WorldWideScience

Sample records for gaseous nebulae case

  1. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  2. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    Science.gov (United States)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  3. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  4. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  5. He I lambda 584 in quasars and gaseous nebulae

    International Nuclear Information System (INIS)

    Ferland, G.J.

    1980-01-01

    The He I Lα lambda 584 transfer problem for gaseous nebulae is investigated. Realistic photo-ionization models of quasar clouds and planetary nebulae are combined with the Monte Carlo line transfer technique to determine both the efficiency of destruction of lambda 584 by photo-ionization of hydrogen and the mean number of scatterings undergone before destruction. It is found that large fractions (approximately > 90 per cent) of the lambda 584 photons are destroyed before escaping in all cases considered. Nonetheless, the He I lambda lambda 584, 626 doublet should be present in high redshift quasars with an observed equivalent width of approximately 1 A. Detection of this doublet would provide the only clear indication of the presence or absence of a low density narrow line region for objects in which optical forbidden lines have been redshifted beyond the optical window. The strength of the He I 2 1 S-2 1 P 2.0 μm line is predicted to be approximately 4 times stronger than is actually observed in the planetary nebulae NGC 7027. This suggests that dust is embedded in the ionized gas and causes additional destruction of lambda 584. Finally, the calculations show that photo-ionization model calculations can safely assume nearly complete on-the-spot destruction of lambda 584. The common assumption that the He I singlets are formed in case B conditions is examined in an appendix. (author)

  6. Interpretation of the [ClIII] Lines in Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H; Czyzak, S J; Walker, M F; Krueger, T K

    1970-05-01

    The intensity ratio of the green lambdalambda5517 and 5537 lines of [ClIII] serves as an indicatrix of the electron density in many gaseous nebulae whose spectra can be observed with an image converter. Quantitative interpretation of the line ratio requires accurate values of the collisional strengths and transition probabilities. With improved values of these parameters we have revised electron densities for a number of nebulae; the results seem to be in good accord with those derived from other criteria.

  7. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  8. Continuous emission from the gaseous nebula beyond the Lyman limit

    International Nuclear Information System (INIS)

    Bolgova, G.T.; Khromov, G.S.

    1975-01-01

    Models of spherically-symmetric isothermic hydrogen nebula with an exciting star in the centre are considered. Spectra and energies of diffuse radiation of nebula and of direct radiation of its kernel are calculated in the Lyman continuum for the external boundary of the object. The spectrum of the diffuse radiation is shown to be to a great extent invariant in relation to all parameters of models except for Tsub(e). The total loss in energy of Lsub(c)-radiation of kernel through the external border of the ionized nebula, amounts to 20-30% in the average even at a considerable optical thickness of the object tausub(0). The greater part of this energy is transferred via direct ionizing radiation, though the relative contribution of the diffuse Lsub(c)-radiation of nebula reaches 30% at low temperatures of the exciting star and at large tausub(0). The results of this work may be applied to calculating the energy balance of the star-nebula system, the heating of dust particles and ionization of the neighbouring interstellar medium, and also for determining the conditions of observation of the far ultra-violet radiation of similar objects

  9. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  10. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  11. Theoretical emission line ratios for [Fe III] and [Fe VII] applicable to the optical and infrared spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, F P; Aller, L H; Ryans, R S; Hyung, S

    2001-08-14

    Recent calculations of electron impact excitation rates and Einstein A-coefficients for transitions among the 3d(6) levels of Fe III and among the 3d(2) levels of Fe VII are used to derive theoretical emission line ratios applicable to the optical and infrared spectra of gaseous nebulae. Results for [Fe III] are generated for electron temperatures T(e) = 7,000-20,000 K and densities N(e) = 10(2)-10(8) cm(-3), whereas those for [Fe VII] are provided for T(e) = 10,000-30,000 K and N(e) = 10(2)-10(8) cm(-3). The theoretical line ratios are significantly different in some instances from earlier calculations and resolve discrepancies between theory and observation found for the planetary nebulae IC 4997 and NGC 7027.

  12. ABOUT TEMPERATURE FIELDS AND CONDITIONS OF GASEOUS CONDENSATION OF NEBULAES IN THE PLANETARY VORTEX

    Directory of Open Access Journals (Sweden)

    L. V. Klyuchinskaya

    2014-01-01

    Full Text Available New exact solution of the spherically-axissymmetric Eiler's equations, called as plan­etary vortex, is applied to the problem of formation in planetary nebula germs of planets due to the condensation of gases in the areas of vortex instability which calls the rings of planetary vortex. It is shown that the vortex perturbations causes changes in preassure and temperature at which the gases of nebula condense themselves, forming the germs of the planets.

  13. Emission lines of [K V] in the optical spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, Francis P; Aller, Lawrence H; Espey, Brian R; Exter, Katrina M; Hyung, Siek; Keenan, Michael T C; Pollacco, Don L; Ryans, Robert S I

    2002-04-02

    Recent R-matrix calculations of electron impact excitation rates in K v are used to derive the nebular emission line ratio R = I(4122.6 A)/I(4163.3 A) as a function of electron density (N(e)). This ratio is found to be very sensitive to changes in N(e) over the density range 10(3) to 10(6) cm(-3), but does not vary significantly with electron temperature, and hence in principle should provide an excellent optical N(e) diagnostic for the high-excitation zones of nebulae. The observed value of R for the planetary nebula NGC 7027, measured from a spectrum obtained with the Hamilton Echelle spectrograph on the 3-m Shane Telescope, implies a density in excellent agreement with that derived from [Ne iv], formed in the same region of the nebula as [K v]. This observation provides observational support for the accuracy of the theoretical [K v] line ratios, and hence the atomic data on which they are based. However, the analysis of a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope, reveals that the [K v] 4122.6 A line in this object is badly blended with Fe ii 4122.6 A. Hence, the [K v] diagnostic may not be used for astrophysical sources that show a strong Fe ii emission line spectrum.

  14. Existence of an 16O-rich gaseous reservoir in the solar nebula.

    Science.gov (United States)

    Krot, Alexander N; McKeegan, Kevin D; Leshin, Laurie A; MacPherson, Glenn J; Scott, Edward R D

    2002-02-08

    Carbonaceous chondrite condensate olivine grains from two distinct petrographic settings, calcium-aluminum-rich inclusion (CAI) accretionary rims and amoeboid olivine aggregates (AOAs), are oxygen-16 (16O) enriched at the level previously observed inside CAIs. This requires that the gas in the nebular region where these grains condensed was 16O-rich. This contrasts with an 16O-poor gas present during the formation of chondrules, suggesting that CAIs and AOAs formed in a spatially restricted region of the solar nebula containing 16O-rich gas. The 16O-rich gas composition may have resulted either from mass-independent isotopic chemistry or from evaporation of regions with enhanced dust/gas ratios, possibly in an X-wind environment near the young Sun.

  15. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  16. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  17. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  18. Observing nebulae

    CERN Document Server

    Griffiths, Martin

    2016-01-01

    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  19. Is gas in the Orion nebula depleted

    International Nuclear Information System (INIS)

    Aiello, S.; Guidi, I.

    1978-01-01

    Depletion of heavy elements has been recognized to be important in the understanding of the chemical composition of the interstellar medium. This problem is also relevant to the study of H II regions. In this paper the gaseous depletion in the physical conditions of the Orion nebula is investigated. The authors reach the conclusion that very probably no depletion of heavy elements, due to sticking on dust grains, took place during the lifetime of the Orion nebula. (Auth.)

  20. SULFUR- AND SILICON-BEARING MOLECULES IN PLANETARY NEBULAE: THE CASE OF M2-48

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. L.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu [Department of Chemistry, The University of Arizona, P.O. Box 210041, Tucson, AZ 85721 (United States)

    2014-10-20

    Molecular-line observations of the bipolar planetary nebula (PN) M2-48 have been conducted using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1, 2, and 3 mm. M2-48 is estimated to be ∼4800 yr old, midway through the PN evolutionary track. SiO and SO{sub 2} were detected in this source—the first identification of either molecule in a PN. CN, HCN, HNC, CS, SO, HCO{sup +}, N{sub 2}H{sup +}, and several {sup 13}C isotopologues such as {sup 13}CN, H{sup 13}CN, and H{sup 13}CO{sup +} were also observed toward this object. A radiative transfer analysis of multiple SiO transitions indicates a gas kinetic temperature of T {sub K} ∼ 55 K and a density of n(H{sub 2}) ∼ 9 × 10{sup 5} cm{sup –3} in M2-48, in agreement with previous CS and CO modeling. After CO, CN, and SO were found to be the most prevalent molecules in this nebula, with fractional abundances, relative to H{sub 2}, of f ∼ 3.8 × 10{sup –7} and 2.4 × 10{sup –7}, respectively. SO{sub 2} and HCN are also abundant, with f ∼ 1.2 × 10{sup –7}, indicating an [SO]/[SO{sub 2}] ratio of ∼2. Relatively high ion abundances were measured in M2-48 as well, with f ∼ 10{sup –7} for both HCO{sup +} and N{sub 2}H{sup +}. An [HCN]/[HNC] ratio of ∼2 was determined, as typically observed in other PNe, independent of age. The high abundances of SO and SO{sub 2}, along with the presence of SiO with f ∼ 2.9 × 10{sup –8}, suggest O/C > 1 in this source; furthermore, the prevalence of CN and N{sub 2}H{sup +} indicates nitrogen enrichment. The {sup 12}C/{sup 13}C ratio of ∼3 in the nebula was also established. These factors indicate hot-bottom burning occurred in the progenitor star of M2-48, suggesting an initial mass > 4 M {sub ☉}.

  1. Vertical removable filters in shielded casing for radioactive cells and process gaseous wastes

    International Nuclear Information System (INIS)

    Prinz, M.

    1983-01-01

    The installation of shielded filtration casing is necessary for highly contaminated active cells and process gaseous wastes containing active aerosols. SGN and COGEMA have developed two filtration casings (for 500 and 3000 m 3 /h flow rates) equipped with a vertically removable filter element. The filter elements fitted with high efficiency glass fiber media, are cylindrical in shape. The top flange of the filter is equipped with a gasket to ensure sealing between the filter element and its casing. The filter element is blindly installed and removed and its orientation, inside the casing, is immaterial. The shielding casing is made of a cast iron, or steel, shielding slab under which is secured the filtration casing itself. This shielding slab is settled on side shielding walls made of concrete or cast iron. The filter element, integral with a plug, is placed in the horizontal slab. The attachment of the filter element under the plug is necessary so that the plug and filter may be removed as one unit, and to keep the filter on its sealing surfaces, according to sealing and seismic resistance requirements. Filter removal is performed with the help of an intervention cask, centered over a removable trap door provided on the shielding slab of the casing. First, the plug and filter element assembly is raised into the cask. Then, the filtering element may be separated from the plug which is decontaminated and salvaged. The whole plug and filter assembly may also be sent to the conditioning waste storage. The installation of a clean filter element in the casing, is also performed with the help of the intervention cask, proceeding as above, but in reverse order. The same intervention cask may also be used to remove the upstream and downstream dampers from the top of the casing

  2. Case studies on the chemical composition of fogwater: The influence of local gaseous emissions

    Science.gov (United States)

    Johnson, C. Annette; Sigg, Laura; Zobrist, Jürg

    In order to study the mechanisms governing the composition of fogwater, sequential samples were taken during two fog events over several hours and analyzed chemically. In addition, preliminary measurements of gases (HCl, HNO 3, NH 3) and aerosols (H 2SO 4, NH 4NO 3, NH 4Cl and ammonium sulfates) were made. The uptake of gaseous HCl in the fog droplets was a major source of acidity: in extreme cases pH values of 2.08 and 1.94 and Cl - concentrations up to 10 -2 M were observed. HCl originated from a local source, most probably a refuse incinerator from which plumes of the stack gas reached the sampling site. The NH +4, NO -3 and SO -24 concentrations (in the range of 0.1-2 mrnol l-1) were regulated by the inputs of aerosols and the liquid water content of the fog. The contribution of dissolved S(IV) (0.06-0.27 mmol l-1) to the total aqueous sulfur varied with time, according to the pH-dependent solubility of SO 2 and to oxidation reactions.

  3. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  4. ON THE NONTHERMAL κ-DISTRIBUTED ELECTRONS IN PLANETARY NEBULAE AND H ii REGIONS: THE κ INDEX AND ITS CORRELATIONS WITH OTHER NEBULAR PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [Space Astronomy Laboratory, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Zhang, Bing; Liu, Xiao-Wei, E-mail: zhangy96@hku.hk [Department of Astronomy, Peking University, Beijing 100871 (China)

    2016-01-20

    Recently, a suspicion arose that the free electrons in planetary nebulae (PNs) and H ii regions might have nonthermal energy distributions. In this scenario, a κ index is introduced to characterize the electron energy distributions, with smaller κ values indicating larger deviations from Maxwell–Boltzmann distributions. Assuming that this is the case, we determine the κ values for a sample of PNs and H ii regions by comparing the intensities of [O iii] collisionally excited lines and the hydrogen Balmer jump. We find the average κ indices of PNs and H ii regions to be 27 and 32, respectively. Correlations between the resultant κ values and various physical properties of the nebulae are examined to explore the potential origin of nonthermal electrons in photoionized gaseous nebulae. However, no positive result is obtained. Thus, the current analysis does not lend support to the idea that κ-distributed electrons are present in PNs and H ii regions.

  5. Gaseous air pollution and emergency hospital visits for hypertension in Beijing, China: a time-stratified case-crossover study

    Directory of Open Access Journals (Sweden)

    Zhang Yanshen

    2010-10-01

    Full Text Available Abstract Background A number of epidemiological studies have been conducted to research the adverse effects of air pollution on mortality and morbidity. Hypertension is the most important risk factor for cardiovascular mortality. However, few previous studies have examined the relationship between gaseous air pollution and morbidity for hypertension. Methods Daily data on emergency hospital visits (EHVs for hypertension were collected from the Peking University Third Hospital. Daily data on gaseous air pollutants (sulfur dioxide (SO2 and nitrogen dioxide (NO2 and particulate matter less than 10 μm in aerodynamic diameter (PM10 were collected from the Beijing Municipal Environmental Monitoring Center. A time-stratified case-crossover design was conducted to evaluate the relationship between urban gaseous air pollution and EHVs for hypertension. Temperature and relative humidity were controlled for. Results In the single air pollutant models, a 10 μg/m3 increase in SO2 and NO2 were significantly associated with EHVs for hypertension. The odds ratios (ORs were 1.037 (95% confidence interval (CI: 1.004-1.071 for SO2 at lag 0 day, and 1.101 (95% CI: 1.038-1.168 for NO2 at lag 3 day. After controlling for PM10, the ORs associated with SO2 and NO2 were 1.025 (95% CI: 0.987-1.065 and 1.114 (95% CI: 1.037-1.195, respectively. Conclusion Elevated urban gaseous air pollution was associated with increased EHVs for hypertension in Beijing, China.

  6. The Crab Nebula

    International Nuclear Information System (INIS)

    Mitton, S.

    1979-01-01

    The subject is covered in chapters, as follows: A.D.1054, a star explodes (historical account of observations of the supernova of which the Crab Nebula is the remnant); the telescope takes over (discovery and subsequent observation of the Crab Nebula); the message of the fiery remnant (detailed structure and its interpretation); the invisible nebula (electromagnetic radiation from the Crab Nebula and its interpretation); a beacon in the night (the discovery of pulsars, with special reference to the pulsar in the Crab Nebula; observation and theory); the strange world of a neutron star (theory, prediction and observation); magnetic fields and energy flow from the pulsar (stellar magnetosphere; luminosity of the nebula); how does the pulsar pulse (observation; models to explain beaming); outburst and aftermath (types of supernovae and their evolution; nucleosynthesis); supernovae and their remnants (account of observations since early records); the Crab Nebula and modern astronomy. (U.K.)

  7. Techniques to limit gaseous releases in case of reactor accident. Choice criteria - present solutions

    International Nuclear Information System (INIS)

    Billard, Francois; Lavie, Jean-Marie

    1964-10-01

    Within the frame of the study of radiological risks associated with a reactor accident in order to define the required responses, this study comprises, on the one hand, an analysis of the different accident types in order to select typical accidents, and on the other hand, a site-based analysis to define the maximum admissible radioactivity release for a given site. The determination of minimum required coefficient of risk reduction results from a compromise between the choice of reactor configuration type and the efficiency of purification devices, while taking into account minimum characteristics of the enclosure mechanical strength, local release conditions, and nature of gaseous effluents to be processed. After a review of available containment techniques, the author applies this analysis method to the different French reactor types. He gives a brief description of adopted solutions for the most typical French reactors in terms of characteristics of venting and filtration devices. As data quality is a crucial requirement, the author outlines the need for further studies regarding fission product emission and transfer, the purification of gaseous effluents and their diffusion in the atmosphere [fr

  8. Collisional effects in He I lines and helium abundances in planetary nebulae

    International Nuclear Information System (INIS)

    Clegg, R.E.S.

    1987-01-01

    Attention is drawn to new, 19-state quantal calculations for collisional excitation by electron impact in neutral helium. Recommended empirical formulae are given for the collisional contribution to HeI recombination lines such as λλ4471, 5876 A in gaseous nebulae. Collisional ionization of metastable (2 3 S) He I is significant for high-temperature nebulae. Collisional transfers provide significant cooling in nebulae with low heavy-element abundances. Revised mean He/H ratios for three large samples of planetary nebulae are given. (author)

  9. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  10. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  11. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  12. Nebulae at keratoconus--the result after excimer laser removal.

    Science.gov (United States)

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated.

  13. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  14. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  15. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  16. Bipolar nebulae and type I planetary nebulae

    International Nuclear Information System (INIS)

    Calvet, N.; Peimbert, M.

    1983-01-01

    It is suggested that the bipolar nature of PN of type I can be explained in terms of their relatively massive progenitors (Msub(i) 2.4 Msub(o)), that had to lose an appreciable fraction of their mass and angular momentum during their planetary nebulae stage. The following objects are discussed in relation with this suggestion: NGC 6302, NGC 2346, NGC 2440, CRL 618, Mz-3 and M2-9. It is found that CRL 618 is overbundant in N/O by a factor of 5-10 relative to the Orion Nebula. (author)

  17. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  18. Wolf-Rayet nebulae

    International Nuclear Information System (INIS)

    Chu, You-Hua

    2016-01-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 10 3 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses. (paper)

  19. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  20. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720.

    Science.gov (United States)

    Cox, N L J; Pilleri, P; Berné, O; Cernicharo, J; Joblin, C

    2016-02-11

    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer -IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μ m aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7-8 μ m range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H 2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.

  1. Lifetime of the solar nebula constrained by meteorite paleomagnetism.

    Science.gov (United States)

    Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E

    2017-02-10

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.

  2. Planetary nebulae: understanding the physical and chemical evolution of dying stars.

    Science.gov (United States)

    Weinberger, R; Kerber, F

    1997-05-30

    Planetary nebulae are one of the few classes of celestial objects that are active in every part of the electromagnetic spectrum. These fluorescing and often dusty expanding gaseous envelopes were recently found to be quite complex in their dynamics and morphology, but refined theoretical models can account for these discoveries. Great progress was also made in understanding the mechanisms that shape the nebulae and the spectra of their central stars. In addition, applications for planetary nebulae have been worked out; for example, they have been used as standard candles for long-range distances and as tracers of the enigmatic dark matter.

  3. The simplest models of the reflection nebulae

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.

    1977-01-01

    Some models of the reflection nebulue have been considered. The (U-B), (B-V) and (V-R) colors and the U, B, V and R polarization have been calculated for a model of a reflection nebula associated with a large dust cloud. For the cases in which the illuminating star is far from the surface of the cloud, the form of the nebula has been considered to be spherical. If the star is close to the surface of the cloud, a part of the nebura boundary has been considered to be flat. Single scattering within the homogeneous nebula has been assumed. All the calculations use the scattering by spheres as given by the Mie's theory. The effect of variations of chemical composition and size distribution function of the grains and the position of the illuminating star has been examined. Comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with the refraction index m=1.30-0.02i and size parameter asub(o)=0.5μ represent satisfactorily the observation if the star is embedded 0.7 pc behind the front surface of the nebula

  4. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    Science.gov (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  5. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  6. A Tactile Carina Nebula

    Science.gov (United States)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  7. The filamentary nebulae S 188

    International Nuclear Information System (INIS)

    Rosado, M.; Kwitter, K.B.

    1982-01-01

    The crescent shaped nebula S 188 is identified as a planetary nebula (PN) of Peimbert's Type I on the basis of its observed nebula spectrum. New FP interferometric work allows to determine the systemic motion of this nebula. The derived kinematical distance exceeds Cudworth's distance estimate supporting the idea that Peimbert's Type I PNs have larger ejected masses than typical PNs. A discussion about the origin of its non-spherical shape is also given. (author)

  8. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    Science.gov (United States)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar

  9. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  10. The carbon budget in the outer solar nebula.

    Science.gov (United States)

    Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L

    1989-01-01

    . Laboratory studies of carbonaceous chondrites, and spacecraft observations of Comet Halley, strongly suggest that of the remaining possibilities, organic material, rather than elemental carbon, is the most likely candidate for the dominant C-bearing solid in the outer solar nebula. We conclude that the majority of the carbon in the outer solar nebula was in gaseous CO; 10% to a few tens of percent of the C was in condensed organic materials; and at least a trace amount of carbon was in methane gas.

  11. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  12. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  13. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  14. Spectrophotometry of ring nebulae around Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Kwitter, K.B.

    1979-01-01

    Spectrophotometric observations of four ring nebulae surrounding population I Wolf-Rayet (WN) stars have been obtained, and four additional filamentary nebulae in order to determine the physical conditions and chemical abundances in these objects. It was concluded that the ring nebulae are enriched in nitrogen and helium as a result of contamination of the ambient interstellar medium by the helium- and nitrogen-rich wind from the central Wolf-Rayet star. Of the additional nebulae studied, two were found to be Peimbert Type I planetary nebulae, overabundant in nitrogen and helium due to mixing of CNO processed material into the parent envelope prior to ejection. One of the remaining objects, a shell around an Oef star, is found to have normal abundances; the other, a small H II region around an early Be star, also exhibits normal abundances. It was attempted to interpret the ring nebulae and the Oef shell as interstellar bubbles, according to recent theory; it met with varying degrees of success. For two of the ring nebulae, the fraction of nebular mass contributed by the central star can be estimated from published stellar abundances. It was found that in these two cases, the stellar wind has provided less than 10% of the observed nebular mass

  15. Do stellar and nebular abundances in the Cocoon nebula agree?

    Science.gov (United States)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  16. Review of solar nebula models

    International Nuclear Information System (INIS)

    Wood, J.A.; Morfill, G.E.

    1988-01-01

    The major changes that have occurred in thinking about protosolar nebula models are discussed. The concept favored by astrophysicists for the last decade, that of a viscous accretion-disk nebula, is examined. The properties of recent accretion-disk models that are most relevant to chondrite-forming processes are noted. 27 references

  17. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  18. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  19. Helium shell flashes and ionization of planetary nebulae. Pt. 2. FG Sge

    International Nuclear Information System (INIS)

    Tylenda, R.

    1980-01-01

    Theoretical models have been constructed to study time-dependent effects in the nebulae (He 1-5) associated with FG Sge. Two cases have been considered: recombination of an initially stationary nebula of moderate excitation (Case A), and nonequilibrium ionization (and subsequent recombination) of an initially neutral nebula by a thermal pulse in the central star (Case B). Comparison with the observed spectrum does not allow to distinguish definitely between both cases. There are slight indications that the present state of He 1-5 is better reproduced in Case B which is also preferable from the point of view of the present theoretical knowledge of observational appearances of helium shell flashes in planetary nebula nuclei. The nebula has a normal chemical composition. (author)

  20. Infrared nebula in the Chamaeleon T association

    International Nuclear Information System (INIS)

    Schwartz, R.D.; Henize, K.G.

    1983-01-01

    Data are tabulated for seven nebulae in the Chamaeleon T association. Three, which are large and clearly related to illuminating stars, appear to be typical reflection nebulae. Three are small wisps attached to stars and are probably cometary-type reflection nebulae. The remaining nebula is a triangular wisp having an unusually red spectral energy distribution and showing no illuminating star on visual wavelength photographs. The western tip of this nebula coincides closely with the position of a recently reported infrared source. The nebula is probably one lobe of a bipolar nebula

  1. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    Science.gov (United States)

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  2. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  3. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  4. The Toby Jug nebula (IC 2220): a bipolar and biconical nebula

    International Nuclear Information System (INIS)

    Perkins, H.G.; King, D.J.; Scarrott, S.M.

    1981-01-01

    An optical linear polarization map of IC 2220, the nebula surrounding the cool red giant HD 65750, is presented. The nebula appears to be bipolar and biconical in structure. The mass of the nebula is estimated to be 0.01 solar mass and is consistent with the nebula being formed from the current mass loss stage of the central star. (author)

  5. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  6. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  7. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  8. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  9. The Trifid Nebula: Stellar Sibling Rivalry

    Science.gov (United States)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  10. Mixing and Transport in the Solar Nebula

    Science.gov (United States)

    Boss, Alan P.

    2003-01-01

    Boss & Vanhala (2000, 2001) prepared reviews of triggered collapse and injection models, using Prudence Foster's finite differences code at very high spatial resolution (440 x 1440 cells) to demonstrate the convergence of the R-T fingers in triggered injection models. A two dimensional hydrodynamical calculation with unprecedentedly high spatial resolution (960 x 2880 zones, or almost 3 million grid points) demonstrated that it suitable shock front can both trigger the collapse of an otherwise stable presolar cloud, and inject shock front particles into the collapsing cloud through the formation of what become Rayleigh-Taylor fingers of compressed fluid layers falling into the gravitational potential well of the growing protostar. These calculations suggest that heterogeneity derived from these R-T fingers will persist down to the scale of their injection onto the surface of the solar nebula. Haghighipour developed a numerical code capable of calculating the orbital evolution of dust grains of varied sizes in a gaseous nebula, subject to Epstein and Stokes drag as well as the self-gravity of the disk. In collaboration with the PI and George W. Wetherill, Haghighipour has been involved in development of a new idea on the possibility of rapid formation of ice giant planets via the disk instability mechanism. Haghighipour studied the stability of a five-body system consisting of the Sun and four protoplanets by numerically integrating their equations of motions. Using Levison and Duncan s SWIFT integrator, Haghighipour showed that, depending on the orbital parameters of the bodies, such a system can be stable for 0.1-10 Myr. Time periods of 1 Myr or more are long enough to be consistent with the time scale proposed for the formation of giant planets by the disk instability mechanism and the photoevaporation of the gaseous envelopes of the outermost protoplanets by a nearby OB star, resulting in the formation of ice giant planets. The PI has used his three dimensional

  11. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  12. Contraction of the solar nebula

    International Nuclear Information System (INIS)

    Rawal, J.J.

    1984-01-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection is operative and brings about the halt at various stages of contraction. It is found that the radius of the contracting solar nebula follows the Titius-Bode law. The consequences of the relation are also discussed. The aim is to attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it. (Auth.)

  13. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Adams, S.; Seaton, M.J.

    1982-01-01

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  14. Circumnebular neutral hydrogen in planetary nebulae

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Pottasch, S.R.

    1990-01-01

    Centimeter line observations of six compact planetary nebulae are reported. Circumnebular atomic hydrogen absorption has been observed in NGC 6790, NGC 6886, IC 418, IC 5117, and BD +30 deg 3639, while H I was not observed to a high upper limit in NGC 6741. Hydrogen was also detected in emission from BD +30 deg 3639. The expansion velocities of the circumnebular envelopes are similar to the expansion velocities observed for the ionized nebula. The optical depth of circumnebular H I appears to decrease with increasing linear radius of the ionized nebulae, indicating that these nebulae are ionization bounded and that the amount of atomic hydrogen decreases as young nebulas evolve. 28 refs

  15. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    Science.gov (United States)

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  16. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  17. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  18. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  19. Spectrum and the structure of the bipolar nebula S 106

    Energy Technology Data Exchange (ETDEWEB)

    Solf, J [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany, F.R.)

    1980-12-01

    Optically the compact region S 106 appears as a bipolar nebula with the exciting stellar source located between the lobes and embedded in a flat disk of material of high visual extinction. Associated with the nebula is a massive molecular cloud exhibiting a rotating disk-like structure, the axis of rotation being observed in the same direction as the bipolar axis of the nebula. We analyse new optical and near-infrared spectra obtained with an image-tube spectrograph. The emission line spectrum of both lobes resembles that of the Orion nebula and indicates high electron density throughout. The nebular continuum discovered in both lobes is interpreted as originating from an early-type stellar source between the lobes, and scattered by dust particles coexisting with the ionized gas within the lobes. The Hsub(..cap alpha..) radial velocity field indicates supersonic motion of ionized material flowing radially outward through the lobes. The shape and kinematic structure of the lobes are in qualitative agreement with the predictions of the champagne model of Tenorio-Tagle (1979) applied to the case of star formation near the center of a disk-shaped dense cloud.

  20. THE VARIABLE REFLECTION NEBULA CEPHEUS A EAST

    International Nuclear Information System (INIS)

    Hodapp, Klaus W.; Bressert, Eli

    2009-01-01

    We report K'-band imaging observations of the reflection nebula associated with Cepheus A East covering the time interval from 1990 to 2004. Over this time the reflection nebula shows variations of flux distribution, which we interpret as the effect of inhomogeneous and varying extinction in the light path from the illuminating source HW2 to the reflection nebula. The obscuring material is located within typical distances of ∼ 10 AU from the illuminating source.

  1. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  2. Usage Proposal of a common urban decorative tree (Salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania).

    Science.gov (United States)

    Esbrí, J M; Cacovean, H; Higueras, P

    2018-02-01

    Closure of chloralkali plants poses a risk of abandonment of important sources of gaseous mercury. In this work, an assessment has been made of the potential for pollution from one of these plants in the proximity of a densely populated town in central Romania. The work involved a comparison between two major types of monitoring survey: biomonitoring using leaves of a tree common in urban environments; and LUMEX-based gaseous mercury analysis. For biomonitoring, 21 samples from Salix alba L. trees were taken in Turda area. Atmospheric monitoring included two mobile surveys and one at a fixed location. The results from both monitoring systems show similarities in gaseous mercury dispersion patterns, with high mercury contents clearly related to the presence of the chloralkali plant. Particularly high levels were measured in the following situations: (i) in a 'smog' area related with thermal inversion and (ii) during dusk. Direct monitoring suffered from limitations in acquiring information, especially in a medium-long time range, but biomonitoring provided these data and is capable of covering studies on temporary trends or comparative assessments between European cities with contrasting gaseous mercury sources. The thermal speciation of mercury contents indicates that the whole fraction of mercury in leaves corresponds to organic mercury. This finding implies a non-reversible uptake process, which in turn ensures the applicability of this technique to biomonitor long-term exposure. As a conclusion, the assessment of gaseous mercury pollution based on biomonitoring using S. alba has proven to be a useful, reliable and cost-effective methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The western Veil nebula (Image)

    Science.gov (United States)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  4. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  5. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  6. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  7. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  8. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  9. An investigation of the Carina Nebula

    Science.gov (United States)

    Brooks, Kate J.

    2000-10-01

    the Carina Nebula is one of the most extreme and complex cases of massive stars interacting with their environment and show that there is still a wealth of information to be gained from future studies of this region. %% If you have your thesis on the web, please provide the web address here Copies currently available at: http://www.atnf.csiro.au/people/kbrooks/html/publications.html

  10. Helix Nebula Science Cloud pilot phase open session

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This Helix Nebula Science Cloud (HNSciCloud) public session is open to everyone and will be webcast. The session will provide the audience with an overview of the HNSciCloud pre-commercial procurement project and the innovative cloud platforms that have been developed. A number of practical use-cases from the physics community will be presented as well as the next steps to be undertaken.

  11. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  12. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  13. Abundances of planetary nebula NGC 5315

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Koornneef, J; Feibelman, WA

    2002-01-01

    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  14. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  15. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  16. A SMOKING GUN IN THE CARINA NEBULA

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; Chu, You-Hua; White, Stephen M.; Strohmayer, Tod; Petre, Rob

    2009-01-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ∼30 years. The soft X-ray spectrum, consistent with kT ∼ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ∼10 6 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  17. Dating of young groundwater using tritium and gaseous tracers (SF6, SF5CF3, CFC-12, H-1301): case study from southern Poland

    Science.gov (United States)

    Rozanski, Kazimierz; Bartyzel, Jakub; Dulinski, Marek; Kuc, Tadeusz; Sliwka, Ireneusz; Mochalski, Pawel; Kania, Jaroslaw; Witczak, Stanislaw

    2013-04-01

    Groundwater is an important source of potable water in many countries. While it covers ca. 50% of the global drinking water needs, in Europe this share is even higher, reaching approximately 70%. Nowadays, this strategic resource is at risk due to anthropogenic pollutants of various nature entering shallow aquifers. Proper management of groundwater resources requires thorough understanding of groundwater dynamics on time scales characteristic for the history of pollutant input to groundwater. The bomb-tritium has been used for several decades now as a tracer of choice to detect recent recharge and to quantify groundwater residence times on time scales extending from several years to several decades. The lumped-parameter modeling was the most often employed approach in this context. Since nowadays atmospheric concentrations of tritium are approaching natural levels in most parts of the world, the usage of this tracer has become more problematic. Therefore, there is a growing interest in alternative indicators of groundwater age in shallow aquifers. Anthropogenic trace gases present in the atmosphere, such as freons (CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6), have been applied in numerous case studies as substitutes of tritium. Here we present the results of a comprehensive study aimed at quantifying mean residence time of groundwater in the recharge area of porous sandy aquifer system located in the southern Poland. The principal economic role of the aquifer, consisting of two water-bearing strata, is to provide potable water for public and private users. The yield of the aquifer is insufficient to meet all the needs and, as a consequence, licensing conflicts arise between water supply companies and industry on the amount of water available for safe exploitation. To quantify residence time distribution (RTD) functions of water parcels arriving at the production wells located in the recharge area of the aquifer, tritium along with several gaseous tracers

  18. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula

    International Nuclear Information System (INIS)

    Hayashi, Chushiro

    1982-01-01

    First, distributions of surface densities of dust materials and gases in a preplanetary solar nebula, which give a good fit to the distribution of the planetary mass, are presented and the over-all structure of this nebula, which is in thermal and gravitational equilibrium, is studied. Second, in order to see magnetic effect on the structure, electric conductivity of a gas ionized by cosmic rays and radioactivities contained in dust grains is estimated for each region of the nebula and, then, the growth and decay of seed magnetic fields, which are due to differential rotation of the nebula and to the Joule dissipation, respectively, are calculated. The results indicate that, in regions of the terrestrial planets, magnetic fields decay much faster than they grow and magnetic effects can be ignored, except for the outermost layers of very low density. This is not the case for regions of Uranus and Neptune where magnetic fields can be amplified to considerable extents. Third, the transport of angular momentum due to magnetic and mechanical turbulent viscosities and the resultant redistribution of surface density in the nebula are investigated. The results show that the density redistribution occurs, in general, in a direction to attain a distribution of surface density which has nearly the same ν-dependence as that obtained from the present distribution of the planetary mass. This redistribution seems to be possible if it occurs at a formation stage of the nebula where the presence of large viscosities is expected. Finally, a comment is given on the initial condition of a collapsing interstellar cloud from which the solar nebula is formed at the end of the collapse. (author)

  19. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Infrared studies of galactic nebulae. IV - Continuum and line radiation from planetary nebulae.

    Science.gov (United States)

    Gillett, F. C.; Merrill, K. M.; Stein, W. A.

    1972-01-01

    Observations are reported of the detection of IR radiation from several planetary nebulae not previously known to be radiating at these wavelengths. Broad spectral bandwidth observations indicate that ir radiation in excess of that expected from atomic processes is a common phenomenon among these objects. Investigations with narrow spectral bandwidth show that in a few cases the energy in the 10.52-micron line is a significant fraction of the total energy observed in the broad-band measurements and in other cases a relatively small fraction of the total radiation. Other observations on two sources with narrow spectral bandwidth adjacent to the 10.52-micron line indicate that at these wavelengths a true continuum of radiation exists as well as lines. The results are discussed in relation to visual and radio-wavelength data.

  1. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  2. Processing NASA Earth Science Data on Nebula Cloud

    Science.gov (United States)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  3. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  4. Spatiokinematical models of five planetary nebulae

    International Nuclear Information System (INIS)

    Sabbadin, F.

    1984-01-01

    The [OOOI] and Hα expansion velocity fields in the planetary nebulae NGC6058 and 6804 and the [OIII], Hα and [NII] expansion velocity fields in NGC6309, 6751 and 6818, were obtained from high dispersion spectra. Spatiokinematical models of the nebulae were derived assuming an expansion velocity of the gas proportional to the distance from the central star and using the expansion velocity-radius correlation previously given. The observational parameters of the nebulae (radius, mass and expansion velocity) and of the exciting stars (temperature, radius and luminosity) closely fit the suggested evolutionary model for this class of objects. (author)

  5. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  6. Isotopic homogeneity of iron in the early solar nebula.

    Science.gov (United States)

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  7. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  8. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  9. Gossip: Gaseous pixels

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    2007-01-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55 Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated

  10. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  11. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven

    2007-01-01

    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  12. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  13. The Boomerang Nebula: a highly polarized bipolar

    International Nuclear Information System (INIS)

    Taylor, K.N.R.; Scarrott, S.M.

    1980-01-01

    An optical linear polarization map of a bipolar nebula is presented. Polarizations of approximately 60 per cent are observed in the optically thin lobes. The map leads to a geometry of the object consisting of a central star with an equatorial disc of dust and optically thin lobes illuminated by the central star. The grains in the disc are aligned. The object is a protoplanetary nebula. (author)

  14. Evolutionary sequence of models of planetary nebulae

    International Nuclear Information System (INIS)

    Vil'koviskij, Eh.Ya.; Kondrat'eva, L.N.; Tambovtseva, L.V.

    1983-01-01

    The evolutionary sequences of model planetary nebulae of different masses have been calculated. The computed emission line intensities are compared with the observed ones by means of the parameter ''reduced size of the nebula'', Rsub(n). It is shown that the evolution tracks of Schonberner for the central stars are consistent with the observed data. Part of ionized mass Mi in any nebulae does not not exceed 0.3 b and in the average Msu(i) 3 years at actual values of radius Rsub(i) <0.025 ps. Then the luminosity growth slows down to the maximum temperature which central star reaches and decreases with sharp decrease of the star luminosity. At that, the radius of ionized zone of greater mass nebulae can even decrease, inspite of the constant expansion of the nebula. As a result nebulae of great masses having undergone the evolution can be included in the number of observed compact objects (Rsub(n) < 0.1 ps)

  15. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  16. Gaseous waste processing device

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1992-01-01

    In a gaseous waste processing device, if activated carbon is charged uniformly to a holdup tower, the amount of radioactive rare gases held in a first tower at the uppermost stream is increased to greater than that in other towers at the downstream since the radioactive rare gases decay in the form of an exponential function. Then in the present invention, the entire length of a plurality of activated carbon holdup towers connected in series is made longer than that of the towers in the downstream. As a result, since the amount of radioactive rare gases held in each of the holdup towers is made uniform, even if any one of connecting pipelines is ruptured, the amount of radioactive rare gases flown out is uniform. Only the body length of the holdup tower is changed because it is economical in view of the design and the manufacture of the vessel, and the cross section of the portion in which activated carbons are filled is made identical to keep the optimum flow rate of the rare gases. Thus, the radioactivity releasing amount can be minimized upon occurrence of an accident. (N.H.)

  17. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  18. Device for filtering gaseous media

    International Nuclear Information System (INIS)

    Benzel, M.

    1978-01-01

    The air filter system for gaseous radioactive substances consists of a vertical chamber with filter material (charcoal, e.g. impregnated). On one side of the chamber there is an inlet compartment and an outlet compartment. On the other side a guiding compartment turns the gas flow coming from the natural-air side through the lower part of filter chamber to the upper part of the filter. The gas flow leaves the upper part through the outlet conpartment as cleaned-air flow. The filter material may be filled into the chamber from above and drawn off below. For better utilization of the filter material the filter chamber is separated by means of a wall between the inlet and outlet compartment. This partition wall consist of two sheets arranged one above the other provided with slots which may be superposed in alignment. In this case filter material is tickling from the upper part of the chamber into the lower part avoiding to form a crater in the filter bed. (DG) [de

  19. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  20. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  1. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  2. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  3. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.

    1977-01-01

    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  4. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    International Nuclear Information System (INIS)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-01-01

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1. 0 5 x 0. 0 01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s -1 , the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ∼4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  5. The "Nessie" Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud

    Science.gov (United States)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-08-01

    The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1fdg5 × 0fdg01 or 80 pc × 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s-1, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ~4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the "sausage" fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  6. Ring nebulae associated with Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Chu, Y.-H.

    1982-01-01

    Using strict selection criteria, the author and colleagues have searched for ring nebulae associated with Wolf-Rayet stars in the Galaxy and the Magellanic Clouds. 15 WR ring nebulae are identified in the Galaxy, 9 in the Large Magellanic Cloud, and none in the small Magellanic Cloud. The morphology and kinematics of these 24 nebulae have subsequently been observed to study their nature. These nebulae and their references are listed and a correlation between spectral and nebular types is presented. (Auth.)

  7. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  8. A Population Study of Gaseous Exoplanets

    Science.gov (United States)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yurchenko, S. N.

    2018-04-01

    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 R Jup. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres in around 16 planets out of the 30 analyzed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  9. Monitoring the Crab Nebula with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  10. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  11. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  12. Ultraviolet imaging of planetary nebulae with GALEX

    Science.gov (United States)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  13. DIFFERENTIAL PROPER-MOTION MEASUREMENTS OF THE CYGNUS EGG NEBULA: THE PRESENCE OF EQUATORIAL OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Toshiya; Tomasino, Rachael L. [Department of Physics and Astronomy, MS 6900, University of Denver, Denver, CO 80208 (United States); Ferguson, Brian A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-08-01

    We present the results of differential proper-motion analyses of the Egg Nebula (RAFGL 2688, V1610 Cyg) based on the archived two-epoch optical data taken with the Hubble Space Telescope. First, we determined that the polarization characteristics of the Egg Nebula are influenced by the higher optical depth of the central regions of the nebula (i.e., the 'dustsphere' of {approx}10{sup 3} AU radius), causing the nebula to illuminate in two steps-the direct starlight is first channeled into bipolar cavities and then scattered off to the rest of the nebula. We then measured the amount of motion of local structures and the signature concentric arcs by determining their relative shifts over the 7.25 yr interval. Based on our analysis, which does not rely on the single-scattering assumption, we concluded that the lobes have been excavated by a linear expansion along the bipolar axis for the past {approx}400 yr, while the concentric arcs have been generated continuously and moving out radially at about 10 km s{sup -1} for the past {approx}5500 yr, and there appears to be a colatitudinally increasing trend in the radial expansion velocity field of the concentric arcs. Numerical investigations into the mass-loss modulation by the central binary system exist, which predict such a colatitudinally increasing expansion velocity field in the spiral-shock trails of the mass-loss ejecta. Therefore, the Egg Nebula may represent a rare edge-on case of the binary-modulated circumstellar environs, corroborating the previous theoretical predictions.

  14. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  15. Angular diameters of Magellanic Cloud plantary nebulae. I. Speckle interferometry

    International Nuclear Information System (INIS)

    Wood, P.R.; Bessell, M.S.; Dopita, M.A.

    1986-01-01

    Speckle interferometric angular diameters of Magellanic Cloud planetary nebulae are presented. The mass of ionized gas in each nebula has been derived from the angular diameter and published H-beta line fluxes; the derives masses range from less than 0.006 to more than 0.19 solar mass. The planetary nebulae observed were the brightest in the Magellanic Clouds; consequently, they are all relatively small, young, bright, and dense. They are almost certainly only partially ionized, so that the masses derived for the ionized parts of the nebula are lower limits to the total nebula mass. The properties of the Magellanic Cloud nebulae are compared with those of planetary nebulae at the galactic center. 27 references

  16. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  17. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  18. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  19. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  20. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J.

    2015-01-01

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc

  1. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  2. A new bipolar nebula in Centaurus

    International Nuclear Information System (INIS)

    Wegner, G.; Glass, I.S.

    1979-01-01

    A new bipolar or butterfly-shaped nebula has been discovered and shown to have an infrared excess. The spectra of the central object and wings are of similar type, around G0. No emission lines are apparent. The infrared excess appears to be due to thermal emission from dust. (U.K.)

  3. The Orion Nebula: The Jewel in the Sword

    Science.gov (United States)

    2001-01-01

    follow-up studies will help to solve some of the fascinating and perplexing questions about the birth and early lives of stars and their planetary systems. Note [1] The new VLT data covering the Orion Nebula and Trapezium Cluster were obtained as part of a long-term project by Mark McCaughrean (Principal Investigator, Astrophysical Institute Potsdam [AIP], Germany), João Alves (ESO, Garching, Germany), Hans Zinnecker (AIP) and Francesco Palla (Arcetri Observatory, Florence, Italy). The data also form part of the collaborative research being undertaken by the European Commission-sponsored Research Training Network on "The Formation and Evolution of Young Star Clusters" (RTN1-1999-00436), led by the Astrophysical Institute Potsdam, and including the Arcetri Observatory in Florence (Italy), the University of Cambridge (UK), the University of Cardiff (UK), the University of Grenoble (France), the University of Lisbon (Portugal) and the CEA Saclay (France). [2] To compare the present VLT infrared image with the more familiar view of the Orion Nebula in optical light, the ST-ECF has prepared an image covering a similar field from data taken with the NASA/ESA Hubble Space Telescope WFPC2 camera and extracted and processed by Jeremy Walsh from the ESO/ST-ECF archive. This 4-colour composite emphasises the light from the gaseous nebula rather than from the stars, and there is dramatic difference from the infrared view which sees much deeper into the region. The HST image is available at http://www.stecf.org/epo/support/orion/. Technical information about the photos PR Photo 03a/01 of the Orion Nebula and the Trapezium Cluster was made using the near-infrared camera ISAAC on the ESO 8.2-m VLT ANTU telescope on December 20 - 21, 1999. The full field measures approx. 7 x 7 arcmin, covering roughly 3 x 3 light-years (0.9 x 0.9 pc) at the distance of the nebula (about 1500 light-years, or 450 pc). This required a 9-position mosaic (3 x 3 grid) of ISAAC pointings; at each pointing, a

  4. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  5. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  6. Ionization structure of planetary nebulae. Part 8: NGC 6826

    International Nuclear Information System (INIS)

    Barker, T.

    1987-01-01

    Spectrophotometric observations of emission-line intensities over the spectral range 1400 to 1700 A were made in seven positions in the planetary nebulae NCG 6826. The O(++) electron temperature varies little from 8900 K throughout the nebula; the Balmer continuum electron temperature averages 1500 K higher. The wavelength 4267 C II line intensities imply C(++) abundances that are systematically higher than those determined from the wavelength 1906, 1909 C III lines, but because of uncertainties in the intensities of the ultraviolet lines relative to the optical ones, this discrepancy is less conclusively demonstrated in NGC 6826 than in other planetaries in this series. Standard equations used to correct for the existence of elements in other than the optically observable ionization stages give results that are consistent and also in approximate agreement with abundances calculated using ultraviolet lines in the few cases where the relevant ultraviolet lines are measurable. The results of the logarithmic abundances differ somewhat from the recent study by Aller and Czyzak, in part because their measured electron temperatures are somewhat higher. The Ar, Ne, and, to some extent, O and S abundances appear to be somewhat low, suggesting that the progenitor to NGC 6826 like that to NGC 7662, may have formed out of somewhat metal-poor material

  7. Discovery of powerful gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  8. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  9. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  10. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    In an evolutionary scenario, the existence of isolated dark giant objects known as Post M latest spectral type stars (1) (or black cocoon stars) are in the last stage of their life and, as extremely advanced old age objects, they cease to be stars. The photographic images of Carina nebula taken by the Hubble Space Telescope (HST) have been used to detect the post M-Iatest stars as dark silhouettes. The luminosity attenuation equation of M late stars (1), A = αS 3 , points out the baryonic dark matter envelopes the oldest red giants that produce earlier dark giants. This equation says that when the red giant star finishes to produce baryonic dark matter, the central star is extinguishing and transforms into dark giants and dusty globules that disperse cool gaseous matter into the interstellar space. These old dark objects have a size from 400 to 600 astronomical units (AU). The advanced dark giants, the dusty dark giants, might not contain a star within the molecular cloud that envelops it. In this case, the dark giants might produce the smaller and less massive dark globules of the Thackeray's globules type (less than 4 solar masses) where, Reupurth et al. (2) found that these globules are now in an advanced stage of disintegration and they found no evidence of star formation in any of these objects. The high-resolution of the Hubble images allows: The observation of isolated dark giants, dusty globules with central dark giants, the observation of partial eclipses or transiting of giant stars and the estimation of linear and angular diameters (ionised cocoons) of giant stellar objects. The dark giants of the image are identified them as objects with observed angular diameter. The large quantity of dark giants in a small sector of the sky suggests that they are densely populated (population stars III) and ubiquitous in the galactic disc. They can be located in isolated form or associated in dense Conglomerations of dark giants. At the same time, conglomerates of

  11. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  12. Nebula observations. Catalogues and archive of photoplates

    Science.gov (United States)

    Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.

    2017-12-01

    A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.

  13. Multiband observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Krassilchtchikov, A M; Bykov, A M; Castelletti, G M; Dubner, G M; Kargaltsev, O Yu; Pavlov, G G

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical ( HST ), and X-ray ( Chandra ) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other. (paper)

  14. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  15. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    Science.gov (United States)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  16. Environmental impact study of Orion Nebula dust

    International Nuclear Information System (INIS)

    Cardelli, J.A.; Clayton, G.C.

    1988-01-01

    In this paper, new high-quality extinction curves are presented for Theta-1 Ori A, C, and D, and Theta-2 Ori A and B, over the wavelength range 3300-6000 A. These are coupled with near-infrared and ultraviolet data to produce extinction curves from 0.12 to 3.5 microns. The Orion Nebula region is interesting in that most of the known processes of dust-grain growth, processing, and destruction may be operating nearly simultaneously in close proximity to one another. Each of these processes is considered with respect to the observed extinction curves and environmental conditions in the Orion Nebula and its associated molecular cloud. Plausible grain populations are fit to the observed extinction curves. A good fit to the average Theta Ori extinction curve can be obtained with: (1) a combination of larger than normal silicate grains produced through coagulation and accretion; (2) evaporation of volatile mantles; and (3) a reduction in the column density of small (smaller than 0.01 micron) grains responsible for the bump and far-ultraviolet extinction through differential acceleration due to radiation pressure and possible evaporation. It seems plausible to explain the observed peculiar extinction in the Orion Nebula simply by environmental effects on otherwise normal grains. 59 references

  17. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  18. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  19. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  20. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  1. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    International Nuclear Information System (INIS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-01-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H 2 knots are found nearly twice as far to the east of the source as to its west, and that H 2 emission extends farther east of the source than the previously known CO outflow.

  2. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  3. Proto-planetary nebulae. I. The extreme bipolar nebulae M2-9 and M1-91

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1991-01-01

    Results are presented on a long-slit optical spectroscopy measurements of the prototype bipolar planetary nebula M2-9 and the M1-91 bipolar nebula, performed in order to determine the nature of the morphology of the wings of these two nebulae. It is concluded that the overall bipolar morphologies of these nebulae might be due to the orbital motions of binaries, with the orbital angular momentum vector defining the axis of the nebula. Secondary symmetries in the nebulae, such as the point-symmetric knots in M1-91, could be due to other symmetries, such as the rotation axis of one of the individual stars or the polar axis of the accretion disk. 39 refs

  4. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  5. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  6. Abundances of the planetary nebula Hu 1-2

    NARCIS (Netherlands)

    Pottasch, [No Value; Hyung, S; Aller, LH; Beintema, DA; Bernard-Salas, J; Feibelman, WA; Klockner, HR

    The ISO and IUE spectra of the "elliptical" nebula Hu 1-2 are presented. These spectra are combined with new, high resolution spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated and compared to

  7. Abundances of planetary nebulae NGC 7662 and NGC 6741

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA

    2001-01-01

    The ISO and IUE spectra of the elliptical nebulae NGC7662 and NGC6741 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  8. Starlight excitation of permitted lines in the Orion Nebula

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    From an idealized model of the Orion Nebula and from an analysis of line ratios it is shown that direct starlight excitation of the permitted O I line dominates over recombination and Lyman line fluorescence. The line strengths predicted by this mechanism agree reasonably well with those observed in the Orion Nebula. The application of direct starlight excitation to other ions is also discussed

  9. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    NARCIS (Netherlands)

    Pottasch, [No Value; Acker, A

    1998-01-01

    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  10. Abundances of neon, sulfur, and argon in planetary nebulae

    International Nuclear Information System (INIS)

    Beck, S.C.; Lacy, J.H.; Townes, C.H.; Geballe, T.R.; Baas, F.

    1981-01-01

    Infrared observations of [Ne II], [S IV], and [Ar III] are used with optical observations to discuss the abundances of Ne, S, and Ar in 18 planetary nebulae. In addition, infrared observations of 18 other nebulae are presented. The derived abundances of S and Ar are each slightly enhanced relative to previous studies

  11. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D

    2002-01-01

    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  12. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  13. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.

    1988-01-01

    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  14. Effects of mass and metallicity upon planetary nebula formation

    International Nuclear Information System (INIS)

    Papp, K.A.; Purton, C.R.; Kwok, S.

    1983-01-01

    We construct a parameterized function which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. Our analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebula in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy

  15. The effects of mass and metallicity upon planetary nebula formation

    Science.gov (United States)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  16. Aerodynamics of solid bodies in the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-07-01

    On a centrally condensed solar nebula, the pressure gradient in the gas causes the nebula to rotate more slowly than the free orbital velocity. Drag forces cause the orbits of solid bodies to decay. Their motions have been investigated analytically and numerically for all applicable drag laws. The maximum radial velocity developed is independent of the drag law, and insensitive to the nebular mass. Results are presented for a variety of model nebulae. Radial velocities depend strongly on particle size, reaching values of the order of 10/sup 4/ cm/s for metre-sized objects. Possible consequences include: mixing of solid matter with the solar nebula on short timescales, collisions leading to rapid accumulation of planetesimals, fractionation of bodies by size or density, and production of regions of anomalous composition in the solar nebula.

  17. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  18. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  19. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  20. Electrodynamic coupling between pulsars and surrounding nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio; L' Aquila Univ. (Italy). Istituto di Fisica); Ferrari, A [Cambridge Univ. (UK). Inst. of Astronomy; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Istituto di Fisica)

    1976-02-01

    In this work a study is presented of collective plasma processes by which pulsars can energetically support young supernova remnants. We show that many of the observed features of the Crab Nebula can be adequately interpreted in terms of a parametric interaction between the low-frequency electromagnetic wave emitted by the pulsar in the oblique rotator model and a relativistic wind of charged particle leaking from the pulsar's inner magnetosphere. In particular we show that there is a relativistic parametric resonant coupling of the strong wave with electrostatic and electromagnetic modes.

  1. ELEMENT MASSES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M. [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  2. Planetary nebulae and the interstellar medium

    Science.gov (United States)

    Aller, L. H.

    1986-01-01

    In addition to available published data on planetary nebulae (PN), some 40 objects largely concentrated towards the galactic center and anticenter regions were included. All were observed with the Lick 3(sup m) telescope and image tube scanner. Abundances of C, N, O, Ne, Cl, and Ar were determined by a procedure in which theoretical models were used to obtain ionization correction factors (ICF). Of the 106 PN, 66 are N-rich and 40 are N-poor. There appear to be no significant differences between the average compositions in the solar neighborhood and the average taken over the entire observable portion of the galaxy.

  3. Orion infrared nebula/molecular cloud

    International Nuclear Information System (INIS)

    Zuckerman, B.; Palmer, P.

    1975-01-01

    Observational and theoretical studies of the Orion Nebula and the associated molecular clouds have greatly increased our understanding of this and other regions in which star formation is taking place. Fundamental questions remain unanswered; and in this Letter we address three of them: (1) the chemical composition of the molecular cloud, (2) its internal motions, and (3) the role of magnetic fields in its evolution. We show that the gas phase chemistry and internal motions in one part of the cloud are distinctly different from those in the rest of the cloud, and two recent estimates of the magnetic field strengths are very uncertain. (auth)

  4. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    Science.gov (United States)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  5. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  6. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  7. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  8. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kishi, Tadao.

    1990-01-01

    The present invention concerns a radioactive gaseous waste processing device used in BWR power plants. A heater is disposed to the lower portion of a dryer for dehydrating radioactive off gases. Further, a thermometer is disposed to a coolant return pipeway on the exit side of the cooling portion of the dryer and signals sent from the thermometer are inputted to an automatic temperature controller. If the load on the dryer is reduced, the value of the thermometer is lowered than a set value, then an output signal corresponding to the change is supplied from the automatic temperature controller to the heater to forcively apply loads to the dryer. Therefore, defrosting can be conducted completely without operating a refrigerator, and the refrigerator can be maintained under a constant load by applying a dummy load when the load in the dryer is reduced. (I.N.)

  9. Theoretical investigation into the existence of molecules in planetary nebulae

    International Nuclear Information System (INIS)

    Carlson, W.J.

    1980-01-01

    Calculations of chemical kinetic equilibrium molecular abundances in the neutral regions of planetary nebulae are presented. The development of these abundances during the expansion of the nebula is calculated. The physical parameters in the neutral regions following the formation of the nebula by the ejection of the envelope of a long peiod variable star have been taken from available dynamical models. Similarly, the temperature and luminosity of the central star as a function of time have been taken from available theoretical calculations. The thermal equilibrium has been solved independently. The temperatures in the shell and later in the condensations which develop are in the range from 30 to 250 K. Number densities range from 10 7 for the youngest model calculated to 2 x 10 4 for neutral condensations in a 10,000 year old nebula. It is shown that, for a typical nebula containing 0.2 Msub solar, molecules are expected to be the dominant form for only a short period early in the expansion phase. Subsequently, the condensations are not sufficiently optically thick to permit the continued existence of a preponderance of molecules. The molecular abundances in the later models are similar to those in diffuse interstellar clouds. The expectation arising from those results is that little molecular material will be injected into the interstellar medium by planetary nebulae. There is, however, a remarkable resemblance between the conditions in the model calculated at very early stages of the expansion and conditions deduced from observations for proto-planetary nebulae

  10. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  11. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  12. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  13. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  14. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  15. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  16. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  17. The behavior of gaseous iodine in sand

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1974-01-01

    Radioactive iodine gas was passed through 10 different sands collected at rivers and hills. The relation between the amount of the loaded gas and the amount of adsorbed gas was determined at room temperature, 50 -- 60 0 C, and 90 -- 100 0 C under humidity of 2 sand. This amount was about 1 -- 3 times as much as that of monomolecular membrane adsorption, 0.2 -- 0.3 μg/cm 2 . The decrease of adsorption amount that accompanies the increase of humidity is attributable to the decrease of effective surface area of sand due to the presence of water. The transport of iodine in sand was studied by passing gaseous iodine through a glass tubing packed with sand. The distribution in the flow direction of iodine indicated that the ease of desorption depends upon the situation of adsorption. Easily desorbed case was named Henry type adsorption. Hardly desorbed case was named absorption type. Discussion is made on experimental results. (Fukutomi, T.)

  18. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  19. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  20. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  1. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  2. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  3. Roberts 22: a bipolar nebula with OH emission

    International Nuclear Information System (INIS)

    Allen, D.A.; Hyland, A.R.; Caswell, J.L.

    1980-01-01

    Roberts 22 is a bipolar reflection nebula illuminated by a hidden A2 Ie star. Most of its energy is radiated at infrared wavelengths. It also shows strong OH maser emission (OH 284.18 - 0.79) on the 1612 and 1665 MHz transitions, generally similar to the masers associated with M stars having infrared excesses. But the system contains no late-type star. This remarkable assemblage of attributes makes Roberts 22 unique; however, it is probably a key member of the newly-recognized population of bipolar nebulae. From an analysis of the properties of Roberts 22 some published interpretations of other bipolar nebulae are questioned, in particular the derivation of spectral types for their underlying stars by the assumption of photo-ionization of the gas, and their evolutionary description as proto-planetary nebulae. (author)

  4. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  5. The carbon budget in the outer solar nebula

    International Nuclear Information System (INIS)

    Simonelli, D.P.; Pollack, J.B.; Mckay, C.P.; Reynolds, R.T.; Summers, A.L.

    1989-01-01

    The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from solar nebula condensates, strongly suggest that most of the carbon in the outer solar nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of solar nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the small percentage of the carbon-bearing solid in the outer solar nebula. 71 refs

  6. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  7. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  8. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  9. Statistical and physical study of one-sided planetary nebulae.

    Science.gov (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  10. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  11. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  12. Polarimetric evidence against a collimated outflow in the Horsehead Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Gledhill, T M; Scarrott, S M

    1985-08-01

    Imaging polarimetry of the Horsehead Nebula in Orion shows that the 'jaw' region of the nebula, which includes a proposed collimated flow from a highly reddened star B33-6, is illuminated by a distant source, sigma Orionis, and not by B33-6. The polarization pattern also shows features which suggest the presence of magnetically aligned dust grains in the surrounding medium. The possible structure of the aligning field is discussed.

  13. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.

    2014-02-01

    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  14. The Boomerang Nebula - The Coldest Region of the Universe

    Science.gov (United States)

    Sahai, Raghvendra; Nyman, Lars-Ake

    1997-01-01

    In this letter, we report such observations of the Boomerang Nebula which show it to be a unique object, consisiting of an ultra-cold and extremely massive molecular envolope, expanding at very high speed. The extreeme physical characteristics of the Boomerang Nebula reported here have never been seen before in any AGB or post-AGB object, and should spur new theoretical and obesrvational efforts to understand the nature of the mass-loss processes occurring during later stellar evolution.

  15. Distribution of mass in the planetary system and solar nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-09-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula.

  16. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  17. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  18. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  19. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  20. The Nature of the Stingray Nebula from Radio Observations

    Science.gov (United States)

    Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.

    2018-06-01

    We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.

  1. Featured Image: A Detailed Look at the Crab Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  2. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  3. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  4. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  5. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  6. Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging

    Science.gov (United States)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, W. Peter; Montez, Rodolfo, Jr.

    2018-01-01

    The planetary nebula (PN) NGC 5189 around a Wolf–Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multiscale structures, showing evidence of multiple outbursts from an asymptotic giant branch (AGB) progenitor. In this study, we use multiwavelength Hubble Space Telescope Wide Field Camera 3 observations to study the morphology of the inner 0.3 pc × 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission-line ratios of Hα λ6563, [O III] λ5007, and [S II] λ λ 6716,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec (∼0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line-emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multiscale morphology.

  7. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan

    2013-05-04

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation. However, often in applications the overall flow in the low-resolution simulation that an animator observes and intends to preserve is composed of even lower frequencies than the low resolution itself. In such cases, attempting to match the low-resolution simulation precisely is unnecessarily restrictive. We propose a new sampling technique to efficiently capture the overall flow of a fluid simulation, at the scale of user\\'s choice, in such a way that the sampled information is sufficient to represent what is virtually perceived and no more. Thus, by applying control based on the sampled data, we ensure that in the resulting high-resolution simulation, the overall flow is matched to the low-resolution simulation and the fine details on the high resolution are preserved. The samples we obtain have both spatial and temporal continuity that allows smooth keyframe matching and direct manipulation of visible elements such as smoke density through temporal blending of samples. We demonstrate that a user can easily configure a simulation with our system to achieve desired results. © 2013 Springer-Verlag Berlin Heidelberg.

  8. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  9. Gas dynamics models for an oscillating gaseous core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1991-01-01

    Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).

  10. Single rotating stars and the formation of bipolar planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C. [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Manchado, A., E-mail: ggs@astrosen.unam.mx [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  11. Central stars of planetary nebulae: New spectral classifications and catalogue

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  12. Signatures of Chemical Evolution in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha

    2011-01-01

    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  13. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  14. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  15. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  16. Cu and Zn Isotopes as New Tracers of Early Solar Nebula and Asteroidal processes

    Science.gov (United States)

    LUCK, J.; BEN OTHMAN, D.; ALBAREDE, F.

    2001-12-01

    experiments have been conducted on various powder aliquots : HF-HCl cold(#1), HF-HCl hot(#2), HF-HNO3(#3) hot under pressure. Results show clearly that different Zn (and Cu) isotopic signatures (are preserved in early components. We stress that these are NOT anomalies for Zn : three isotopic ratios (66, 67 and 68 vs. 64) agree perfectly with a mass-dependent process. In particular Zn gets systematically lighter from the ``volatile" compounds (#1) to the refractory ones (#3). The rough correlation between O and Zn isotopes in these compounds could imply that Zinc, like Oxygen, experienced interaction between gaseous and solid states (e.g. spinels) at high temperatures. III- Iron Meteorites Non magmatic irons do not show much variation (less than 1 permil in range for both elements). On the other hand, meteorites from the IAB-IIICD group show not only large variations (3.5 permil in Zn), but also a negative correlation between Cu and Zn isotopes : this could be interpreted as a mixing between two endmembers, one of them being strongly fractionated in Zn isotopes. Fractionation of such extent (+3.7 permil) could reflect either volatilization during impact melting, or alteration on the parent body. Data available indicate that Cu and Zn isotopes are potentially important tracers for studying : 1- early solar nebula processes (e.g. high and low-T compounds exhibit different isotopic signatures); 2- meteorite parent body evolution (e.g. Cu and Zn isotopes correlate remarkably well with Oxygen isotopes in a well-established order : CV-CO-CM-CI). References (1)\\x90Marechal C., Telouk P. and Albarede F. (1999) Chem. Geol., 156, 251-273.

  17. Pinwheel Nebula around WR 98a.

    Science.gov (United States)

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  18. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  19. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  20. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  1. Planetary nebulae: 20 years of Hubble inquiry

    Science.gov (United States)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  2. Observations of the 18-cm OH lines in Herbig--Haro objects and reflection nebulae

    International Nuclear Information System (INIS)

    Pashchenko, M.I.; Rudnitskii, G.M.

    1980-01-01

    In 1978 various Herbig--Haro objects and R-associations (containing reflection nebulae) were observed in the principal (1665, 1667 MHz) lines of the ground state of the hydroxyl molecule with the large radio telescope of the Station Radioastronomique de Nancay. OH emission was detected near 36 of the 63 objects examined. In most cases the line profiles have a simple, single-peaked structure, with a line width of 1--3 km/sec. The OH emission probably originates in interstellar dust clouds surrounding the HH objects and R-associations. Some implications of these results are discussed briefly

  3. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    Science.gov (United States)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  4. Spectral and interferometric observation of four emission nebulas

    International Nuclear Information System (INIS)

    Lozinskaya, T.A.; Klement'eva, A.Yu.; Zhukov, G.V.; Shenavrin, V.I.

    1975-01-01

    Results of spectrophotometric and interferometric observations of four emission nebulae are presented; electron temperature Te and electron density Ne are estimated; mean beam velocities and parameters of the internal motion in the nebylae are determined. The following objects have been investigated: 1) a bright compact nebulae of unknown nature 2.5 in size which is identified with the non-thermal radiosource G6.4-0.5 in the region W28; 2) nebulae RCW171 5' in size which is identified with the radiosource G23.1+0.6; 3) the nebulae Simeiz 34/Sharpless 261/d 1950 =6sup(h)05sup(m), sigma 1950 =+15 deg 49'; its diameter is approximately 30 an extensive complex of bright emission fibres in the nebulae Swan, which are partially projected into a possible remainder of the outburst of a supernova W63; L 1950 =20sup(h)17sup(m); S 1950 =45 deg 30' its diameter is approximately 1 deg 5

  5. The discovery of a highly polarized bipolar nebula

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Scarrott, S.M.; Menzies, J.

    1989-01-01

    During a search for the optical counterparts of IRAS sources whose flux peaks at 25 microns, a small faint bipolar nebula was discovered in Monoceros at the position of IRAS 07131-0147. The CCD images display the object's considerable structure. The central star seems relatively free of closeby nebulosity: the two lobes have a bow-tie structure with those parts nearest to the star consisting of series of small knots. The outer parts of the lobes seem to be made up of filaments streaming away from knots. On the basis of its optical spectrum, the central star was classified as a M5-6 giant. In the IRAS color classification scheme of Van der Veen and Habing (1988), the central star is VIb which indicates that there are distinct hot and cold components of circumstellar dust and that the mass loss process may have temporarily abated. Therefore, it is proposed that the object is in the post main sequence stage of evolution and is a protoplanetary nebulae. Young protoplanetary nebulae have totally obscured central stars illuminating reflective lobes whereas older ones such as M2-9 have lobes seen in emission from gas ionized by the central hot star which is clearly visible. Since the central object of IRAS07131-0147 is a relatively unobscured late type star and the lobes are seen only by reflection, it is suggested that this nebula is a protoplanetary nebula in an evolutionary stage intermediate between that of CRL2688 and M2-9

  6. The spatial distribution of infrared radiation from visible reflection nebulae

    Science.gov (United States)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  7. Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    OpenAIRE

    Bednarek, W.; Protheroe, R. J.

    1997-01-01

    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in t...

  8. New high (> or =6M/sub sun/) upper mass limit for planetary nebula formation, and a new high lower mass bound for carbon detonation supernova models

    International Nuclear Information System (INIS)

    Tuchman, Y.; Sack, N.; Barkat, Z.

    1978-01-01

    Envelope ejection leading to a planetary nebula has been recently shown to occur as the terminal point of the Mira stage. The ejection is due to a diverging pulsational instability, not to a dynamical one. It is found that in this case (and for Population I, mixing length=1 pressure scale height) the upper mass limit for formation of planetary nebulae is at least 6 M/sub sun/. It thus follows that the lower mass limit for realization of carbon detonation model configurations is also at last 6 M/sub sun/

  9. Abundance in the planetary nebulae NGC 6537 and He2-111

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Feibelman, WA

    2000-01-01

    The ISO and IUE spectra of the bipolar planetary nebulae NGC 6537 and He2-111 are presented. These spectra are combined with the spectrum in the visual wavelength region from the nebulae to obtain a complete spectrum that is corrected for extinction. The chemical abundance of the nebulae is then

  10. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  11. Further considerations on contracting solar nebula

    Science.gov (United States)

    Rawal, J. J.

    1986-01-01

    Kepler's third law of the planetary system is analyzed in terms of Prentice's (1978a) modern Laplacian theory and Rawal's (1984) Roche limit concept. Prentice has determined, based on laws of conservation of mass and angular momentum and the concept of supersonic turbulent convection, that the ratio of orbital radii of successively disposed gaseous rings is a constant of approximately 1.69. Rawal studied the relationship between the supersonic turbulent convection concept and Roche limit and established a limit of 1.442. It is concluded that Kepler's law determines the rotation period of the sun at the time of its formation at the present radius to be equal to 0.1216 d. The correlation between orbital periods of the radii and resonant structure is investigated.

  12. Abundance of carbon and magnesium in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1980-01-01

    The Orion nebula has been observed in two positions with IUE (International Ultraviolet Explorer) in the low-resolution mode (approx.7 A) and in the spectral range 1150--3200 A. Emission lines of C II], C III], [O II], and He I have been measured and used to determine what is probably the first reliable abundance of carbon in H II regions. The logarithmic total abundance of carbon is found to be 8.4 close to the solar value. In contrast with the situation in the planetary nebula of similar excitation, IC 418, where the resonance Mg II lambda2800 line is observed to be relatively strong, in the Orion nebula the lambda2800 line is not detectable. an upper limit for the magnesium abundance of the order of 10 times smaller than in the Sun is suggested

  13. Ring-shaped nebulae around FU Orionis stars

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1987-01-01

    Observational data on the morphology and spectra of the nebulae surrounding V1057 Cyg, V1515 Cyg, and V1735 Cyg stars are presented and studied. The data reveal that V1735 Cyg is more highly reddened than the nebula and the spectra of all three nebulae are from reflection. A simple model for the dust shell is proposed and it is argued that the shells may indicate a relatively advanced evolutionary state for the FU Orionis star. The relation between the shells and the evolution of the stars is examined. The models of Herbig (1977), Mould et al. (1978), Larson (1980), and Hartmann and Kenyon (1985), which are utilized to analyze the FU Orionis outburst phenomenon, are tested. 23 references

  14. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  15. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  16. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  17. Helix Nebula - the Science Cloud: a public-private partnership to build a multidisciplinary cloud platform for data intensive science

    Science.gov (United States)

    Jones, Bob; Casu, Francesco

    2013-04-01

    The feasibility of using commercial cloud services for scientific research is of great interest to research organisations such as CERN, ESA and EMBL, to the suppliers of cloud-based services and to the national and European funding agencies. Through the Helix Nebula - the Science Cloud [1] initiative and with the support of the European Commission, these stakeholders are driving a two year pilot-phase during which procurement processes and governance issues for a framework of public/private partnership will be appraised. Three initial flagship use cases from high energy physics, molecular biology and earth-observation are being used to validate the approach, enable a cost-benefit analysis to be undertaken and prepare the next stage of the Science Cloud Strategic Plan [2] to be developed and approved. The power of Helix Nebula lies in a shared set of services for initially 3 very different sciences each supporting a global community and thus building a common e-Science platform. Of particular relevance is the ESA sponsored flagship application SuperSites Exploitation Platform (SSEP [3]) that offers the global geo-hazard community a common platform for the correlation and processing of observation data for supersites monitoring. The US-NSF Earth Cube [4] and Ocean Observatory Initiative [5] (OOI) are taking a similar approach for data intensive science. The work of Helix Nebula and its recent architecture model [6] has shown that is it technically feasible to allow publicly funded infrastructures, such as EGI [7] and GEANT [8], to interoperate with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom of choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom-of choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility

  18. Layers in the Central Orion Nebula

    Science.gov (United States)

    O'Dell, C. R.

    2018-04-01

    The existence of multiple layers in the inner Orion Nebula has been revealed using data from an Atlas of spectra at 2″ and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10″×10″ to produce high Signal to Noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12{^''.}8 - 39″width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III]} may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25″ arise from variations in velocity of the background PDR. In a region 25″ ENE of the Orion-S Cloud one finds dramatic changes in the [O III] components, including the signals from the V_{low,[O III]} and V_{MIF,[O III]} becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  19. Asymmetric Planetary Nebulae VI: the conference summary

    Science.gov (United States)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  20. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    Science.gov (United States)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  1. The blue supergiant MN18 and its bipolar circumstellar nebula

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  2. Radiocarbon measurements of small gaseous samples at CologneAMS

    Science.gov (United States)

    Stolz, A.; Dewald, A.; Altenkirch, R.; Herb, S.; Heinze, S.; Schiffer, M.; Feuerstein, C.; Müller-Gatermann, C.; Wotte, A.; Rethemeyer, J.; Dunai, T.

    2017-09-01

    A second SO-110 B (Arnold et al., 2010) ion source was installed at the 6 MV CologneAMS for the measurement of gaseous samples. For the gas supply a dedicated device from Ionplus AG was connected to the ion source. Special effort was devoted to determine optimized operation parameters for the ion source, which give a high carbon current output and a high 14C- yield. The latter is essential in cases when only small samples are available. Additionally a modified immersion lens and modified target pieces were tested and the target position was optimized.

  3. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  4. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  5. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  6. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  7. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    Science.gov (United States)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  8. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  9. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  10. Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry

    International Nuclear Information System (INIS)

    Pascoli, G.

    1990-01-01

    Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure

  11. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  12. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    Science.gov (United States)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  13. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.

    2011-01-01

    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  14. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  15. A 'FIREWORK' OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    International Nuclear Information System (INIS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Viti, S.; Wesson, R.; Smith, M. D.; Zijlstra, A. A.

    2009-01-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H 2 v = 1 → 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H 2 surface brightness in the inner ring: H 2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H 2 formation and destruction rates, H 2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.

  16. A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)

    Science.gov (United States)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Wesson, R.

    2009-08-01

    We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).

  17. Gas Dynamics in Planetary Nebulae: From Macro-structures to FLIERs

    Science.gov (United States)

    Perinotto, Mario

    2000-10-01

    Purpose of this paper is to clarify how Planetary Nebulae (PNe) are very interesting laboratories to study cosmic gas dynamics. I first recall the history of PNe which are generated from low and intermediate mass stars through successive mass loss processes starting in the Reg Giant phase of evolution and continuing also after the termination of the pulsed AGB phase, where most of the nebular mass is believed to be ejected. The correponding stellar winds are the ingredients of the nebula. Their initial properties and subsequent mutual interactions, under the action of the evolving stellar radiation field, are responsible for the properties of the nebula. The observed structures of PNe are considered in detail. Larger scale macroscopic structures (MACS) are examined separately from quite smaller scale microscopic structures (MICS). The formation of MACS, at least in cases of round to moderately elliptical PNe, is shown to be reasonably well understood in terms of existing hydrodynamical models. Considering the kinematical behaviour, MICS can be separated into FLIERs (Fast Low Ionization Emitting Regions) and SLOWERs (slowly moving). Attention is focussed on FLIERs and on the proposed mechanisms to interpret them. Recent observations with the Hubble Space Telescope have provided us with a wealth of detailed (subarcsec) information on the nebular structures. The inner structure of FLIERs is here illustrated to consist of substructures of various shapes with an high degree of individually from object to object, also within the same PN. These new data call for deeper thoretical efforts to solve the problems of cosmic gas dynamics, posed by their observed properties. An ample account is given of the most relevant original works, in an effort to allow the non specialist reader to quickly become acquainted with the status of art in the various aspects of the subject.

  18. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    International Nuclear Information System (INIS)

    Megino, Fernando H Barreiro; Jones, Robert; Llamas, Ramón Medrano; Ster, Daniel van der; Kucharczyk, Katarzyna

    2014-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in 'Big Data' in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R and D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula – the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  19. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    Science.gov (United States)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  20. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  1. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  2. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  3. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  4. Expansion patterns and parallaxes for planetary nebulae

    Science.gov (United States)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  5. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  6. The first frost in the Pipe Nebula

    Science.gov (United States)

    Goto, Miwa; Bailey, Jeffrey D.; Hocuk, Seyit; Caselli, Paola; Esplugues, Gisela B.; Cazaux, Stephanie; Spaans, Marco

    2018-02-01

    Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims: We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods: Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results: The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions: A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation. Based on data collected by SpeX at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.Based also on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.The final reduced spectra (FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610

  7. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  8. Observational study of Herbig-Haro nebulae

    International Nuclear Information System (INIS)

    Brugel, E.W.

    1981-01-01

    Spectrophotometric data have been obtained for twelve Herbig-Haro nebulae with the multichannel spectrometer on the Mt. Palomar 5.08 meter telescope and with the image intensified dissector scanner on the Kitt Peak 2.13 meter telescope. Energy distributions of the continuous spectra of the Herbig-Haro objects H-H 1 (NW), H-H 2A, H-H 2G, H-H 2H, H-H 24A and H-H 32 have been determined in the wavelength range 3300 to 8000A. The signal-to-noise ratio has been improved in comparison to an earlier attempt to measure the continuum in H-H 1 and H-H 2H. Reddening corrections are based on Miller's [SII] method. The [FeII] emission line spectra have also been utilized as a secondary method for determining the interstellar reddening. In all continua the flux F/sub lambda/ increases rapidly with decreasing wavelength after the small scale structure has been averaged out. A power law interpolation F/sub lambda/ proportional lambda/sup -n/ demonstrates that for all observed H-H objects n lies in the range between 2.04 (H-H 2A, H-H 2H) and 2.92 (H-H 32). The relation of these results to recent I.U.E. observations of H-H 1 is discussed. It is also found that the ratio of the total optical continuum flux to Hβ flux is almost the same for all observed H-H objects with the sole exception of H-H 24A in which the continuum is considerably stronger than in other objects. This fact leads to difficulties in the usual dust scattering hypothesis for the interpretation of H-H continua. It is argued, if these energy distributions are really due to dust scattering in stellar continua as has been usually assumed, the original source must be a hot object and cannot be a T Tauri star.An interpretation in terms of transition radiation (as suggested by Gurzadyan) does not seem to be possible because the observed rise of F/sub lambda/ towards the ultraviolet is too steep

  9. Uranium enrichment by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Petit, J.F.

    1977-01-01

    After a brief description of the process and technology (principle, stage constitution, cascade constitution, and description of a plant), the author gives the history of gaseous diffusion and describes the existing facilities. Among the different enrichment processes contemplated in the USA during and after the last world war, gaseous diffusion has been the only one to be developed industrially on a wide scale in the USA, then in the UK, in the USSR and in France. The large existing capacities in the USA provided the country with a good starting base for the development of a light-water nuclear power plant programme, the success of which led to a shortfall in production means. France and the USA, possessing the necessary know-how, have been able to undertake the realization of two industrial programmes: the CIP-CUP programme in the USA and the Eurodif project in France. Current plans still call for the construction of several plants by 1990. Can the gaseous diffusion process meet this challenge. Technically, there is no doubt about it. Economically, this process is mainly characterized by large energy consumption and the necessity to build large plants. This leads to a large investment, at least for the first plant. Other processes have been developed with a view to reducing both energy and capital needs. However, in spite of continuous studies and technological progress, no process has yet proved competitive. Large increments in capacities are still expected to come from gaseous diffusion, and several projects taking into account the improvements in flexibility, automatization, reliability and reduced investment, are analysed in the paper. Combining new facilities with existing plants has already proved to be of great interest. This situation explains why gaseous diffusion is being further investigated and new processes are being studied. (author)

  10. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  11. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  12. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  13. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  14. Hard X-ray Variations in the Crab Nebula

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  15. Millimeter-wave molecular line observations of the Tornado nebula

    International Nuclear Information System (INIS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-01-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13 CO, and HCO + with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = –14 km s –1 and +5 km s –1 . These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s –1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s –1 cloud is more tightly bound by self-gravity than the –14 km s –1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s –1 cloud collided into the –14 km s –1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  16. Unusual motions in the Wolf-Rayet nebula NGC 6888

    International Nuclear Information System (INIS)

    Johnson, P.G.; Songsathaporn, R.

    1981-01-01

    A systematic survey of the velocity structure within the Wolf-Rayet ring nebula NGC 6888 has been undertaken by making observations of the [N II] line profiles. They reveal a hitherto undetected and particularly unusual velocity structure with three of the brightest portions of the circumference of this ring exhibiting triple line components. Possible models to explain these observations are discussed. (author)

  17. Multibaseline Observations of the Occultation of Crab Nebula by the ...

    Indian Academy of Sciences (India)

    tribpo

    Observations of the radio source Crab Nebula were made at the time of transit during. June 1986 and 1987. The fringe amplitude V(S) for a baseline S was calibrated using the corresponding baseline fringe amplitude of radio source 3C123 or 3C134 and normalised to the preoccultation value V(O). Normalised fringe ...

  18. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  19. OpenNebula KVM SR-IOV driver

    CSIR Research Space (South Africa)

    Macleod, D

    2013-05-01

    Full Text Available With the recent release of an OFED which supports SR-IOV on Infiniband HCAs it is now possible to use verbs from inside a VM. This VMM driver supports these Infiniband HCAs, and any other SR-IOV network device, in OpenNebula....

  20. Modern techniques in galaxy kinematics : Results from planetary nebula spectroscopy

    NARCIS (Netherlands)

    Romanowsky, AJ; Douglas, NG; Kuijken, K; Arnaboldi, M; Gerssen, J; Merrifield, MR; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    We have observed planetary nebulae (PNe) in several early-type galaxies using new techniques on 4- to 8-meter-class telescopes. We obtain the first large data sets (greater than or similar to 100 velocities each) of PN kinematics in galaxies at greater than or similar to 15 Mpc, and present some

  1. Protostar Evolution in the Orion Nebula Cluster (ONC)

    Science.gov (United States)

    Sanchez, Michael Allan

    2018-01-01

    We present our preliminary analysis of the protostars within the Orion Nebula Cluster (ONC). We developed a pipeline to identify protostars in the ONC using the IRAC instrument aboard Spitzer. We verified our photometric measurements with the catalog provided by Megeath et al. (2012). We then classified the protostar evolution stages (0/I, Flatt, II, and III) based on their spectral slope.

  2. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    NARCIS (Netherlands)

    Marigo, P; Bernard-Salas, J; Pottasch, S. R.; Tielens, A. G. G. M.; Wesselius, P. R.

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. The accuracy on the observed abundances is essential in order to make a reliable comparison with the models.

  3. Formation of planetary nebulae with close binary nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Livio, M; Salzman, J; Shaviv, G [Tel Aviv Univ. (Israel). Dept. of Physics and Astronomy

    1979-07-01

    A model for the formation of planetary nebulae with a close binary as a nucleus is presented. The model is based on mass loss instability at L/sub 2/. The instability is demonstrated. The conditions on the mass loss are formulated and analysed. The observational consequence of the model is described briefly and its relation to symbiotic stars and cataclysmic binaries discussed.

  4. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Maruki, Shin-ichiro.

    1991-01-01

    Radioactive off-gases extracted from a turbine main condensator by using an air extractor flown by way of an off-gas preheater and enter to an off-gas recombiner. Hydrogen in the off-gases is combined with oxygen into steams by the effect of catalysts in the off-gas recombiner. In this case, the off-gases are heated to a high temperature by the reaction heat due to the effect of the catalysts and discharged from the exit of the off-gas recombiner. The off-gases at a high temperature are returned once to the off-gas preheater at the upstream to be used as a heat source for the off-gas preheater. With such a constitution, since the amount of heat for exchange required for heating to about 160degC can be supplied, a heated steam supply device which has been disposed to the off-gas preheater can be saved. Further, the off-gases cooled through heat exchange upon heating the off-gas preheater are flown to the off-gas condensator and the steams are returned into the condensates. Since cooled off-gases enter into a cooling water supply device, the load thereof can be reduced compared with a conventional case. (T.M.)

  5. Modelling the ArH+ emission from the Crab nebula

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  6. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  7. Super-Acceleration in the Flaring Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, Marco, E-mail: marco.tavani@inaf.it

    2013-10-15

    The Crab Nebula continues to surprise us. The Crab system (energized by a very powerful pulsar at the center of the Supernova Remnant SN1054) is known to be a very efficient particle “accelerator” which can reach PeV energies. Today, new surprising data concerning the gamma-ray flares produced by the Crab Nebula challenge models of particle acceleration. The total energy flux from the Crab has been considered for many decades substantially stable at X-ray and gamma-ray energies. However, this paradigm was shattered by the AGILE discovery and Fermi confirmation in September 2010 of transient gamma-ray emission from the Crab. Indeed, we can state that four major flaring gamma-ray episodes have been detected by AGILE and Fermi during the period mid-2007/2012. During these events, transient particle acceleration occurs in a regime which apparently violates the MHD conditions and synchrotron cooling constraints. This fact justifies calling “super-acceleration” the mechanism which produces the “flaring Crab phenomenon”. Radiation between 50 MeV and a few GeV is emitted with a quite hard spectrum within a short timescale (hours-days), with no obvious relation with simultaneous optical and X-ray emissions in the inner Nebula. “Super-acceleration” implies overcoming synchrotron cooling by strong (and “parallel”) electric fields most likely produced by magnetic field reconnection within the pulsar wind outflow. This acceleration appears to be very efficient and, remarkably, limited by radiation reaction. It is not clear at the moment where in the Nebula this phenomenon occurs. An intense observational program is now focused on the Crab Nebula to resolve its most challenging mystery.

  8. Iron 60 Evidence for Early Injection and Efficient Mixing of Stellar Debris in the Protosolar Nebula

    International Nuclear Information System (INIS)

    Dauphas, N.; Sacarabany, A.; Davis, A. M.; Pourmand, A.; Cook, D. L.; Froehlich, C.; Wadhwa, M.; Rauscher, T.; Gallino, R.

    2008-01-01

    Among extinct radioactivities present in meteorites, 60 Fe (t 1/2 = 1.49 Myr) plays a key role as a high-resolution chronometer, a heat source in planetesimals, and a fingerprint of the astrophysical setting of solar system formation. A critical issue with 60 Fe is that it could have been heterogeneously distributed in the protoplanetary disk, calling into question the efficiency of mixing in the solar nebula or the timing of 60 Fe injection relative to planetesimal formation. If this were the case, one would expect meteorites that did not incorporate 60 Fe (either because of late injection or incomplete mixing) to show 60 Ni deficits (from lack of 60 Fe decay) and collateral effects on other neutron-rich isotopes of Fe and Ni (coproduced with 60 Fe in core-collapse supernovae and AGB stars). Here, we show that measured iron meteorites and chondrites have Fe and Ni isotopic compositions identical to Earth. This demonstrates that 60 Fe must have been injected into the protosolar nebula and mixed to less than 10% heterogeneity before formation of planetary bodies.

  9. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  10. UTILITARIAN OPACITY MODEL FOR AGGREGATE PARTICLES IN PROTOPLANETARY NEBULAE AND EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Cuzzi, Jeffrey N.; Davis, Sanford S.; Estrada, Paul R.

    2014-01-01

    As small solid grains grow into larger ones in protoplanetary nebulae, or in the cloudy atmospheres of exoplanets, they generally form porous aggregates rather than solid spheres. A number of previous studies have used highly sophisticated schemes to calculate opacity models for irregular, porous particles with sizes much smaller than a wavelength. However, mere growth itself can affect the opacity of the medium in far more significant ways than the detailed compositional and/or structural differences between grain constituents once aggregate particle sizes exceed the relevant wavelengths. This physics is not new; our goal here is to provide a model that provides physical insight and is simple to use in the increasing number of protoplanetary nebula evolution and exoplanet atmosphere models appearing in recent years, yet quantitatively captures the main radiative properties of mixtures of particles of arbitrary size, porosity, and composition. The model is a simple combination of effective medium theory with small-particle closed-form expressions, combined with suitably chosen transitions to geometric optics behavior. Calculations of wavelength-dependent emission and Rosseland mean opacity are shown and compared with Mie theory. The model's fidelity is very good in all comparisons we have made except in cases involving pure metal particles or monochromatic opacities for solid particles with sizes comparable to the wavelength

  11. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  12. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  13. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  14. Effects of radiation and impurities on gaseous iodine behavior in a containment vessel

    International Nuclear Information System (INIS)

    Takahashi, Masato; Watanabe, Atsushi; Hashimoto, Takashi

    2000-01-01

    In order to estimate the effect of impurities and radiation on gaseous iodine behavior in containment vessel, NUPEC has improved IMPAIR-3 code developed by PSI. Several modifications on the iodine oxidation by radiolysis and the production of nitric acid, the existence of boric acid, and the reaction of silver particle with iodine were newly added in evaluating the effect of radiolysis and impurities. pH change resulting from presence of boric acid, nitric acid production by radiolysis of air, and sodium hydroxide addition by AM operation, was also considered. The code verification for pH change was performed using the RTF experimental results. Additionally, the effects of boric acid and silver impurities on gaseous iodine behavior were evaluated by the sensitivity analysis. As a result, the experimental results of iodine concentration transient under pH change were well simulated. The following results were also obtained from the sensitive analysis. The gaseous iodine behavior was not affected by the existence of boric acid. In the case of silver existence in liquid phase, the gaseous iodine concentration rapidly decreased because a large amount of iodine changed into AgI species in liquid phase. The restraint effect of silver on gaseous iodine, production was larger than that of pH change. (author)

  15. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  16. Basic processes and trends in gaseous detectors

    CERN Multimedia

    1999-01-01

    Almost a century after the invention of the proportional counter, a large research effort is still devoted to better understand the basic properties of gaseous detectors, and to improve their performances and reliability, particularly in view of use at the high radiation levels expected at LHC. In the first part of the lectures, after a brief introduction on underlying physical phenomena, I will review modern sophisticated computational tools, as well as some classic "back of the envelope" analytical methods, available today for estimating the general performances of gaseous detectors. In the second part, I will analyze in more detail problems specific to the use of detectors at high rates (space charge, discharges, aging), and describe the recent development of powerful and perhaps more reliable devices, particularly in the field of position-sensitive micro-pattern detectors.

  17. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  18. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  19. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  20. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  1. Uranium enrichment export control guide: Gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  2. A new gaseous gap conductance relationship

    International Nuclear Information System (INIS)

    Wesley, D.A.; Yovanovich, M.M.

    1986-01-01

    A new relationship for predicting the gaseous gap conductance between the fuel and clad of a nuclear fuel rod is derived. This relationship is derived from purely analytical considerations and represents a departure from approaches taken in the past. A comparison between the predictions from this new relationship and experimental measurements is presented and the agreement is very good. Predictions can be generated relatively quickly with this relationship making it attractive for fuel pin analysis codes

  3. Growth of planetisimals in a gaseous ring

    International Nuclear Information System (INIS)

    Hourigan, K.

    1981-01-01

    The aggregation of planetesimals in a gaseous ring leads to the development of a dominant body amongst the planetesimal population. The presence of the gas in the form of a differentially rotating ring serves to constrain the orbits of the planetesimals and grains to within a thin toroidal region through the action of gas drag. This situation allows for the efficient aggregation of bodies and, as a result of the low resultant relative velocites, the minimization of collisional fragmentation effects

  4. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  5. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  6. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  7. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S.

    2005-05-01

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14 C, Kr, Xe, I and 3 H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14 C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3 H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  8. Trapping technology for gaseous fission products from voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S

    2005-05-15

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, {sup 14}C, Kr, Xe, I and {sup 3}H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and {sup 14}C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for {sup 3}H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system.

  9. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  10. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    International Nuclear Information System (INIS)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-01-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references

  11. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    Science.gov (United States)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  12. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre

  13. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  14. Million-degree plasma pervading the extended Orion Nebula.

    Science.gov (United States)

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  15. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  16. Catalysis by Dust Grains in the Solar Nebula

    Science.gov (United States)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  17. The gas-to-dust ratio in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1974-01-01

    About sixty spectra have been obtained using an image tube with the nebular spectrograph of the Asiago 122cm reflector, in a position W-E from north of the Trapezium across the star P 1925 into the bay area of the Orion Nebula. Twenty-five spectra have been selected for accurate measurements of the Hβ intensity and of the electron density by the [S II] 6730/6716 intensity line ratio. The results are interpreted in terms of well-mixed gas and dust, not only in the central bright regions, but even in the bay area, where the coefficient of dust extinction counted per electron is found to be larger than in the bright centre of the nebula

  18. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  19. Probing Shocks of the Young Planetary Nebula NGC 7027

    Science.gov (United States)

    Montez, Rodolfo

    2013-09-01

    The rapid evolution of the planetary nebula NGC 7027 provides a rare glimpse at the evolution of the shocks. We propose a detailed spatial and spectroscopic study of the shock conditions in NGC 7027 that will enhance and bridge our understanding of the shocks seen in other planetary nebula. Comparison between the Cycle 1 observation and a new Cycle 15 observation will (i) confirm the presence of the two components in the extended X-ray emission, (ii) measure the changes (spatial and spectral) in the components, and, (iii) provide a valuable trove of tests and inputs for shock conditions and hydrodynamical simulations. We rely on the unprecedented spatial resolution and soft-sensitivity of Chandra.

  20. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  1. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    Science.gov (United States)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  2. Variation of the extinction law in the Trifid nebula

    OpenAIRE

    Cambrésy, L.; Rho, J.; Marshall, D. J.; Reach, W. T.

    2011-01-01

    Context. In the past few years, the extinction law has been measured in the infrared wavelengths for various molecular clouds and different laws have been obtained. Aims. In this paper we seek variations of the extinction law within the Trifid nebula region. Such variations would demonstrate local dust evolution linked to variation of the environment parameters such as the density or the interstellar radiation field. Methods. The extinction values, A_λ/A_v, are obtained using the 2MASS, UKIDS...

  3. Millimeter-wave molecular line observations of the Tornado nebula

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, D. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S., E-mail: sakai.daisuke@nao.ac.jp [Department of Physics, Institute of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan)

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  4. Very bright optical transient near the Trifid and Lagoon Nebulae

    Science.gov (United States)

    Dunsby, Peter

    2018-03-01

    Peter Dunsby (University of Cape Town) reports the detection of a very bright optical transient in the region between the Lagoon and Trifid Nebulae based on observations obtained from Cape Town on 20 March 2018, between 01:00 and 03:45 UT. The object was visible throughout the full duration of the observations and not seen when this field was observed previously (08 March 2018).

  5. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Beltran, M. T.; Morata, O.; Masque, J. M.; Busquet, G.; Sanchez-Monge, A.; Estalella, R.; Franco, G. A. P.

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star formation efficiency which makes it a good laboratory in which to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary and appears to be threaded by a uniform magnetic field at scales of a few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster-forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30 m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace the densest regions better than previous Two Micron All Sky Survey (2MASS) extinction maps, while 2MASS extinction maps trace the diffuse gas better. The properties of the cores derived from dust emission show average radii of ∼0.09 pc, densities of ∼1.3x10 5 cm -3 , and core masses of ∼2.5 M sun . Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission with CS detections in the whole sample. Two of them, cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.

  6. THE LINE POLARIZATION WITHIN A GIANT Lyα NEBULA

    International Nuclear Information System (INIS)

    Prescott, Moire K. M.; Smith, Paul S.; Schmidt, Gary D.; Dey, Arjun

    2011-01-01

    Recent theoretical work has suggested that Lyα nebulae could be substantially polarized in the Lyα emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyα polarization measurements for a giant Lyα nebula at z∼ 2.656. We do not detect any significant linear polarization of the Lyα emission: P Lyα = 2.6% ± 2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyα (e.g., from the nearby active galactic nucleus, AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyα nebulae.

  7. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    International Nuclear Information System (INIS)

    Méndez Muñoz, Víctor; Merino Arévalo, Gonzalo; Fernández Albor, Víctor; Saborido Silva, Juan José; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás

    2012-01-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License

  8. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  9. The Formation of Graphite Whiskers in the Primitive Solar Nebula

    Science.gov (United States)

    Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-01-01

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  10. CO survey of the dark nebulae in Taurus and Perseus

    International Nuclear Information System (INIS)

    Baran, G.P.

    1986-01-01

    The thesis reports a large-scale survey of carbon monoxide ( 12 CO) emission (at λ = 2.6 mm) from dark nebulae in Taurus and Perseus. CO spectra at 4395 points were obtained within an area of about 800 square degrees generally west of the galactic anti-center. The spatial resolution of the instrument was eight arcminutes and velocity resolution was 2.6 km s -1 /. CO emission is strongest wherever extinction by dust is greatest, spilling over the apparent outer boundaries of the dust clouds observed optically. Combining CO velocity for the nebulae with optically determined distances shows that the clouds in the survey area form several layers. The molecular cloud mass closest to the sun is the Taurus and Auriga complex about 150 +/- 50 pc). Nearer to the Per )B2 OB association (at 350 +/- 100 pc) than the Taurus clouds are the Per OB2 molecular cloud (350 +/- 100 pc) and the California Nebula = NGC15979 molecular clouds (at 400 +/- 150 pc). Cloud masses were determined from integrated CO emission intensity alone by assuming that γ-ray emission intensities can be used to relate H 2 column densities to CO emission intensities

  11. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    International Nuclear Information System (INIS)

    Koning, N.; Kwok, Sun; Steffen, W.

    2013-01-01

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  12. The internal kinematics of the planetary nebula NGC 650/1

    International Nuclear Information System (INIS)

    Taylor, K.

    1979-01-01

    Hα and [N II], lambda 6584 line profiles from the bright lobes of planetary nebula NGC 650/1 have been obtained. These emission lines show a very strong symmetrical triple-peak velocity structure, not observed previously to the author's knowledge in planetary nebulae. Models are tentatively proposed to explain both the velocity data and the nebula's optical appearance. The velocity splitting amounts to approximately 62 km/s and the rest frame of the nebula is found to have a heliocentric radial velocity of -19 +- 2 km/s. (author)

  13. The nature of the nebula associated with the luminous blue variable star WRA 751

    OpenAIRE

    Hutsemekers, Damien; van Drom, E.

    1991-01-01

    Narrow-band filter imagery as well as medium to high resolution spectroscopy of the nebula surrounding the luminous blue variable (LBV) star WRA 751 are presented. The nebula appears as a slowly expanding H II region of low excitation characterized by a significant N/O overabundance which may be due to the presence in the nebula of nuclear processed material ejected by the star. With the recent discovery of a nebula around HR Car, all but one known galactic LBVs are now shown to be associated...

  14. Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales

    Science.gov (United States)

    Russell; Srinivasan; Huss; Wasserburg; MacPherson

    1996-08-09

    A search was made for 26Mg (26Mg*) from the decay of 26Al (half-life = 0.73 million years) in Al-rich objects from unequilibrated ordinary chondrites. Two Ca-Al-rich inclusions (CAIs) and two Al-rich chondrules (not CAIs) were found that contained 26Al when they formed. Internal isochrons for the CAIs yielded an initial 26Al/27Al ratio [(26Al/27Al)0] of 5 x 10(-5), indistinguishable from most CAIs in carbonaceous chondrites. This result shows that CAIs with this level of 26Al are present throughout the classes of chondrites and strengthens the notion that 26Al was widespread in the early solar system. The two Al-rich chondrules have lower 26Mg*, corresponding to a (26Al/27Al)0 ratio of approximately 9 x 10(-6). Five other Al-rich chondrules contain no resolvable 26Mg*. If chondrules and CAIs formed from an isotopically homogeneous reservoir, then the chondrules with 26Al must have formed or been last altered approximately2 million years after CAIs formed; the 26Mg*-free chondrules formed >1 to 3 million years later still. Because 26Mg*-containing and 26Mg*-free chondrules are both found in Chainpur, which was not heated to more than approximately400°C, it follows that parent body metamorphism cannot explain the absence of 26Mg* in some of these chondrules. Rather, its absence indicates that the lifetime of the solar nebula over which CAIs and chondrules formed extended over approximately5 million years.

  15. The Charge State of Polycyclic Aromatic Hydrocarbons across a Reflection Nebula, an H II Region, and a Planetary Nebula

    Science.gov (United States)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2018-05-01

    Low-resolution Spitzer-IRS spectral map data of a reflection nebula (NGC 7023), H II region (M17), and planetary nebula (NGC 40), totaling 1417 spectra, are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbon (PAH) emission is broken down into PAH charge and size subclass contributions using a database-fitting approach. The resulting charge breakdown results are combined with those derived using the traditional PAH band strength ratio approach, which interprets particular PAH band strength ratios as proxies for PAH charge. Here the 6.2/11.2 μm PAH band strength ratio is successfully calibrated against its database equivalent: the {n}PAH}+}/{n}PAH}0} ratio. In turn, this ratio is converted into the PAH ionization parameter, which relates it to the strength of the radiation field, gas temperature, and electron density. Population diagrams are used to derive the {{{H}}}2 density and temperature. The bifurcated plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo dissociation region in NGC 7023 is shown to be a robust diagnostic template for the {n}PAH}+}/{n}PAH}0} ratio in all three objects. Template spectra for the PAH charge and size subclasses are determined for each object and shown to favorably compare. Using the determined template spectra from NGC 7023 to fit the emission in all three objects yields, upon inspection of the Structure SIMilarity maps, satisfactory results. The choice of extinction curve proves to be critical. Concluding, the distinctly different astronomical environments of a reflection nebula, H II region, and planetary nebula are reflected in their PAH emission spectra.

  16. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  17. Treatment of gaseous and airborne radioactive waste

    International Nuclear Information System (INIS)

    Leichsenring, C.H.

    1982-01-01

    Gaseous and airborne radionuclides in the fuel cycle are retained in vessel off-gas filter systems and in the dissolver off-gas cleaning system. Those systems have to meet the regulatory requirements for both normal and accident conditions. From the solutions liquid aerosols are formed during liquid transfer (air lifts, steam jets) or by air sparging or by evaporation processes. During dissolution the volatile radionuclides i.e. 85 Kr, 129 I and 14 C are liberated and enter into the dissolver off-gas cleaning system. Flow sheets of different cleaning systems and their stage of development are described. (orig./RW)

  18. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  19. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  20. Transfer of gaseous iodine to Tradescantia

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Ohmomo, Yoichiro.

    1984-01-01

    Transfer rates of gaseous elemental iodine and methyliodide from atmosphere to Tradescantia were investigated in relation to supposed genetic mutation due to radioactive iodine released from nuclear facilities. The estimated transfer rate of elemental iodine to the young buds of Tradescantia, which was given as the ratio of iodine uptake rate per unit weight of the plant to the concentration of the element in the air, was approximately 7 x 10 -2 cm 3 /g.sec, about 30 to 40 times higher than that of methyliodide. The contribution of direct deposition of elemental iodine was suggested to be significant, although methyliodide was mainly absorbed by respiration through stomata of the plant. (author)

  1. Gaseous radiocarbon measurements of small samples

    International Nuclear Information System (INIS)

    Ruff, M.; Szidat, S.; Gaeggeler, H.W.; Suter, M.; Synal, H.-A.; Wacker, L.

    2010-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) is a well-established method for samples containing carbon in the milligram range. However, the measurement of small samples containing less than 50 μg carbon often fails. It is difficult to graphitise these samples and the preparation is prone to contamination. To avoid graphitisation, a solution can be the direct measurement of carbon dioxide. The MICADAS, the smallest accelerator for radiocarbon dating in Zurich, is equipped with a hybrid Cs sputter ion source. It allows the measurement of both, graphite targets and gaseous CO 2 samples, without any rebuilding. This work presents experiences dealing with small samples containing 1-40 μg carbon. 500 unknown samples of different environmental research fields have been measured yet. Most of the samples were measured with the gas ion source. These data are compared with earlier measurements of small graphite samples. The performance of the two different techniques is discussed and main contributions to the blank determined. An analysis of blank and standard data measured within years allowed a quantification of the contamination, which was found to be of the order of 55 ng and 750 ng carbon (50 pMC) for the gaseous and the graphite samples, respectively. For quality control, a number of certified standards were measured using the gas ion source to demonstrate reliability of the data.

  2. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  3. Trends and new developments in gaseous detectors

    International Nuclear Information System (INIS)

    Hoch, M.

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors

  4. Trends and new developments in gaseous detectors

    Science.gov (United States)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  5. Trends and new developments in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, M. [CERN, Geneva 23 (Switzerland)]. E-mail: michael.hoch@cern.ch

    2004-12-11

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  6. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  7. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  8. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    Science.gov (United States)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  9. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    Science.gov (United States)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  10. A detailed study of the structure of the nested planetary nebula, Hb 12, the Matryoshka nebula

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. M.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Campus Ensenada, Ensenada, Baja California, 22860 (Mexico); Edwards, M. L. [LBT Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Winge, C., E-mail: dmclark@astrosen.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: medwards@lbto.org, E-mail: cwinge@gemini.edu [Gemini Observatory, Southern Operations Center, c/o AURA Inc., Casilla 603, La Serena (Chile)

    2014-11-01

    We present near-IR, integral field spectroscopic observations of the planetary nebula (PN) Hb 12 using Near-infrared Integral Field Spectrograph (NIFS) on Gemini-North. Combining NIFS with the adaptive optics system Altair, we provide a detailed study of the core and inner structure of this PN. We focus the analysis in the prominent emission lines [Fe II] (1.6436 μm), He I (2.0585 μm), H{sub 2} (2.1214 μm), and Br{sub γ} (2.16553 μm). We find that the [Fe II] emission traces a tilted system of bipolar lobes, with the northern lobe being redshifted and the southern lobe blueshifted. The [Fe II] emission is very faint at the core and only present close to the systemic velocity. There is no H{sub 2} emission in the core, whereas the core is prominent in the He I and Br{sub γ} recombination lines. The H{sub 2} emission is concentrated in equatorial arcs of emission surrounding the core and expanding at ∼30 km s{sup –1}. These arcs are compared with Hubble Space Telescope images and shown to represent nested loops belonging to the inner sections of a much larger bipolar structure that replicates the inner one. The He I and Br{sub γ} emission from the core clearly show a cylindrical central cavity that seems to represent the inner walls of an equatorial density enhancement or torus. The torus is 0.''2 wide (≡200 AU radius at a distance of 2000 pc) and expanding at ≤30 km s{sup –1}. The eastern wall of the inner torus is consistently more intense than the western wall, which could indicate the presence of an off-center star, such as is observed in the similar hourglass PN, MyCn 18. A bipolar outflow is also detected in Br{sub γ} emerging within 0.''1 from the core at ∼ ± 40 km s{sup –1}.

  11. Nebula--a web-server for advanced ChIP-seq data analysis.

    Science.gov (United States)

    Boeva, Valentina; Lermine, Alban; Barette, Camille; Guillouf, Christel; Barillot, Emmanuel

    2012-10-01

    ChIP-seq consists of chromatin immunoprecipitation and deep sequencing of the extracted DNA fragments. It is the technique of choice for accurate characterization of the binding sites of transcription factors and other DNA-associated proteins. We present a web service, Nebula, which allows inexperienced users to perform a complete bioinformatics analysis of ChIP-seq data. Nebula was designed for both bioinformaticians and biologists. It is based on the Galaxy open source framework. Galaxy already includes a large number of functionalities for mapping reads and peak calling. We added the following to Galaxy: (i) peak calling with FindPeaks and a module for immunoprecipitation quality control, (ii) de novo motif discovery with ChIPMunk, (iii) calculation of the density and the cumulative distribution of peak locations relative to gene transcription start sites, (iv) annotation of peaks with genomic features and (v) annotation of genes with peak information. Nebula generates the graphs and the enrichment statistics at each step of the process. During Steps 3-5, Nebula optionally repeats the analysis on a control dataset and compares these results with those from the main dataset. Nebula can also incorporate gene expression (or gene modulation) data during these steps. In summary, Nebula is an innovative web service that provides an advanced ChIP-seq analysis pipeline providing ready-to-publish results. Nebula is available at http://nebula.curie.fr/ Supplementary data are available at Bioinformatics online.

  12. A 'variable' stellar object in a variable blue nebula V-V 1-7

    International Nuclear Information System (INIS)

    Rao, N.K.; Gilra, D.P.

    1981-01-01

    V-V 1-7 is supposed to be one of the few planetary nebulae with Ao central stars and was included in the planetary-nebula catalogue as PK 235 + 1 0 1. The nebula was seen on the blue Palomar Observatory Sky Survey (POSS) print but not on the red print; as a result it was thought that it might be a reflection nebula. However, the symmetry of the nebula around the central star (HD 62001), and also the ultraviolet photometric variability of this central star led others to suggest that the nebula might be a nova shell. Subsequently it was found that the nebula V-V 1-7 has disappeared. It is not seen on any direct plate known to us except the POSS blue plate. In this paper the disappearance is reported (along with the nebula) of a stellar object, which appears within the 'nebular shell' of V-V 1-7 on the POSS blue plate, but not on the red plate. (author)

  13. Evolution of extra-galactic nebulae and the origin of metagalactic radio noise

    International Nuclear Information System (INIS)

    Bruce, C.E.R.

    1975-01-01

    It is pointed out that the discovery of the 'jet' in the radio source NGC 4486 fulfils a prediction made many years ago that such 'jets' would exist in some globular or elliptical nebulae. They are the channels of electrical discharges on a nebular scale then postulated, which will last for about 10 million years. It is emphasized that the discharge hypothesis would account for - 1. the existence of irregular nebulae; 2. the 'cataclysmic action' which Hubble regarded as required to account for the transition from nebulae of Type E to Type Sa; 3. the fact that the arms of spiral nebulae are never seen in process of formation; 4. the gathering of the matter towards the discharge channels by magnetic pinch effect; 5. the frequent occurrence of two diametrically opposed major arms; 6. the origin of radio waves throughout an extensive volume of space surrounding the 'jet' or discharge channel in NGC 4486; 7. the effect of one extra galactic nebula, NGC 3187, on another, NGC 3190; 8. the existence of diffuse patches of luminosity, 'emission nebulae', in the spiral arms of our own galaxy and in those of the 'Andromeda Nebula'. On the discharge theory about one per cent of all nebulae will be passing through the discharge phase at any one time, i.e., the number required to account for the observed intensity of metagalactic radio noise. (author)

  14. On planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    International Nuclear Information System (INIS)

    Allen, D.A.

    1979-01-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered. (author)

  15. Three-Dimensional Adaptive Mesh Refinement Simulations of Point-Symmetric Nebulae

    NARCIS (Netherlands)

    Rijkhorst, E.-J.; Icke, V.; Mellema, G.; Meixner, M.; Kastner, J.H.; Balick, B.; Soker, N.

    2004-01-01

    Previous analytical and numerical work shows that the generalized interacting stellar winds model can explain the observed bipolar shapes of planetary nebulae very well. However, many circumstellar nebulae have a multipolar or point-symmetric shape. With two-dimensional calculations, Icke showed

  16. Abundances of Planetary Nebulae IC 418, IC 2165 and NGC 5882

    NARCIS (Netherlands)

    Pottasch, [No Value; Bernard-Salas, J; Beintema, DA; Feibelman, WA

    The ISO and IUE spectra of the elliptical nebulae NGC 5882, IC 418 and IC 2165 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to

  17. Dark-Matter Content of Early-Type Galaxies with Planetary Nebulae

    NARCIS (Netherlands)

    Napolitano, N.R.; Romanowsky, A.J.; Coccato, L; Capaccioli, M.; Douglas, N.G.; Noordermeer, E.; Merrifield, M.R.; Kuijken, K.; Arnaboldi, M.; Gerhard, O.; Freeman, K.C.; De Lorenzi, F.; Das, P.

    2007-01-01

    Abstract. We examine the dark matter properties of nearby early-type galaxies using plane- tary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with the purpose of measuring PN velocities

  18. Characteristics of planetary nebulae and H II regions based on lambda = 1. 35 cm continuum measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braz, M A; Jardim, J O; Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica

    1975-11-01

    Physical parameters are derived and discussed for stronger H II regions and planetary nebulae for which continuum radio data at lambda = 1.35 cm was obtained. The study includes southern hemisphere planetary nebulae IC-418, NGC-6,302, NGC-6,369, and H II regions RCW-65, RCW-87, RCW-99, H 2-3 and H 2-6.

  19. PPAK integral field spectroscopy survey of the Orion nebula. Data release

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.

    2007-01-01

    Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6

  20. Planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1979-06-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered.

  1. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.

    1976-01-01

    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  2. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  3. Cooling and quasi-static contraction of the primitive solar nebula after gas accretion

    International Nuclear Information System (INIS)

    Watanabe, Seichiro; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi

    1990-01-01

    The evolution of the primitive solar nebula in the quasi-static contraction phase where the nebula cools down toward the thermal steady state is studied. The solar irradiation onto the nebula keeps the surface temperature constant, so that the convective ozone retreats from the surface as the nebula cools. Thus if thermal convection is the only source of turbulence, convection will quiet down in an early time of the cooling. Afterward, the nebula evolves toward an isothermal structure in a time scale of 1000 yr. The cooling rates in the vicinity of the midplate at 1 AU are 0.003 K/hr at T(c) = 1000 K and 3 x 10 to the -5th K/hr at T(c) = 300 K for the standard model. If some turbulence exists irrespective of convection, convection may continue for sufficiently strong turbulent heating. 39 refs

  4. Emission lines of Mg2 and Ca2 in planetary nebulae

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1979-01-01

    Conditions of exciting resonance lines in the emission of ionized magnesium (lambda lambda 2796+2803 Mg2) and calcium (lambda lambda 3934+3968 Ca2) in planetary nebulae have been analyzed. It is shown that the allowed lines are excited with the same mechanism, as the forbidden lines, i.e. inelastic electron collisions, but not with common fluorescence. The emission line lambda 2800 Mg2 of enough force can be observed only in the spectra of planetary nebulae with mean excitation (IC 2149) as well as in the spectra of diffuse nebulae. The line must not be observed in high-excited planetary nebulae (NGC 7026, 7662). The absence of emission lines H and K Ca2 in planetary nebulae spectra results from the fact, that their expected intensity is by 3-4 orders less than the intensity of the line lambda 2800 Mg2 or Hsub(β) hydrogen

  5. SHAPING THE GLOWING EYE PLANETARY NEBULA, NGC 6751

    International Nuclear Information System (INIS)

    Clark, D. M.; Garcia-Diaz, Ma. T.; Lopez, J. A.; Steffen, W. G.; Richer, M. G.

    2010-01-01

    NGC 6751 is a highly structured multiple-shell planetary nebula (PN) with a bipolar outflow. In this work, we present a comprehensive set of spatially resolved, high spectral resolution, long-slit spectra and deep imaging from San Pedro Martir, Gemini, the Hα composite full sky survey and archive images from the Hubble Space Telescope and Spitzer. This material allows us to identify all the main morphological components and study their detailed kinematics. We find a thick equatorial structure fragmented into multiple knots that enclose a fast expanding bubble with a filamentary surface structure. The knotty ring is surrounded by faint emission from a disk-like envelope. Lobes with embedded filaments form a bipolar outflow. The equatorial ring is tilted with respect to the line of sight and with respect to the bipolar outflow. A spherical halo surrounds the PN and there is material further out identified as a fragmented outer halo. This information is used to derive a three-dimensional morpho-kinematic model using the code SHAPE that closely replicates the observed image and long-slit spectra of the nebula, providing a fair representation of its complex structure. NGC 6751 is located close to the galactic plane and its large-scale surrounding environment is shown to be a gas-rich region. We find indications that the PN is interacting with the interstellar medium. Emission components from an extended nebulosity located a couple of arcminutes away from the nebula have radial velocities that are inconsistent with the rest of NGC 6751 and are confirmed as originating from the ambient material, not related to the PN, in agreement with a previous suggestion.

  6. Nebula: reconstruction and visualization of scattering data in reciprocal space.

    Science.gov (United States)

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H

    2015-04-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.

  7. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    Science.gov (United States)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  8. Stellar outflow: relative motions of nebulae and Of stars

    International Nuclear Information System (INIS)

    Lynds, B.T.

    1979-01-01

    On the basis of arguments presented by Roberts (1972) and of Shu et al. (1972), Minn and Greenberg (1973) argued that the velocity differences between newly formed hot stars and the surrounding interstellar medium are sufficiently different so that typical H II regions should consist of material which is continually being replaced by the ambient medium and which should therefore possess the velocity of the medium rather than that of the star. The critical test of this hypothesis will be a comparison of nebular velocities with the velocities of the exciting stars. This is performed for Of stars and nebulae. (Auth.)

  9. Near-infrared imaging polarimetry of bipolar nebulae: Pt. 1

    International Nuclear Information System (INIS)

    Minchin, N.R.; Hough, J.H.; McCall, A.; Burton, M.G.; McCaughrean, M.J.; Aspin, C.; Bailey, J.A.; Axon, D.J.; Sato, Shuji

    1991-01-01

    New high-spatial-resolution polarization images of the BN-KL region of OMC-1 from 1.25-3.6 μm are presented. At the longer wavelengths these show a centro-symmetric polarization vector pattern, centred mainly on IRc2, and high degrees of polarization across the nebula, confirming that the diffuse nebulosity is dominated by the scattering of radiation, mainly from IRc2. Degrees of polarization, position angles and magnitudes are given for the observable IRc sources. These are discussed. (author)

  10. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  11. Model atmospheres and parameters of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.

    1989-01-01

    Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs

  12. Flare stars of the Orion Nebula - spectra of an outburst

    International Nuclear Information System (INIS)

    Carter, B.D.; O'Mara, B.J.; Ross, J.E.

    1988-01-01

    For the first time, detailed, time-resolved spectra of a flare event of an Orion cluster flare star are presented. These spectra, covering ∼ λλ3600-4600, were obtained by using the Anglo-Australian Telescope with a fibre coupler to simultaneously monitor 23 flare stars in the region of the Orion Nebula. The flare spectra reveal continuous emission which filled in the photospheric Ca I 4226 A absorption, and hydrogen Balmer, Ca II H and K, He I 4026 A and He I 4471 A line emission. Overall, the spectral behaviour indicates similarities to strong outbursts of the classical dMe flare stars. (author)

  13. He 2-104 - A symbiotic proto-planetary nebula?

    International Nuclear Information System (INIS)

    Schwarz, H.E.; Aspin, C.; Lutz, J.H.

    1989-01-01

    CCD observations are presented for He 2-104, an object previously classified as both PN and symbiotic star, which show that this is in fact a protoplanetary nebula (PPN) with a dynamical age of about 800 yr. The presence of highly collimated jets, extending over 75 arcsec on the sky, combined with an energy distribution showing a hot as well as a cool component, indicates that He 2-104 is a binary PPN. Since the primary is probably a Mira with a 400-d period (as reported by Whitelock, 1988), it is proposed that the system is a symbiotic PPN. 16 refs

  14. Simulating Isotope Enrichment by Gaseous Diffusion

    Science.gov (United States)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  15. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  16. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  17. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de

  18. Device for solidification of gaseous wastes

    International Nuclear Information System (INIS)

    Shimada, Masayuki; Kamei, Hisashi.

    1979-01-01

    Purpose: To provide the subject device wherein gaseous wastes such as krypton 85 and the like are ionized and accelerated to be injected into solid targets and stored therein, thereby removing the redischarge of gas and making it possible to treat a large quantity of said gas. Constitution: Krypton gas is ionized and accelerated to high energy by an accelerator, and then introduced into an ion injection chamber. In the ion injection chamber a band-shaped target is delivered from a first take-up roll, and krypton ions are injected to said target. Thereafter, other band-shaped target delivered from a second take-up roll is brought into contact with the target in which krypton ions have been injected, and both targets are taken up together while compressing these targets. In this way, even when injected energy is small, the injected gas is not redischarged and can be continuously treated. (Kamimura, M.)

  19. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  20. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  1. Absorption of gaseous iodine by water droplets

    International Nuclear Information System (INIS)

    Albert, M.F.

    1985-07-01

    A new model has been developed for predicting the rate at which gaseous molecular iodine is absorbed by water sprays. The model is a quasi-steady state mass transfer model that includes the iodine hydrolysis reactions. The parameters of the model are spray drop size, initial concentration of the gas and liquid phases, temperature, pressure, buffered or unbuffered spray solution, spray flow rate, containment diameter and drop fall height. The results of the model were studied under many values of these parameters. Plots of concentration of iodine species in the drop versus time have been produced by varying the initial gas phase concentration of molecular iodine over the range of 1 x 10 -5 moles/liter to 1 x 10 -10 moles/liter and a drop size of 1000 microns. Results from the model are compared to results available from Containment Systems Experiments at Pacific Northwest Laboratory. The difference between the model predictions and the experimental data ranges from -120.5% to 68.0% with the closest agreement 7.7%. The new spray model is also compared to previously existing spray models. At high concentrations of gaseous molecular iodine, the new spray model is considered to be less accurate but at low concentrations, the new model predicts results that are closer to the experimental data than the model called the realistic model from WASH-1329. Inclusion of the iodine hydrolysis reaction is shown to be a feature important to a model intended for determining the removal of molecular iodine over a wide range of conditions

  2. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  3. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  4. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  5. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  6. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  7. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  8. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  9. The Light and Dark Face of a Star-Forming Nebula

    Science.gov (United States)

    2010-03-01

    through at least parts of the dust. The furnace that fuels Gum 19's luminosity is a gigantic, superhot star called V391 Velorum. Shining brightest in the scorching blue range of visible light, V391 Velorum boasts a surface temperature in the vicinity of 30 000 degrees Celsius. This massive star has a temperamental nature, however, and is categorised as a variable star accordingly. V391 Velorum's brightness can fluctuate suddenly as a result of strong activity that can include ejections of shells of matter, which contribute to Gum 19's composition and light emissions. Stars on the grand scale of V391 Velorum do not burn bright for long, and after a relatively short lifetime of about ten million years these titans blow up as supernovae. These explosions, which temporarily rival whole galaxies in their light intensity, blast heated matter in surrounding space, an event that can radically change the colour and shape of its enclosing nebula. As such, V391 Velorum's death throes may well leave Gum 19 unrecognisable. Within the neighbourhood of this fitful supergiant, new stars nonetheless continue to grow. HII regions denote sites of active star formation wherein great quantities of gas and dust have begun to collapse under their own gravity. In several million years - a blink of an eye in cosmic time - these shrinking knots of matter will eventually reach the high density at their centres necessary to ignite nuclear fusion. The fresh outpouring of energy and stellar winds from these newborn stars will also modify the gaseous landscape of Gum 19. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design

  10. Structure formation in a colliding flow: The Herschel view of the Draco nebula

    Science.gov (United States)

    Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures

  11. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  12. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula.

    Science.gov (United States)

    Gannoun, Abdelmouhcine; Boyet, Maud; Rizo, Hanika; El Goresy, Ahmed

    2011-05-10

    The short-lived (146)Sm-(142)Nd chronometer (T(1/2) = 103 Ma) is used to constrain the early silicate evolution of planetary bodies. The composition of bulk terrestrial planets is then considered to be similar to that of primitive chondrites that represent the building blocks of rocky planets. However for many elements chondrites preserve small isotope differences. In this case it is not always clear to what extent these variations reflect the isotope heterogeneity of the protosolar nebula rather than being produced by the decay of parent isotopes. Here we present Sm-Nd isotopes data measured in a comprehensive suite of enstatite chondrites (EC). The EC preserve (142)Nd/(144)Nd ratios that range from those of ordinary chondrites to values similar to terrestrial samples. The EC having terrestrial (142)Nd/(144)Nd ratios are also characterized by small (144)Sm excesses, which is a pure p-process nuclide. The correlation between (144)Sm and (142)Nd for chondrites may indicate a heterogeneous distribution in the solar nebula of p-process matter synthesized in supernovae. However to explain the difference in (142)Nd/(144)Nd ratios, 20% of the p-process contribution to (142)Nd is required, at odds with the value of 4% currently proposed in stellar models. This study highlights the necessity of obtaining high-precision (144)Sm measurements to interpret properly measured (142)Nd signatures. Another explanation could be that the chondrites sample material formed in different pulses of the lifetime of asymptotic giant branch stars. Then the isotope signature measured in SiC presolar would not represent the unique s-process signature of the material present in the solar nebula during accretion.

  13. On the Jeans Criterion of a Stratified Heat Conducting Gaseous ...

    Indian Academy of Sciences (India)

    sations in nebulae may be due to thermal effects. Abbassi et al. (2008) considered the possibility of the thermal conduction in the presence of toroidal magnetic field. – which had been a largely neglected ingredient before – could affect the global properties of the hot accretion flows substantially and investigated the effect of ...

  14. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    Science.gov (United States)

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.

  15. The remarkably high excitation planetary nebula GC 6537.

    Science.gov (United States)

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  16. Planetesimal Sizes and Mars Formation in the Magnetized Solar Nebula

    Science.gov (United States)

    Hasegawa, Yasuhiro; Morishima, Ryuji

    2017-10-01

    The Hf-W chronology inferred from Martian meteorites suggests that Mars should be a stranded planetary embryo formed within a very short (about 2 Myr) accretion timescale. Previous studies show that such rapid growth can be realized when small (nebular evolution. Under this circumstance, impact velocity of planetesimals can be very high due to nebular density fluctuations caused by turbulence, and hence collisions between small planetesimals can become destructive, rather than mergers. Here, we investigate how Mars formed in the magnetized solar nebula, focusing on MHD turbulence. We demonstrate what mass of planetesimals can contribute to Mars formation and what value of the nebular mass is needed to satisfy the rapid accretion timescale. We therefore derive a more realistic condition of the solar nebula under which Mars formation took place. While this study is based on the standard picture of runaway and oligarchic growth, we also discuss other formation mechanisms in order to compare how our results would be consistent with the properties of the solar system. These mechanisms are a hypothesis that Mars formed from a narrow ring of planetesimals, and the pebble accretion scenario.

  17. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  18. Photoionization modeling of Magellanic Cloud planetary nebulae. I

    Science.gov (United States)

    Dopita, M. A.; Meatheringham, S. J.

    1991-01-01

    The results of self-consistent photoionization modeling of 38 Magellanic Cloud PNe are presented and used to construct an H-R diagram for the central stars and to obtain both the nebular chemical abundances and the physical parameters of the nebulae. T(eff)s derived from nebular excitation analysis are in agreement with temperatures derived by the classical Zanstra method. There is a linear correlation between log T(eff) and the excitation class. The majority of the central stars in the sample with optically thick nebulae have masses between 0.55 and 0.7 solar mass and are observed during their hydrogen-burning excursion toward high temperatures. Optically thin objects are found scattered throughout the H-R diagram, but tend to have a somewhat smaller mean mass. Type I PN are found to have high core masses and to lie on the descending branch of the evolutionary tracks. The nebular mass of the optically thick objects is closely related to the nebular radius, and PN with nebular masses over one solar are observed.

  19. Version 2000 of the Catalogue of Galactic Planetary Nebulae

    Science.gov (United States)

    Kohoutek, L.

    2001-11-01

    The ``Catalogue of Galactic Planetary Nebulae (Version 2000)'' appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question ``what is a planetary nebula'' is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Données, Strasbourg and at Hamburg Observatory via internet. The Catalogue is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/378/843

  20. The Integral Field View of the Orion Nebula

    Directory of Open Access Journals (Sweden)

    Adal Mesa-Delgado

    2014-01-01

    Full Text Available This paper reviews the major advances achieved in the Orion Nebula through the use of integral field spectroscopy (IFS. Since the early work of Vasconcelos and collaborators in 2005, this technique has facilitated the investigation of global properties of the nebula and its morphology, providing new clues to better constrain its 3D structure. IFS has led to the discovery of shock-heated zones at the leading working surfaces of prominent Herbig-Haro objects as well as the first attempt to determine the chemical composition of Orion protoplanetary disks, also known as proplyds. The analysis of these morphologies using IFS has given us new insights into the abundance discrepancy problem, a long-standing and unresolved issue that casts doubt on the reliability of current methods used for the determination of metallicities in the universe from the analysis of H II regions. Results imply that high-density clumps and high-velocity flows may play an active role in the production of such discrepancies. Future investigations based on the large-scale IFS mosaic of Orion will be very valuable for exploring how the integrated effect of small-scale structures may have impact at larger scales in the framework of star-forming regions.

  1. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-01-01

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  2. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  3. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  4. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  5. The chemical composition of three planetary nebulae in the Magellanic clouds

    International Nuclear Information System (INIS)

    Dufour, R.J.; Killen, R.M.

    1977-01-01

    Emission-line intensities in the planetary nebulae Henize 67 in the Small Magellanic Cloud (SMC) and Henize 97 and 153 in the LMC along with the small SMC H II regions Henize 9, 61, and 81 were measured from photographic image-tube spectra taken with the 1.5 m telescope at Cerro Tololo. The relative abundances of H, He, N, O, Ne, S, and Ar in the nebulae were estimated and compared with the compositions of galactic planetary nebulae and previously studied H II regions in the Clouds. The results show that (1) the N/O ratios in the planetary nebulae are substantially higher than found in the H II regions of each Cloud; (2) He/H approx. = 0.18 in the SMC planetary nebula, but seems normal (approx.0.10) in the two LMC planetaries; and (3) the compositions of the three small SMC H II regions are similar to that of larger SMC H II regions studied previously. It is concluded that the N/H values in the shells of planetary nebulae may not depend on the metal content of the progenitor star as much as recent theoretical models suggest and that the N content of the gas in the Magellanic Clouds arises primarily from sources other than planetary nebulae

  6. Model planetary nebulae: the effect of shadowed filaments on low ionization potential ion radiation

    International Nuclear Information System (INIS)

    Katz, A.

    1977-01-01

    Previous homogeneous model planetary nebulae calculations No. 4 have yielded emission strengths for low ionization potential No. 4 ions which are considerably lower than those observed. Several attempts were to correct this problem by the inclusion of optically thin condensations, the use of energy flux distributions from stellar model calculations instead of blackbody spectrum stars, and the inclusion of dust in the nebulae. The effect that shadowed filaments have on the ionization and thermal structure of model nebulae and the resultant line strengths are considered. These radial filaments are shielded from the direct stellar ionizing radiation by optically thick condensations in the nebula. Theoretical observational evidence exists for the presence of condensations and filaments. Since the only source of ionizing photons in the shadowed filaments is due to diffuse photons produced by recombination, ions of lower ionization potential are expected to exist there in greater numbers than those found in the rest of the nebula. This leads to increased line strengths from these ions and increases their values to match the observational values. It is shown that these line strengths in the filaments increase by over one to two orders of magnitude relative to values found in homogeneous models. This results in an increase of approximately one order of magnitude for these lines when contributions from both components of the nebula are considered. The parameters that determine the exact value of the increase are the radial location of the filaments in the nebula and the fraction of the nebular volume occupied by the filaments

  7. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  8. Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm

    Science.gov (United States)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.

    2018-05-01

    We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.

  9. The colorimetry of the nebulae NGC 6914b and Parsamian 22

    International Nuclear Information System (INIS)

    Khachikyan, Eh.E.; Ehjnatyan, D.A.

    1975-01-01

    Given in the paper are the results of colorimetry of two diffuse nebulae: NGC 6914b and Parsamian 22. Use was made of pictures obtained on the one-meter Schmidt telescope of the Byurakan Observatory. The surface brightness of certain regions of the nebulae and their colors (U-B) and (B-V) have been determined. Although these nebulae are seen in the same sky region, they differ sharply in color: NGC 6914b is intensely blue, while Parsamian 22 is intensely red

  10. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  11. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  12. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  13. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  14. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  15. Release of gaseous tritium during reprocessing

    International Nuclear Information System (INIS)

    Bruecher, H.; Hartmann, K.

    1983-01-01

    About 50% of the tritium put through an LWR reprocessing plant is obtained as tritium-bearing water, HTO. Gaseous tritium, HT has a radiotoxicity which is by 4 orders of magnitude lower than that of HTO. A possibility for the removal of HTO could therefore be its conversion into the gas phase with subsequent emission of the HT into the atmosphere. However, model computations which are, in part, supported by experimental data reveal that the radiation exposure caused by HT release is only by about one order of magnitude below that caused by HTO. This is being attributed to the relatively quick reoxidation of HT by soil bacteria. Two alternatives for producing HT from HTO (electrolysis; voloxidation with subsequent electrolysis) are presented and compared with the reference process of deep-well injection of HTO. The authors come to the conclusion that tritium removal by HT release into the atmosphere cannot be recommended at present under either radiological or economic aspects. (orig.) [de

  16. Gaseous Nitrogen Orifice Mass Flow Calculator

    Science.gov (United States)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  17. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  18. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  19. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  20. Ionization structure of planetary nebulae. 4. NGC 6853

    International Nuclear Information System (INIS)

    Barker, T.

    1983-01-01

    Spectrophotometric observations of emission line intensities were made in seven positions in the planetary nebula NGC 6853. For five of the positions, coverage is across the entire spectral range 1400A to 9600A. Standard equations used to correct for the existence of elements in other than the optically-observable ionization stages give results over a wide range of ionization that are generally consistent and in agreement with abundances calculated using ultraviolet lines. As in the previous studies in this series, the lambda 4267 CII line implies a c(2+) abundance that is higher than that determined from UV lines. Although this effect is much smaller than in NGC 6720 and NGC 7009, it is again largest nearest the central star, giving more evidence that the excitation mechanism for the lambda 4267 line is not understood

  1. An earlier explosion date for the Crab Nebula supernova

    Science.gov (United States)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  2. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    Science.gov (United States)

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  3. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  4. The ultraviolet extinction properties of the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino

    2018-01-01

    Recent investigation of the extinction law in 30 Dor and the Tarantula Nebula, at optical and near infrared wavelengths, has revealed a ratio of total to selective extinction RV=AV/E(B-V) of about 4.5. This indicates a larger proportion of large grains than in the Galactic diffuse interstellar medium. Possible origins include coalescence of small grains, grain growth, selective destruction of small grains, and fresh injection of large grains. From a study of the ultraviolet extinction properties of three Wolf-Rayet stars in 30 Dor (R 139, R 140, R 145), observed with the International Ultraviolet Explorer, we show that the excess of large grains does not come at the expense of small grains, which are still present. Fresh injection of large grains by supernova explosions appears to be the dominant mechanism.

  5. Discovery of new planetary nebulae in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Drašković, D.; Reid, W. A.; Parker, Q. A.; Stupar, M.

    2016-01-01

    We present six new planetary nebulae (PNe) discovered in the Small Magellanic Cloud (SMC) from deep UK Schmidt telescope (UKST) narrow band Ha and broad-band short- red “SR” continuum images and confirmed spectroscopically. These 6 preliminary discoveries provide a 6% increase to the previously known SMC PN population of ∼⃒100. Once spectroscopic follow-up of all our newly identified candidates is complete, we expect to increase the total number of known SMC PNe by up to 50%. This will permit a significant improvement to determination of the SMC PN luminosity function (PNLF) and enable further insights into the chemical evolution and kinematics of the SMC PN population. (paper)

  6. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  7. The radial velocities of planetary nebulae in NGC 3379

    Science.gov (United States)

    Ciardullo, Robin; Jacoby, George H.; Dejonghe, Herwig B.

    1993-09-01

    We present the results of a radial velocity survey of planetary nebulae (PNs) in the normal elliptical galaxy NGC 3379 performed with the Kitt Peak 4 m telescope and the NESSIE multifiber spectrograph. In two half-nights, we measured 29 PNs with projected galactocentric distances between 0.4 and 3.8 effective radii with an observational uncertainty of about 7 km/s. These data extend three times farther into the halo than any previous absorption-line velocity study. The velocity dispersion and photometric profile of the galaxy agrees extremely well with that expected from a constant mass-to-light ratio, isotropic orbit Jaffe model with M/L(B) about 7; the best-fitting anisotropic models from a quadratic programming algorithm also give M/L(B) about 7. The data are consistent with models that contain no dark matter within 3.5 effective radii of the galaxy's nucleus.

  8. Herbig-Haro objects and T Tauri nebulae

    International Nuclear Information System (INIS)

    Boehm, K.H.

    1975-01-01

    The empirical information about Herbig-Haro objects and T Tauri nebulae is summarized. We emphasize especially the importance of the spectroscopic and spectrophotometric data. Relative and (preliminary) absolute emission line fluxes are presented and discussed. We consider the radial velocity data and the detection of a faint blue continuum in Herbig-Haro objects as important from a theoretical point of view. The direct interpretation of the emission line spectra is simple and leads to values of the electron temperature, electron density, density inhomogeneities, filling factors, degree of ionization and chemical abundances. The relevant procedures are discussed in some detail. The possible role of the Herbig-Haro objects in the early phases of stellar evolution is discussed. (orig./BJ) [de

  9. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  10. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  11. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  12. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  13. Synthesis of Organics in the Early Solar Nebula

    Science.gov (United States)

    Johnson, Natasha M.; Manning, S.; Nuth, J. A., III

    2007-10-01

    It is unknown what process or processes made the organics that are found or detected in extraterrestrial materials. One process that forms organics are Fischer-Tropsch type (FTT) reactions. Fischer-Tropsch type synthesis produces complex hydrocarbons by hydrogenating carbon monoxide via surface mediated reactions. The products of these reactions have been well-studied using `natural’ catalysts [1] and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to material near three AU [2]. We use FTT synthesis to coat Fe-silicate amorphous grains with organic material to simulate the chemistry in the early Solar Nebula. These coatings are composed of macromolecular organic phases [3]. Previous work also showed that as the grains became coated, Haber-Bosch type reactions took place resulting in nitrogen-bearing organics [4]. Our experiments consist of circulating CO, N2, and H2 gas through Fe- amorphous silicate grains that are maintained at a specific temperature in a closed system. The gases are passed through an FTIR spectrometer and are measured to monitor the reaction progress. Samples are analyzed using FTIR, and GCMS (including pyrolysis) and extraction techniques are used to analyze the organic coatings. These experiments show that these types of reactions are an effective means to produce complex hydrocarbons. We present the analysis of the produced organics (solid and gas phase) and the change in the production rate of several compounds as the grains become coated. Organics generated by this technique could represent the carbonaceous material incorporated in comets and meteorites. References: [1] Hayatsu and Anders 1981. Topics in Current Chemistry 99:1-37. [2] Kress and Tielens 2001. MAPS 36:75-91. [3] Johnson et al. 2004. #1876. 35th LPSC. [4] Hill and Nuth 2003. Astrobiology 3:291-304. This work was supported by a grant from NASA.

  14. Hot Gas in the Wolf–Rayet Nebula NGC 3199

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Chu, Y.-H. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Marston, A. P. [European Space Agency/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada E-18008 (Spain); Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The Wolf–Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (i) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (ii) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 10{sup 6} K and n {sub e} = 0.3 cm{sup −3} with an X-ray luminosity in the 0.3–3.0 keV energy range of L {sub X} = 2.6 × 10{sup 34} erg s{sup −1}. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  15. New View of Gas and Dust in the Solar Nebula

    Science.gov (United States)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  16. Partnering efforts at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Warren, C.B.

    1995-01-01

    Before individuals or agencies can effectively work together to solve common problems, they must first agree on exactly what those problems are and establish common goals and methods that will lead to mutually acceptable solutions. Then, they must make a conscientious effort to form a cohesive team that focuses on the established goals and deemphasize traditional roles, which may in some instances be considered adversarial. This kind of teamwork/partnering process can be more difficult, though not impossible, to achieve in cases where there are traditional (real or imagined) adversarial relationships between the parties, i.e. regulator vs. regulated. The US Department of Energy Site Office (DOE) at Paducah, Kentucky, the Kentucky Department of Environmental Protection (KDEP) and the US Environmental Protection Agency, Region IV (EPA) have made t strides toward teamwork and partnering at DOE's Paducah Gaseous Diffusion Plant. They have accomplished this in a number of ways, which will be discussed in greater detail but first and foremost, the agencies agreed up front that they had mutual goals and interests. These goals are to protect public health and the environment in a cost-effective and timely manner, taking care to make the wisest use of public resources (tax dollars); to evaluate and minimize risks, and to achieve ''Win-Win'' for all parties concerned

  17. Gaseous diffusion flames: simple structures and their interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A. [Universita degli Studi Federico II, Naples (Italy). Dip. di Ingegneria Chimica; Ragucci, R. [Istituto di Ricerche sulla Combustione C,N.R., Naples (Italy)

    2001-07-01

    This is a synoptic overview of a selection of works dealing with single diffusive structures, with their mutual interaction in simple flows and their statistical modeling in complex flows. The focus is on reacting conditions pertaining to gaseous diffusion flames, but isothermal structures are also described when they are of some conceptual interest. This paper considers only few representative works for each subject, which are functional in explaining the key characteristics of the diffusive structures. The extension, given to single subjects, is not weighed according to the number of related publications but on the relevance to the basic understanding of the general framework concerning diffusion flames. One-dimensional structures are first discussed. They are ordered according to the number of balance equation terms needed for their description. Two-dimensional (2D) structures are then introduced following an order based on their convolution level. Some pioneering work on three-dimensional structures is further quoted. The temporal evolution of simple structures in quiescent or simple flowing 2D systems is considered. The latter case is exploited to present classification of diffusion-controlled mixing regimes. Modeling characterization approach of turbulent diffusion flames is also described in order to yield a self-sufficient didactic presentation. The approach based on the flame surface density model is specifically discussed because of its potential use in the determination of qualitative and quantitative features of simple diffusion flames. (author)

  18. An Analysis of Spectra in the Red Rectangle Nebula Frédéric Zagury

    Indian Academy of Sciences (India)

    If the preceding paper emphasized the importance of atmospheric extinction for our understanding of ...... paper, the authors address several problems which concern the star system at the center of the nebula ... 1981), on-going research being ...

  19. Gas capture and rare gas retention by accreting planets in the solar nebula

    International Nuclear Information System (INIS)

    Mizuno, H.; Nakazawa, K.; Hayashi, C.

    1982-01-01

    In this paper, the physico-chemical effects of the nebula gas on the planets are reviewed from a standpoint of planetary formation in the solar nebula. The proto-Earth growing in the nebula was surrounded by a primordial atmosphere with a solar chemical composition and solar isotopic composition. When the mass of the proto-Earth was greater than 0.3 times the present Earth mass, the surface was molten because of the blanketing effect of the atmosphere. Therefore, the primordial rare gases contained in the primordial atmosphere dissolved into the molten Earth material without fractionation and in particular the dissolved neon is expected to be conserved in the present Earth material. Hence, if dissolved neon with a solar isotopic ratio is discovered in the Earth material, it will indicate that the Earth was formed in the nebula and that the dissolved rare gases were one of the sources which degassed to form the present atmosphere. (author)

  20. Colorimetry of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635

    International Nuclear Information System (INIS)

    Parsamian, E.S.; Petrosian, V.M.

    1984-01-01

    The results of a colorimetric investigation of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635, which are excited by O stars, are presented. The nebulas S 156, S 157A, and NGC 7635 are very bright in U due to the presence in them of strong ultraviolet doublet forbidden O II 3727 A. These values correspond effectively to the monochromatic image of the nebulas at this wavelength. The measurements show that the B-V color index does not change significantly with distance from the star except for S 158, where a weak dependence is observed. The results indicate that the physical properties of these nebulas differ little. It is concluded that the gas masses in this association are remnants of star formation that have a common origin with the stars. The age of the association is estimated at 100,000-1,000,000 yr. 13 references

  1. Freezer-sublimer for gaseous diffusion plant

    International Nuclear Information System (INIS)

    Reti, G.R.

    1978-01-01

    A method and apparatus is disclosed for freezing and subliming uranium hexafluoride (UF 6 ) as part of a gaseous diffusion plant from which a quantity of the UF 6 inventory is intermittently withdrawn and frozen to solidify it. A plurality of upright heat pipes holds a coolant and is arranged in a two compartment vessel, the lower compartment is exposed to UF 6 , the higher one serves for condensing the evaporated coolant by means of cooling water. In one embodiment, each pipe has a quantity of coolant such as freon, hermetically sealded therein. In the other embodiment, each pipe is sealed only at the lower end while the upper end communicates with a common vapor or cooling chamber which contains a water cooled condenser. The cooling water has a sufficiently low temperature to condense the evaporated coolant. The liquid coolant flows gravitationally downward to the lower end portion of the pipe. UF 6 gas is flowed into the tank where it contacts the finned outside surface of the heat pipes. Heat from the gas evaporates the coolant and the gas in turn is solidified on the exterior of the heat pipe sections in the tank. To recover UF 6 gas from the tank, the solidified UF 6 is sublimed by passing compressed UF 6 gas over the frozen UF 6 gas on the pipes or by externally heating the lower ends of the pipes sufficiently to evaporate the coolant therein above the subliming temperature of the UF 6 . The subliming UF 6 gas then condenses the coolant in the vertical heat pipes, so that it can gravitationally flow back to the lower end portions

  2. Euthanasia using gaseous agents in laboratory rodents.

    Science.gov (United States)

    Valentim, A M; Guedes, S R; Pereira, A M; Antunes, L M

    2016-08-01

    Several questions have been raised in recent years about the euthanasia of laboratory rodents. Euthanasia using inhaled agents is considered to be a suitable aesthetic method for use with a large number of animals simultaneously. Nevertheless, its aversive potential has been criticized in terms of animal welfare. The data available regarding the use of carbon dioxide (CO2), inhaled anaesthetics (such as isoflurane, sevoflurane, halothane and enflurane), as well as carbon monoxide and inert gases are discussed throughout this review. Euthanasia of fetuses and neonates is also addressed. A table listing currently available information to ease access to data regarding euthanasia techniques using gaseous agents in laboratory rodents was compiled. Regarding better animal welfare, there is currently insufficient evidence to advocate banning or replacing CO2 in the euthanasia of rodents; however, there are hints that alternative gases are more humane. The exposure to a volatile anaesthetic gas before loss of consciousness has been proposed by some scientific studies to minimize distress; however, the impact of such a measure is not clear. Areas of inconsistency within the euthanasia literature have been highlighted recently and stem from insufficient knowledge, especially regarding the advantages of the administration of isoflurane or sevoflurane over CO2, or other methods, before loss of consciousness. Alternative methods to minimize distress may include the development of techniques aimed at inducing death in the home cage of animals. Scientific outcomes have to be considered before choosing the most suitable euthanasia method to obtain the best results and accomplish the 3Rs (replacement, reduction and refinement). © The Author(s) 2015.

  3. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  4. Method of separating tritium contained in gaseous wastes

    International Nuclear Information System (INIS)

    Hashimoto, Yasuo; Oozono, Hideaki.

    1981-01-01

    Purpose: To decrease tritium concentration in gaseous wastes to less than the allowable level by removing tritium in gaseous wastes generated upon combustion of radioactive wastes by using a plurality of heat exchangers. Method: Gaseous wastes at high temperature generated upon combustion of radioactive wastes in an incinerator are removed with radioactive solid substances through filters, cooled down to a temperature below 10 0 C by the passage through first and second heat exchangers and decreased with tritium content to less than the allowable concentration by the gaseous wastes at low temperature from the second heat exhcanger. The gaseous wastes at low temperature are used as the cooling medium for the first heat exchanger. They are heat exchanged at the upstream of the second heat exchanger with the cooling water from the third heat exchanger and cooled at the downstream by the cooling water cooled by the cooling medium. The gaseous wastes at low temperature thus cooled below 10 0 C are heated to about 350 0 C in the first heat exchanger and discharged. (Moriyama, K.)

  5. Spatio-kinematic modelling: Testing the link between planetary nebulae and close binaries

    OpenAIRE

    Jones, David; Tyndall, Amy A.; Huckvale, Leo; Prouse, Barnabas; Lloyd, Myfanwy

    2011-01-01

    It is widely believed that central star binarity plays an important role in the formation and evolution of aspherical planetary nebulae, however observational support for this hypothesis is lacking. Here, we present the most recent results of a continuing programme to model the morphologies of all planetary nebulae known to host a close binary central star. Initially, this programme allows us to compare the inclination of the nebular symmetry axis to that of the binary plane, testing the theo...

  6. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    International Nuclear Information System (INIS)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-01-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating

  7. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  8. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Vlemmings, W. H. T. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Huggins, P. J. [Physics Department, New York University, 4 Washington Place, New York, NY 10003 (United States); Nyman, L.-Å. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile); Gonidakis, I., E-mail: raghvendra.sahai@jpl.nasa.gov [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Marsfield NSW 2122 (Australia)

    2013-11-10

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  9. The distribution of mass in the planetary system and solar nebulae

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.

    1977-01-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula. (Auth.)

  10. CRL 2688: A post-carbon-star object and probable planetary nebula progenitor

    International Nuclear Information System (INIS)

    Zuckerman, B.; Gilra, D.P.; Turner, B.E.; Morris, M.; Palmer, P.

    1976-01-01

    Millimeter-wavelength emission is observed toward CRL 2688 from H 12 CN, H 13 CN, CS, and HC 3 N. The similarity of this emission and that from the molecular envelope of the carbon star IRC+10216 establishes, beyond a reasonable doubt, that CRL 2688 is a post--carbon-star object. It appears probable that both of these objects will evolve into planetary nebulae. An evolutionary sequence leading from carbon stars to planetary nebulae is outlined

  11. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  12. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  13. Polarization due to dust scattering in the planetary nebula Cn1-1

    International Nuclear Information System (INIS)

    Bhatt, H.C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula

  14. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    Science.gov (United States)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  15. A ROTATIONALLY POWERED MAGNETAR NEBULA AROUND SWIFT J1834.9–0846

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Diego F. [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Magrans s/n, E-08193 Barcelona (Spain)

    2017-01-20

    A wind nebula generating extended X-ray emission was recently detected surrounding Swift J1834.9–0846. This is the first magnetar for which such a wind nebula was found. Here, we investigate whether there is a plausible scenario where the pulsar wind nebula (PWN) can be sustained without the need of advocating for additional sources of energy other than rotational. We do this by using a detailed radiative and dynamical code that studies the evolution of the nebula and its particle population in time. We find that such a scenario indeed exists: Swift J1834.9–0846's nebula can be explained as being rotationally powered, as all other known PWNe are, if it is currently being compressed by the environment. The latter introduces several effects, the most important of which is the appearance of adiabatic heating, being increasingly dominant over the escape of particles as reverberation goes by. The need of reverberation naturally explains why this is the only magnetar nebula detected and provides estimates for Swift 1834.9–0846's age.

  16. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system

  17. Planetary Nebulae in the Solar Neighbourhood: Statistics, Distance Scale and Luminosity Function

    Science.gov (United States)

    Frew, David J.

    2008-07-01

    An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its relationship to the cooling history of the central star, and also to provide an unbiased sample to investigate the frequency of binary central stars and their role in the formation and shaping of these objects. This study presents the most refined volume-limited survey of PNe known to date. Integrated H-alpha fluxes for over 400 mostly evolved PNe are presented, based primarily on data from the Southern H-alpha Sky Survey Atlas (SHASSA) and the Virginia Tech Spectral-Line Survey (VTSS). Aperture photometry on the digital images was performed to extract H-alpha+[NII] fluxes. The [NII] contribution was then de-convolved using literature data, new data from slit spectra, or spectrophotometric data from the Wisconsin H-Alpha Mapper (WHAM) also obtained as part of this project. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. The H-alpha fluxes are used to determine new Zanstra temperatures for those PNe with accurate central star photometry, calculating surface-brightness distances for each PN in the sample, and in conjunction with accurate [OIII] fluxes, new absolute PN magnitudes for delineating the faint end of the PN luminosity function. A spectroscopic survey of a range of MASH PNe is also presented. New emission-line intensities for 60 PNe are given, including a preliminary discussion of the chemical abundances of this sample. New distances have been determined for a large number of PNe, by either critically examining the literature, or by deriving new extinction and kinematic distances where suitable. For all PNe not amenable to these approaches, distances were estimated from a new H-alpha surface brightness-radius (SB-r) relation. The Hα SB-r relation covers >6 dex in SB, and

  18. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  19. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  20. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  1. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.

    1990-01-01

    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  2. PROOF on the Cloud for ALICE using PoD and OpenNebula

    International Nuclear Information System (INIS)

    Berzano, D; Bagnasco, S; Brunetti, R; Lusso, S

    2012-01-01

    In order to optimize the use and management of computing centres, their conversion to cloud facilities is becoming increasingly popular. In a medium to large cloud facility, many different virtual clusters may concur for the same resources: unused resources can be freed either by turning off idle virtual machines, or by lowering resources assigned to a virtual machine at runtime. PROOF, a ROOT-based parallel and interactive analysis framework, is officially endorsed in the computing model of the ALICE experiment as complementary to the Grid, and it has become very popular over the last three years. The locality of PROOF-based analysis facilities forces system administrators to scavenge resources, yet the chaotic nature of user analysis tasks deems them unstable and inconstantly used, making PROOF a typical use-case for HPC cloud computing. Currently, PoD dynamically and easily provides a PROOF-enabled cluster by submitting agents to a job scheduler. Unfortunately, a Tier-2 does not comfortably share the same queue between interactive and batch jobs, due to the very large average time to completion of the latter: an elastic cloud approach would enable interactive virtual machines to temporarily subtract resources to the batch ones, without a noticeable impact on them. In this work we describe our setup of a dynamic PROOF-based cloud analysis facility based on PoD and OpenNebula, orchestrated by a simple and lightweight control daemon that makes virtualization transparent for the user.

  3. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G.; Reipurth, B.; Willman, M.

    2013-01-01

    We present results from an Hα emission line survey in a 1 deg 2 area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples

  4. UNUSUAL SHOCK-EXCITED OH MASER EMISSION IN A YOUNG PLANETARY NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hai-Hua; Shen, Zhi-Qiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd, Shanghai, 200030 (China); Walsh, Andrew J. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth WA 6845 (Australia); Gómez, José F. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Imai, Hiroshi [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Green, James A. [SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Dawson, Joanne R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Ellingsen, Simon P. [School of Physical Sciences, Private Bag 37, University of Tasmania, Hobart 7001, TAS (Australia); Breen, Shari L. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Jones, Paul A.; Cunningham, Maria R. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Gibson, Steven J., E-mail: haihua.qiao@curtin.edu.au [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101 (United States)

    2016-01-20

    We report on OH maser emission toward G336.644−0.695 (IRAS 16333−4807), which is a H{sub 2}O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667, and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array, hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3−35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H{sub 2}O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km s{sup −1}). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ∼2 to ∼10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.

  5. MAGNETIC FIELD MEASUREMENTS OF T TAURI STARS IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Hao Yang; Johns-Krull, Christopher M.

    2011-01-01

    We present an analysis of high-resolution (R ∼ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age.

  6. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  7. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  8. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  9. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  11. A nebula of gases from Io surrounding Jupiter.

    Science.gov (United States)

    Krimigis, Stamatios M; Mitchell, Donald G; Hamilton, Douglas C; Dandouras, Jannis; Armstrong, Thomas P; Bolton, Scott J; Cheng, Andrew F; Gloeckler, George; Hsieh, K C; Keath, Edwin P; Krupp, Norbert; Lagg, Andreas; Lanzerotti, Louis J; Livi, Stefano; Mauk, Barry H; McEntire, Richard W; Roelof, Edmond C; Wilken, Berend; Williams, Donald J

    2002-02-28

    Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

  12. Understanding Galactic planetary nebulae with precise/reliable nebular abundances

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; di Criscienzo, M.; Yagüe, A.

    2017-10-01

    We compare recent precise/reliable nebular abundances - as derived from high-quality optical spectra and the most recent ICFs - in a sample of Galactic planetary nebulae (PNe) with nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) ATON models in the metallicity range Z ⊙/4 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios can be obtained. Two DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 M⊙). Their actual C/O ratios, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  13. Giant Ly α Nebulae in the Illustris Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gronke, Max [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, NO-0315 Oslo (Norway); Bird, Simeon, E-mail: maxbg@astro.uio.no [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)

    2017-02-01

    Several “giant” Ly α nebulae with an extent ≳300 kpc and observed Ly α luminosity of ≳10{sup 44} erg s{sup −1} cm{sup −2} arcsec{sup −2} have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Ly α emission emerging from large halos ( M > 10{sup 11.5} M {sub ⊙}) at z ∼ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Ly α spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Ly α nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.

  14. Helix Nebula: sunshine and clouds on the CERN computing horizon

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    23 petabytes is how much data CERN recorded during 2011, and this number will rise in 2012. In order to respond to the challenge, the IT department is upping its game, amongst other things by participating in the Helix Nebula project, a public-private partnership to create a European cloud-computing platform, as announced in a recent CERN press release.   “We’re not replacing the Grid,” clarifies Bob Jones, responsible for CERN openlab who is also responsible for EC-funded projects in IT, “but looking at three complementary ways of increasing CERN’s computing capacity, so that as demand goes up we can continue to satisfy our users.” “First we are upgrading the electrical and cooling infrastructure of the computer centre in order to increase the availability of critical IT services needed for the Laboratory. This will also provide more floor space in the area called The Barn, allowing for more servers to fit in.”...

  15. Do all Planetary Nebulae result from Common Envelopes?

    Science.gov (United States)

    De Marco, O.; Moe, M.; Herwig, F.; Politano, M.

    2005-12-01

    The common envelope interaction is responsible for evolved close binaries. Some of these binaries reside in the middle of planetary nebulae (PN). Conventional wisdom has it that only about 10% of all PN contain close binary central stars. Recent observational results, however, strongly suggest that most or even all PN are in close binary systems. Interestingly, our population synthesis calculations predict that the number of post-common envelope PN is in agreement with the total number of PN in the Galaxy. On the other hand, if all stars (single and in binaries) with mass between ˜1-8 M⊙ eject a PN, there would be 10-20 times many more PN in the galaxy than observed. This theoretical result is in agreement with the observations in suggesting that binary interactions play a functional rather than marginal role in the creation of PN. FH acknowledges funds from the U.S. Dept. of Energy, under contract W-7405-ENG-36 to Los Alamos National Laboratory. MP gratefully acknowledges NSF grant AST-0328484 to Marquette University.

  16. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  17. On the origin of cometary nuclei in the presolar nebula

    International Nuclear Information System (INIS)

    Biermann, L.; Michel, K.W.

    1978-01-01

    If it is assumed that the cometary nuclei originated by the gravitational instability of a dust layer, which formed in the equatorial plane of the outer parts of the presolar nebula (PSN) during a period of approximate equilibrium between gravity, centrifugal force, and the pressure gradient a simple relation is derived between the PSN's temperature and the upper limit to the mass of the planetesimals. It contains, beside the density of the cometary nuclei, rhosub(p) only the factor (by mass) of the condensable elements in the PSN, which became part of the dust particle disc, which, on the basis of available observational evidence on the solid particles in interplanetary and interstellar space and of theoretical considerations on the relationship between them and on the sedimentation process, is found to be of the order of >=approximately 10%; this estimate will require still further justification. Assuming a temperature in the range 15-20 K, an equatorial diameter of the PSN of 0.1 pc and rhosub(p) approximately a few 0.1 g/cm 3 , upper limits for the planetesimal's mass of approximately 10 18 g and for their radius of approximately 10km are obtained (on the basis of conservation of circulation, of mass and of angular momentum in the differential rotating disc), in fair agreement with observation. (Auth.)

  18. Radio and infrared observations of the faint nebula GM24

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Roth, M; Tapia, M; Canto, J; Persi, P; Ferrari-Toniolo, M

    1986-02-01

    The faint nebulosity GM24=PP85 listed by Parsamian and Petrosian (1979) was observed at infrared (1-10 ..mu..m) and radio (6 cm and CO line) wavelengths in the vicinity of the CO hot spot reported by Torrelles et al. (1983). The radio continuum (6 cm) emission from a spherically symmetrical HII region was detected with the Very Large Array. Its position coincides with the brightest part of the visible nebulosity and a 1-4 ..mu..m emission peak. Their infrared maps made at the Observatorio Astronomico Nacional de San Pedro Martir, show two additional (1-10 ..mu..m) peaks located at distances approx. 30 arc sec from the compact HII region, all surrounded by extended near infrared (1-4 ..mu..m) emission. A detailed CO (J=1 ..-->.. 0) map of the whole molecular cloud was also obtained with the University of Texas Millimeter - Wave Telescope. Their results are interpreted in terms of the recent formation of three massive stars, one of which, having developed an HII region, is at a slightly later phase of its evolution. The extended near infrared emission may arise in a reflection nebula similar to NGC 7538-Irs 9. 4 references.

  19. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  20. OH+ emission from cometary knots in planetary nebulae

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.

    2018-05-01

    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.