7 deg C. The benzene emission ranged 3-22 mg/km for the catalyst cars and 40-90 mg/km for the non-catalyst cars at +22 deg C in the FTP test

  20. Do gasoline prices exhibit asymmetry? Not usually

    International Nuclear Information System (INIS)

    Douglas, Christopher C.

    2010-01-01

    Previous studies have found evidence of asymmetric price adjustment in U.S. retail gasoline prices in that gasoline prices rise more rapidly in response to a cost increase than fall in response to a cost decrease. By estimating a threshold cointegration model that allows for multiple regimes, I am able to test how sensitive this result is to outlying observations. In contrast to previous studies, I find little evidence of asymmetry for the vast majority of observations and that the asymmetry is being driven by a small number of outlying observations. (author)

  1. Catalysts for producing high octane-blending value olefins for gasoline

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, de J.N.H.

    2001-01-01

    New restrictions on gasoline components mean that oxygenates and aromatics must be replaced by other high octane components. The dimerization of linear butene to form high octane gasoline blending components is evaluated under liquid phase reaction conditions over a number of different heterogeneous

  2. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  3. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  4. The impact of ethanol production on US and regional gasoline markets

    International Nuclear Information System (INIS)

    Du Xiaodong; Hayes, Dermot J.

    2009-01-01

    This study quantifies the impact of increasing ethanol production on wholesale/retail gasoline prices employing pooled regional time-series data from January 1995 to March 2008. We find that the growth in ethanol production kept wholesale gasoline prices $0.14/gallon lower than would otherwise have been the case. The negative impact of ethanol on retail gasoline prices is found to vary considerably across regions. The Midwest region has the biggest impact at $0.28/gallon, while the Rocky Mountain region had the smallest impact at $0.07/gallon. The results also indicate that the ethanol-induced reduction in gasoline prices comes at the expense of refiners' profits. We find a net welfare loss of $0.5 billion from the ethanol support policies in multiple markets.

  5. Pollutant emissions from gasoline combustion. 1. Dependence on fuel structural functionalities.

    Science.gov (United States)

    Zhang, Hongzhi R; Eddings, Eric G; Sarofim, Adel F

    2008-08-01

    To study the formation of air pollutants and soot precursors (e.g., acetylene, 1,3-butadiene, benzene, and higher aromatics) from aliphatic and aromatic fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submechanisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good predictions of species concentrations in premixed flames of n-heptane, isooctane, benzene, cyclohexane, olefins, oxygenates, and gasoline using a 23-component surrogate formulation. The 1,3-butadiene emission comes mainly from minor fuel fractions of olefins and cyclohexane. The benzene formation potential of gasoline components shows the following trends as functions of (i) chemical class: n-paraffins produced by the real fuel should have priority when selecting candidate surrogate components for combustion simulations.

  6. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements of...

  7. Analysis of the French gasoline market since the deregulation of prices

    International Nuclear Information System (INIS)

    Lantz, F.; Ioannidis, C.

    1992-01-01

    In this paper, we have investigated the behaviour of gasoline prices in France over the period 1980-1990. We have established that the price liberalization measures introduced in 1985 were successful in integrating the domestic market to the European one, but the process of integration is still in progress. The behaviour of the Tax Authorities did not inhibit price flexibility with final gasoline prices responding symmetrically to international gasoline price changes. 8 refs., 2 figs., 5 tabs

  8. Value of time: Speeding behavior and gasoline prices

    OpenAIRE

    Wolff, Hendrik

    2012-01-01

    Do drivers reduce speeds when gasoline prices are high? Previous research investigating this energy conservation hypothesis produced mixed results. We take a fresh look at the data and estimate a significant negative relationship between speeding and gasoline prices. This presents a new methodology of deriving the 'Value of Time' (VOT) based on the intensive margin (previous VOT studies compare across the extensive margin) which has important advantages to circumvent potential omitted variabl...

  9. Measuring global gasoline and diesel price and income elasticities

    International Nuclear Information System (INIS)

    Dahl, Carol A.

    2012-01-01

    Price and income elasticities of transport fuel demand have numerous applications. They help forecast increases in fuel consumption as countries get richer, they help develop appropriate tax policies to curtail consumption, help determine how the transport fuel mix might evolve, and show the price response to a fuel disruption. Given their usefulness, it is understandable why hundreds of studies have focused on measuring such elasticities for gasoline and diesel fuel consumption. In this paper, I focus my attention on price and income elasticities in the existing studies to see what can be learned from them. I summarize the elasticities from these historical studies. I use statistical analysis to investigate whether income and price elasticities seem to be constant across countries with different incomes and prices. Although income and price elasticities for gasoline and diesel fuel are not found to be the same at high and low incomes and at high and low prices, patterns emerge that allow me to develop suggested price and income elasticities for gasoline and diesel demand for over one hundred countries. I adjust these elasticities for recent fuel mix policies, and suggest an agenda of future research topics. - Research highlights: ► Surveyed econometric studies of transport fuel demand. ► Developed price elasticities of demand for gasoline and diesel fuel for 120 countries. ► Developed income elasticities of demand for gasoline and diesel fuel for 120 countries. ► Suggested a research agenda for future work.

  10. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2016-10-17

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  11. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Morganti, Kai; Al-Qurashi, Khalid; Johansson, Bengt

    2016-01-01

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  12. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  13. Prices and taxes for gasoline and diesel in industrialized countries

    International Nuclear Information System (INIS)

    Davoust, R.

    2008-01-01

    This report present a comparative study on the prices and taxes of automotive fuels (gasoline and diesel fuel) in various industrialized countries, members of the OECD organization. Statistics are taken from a publication of the IEA (International Energy Agency), and concern the following fuel categories: regular gasoline, unleaded premium gasoline (SP 95 and SP 98), professional diesel fuel and domestic diesel fuel. It is shown that fuel prices are generally equivalent from one country to another, while taxes make all the difference for the retail final price. Somme global comparisons are also made between US and EU prices

  14. The Hepatoprotective Effect of Vitamin A against Gasoline Vapor Toxicity in Rats.

    Science.gov (United States)

    Uboh, Friday E; Ekaidem, Itemobong S; Ebong, Patrick E; Umoh, Ime B

    2009-06-01

    Changes in the activities of plasma alanine amino transferase (ALT), aspartate amino transferase (AST), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP) are used to assess the functional state of the liver. Significant increase in the activities of these enzymes commonly indicates the hepatotoxicity of chemical agent(s) in the body. Exposure of male and female rats to 17.8 cm 3 h -1 m -3 of Premium Motor Spirit (PMS) blend unleaded gasoline (UG) vapors for 6 hr/day, 5 days/week for 20 weeks have been observed to cause hepatotoxicity. In this study, the potential hepatoprotective effect of vitamin A (retinol) against gasoline vapours-induced toxicity was investigated in male and female rats. Retinol (400 IU/kg/day) was orally administered to the test rats concomitant with the gasoline vapor exposure in the last two weeks of the experiment. The results obtained from this study showed that exposure to gasoline vapors caused significant increase (P produced a significant decrease (P gasoline vapours hepatotoxicity in male and female rats, thereby suggesting that retinol may be used to prevent hepatotoxicity in individuals frequently exposed to gasoline vapours.

  15. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... toxics requirements of this subpart apply separately for each of the following types of gasoline produced...) The gasoline toxics performance requirements of this subpart apply to gasoline produced at a refinery... not apply to gasoline produced by a refinery approved under § 80.1334, pursuant to § 80.1334(c). (2...

  16. Competition, regulation, and pricing behaviour in the Spanish retail gasoline market

    International Nuclear Information System (INIS)

    Contin-Pilart, Ignacio; Correlje, Aad F.; Blanca Palacios, M.

    2009-01-01

    The restructuring of the Spanish oil industry produced a highly concentrated oligopoly in the retail gasoline market. In June 1990, the Spanish government introduced a system of ceiling price regulation in order to ensure that 'liberalization' was accompanied by adequate consumer protection. By 1998, prices were left to the 'free' market. This paper examines the pricing behaviour of the retail gasoline market using multivariate error correction models over the period January 1993 (abolishment of the state monopoly)-December 2004. The results suggest that gasoline retail prices respond symmetrically to increases as well as to decreases in the spot price of gasoline both over the period of price regulation (January 1993-September 1998) and over the period of free market (October 1998-December 2004). However, once the ceiling price regulation was abolished, cooperation emerged between the government and the major operators, Repsol-YPF and Cepsa-Elf, to control the inflation rate. This resulted in a slower rate of adjustment of gasoline retail prices when gasoline spot prices went up, as compared with the European pattern. Finally, the Spanish retail margin was by the end of our timing period of analysis, as in the starting years after the abolishment of the state monopoly, above the European average. This pattern confirms our political economic hypothesis, which suggests that the Spanish government and the oil companies were working together in reducing the inflation, in periods of rising oil and gasoline prices. It is also inferred that explaining the pricing pattern in energy markets may require different hypothesis than the classical perspective, involving just firms taking advantage of market power

  17. Competition, regulation, and pricing behaviour in the Spanish retail gasoline market

    Energy Technology Data Exchange (ETDEWEB)

    Contin-Pilart, Ignacio [Departamento de Gestion de Empresas, Universidad Publica de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Correlje, Aad F. [Section Economics of Infrastructures, Faculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5015, 2600 GA Delft (Netherlands); Clingendael International Energy Programme (Netherlands); Blanca Palacios, M. [Departamento de Estadistica e Investigacion Operativa, Universidad Publica de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain)

    2009-01-15

    The restructuring of the Spanish oil industry produced a highly concentrated oligopoly in the retail gasoline market. In June 1990, the Spanish government introduced a system of ceiling price regulation in order to ensure that 'liberalization' was accompanied by adequate consumer protection. By 1998, prices were left to the 'free' market. This paper examines the pricing behaviour of the retail gasoline market using multivariate error correction models over the period January 1993 (abolishment of the state monopoly)-December 2004. The results suggest that gasoline retail prices respond symmetrically to increases as well as to decreases in the spot price of gasoline both over the period of price regulation (January 1993-September 1998) and over the period of free market (October 1998-December 2004). However, once the ceiling price regulation was abolished, cooperation emerged between the government and the major operators, Repsol-YPF and Cepsa-Elf, to control the inflation rate. This resulted in a slower rate of adjustment of gasoline retail prices when gasoline spot prices went up, as compared with the European pattern. Finally, the Spanish retail margin was by the end of our timing period of analysis, as in the starting years after the abolishment of the state monopoly, above the European average. This pattern confirms our political economic hypothesis, which suggests that the Spanish government and the oil companies were working together in reducing the inflation, in periods of rising oil and gasoline prices. It is also inferred that explaining the pricing pattern in energy markets may require different hypothesis than the classical perspective, involving just firms taking advantage of market power. (author)

  18. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Science.gov (United States)

    2010-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...) The sulfur content and volume of each batch of gasoline produced is that of the butane the refiner...

  19. Increasing the octane number of gasoline using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Sara Safari [Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran (Iran, Islamic Republic of); Rashidi, Alimorad, E-mail: rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran 14665-1998 (Iran, Islamic Republic of); Aghabozorg, Hamid Reza [Catalysis Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Moradi, Leila [Faculty of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2010-03-15

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  20. Increasing the octane number of gasoline using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-01-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  1. Testing and estimating time-varying elasticities of Swiss gasoline demand

    International Nuclear Information System (INIS)

    Neto, David

    2012-01-01

    This paper is intended to test and estimate time-varying elasticities for gasoline demand in Switzerland. For this purpose, a smooth time-varying cointegrating parameters model is investigated in order to describe smooth mutations of the Swiss gasoline demand. The methodology, based on Chebyshev polynomials, is rigorously outlined. Our empirical finding states that the time-invariance assumption does not hold for long-run price and income elasticities. Furthermore they highlight that gasoline demand passed through some periods of sensitivity and non sensitivity with respect to the price. Our empirical statements are of great importance to assess the performance of a gasoline tax as an instrument for CO 2 reduction policy. Indeed, such an instrument can contribute to reduce emissions of greenhouse gases only if the demand is not fully inelastic with respect to the price. Our results suggest that such a carbon-tax would not be always suitable since the price elasticity is found not stable over time and not always significant.

  2. Electrical impedance tomography of the 1995 OGI gasoline release

    International Nuclear Information System (INIS)

    Daily, W.; Ramirez, A.

    1996-01-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline

  3. On-road particulate emission measurement

    Science.gov (United States)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  4. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  5. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  7. Who is exposed to gas prices? How gasoline prices affect automobile manufacturers and dealerships

    OpenAIRE

    Silva-Risso, Jorge; Zettelmeyer, Florian; Busse, Meghan R.; Knittel, Christopher Roland

    2016-01-01

    Many consumers are keenly aware of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships. We estimate how changes in gasoline prices affect equilibrium prices and sales of both new and used vehicles of different fuel economies. We investigate the implications of these effects for individual auto manufacturers, taking into account differences...

  8. Who is exposed to gas prices? How gasoline prices affect automobile manufacturers and dealerships

    OpenAIRE

    Busse, Meghan R.; Kittel, Christopher R.; Zettelmeyer, Florian

    2012-01-01

    Many consumers are keenly aware of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships. We estimate how changes in gasoline prices affect equilibrium prices and sales of both new and used vehicles of different fuel economies. We investigate the implications of these effects for individual auto manufacturers, taking into account differences...

  9. The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province

    Science.gov (United States)

    Kautsar, L. H. R.; Waryono, T.; Sobirin

    2017-07-01

    The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).

  10. Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

    Science.gov (United States)

    Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.

    2014-05-01

    The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions

  11. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  12. 78 FR 72033 - Approval and Promulgation of Implementation Plans; Florida: General Requirements and Gasoline...

    Science.gov (United States)

    2013-12-02

    ...] Approval and Promulgation of Implementation Plans; Florida: General Requirements and Gasoline Vapor Control... Protection (FDEP), related to the State's gasoline vapor recovery program. This correcting amendment corrects... . SUPPLEMENTARY INFORMATION: This action corrects inadvertent errors in a rulemaking related to Florida's gasoline...

  13. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  14. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  15. Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.

    Science.gov (United States)

    Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M

    2014-11-01

    Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Henrique, E-mail: henrique.pacini@energy.kth.se; Silveira, Semida, E-mail: semida.silveira@energy.kth.se

    2011-11-15

    The introduction of flex-fuel vehicles since 2003 has made possible for Brazilian drivers to choose between high ethanol blends or gasoline depending on relative prices and fuel economies. In Sweden, flex-fuel fleets were introduced in 2005. Prices and demand data were examined for both Brazil and Sweden. Bioethanol has been generally the most cost-efficient fuel in Brazil, but not for all states. In any case, consumers in Brazil have opted for ethanol even when this was not the optimal economic choice. In Sweden, a different behavior was observed when falling gasoline prices made E85 uneconomical in late 2008. In a context of international biofuels expansion, the example of E85 in Sweden indicates that new markets could experience different consumer behavior than Brazil: demand falls rapidly with reduced price differences between ethanol and gasoline. At the same time, rising ethanol demand and lack of an international market with multiple biofuel producers could lead to higher domestic prices in Brazil. Once the limit curve is crossed, the consumer might react by shifting back to the usage of gasoline. - Research Highlights: > Brazil and Sweden both have infrastructure for high fuel ethanol blends. > Flex-fuel vehicles enable competition between ethanol and gasoline in fuel markets. > Data suggests that consumers make their fuel choice based mainly on prices. > Consumers in Sweden appear to be more price-sensitive than their Brazilian counterparts. > In the absence of international markets, high ethanol prices may drive consumers back to gasoline.

  17. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  18. Suicide attempt by intravenous injection of gasoline: a case report.

    Science.gov (United States)

    Fink, Katrin; Kuehnemund, Alexander; Schwab, Tilmann; Geibel-Zehender, Annette; Bley, Thorsten; Bode, Christoph; Busch, Hans-Joerg

    2010-11-01

    There is much experience with intoxication by aspiration of volatile hydrocarbon products, whereas intravenous injection of these distillates is rare. There are only few reports that describe a wide variety of associated pathological changes, predominantly in the pulmonary system. We report the case of an intravenous self-injection of gasoline by a young man in a suicide attempt. Immediately after injecting gasoline, the 22-year-old man developed bradycardia, hypotension, and increasing dyspnea. Computed tomography scan of the chest showed signs consistent with diffuse alveolar-toxic damage to the lung. These symptoms and radiological findings are similar to those commonly observed after inhalation of this type of substance. This may have been due to diffusion of gasoline into the alveoli, where its presence leads to this characteristic damage. In this patient, gasoline entered the intramuscular tissue, and the patient developed a soft-tissue phlegmon at the forearm. At operation, gas emanation and superficial necrosis were noted. Nevertheless, the patient's outcome was good, with full recovery within 3 weeks. The major changes in this patient after intravenous injection of gasoline were in the pulmonary system, including hypoxemia and radiological findings that could be related to an exhalation of the volatile substance. In addition, gas in the musculature of the injection area caused a soft-tissue phlegmon. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  20. Chemical characterization of organic particulate matter from on-road traffic in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2016-11-01

    Full Text Available This study reports emission of organic particulate matter by light-duty vehicles (LDVs and heavy-duty vehicles (HDVs in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25, hydrated ethanol (E100, and diesel (with 5 % biodiesel. The experiments were performed at two tunnels: Jânio Quadros (TJQ, where 99 % of the vehicles are LDVs, and RodoAnel Mário Covas (TRA, where up to 30 % of the fleet are HDVs. Fine particulate matter (PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively. The samples were analyzed by thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS and by thermal–optical transmittance (TOT. Emission factors (EFs for organic aerosol (OA and organic carbon (OC were calculated for the HDV and the LDV fleet. We found that HDVs emitted more PM2.5 than LDVs, with OC EFs of 108 and 523 mg kg−1 burned fuel for LDVs and HDVs, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDVs and LDVs exhibited distinct features. Unique organic tracers for gasoline, biodiesel, and tire wear have been tentatively identified. nitrogen-containing compounds contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning or fast secondary production. Additionally, 70 and 65 % of the emitted mass (i.e. the OA originates from oxygenated compounds from LDVs and HDVs, respectively. This may be a consequence of the high oxygen content of the fuel. On the other hand, additional oxygenation may occur during fuel combustion. The high fractions of nitrogen- and oxygen-containing compounds show that chemical processing close to the engine / tailpipe region is an important factor influencing primary OA emission. The thermal-desorption analysis showed that HDVs emitted compounds with higher volatility, and with

  1. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  2. Ozone-forming potential of reformulated gasoline

    National Research Council Canada - National Science Library

    Committee on Ozone-Forming Potential of Reformulated Gasoline, National Research Council

    ... and comparison of the emissions from motor vehicles using different reformulated gasolines based on their ozone-forming potentials and to assess the concomitant impact of that approach on air-quality benefits...

  3. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in... operating the engine at the higher approved load setting during cycle 1 and at the lower approved load...

  4. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... annual averaging period thereafter, gasoline produced at each refinery of a refiner or imported by an... annual averaging period thereafter, gasoline produced at each refinery of a refiner or imported by an... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  6. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  7. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  8. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  9. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    Science.gov (United States)

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  11. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  12. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  13. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  14. An analysis of strategic price setting in retail gasoline markets

    Science.gov (United States)

    Jaureguiberry, Florencia

    This dissertation studies price-setting behavior in the retail gasoline industry. The main questions addressed are: How important is a retail station's brand and proximity to competitors when retail stations set price? How do retailers adjust their pricing when they cater to consumers who are less aware of competing options or have less discretion over where they purchase gasoline? These questions are explored in two separate analyses using a unique datasets containing retail pricing behavior of stations in California and in 24 different metropolitan areas. The evidence suggests that brand and location generate local market power for gasoline stations. After controlling for market and station characteristics, the analysis finds a spread of 11 cents per gallon between the highest and the lowest priced retail gasoline brands. The analysis also indicates that when the nearest competitor is located over 2 miles away as opposed to next door, consumers will pay an additional 1 cent per gallon of gasoline. In order to quantify the significance of local market power, data for stations located near major airport rental car locations are utilized. The presumption here is that rental car users are less aware or less sensitive to fueling options near the rental car return location and are to some extent "captured consumers". Retailers located near rental car locations have incentives to adjust their pricing strategies to exploit this. The analysis of pricing near rental car locations indicates that retailers charge prices that are 4 cent per gallon higher than other stations in the same metropolitan area. This analysis is of interest to regulators who are concerned with issues of consolidation, market power, and pricing in the retail gasoline industry. This dissertation concludes with a discussion of the policy implications of the empirical analysis.

  15. Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit.

    Science.gov (United States)

    McKee, R H; Trimmer, G W; Whitman, F T; Nessel, C S; Mackerer, C R; Hagemann, R; Priston, R A; Riley, A J; Cruzan, G; Simpson, B J; Urbanus, J H

    2000-01-01

    Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.

  16. Dating gasoline releases using ground-water chemical analyses: Case studies

    International Nuclear Information System (INIS)

    Worthington, M.A.; Perez, E.J.

    1993-01-01

    This paper presents case studies where geochemical data were analyzed in spatial and temporal relation to documented gasoline releases at typical service station sites. In particular, the authors present ground-water analytical data for sites where (1) the date of the gasoline release is known with a good degree of confidence, (2) the release is confined to a relatively short period of time so as to be considered essentially instantaneous, (3) antecedent geochemical condition are known or can be reasonably expected to have been either unaffected by previous hydrocarbon impacts or minor in comparison to known release events, and (4) where geologic materials can be classified as to structure and composition. The authors' intent is to provide empirical data regarding the hydrogeological fate of certain gasoline components, namely the compounds benzene, toluene, ethylbenzene and xylene isomers (BTEX) and methyl-tertiary-butyl ether (MTBE). Particular emphasis is placed on analysis of gasoline weathering as a means of comparing releases in given hydrogeologic environments. Trends seen in a variety of comparative hydrocarbon compound ratios may provide a basis for evaluating relative release dates

  17. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  18. 40 CFR 80.553 - Under what conditions may the small refiner gasoline sulfur standards be extended for a small...

    Science.gov (United States)

    2010-07-01

    ... gasoline produced by the refinery must meet the gasoline sulfur standards under subpart H of this Part as... all succeeding compliance periods and all gasoline produced by the refinery must meet the gasoline... applicable). Upon such effective date, all gasoline produced by the refiner must meet the gasoline sulfur...

  19. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    Science.gov (United States)

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  20. Gasoline taxes and revenue volatility: An application to California

    International Nuclear Information System (INIS)

    Madowitz, M.; Novan, K.

    2013-01-01

    This paper examines how applying different combinations of excise and sales taxes on motor fuels impact the volatility of retail fuel prices and tax revenues. Two features of gasoline and diesel markets make the choice of tax mechanism a unique problem. First, prices are very volatile. Second, demand for motor fuels is extremely inelastic. As a result, fuel expenditures vary substantially over time. Tying state revenues to these expenditures, as is the case with a sales tax, results in a volatile stream of revenue which imposes real costs on agents in an economy. On July 1, 2010, California enacted Assembly Bill x8-6, the “Gas Tax Swap”, increasing the excise tax and decreasing the sales tax on gasoline purchases. While the initial motivation behind the revenue neutral swap was to provide the state with greater flexibility within its budget, we highlight that this change has two potentially overlooked benefits; it reduces retail fuel price volatility and tax revenue volatility. Simulating the monthly fuel prices and tax revenues under alternative tax policies, we quantify the potential reductions in revenue volatility. The results reveal that greater benefits can be achieved by going beyond the tax swap and eliminating the gasoline sales tax entirely. - Highlights: • We examine how gasoline taxes affect government revenue volatility. • We simulate the impact of California's Gasoline Tax Swap policy. • Sales taxes are shown to magnify price volatility and government revenue volatility. • A pure excise tax policy results in less volatile fuel prices and state revenues. • We argue that reductions in both forms of volatility are welfare enhancing