WorldWideScience

Sample records for gas sand cores

  1. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  2. Western Gas Sands Project status report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C.H.

    1978-11-30

    Progress of government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States is summarized. A Technology Implementation Plan (TIP) meeting was held at the CER office in Las Vegas, Nevada, October 16--19 to initiate the implementation phase of the Enhanced Gas Recovery (EGR) working group activities. A WGSP Logging Program meeting was conducted on October 24, 1978, at CER offices to define the problems associated with logs in tight gas sands. CER personnel and the project manager attended a two-day course on the fundamentals of core and reservoir analysis in Denver, Colorado, and met with USGS personnel to discuss USGS work on the WGSP. A meeting was held to discuss a contract for coring a Twin Arrow well on the Douglas Creek Arch, Colorado. CER Corporation personnel attended the Geological Society of America Annual Meeting held in Toronto, Canada, October 23--27 and a Gas Stimulation Workshop at Sandia Laboratories in Albuquerque, New Mexico, October 11 and 12 to discuss recent mineback experiments conducted at the Nevada Test Site. Fiscal year 1979 projects initiated by USGS and the Energy Technology Centers and National Laboratories are progressing as scheduled. Mobil Research and Development Corporation fractured zone 8 of the F-31-13G well in Rio Blanco County, Colorado. Colorado Interstate Gas Company poured the concrete pad for the compresser expected to be delivered in December and were laying pipeline between the wells at month end. The Mitchell Energy well, Muse Duke No. 1 was flowing on test at a rate of 2,100 Mcfd and preparations proceeded to fracture the well on November 15 with approximately 1,000,000 gal of fluid and 3,000,000 lb of sand. Terra Tek completed laboratory analyses of cores taken from the Mitchell Energy well.

  3. Development tendencies of moulding and core sands

    Directory of Open Access Journals (Sweden)

    Stanislaw M. Dobosz1

    2011-11-01

    Full Text Available Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.

  4. Western Gas Sands Project: stratigrapy of the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  5. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  6. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  7. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  8. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  9. Athabasca tar sand reservoir properties derived from cores and logs

    International Nuclear Information System (INIS)

    Woodhouse, R.

    1976-01-01

    Log interpretation parameters for the Athabasca Tar Sand Lease No. 24 have been determined by careful correlation with Dean and Stark core analysis data. Significant expansion of Athabasca cores occurs as overburden pressure is removed. In the more shaly sands the core analysis procedures remove adsorbed water from the clays leading to further overestimation of porosity and free water volume. Log interpretation parameters (R/sub w/ = 0.5 ohm . m and m = n = 1.5) were defined by correlation with the weight of tar as a fraction of the weight of rock solids (grain or dry weight fraction of tar). This quantity is independent of the water content of the cores, whereas porosity and the weight of tar as a fraction of the bulk weight of fluids plus solids (bulk weight fraction) are both dependent on water content. Charts are provided for the conversion of bulk weight fraction of fluids to porosity; grain weight fraction of fluids to porosity; log derived porosity and core grain weight tar to water saturation. Example results show that the core analysis grain weight fraction of tar is adequately matched by the log analyses. The log results provide a better representation of the reservoir fluid volumes than the core analysis data

  10. Improvement of composition of core sand and molding sand mixtures for power machine building castings

    International Nuclear Information System (INIS)

    Velikanov, G.F.; Primak, I.N.; Brechko, A.A.

    1982-01-01

    Considered is a problem of development and improvement of mixtures, as well as of antisticking coatings with the given parameters providing production of castings of the necessary quality. Requirements to properties of mixtures and antisticking coatings are formulated proceeding from the conditions of guaranteed production of qualitative steel castings with mass from 0.5 up to 20t and wall thickness from 60 up to 200 mm. Formation of film structure of binding compositions is studied, their marginal contact angle and surface tension are determined. In the result of work carried out on improvement of core sand and molding sand mixtures the labour productivity during the production of core and moldings has been increased in 20-25% in average, the quality has also been improved [ru

  11. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  12. Western tight gas sands advanced logging workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J B; Carroll, Jr, H B [eds.

    1982-04-01

    An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

  13. Creating and maintaining a gas cap in tar sands formations

    Science.gov (United States)

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  14. Tight gas sand tax credit yields opportunities

    International Nuclear Information System (INIS)

    Lewis, F.W.; Osburn, A.S.

    1991-01-01

    The U.S. Internal Revenue Service on Apr. 1, 1991, released the inflation adjustments used in the calculations of Non-Conventional Fuel Tax Credits for 1990. The inflation adjustment, 1.6730, when applied to the base price of $3/bbl of oil equivalent, adjusts the tax credit to $5.019/bbl for oil and 86.53 cents/MMBTU for gas. The conversion factor for equivalent fuels is 5.8 MMBTU/bbl. Unfortunately, the tax credit for tight formation gas continues to be unadjusted for inflation and remains 52 cents/MMBTU. As many producers are aware, the Omnibus Budget Reconciliation Act of 1990 expanded the dates of eligibility and the usage for-Non-Conventional Fuel Tax Credits. Among other provisions, eligible wells may be placed in service until Jan. 1, 1992, and once in place may utilize the credit for production through Dec. 31, 2002. Both dates are 2 year extensions from previous regulations

  15. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas

    or veining and metal penetration defects. The use of refractory coatings on cores is fundamental to obtaining acceptable casting surface quality and is used on resin bonded cores in production foundries. In this study new sol gel-coated sand cores made from coldbox and furan binder systems were investigated......Expansion defects on the surface of the castings include sand burn-in, metal penetration and/or veining, finning or scab. Veining or finning and metal penetration are of interest. These defects are associated with silica sand and result from the penetration of liquid metal into cracks formed during...... differential expansion of the core during heating. The rapid expansion of silica sand up to 600 oC and especially at 573 oC, where the α – β phase transformation occurs, is the cause of stresses in the core system. These stresses cause crack formation and metal melt flows into these cracks causing finning...

  16. Influence of the Reclaim from the Cordis Technology on the Core Sand Strength

    Directory of Open Access Journals (Sweden)

    Dańko J.

    2014-12-01

    Full Text Available The investigation results of the mechanical reclamation of spent moulding sands from the Cordis technology are presented in the paper. The quality assessment of the obtained reclaim and the influence of the reclaim fraction in a matrix on the core sand strength is given. The reclaim quality assessment was performed on the basis of the determination of losses on ignition, Na2O content on reclaim grains and pH values. The reclaim constituted 100%, 75% and 50% of the core sand matrix, for which the bending strength was determined. The matrix reclamation treatment was performed in the experimental rotor reclaimer RD-6. Spent sands were applied in as-delivered condition and after the heating to a temperature of 140 °C. Shaped samples for strength tests were made by shooting and hardening of sands in the warmbox technology.

  17. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  18. Sedimentological Properties of Natural Gas Hydrates-Bearing Sands in the Nankai Trough and Mallik Areas

    Science.gov (United States)

    Uchida, T.; Tsuji, T.; Waseda, A.

    2009-12-01

    The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys have definitely indicated gas hydrate distributions, and drilling the MITI Nankai Trough wells in 2000 and the METI Tokai-oki to Kumano-nada wells in 2004 have revealed subsurface gas hydrate in the eastern part of Nankai Trough. In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that also clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. During the field operations, the LWD and wire-line well log data were continuously obtained and plenty of gas hydrate-bearing sand cores were recovered. Subsequence sedimentological and geochemical analyses performed on those core samples revealed the crucial geologic controls on the formation and preservation of natural gas hydrate in sediments. Pore-space gas hydrates reside in sandy sediments mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space gas hydrates within moderate to thick sandy layers, typically 10 cm to a meter thick. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 45 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata. Gas hydrate saturations are typically up to 80 % in pore volume throughout most of the hydrate-dominant sandy layers, which are estimated by well log analyses as well as pore water chloride anomalies. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicated that highly saturated

  19. Suitability of a South African silica sand for three-dimensional printing of foundry moulds and cores

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Applications of three-dimensional printing (3DP to metal casting include, among other things, the direct manufacturing of foundry moulds and cores in refractory materials such as silica sand. The main properties of silica sand that are essentially related to the traditional moulding and core-making processes are: size distribution, clay content, pH, acid demand, and refractoriness. The silica sand used for 3DP must also be appropriately selected for the layer-based manufacturing process involved in 3DP. Properties such as grain size distribution, grain surface morphology, angularity, flowability, and recoating abilities have a particular importance when determining sand suitability. Because of these extra requirements, only a limited range of available foundry silica sands can be used for 3DP processes. The latter situation explains the scarcity and high cost of suitable silica sands, thus contributing to the relatively high operational costs of the 3DP processes for the production of sand moulds and cores. This research paper investigates the suitability of a locally-available silica sand for use in a Voxeljet VX1000 3DP machine. The local silica sand was assessed and compared with an imported silica sand recommended by the manufacturer of 3DP equipment in terms of foundry characteristics and recoating behaviour. The study shows that, despite the differences between the characteristics of the two silica sands, the local sand could be considered a suitable alternative to imported sand for rapid sand casting applications.

  20. Elasticity of Moulding Sands – a Method of Reducing Core Cracking

    Directory of Open Access Journals (Sweden)

    Dobosz St. M.

    2017-03-01

    Full Text Available This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws, caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this property, presents methods of measuring and continues earlier research.

  1. Western Gas Sands Project. Status report, 1 September 1979-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This report summarizes progress of the government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States. Bartlesville Energy Technology Center continued work on rock-fluid interaction and advanced logging techniques. Lawrence Livermore Laboratory continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. Los Alamos Scientific Laboratory continued work on permeability and porosity determination of core samples and geological support studies. Sandia Laboratories continued work on their EGR Instrumentation and Diagnostic Program. Cyclic gas injection continued at Colorado Interstate Gas Company's Miller No. 1 and Sprague No. 1 wells. The DOE Well Test Facility is continuing to provide technical support to the Gas Research Institute/Rio Blanco Natural Gas MHF experiment. The Gas Producing Enterprises, Inc. Natural Buttes Unit wells continued to flow to sales. The Mitchell Energy Corporation Muse-Duke No. 1 was opened after a 28-day shut-in period. The hydraulic fracturing containment experiment continued for the Sandia-mineback program.

  2. Western Gas Sands Project. Status report, 1 January 1979--31 January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-01

    Aim is to increase gas production from the low-permeability gas sands of the western U.S. Progress is reported on: project management, resource assessment, R and D at various facilities, and field tests and demonstrations. (DLC)

  3. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  4. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  5. Improvements in Sand Mold/Core Technology: Effects on Casting Finish

    Energy Technology Data Exchange (ETDEWEB)

    Prof. John J. Lannutti; Prof. Carroll E. Mobley

    2005-08-30

    In this study, the development and impact of density gradients on metal castings were investigated using sand molds/cores from both industry and from in-house production. In spite of the size of the castings market, almost no quantitative information about density variation within the molds/cores themselves is available. In particular, a predictive understanding of how structure and binder content/chemistry/mixing contribute to the final surface finish of these products does not exist. In this program we attempted to bridge this gap by working directly with domestic companies in examining the issues of surface finish and thermal reclamation costs resulting from the use of sand molds/cores. We show that these can be substantially reduced by the development of an in-depth understanding of density variations that correlate to surface finish. Our experimental tools and our experience with them made us uniquely qualified to achieve technical progress.

  6. Western Gas Sands Project. Status report, 1 June--30 June 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This edition of the WGSP status report summarizes June 1979 progress of government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States. Background information is provided in the September 1977, status report, NVO/0655-100. Work by the USGS toward resource assessment in the four primary study areas continued. CK GeoEnergy started a core hole in Grand County, Utah. During June, projects of the National Laboratories and Energy Technology Centers continued. Bartlesville Energy Technology Center continued work on fracture conductivity, rock-fluid interaction, and log evaluation and interpretation techniques. Experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data continued at Lawrence Livermore Laboratory. The CER Corporation RB-MHF 3 final report has been distributed. Cyclic gas injection began again on CIG's Sprague No. 1 well. The DOE well test facility was transported to Vernal, Utah for minor repairs and storage. The GPE wells, Natural Buttes Units 9, 14 and 18 flowed to sales. The Mitchell Energy Muse-Duke No. 1 well flowed 3,000 MCFD in June. Attempts to kill the Mobil PCU F31-13G well failed. Exploratory coring of the Sandia Hole No. 6 Formation Interface Fracture Experiment resumed in June.

  7. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    Science.gov (United States)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  8. Basic criticality relations for gas core design

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1992-01-01

    Minimum critical fissile concentrations are calculated for U-233, U-235, Pu-239, and Am-242m mixed homogeneously with hydrogen at temperatures to 15,000K. Minimum critical masses of the same mixtures in a 1000 liter sphere are also calculated. It is shown that propellent efficiencies of a gas core fizzler engine using Am-242m as fuel would exceed those in a solid core engine as small as 1000L operating at 100 atmospheres pressure. The same would be true for Pu-239 and possibly U-233 at pressures of 1000 atm. or at larger volumes

  9. Possibilities of utilizing used moulding and core sands by microwave treatment

    Directory of Open Access Journals (Sweden)

    K. Granat

    2011-01-01

    Full Text Available The paper presents a semi-industrial reactor designed for microwave utilization of waste moulds and cores made of moulding sandsprepared in furane resin technology. It was found that a possibility exists of effective incinerating this way prepared residues of coresseparated from moulding sands or waste moulds left after casting. The preliminary tests evidenced that microwave heating is an effectiveway of disposing waste moulding sands and the applied apparatus permits effective control of the microwave heating process. The special structure permitting rotations of charge material and proper selection of the generators working cycles guarantee significant speeding-up the process and its full stabilisation. Application of microwave heating for utilization of waste moulds and cores containing synthetic resins as binders ensures significant and measurable economical benefits resulting from shorter process time.

  10. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  11. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  12. Gas core nuclear rocket feasibility project

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed

  13. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  14. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  15. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  16. Gas-hydrate-bearing sand reservoir systems in the offshore of India: Results of the India National Gas Hydrate Program Expedition 02

    Science.gov (United States)

    Kumar, P.; Collett, Timothy S.; Vishwanath, K.; Shukla, K.M.; Nagalingam, J.; Lall, M.V.; Yamada, Y; Schultheiss, P.; Holland, M.

    2016-01-01

    The India National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India using the deepwater drilling vessel Chikyu. The primary goal of this expedition was to explore for highly saturated gas hydrate occurrences in sand reservoirs that would become targets for future production tests. The first two months of the expedition were dedicated to logging-whiledrilling (LWD) operations, with a total of 25 holes drilled and logged. The next three months were dedicated to coring operations at 10 of the most promising sites. With a total of five months of continuous field operations, the expedition was the most comprehensive dedicated gas hydrate investigation ever undertaken.

  17. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    Science.gov (United States)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  18. Western Gas Sands Project. Status report, 1 August-31 August, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This status report summarizes progress of government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States. Work on fracture conductivity, rock-fluid interaction, and log evaluation and interpretation techniques continued at Bartlesville. Work commenced on completing, testing and possible hydraulic fracturing of the Rio Blanco Natural Gas Company well No. 397-19-1 and on the evaluation of seismic data for stratigraphic studies of lenticular sands. LLL continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. LASL worked on developing NMR methods to define fluid saturation, porosity, and permeability of western gas sands at in situ conditions. M.D. Wood, Inc. was involved in design and site preparation for two hydraulic fracture mapping jobs in the Cotton Valley Trend in Texas. Testing and analyses of the borehole seismic system and borehole hydrophone system continued at Sandia. Field tests and related activities for the WGSP progressed as scheduled in August. Cyclic injection of dehydrated natural gas and production in Colorado Interstate Gas Company's Miller No. 1 and Sprague No. 1 wells continued. The Gas Producing Enterprises, Inc. wells, Natural Buttes Units 9, 14, 18 and 20 flowed to sales. The Mitchell Energy Corporation Muse-Duke No. 1 was shut-in for a 15-day pressure buildup test. Hydraulic fracture containment experiments and activities in the multi-frac test series continued at the Nevada Test Site for Sandia Laboratories' mineback program.

  19. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  20. Gas detection in sands of high silt-clay content in the Cook Inlet area

    International Nuclear Information System (INIS)

    Bettis, F.

    1976-01-01

    When a sand contains a large amount of silt and clay it is often difficult to detect zones that contain gas using only the Archie Saturation Relationship. However, gas may be detected in these shaly formations using certain quick-look techniques. Log examples of these are presented in this paper. The first quick-look technique is an overlay of the neutron log on a density log. The neutron log is shifted relative to the density log to make the two porosity curves track in shaly water sands. Gas-bearing intervals become readily apparent from separations of the two curves where the density porosity is reading higher than the shifted neutron porosity. The second is an overlay of a neutron log on the sonic interval-transit-time log. The sonic log is shifted so as to match the neutron log in average tight sands in the section. This method has proved to be more optimistic than the density-neutron overlay above. It will find the gas-bearing zones, but may result in testing a zone or two which is nonproductive. The third method, used when no neutron log has been run, is a crossplot of the difference, sonic porosity minus density porosity, versus gamma ray API units. This is the most unreliable of the three methods because of the difficulty of determining the end points and the slope of the line on the plot which separates the gas zones from the non-gas zones

  1. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  2. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2017-03-01

    Full Text Available Due to downhole complexities, shale-gas horizontal well fracturing in the Sichuan Basin suffered from casing deformation and failure to apply the technique of cable-conveyed perforation bridge plug. In view of these problems, a new technique of staged volume fracturing with temporary plugging by sand filling is employed. Based on theoretical analyses and field tests, a design of optimized parameters of coiled tubing-conveyed multi-cluster sand-blasting perforation and temporary plugging by sand filling was proposed. It was applied in the horizontal Well ZJ-1 in which casing deformation occurred. The following results are achieved in field operations. First, this technique enables selective staged fracturing in horizontal sections. Second, this technique can realize massive staged fracturing credibly without mechanical plugging, with the operating efficiency equivalent to the conventional bridge plug staged fracturing. Third, full-hole is preserved after fracturing, thus it is possible to directly conduct an open flow test without time consumption of a wiper trip. The staged volume fracturing with temporary plugging by sand filling facilitated the 14-stage fracturing in Well ZJ-1, with similar SRV to that achieved by conventional bridge plug staged fracturing and higher gas yield than neighboring wells on the same well pad. Thus, a new and effective technique is presented in multi-cluster staged volume fracturing of shale gas horizontal wells.

  3. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  4. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  5. Integrated sulphur management : gas, oil sands, reclamation and the challenges of fluctuating demand

    International Nuclear Information System (INIS)

    Pineau, R.

    2009-01-01

    International Commodities Export Corporation is a privately held company that provides fully integrated service offerings to add maximum value in designing, building, owning, and operating sulphur assets. The company also offers in-house, engineering, procurement and project management, as well as supply management, transportation and distribution services. It also has expertise in marine transportation. This presentation discussed integrated sulphur management, with particular focus on gas, oil sands, reclamation and the challenges of fluctuating demand. The presentation provided an overview of the sulphur market and oil sands sulphur. Key considerations for oil sands producers were also presented. The challenges of fluctuating demand include price and volume considerations; logistics; geography and distance to market; export/offshore versus domestic/United States; seasonal considerations; and an inelastic sulphur market. The presentation concluded with a status update of ICEC's initiative and the advantages of Prince Rupert, an economically viable export infrastructure to producers without onsite forming facilities. figs

  6. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  7. Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice

    Science.gov (United States)

    Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.

    2006-12-01

    Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.

  8. Feasibility study of full-reactor gas core demonstration test

    Science.gov (United States)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  9. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  10. Experimental and simulated displacement of oil in sand berea cores using aqueous solutions

    International Nuclear Information System (INIS)

    Ramirez, A.; Gonzalez, J.L.; Hernandez, F.; Hernandez, H.

    2009-01-01

    The development of a mathematical algorithm to simulate the displacement of a resident fluid using a displacing one in a saturated anisotropic porous media is shown in this work. The algorithm was included in the simulator developed by the present authors in previous works to represent the anisotropic distribution of the porous media properties and the fluid injection [Ramirez A et al. Mathematical simulation of oil reservoir properties. Chaos, solitons and Fractals 2008;38:778-88, Ramirez A et al. Simulation of uncompressible fluid flow through a porous media. Chaos, Solitons and Fractals 2009;39:1753-63] in a nested loop to analyze the participant nodes in the transport process and calculate the volumes of the resident and new fluids. The new routine developed takes in count the mobility of both fluids. Additionally experimental fluid displacement tests were done using heavy oil from Mexican reservoirs as a resident fluid in sand berea cores. The injection of new fluids in natural oil reservoirs is a part of the Enhanced oil recovery (EOR) methods used to improve the oil displacement and increase production after the primary stage of the oil recovery has been finished. Water is an available and economical resource to be used as a displacing fluid due to many of the producers (off-shores) of the oil industries are placed in the sea near the coast.

  11. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  12. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    Science.gov (United States)

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  14. Western Gas Sands Project. Status report, 1 March 1979--31 March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress of the government-sponsored projects directed toward increasing gas production from low-permeability gas sands of the western United States is summarized. During March, National Laboratories and Energy Technology Centers generally progressed on schedule. Bartlesville Energy Technology Center continued work on fracture conductivity, rock-fluid interaction, and log evaluation techniques. Theoretical and experimental work on hydraulic fracturing mechanics and analysis of well test data continued at Lawrence Livermore Laboratory. Sandia Laboratories completed preparations for the NTS evaluation test of the borehole seismic system. M.D. Wood, Inc. monitored the formation of a hydraulic fracture in the Wattenburg gas field, Weld County, Colorado. Measurement of bottom-hole pressure in the Miller No. 1 and Sprague No. 1 wells for the CIG cyclic gas injection project continued. The Mitchell Energy Corporation Muse--Duke No. 1 was flowing 4,000 MCFD in March. Efforts to clean out Mobil's PCU F31-13G well continued.

  15. Multi-objective optimisation in carbon monoxide gas management at TRONOX KXN Sands

    Directory of Open Access Journals (Sweden)

    Stadler, Johan

    2014-08-01

    Full Text Available Carbon monoxide (CO is a by-product of the ilmenite smelting process from which titania slag and pig iron are produced. Prior to this project, the CO at Tronox KZN Sands in South Africa was burnt to get rid of it, producing carbon dioxide (CO2. At this plant, unprocessed materials are pre-heated using methane gas from an external supplier. The price of methane gas has increased significantly; and so this research considers the possibility of recycling CO gas and using it as an energy source to reduce methane gas demand. It is not possible to eliminate the methane gas consumption completely due to the energy demand fluctuation, and sub-plants have been assigned either CO gas or methane gas over time. Switching the gas supply between CO and methane gas involves production downtime to purge supply lines. Minimising the loss of production time while maximising the use of CO arose as a multi-objective optimisation problem (MOP with seven decision variables, and computer simulation was used to evaluate scenarios. We applied computer simulation and the multi-objective optimisation cross-entropy method (MOO CEM to find good solutions while evaluating the minimum number of scenarios. The proposals in this paper, which are in the process of being implemented, could save the company operational expenditure while reducing the carbon footprint of the smelter.

  16. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  17. Outcrop - core correlation and seismic modeling of the Athabasca Oil Sands Deposit, Fort McMurray area, northeast Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hein, F.J. [Alberta Geological Survey, Calgary, AB (Canada); Langenberg, C.W.; Cotterill, D.C.; Berhane, H. [Alberta Geological Survey, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., AB (Canada)

    1999-11-01

    A joint study between the Alberta Geological Survey and the University of Calgary was conducted which involved a detailed facies analysis of cores and outcrops from the Athabasca Oil Sands Deposit in Alberta`s Steepbank area. A unified facies classification for the deposit was developed. Larger scale facies associations were also determined, as well as proxy sonic logs for outcrops used in seismic modeling. The cores which were displayed exhibited detailed sedimentological and stratigraphic analysis of 10 outcrops in the area. 7 refs.

  18. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  19. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    Science.gov (United States)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  20. Portable tester for determining gas content within a core sample

    Science.gov (United States)

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  1. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)

    2003-10-01

    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  2. Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation

    International Nuclear Information System (INIS)

    McKellar, Jennifer M.; Sleep, Sylvia; Bergerson, Joule A.; MacLean, Heather L.

    2017-01-01

    The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies. - Highlights: • Expert elicitation used to investigate expected trends in oil sands GHG emissions. • Overall, emissions intensity reductions are expected at commercial projects by 2033. • Reductions are expected due to both technology changes and process improvements. • Technology availability and more stringent GHG policies are needed for reductions. • Method used increases rigour in emissions forecasting, and results inform policy.

  3. Antiproton Powered Gas Core Fission Rocket

    International Nuclear Information System (INIS)

    Kammash, Terry

    2005-01-01

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it

  4. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  5. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  6. Gas dynamics models for an oscillating gaseous core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1991-01-01

    Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).

  7. Microbial community structure and a core microbiome in biological rapid sand filters at Danish waterworks

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration is a traditional and common technology for drinking water purification from groundwater. Despite its wide scale and long-term use, the diversity and characterization of microbial communities in these engineered systems have remained unexplored and their roles in removal perf...

  8. Comparison between the measurements of Radon Gas Concentrations and γ-ray intensities in Exploring the Black Sands at El-Burullus Beach

    International Nuclear Information System (INIS)

    Abdel-Razek, Y.A; Bakhit, A.F

    2009-01-01

    Ten well-located monitoring stations along El-Burullus beach were chosen to measure radon gas concentrations in the beach sands below surface, and γ-ray intensities at 10 cm above the surface. These stations were chosen to represent apparent concentrations of the black sands. Sand samples were collected from the different stations and analyzed to study the relation between the concentrations of the heavy minerals and the measured radon concentrations or the measured γ-ray intensities at these stations. It was found that radon gas concentrations measured at 6:00 Pm were about 2.82 times those measured at 1 :00 Pm due to diurnal variation of temperature. Measurements of radon gas concentrations inside the beach sands are found to be more reliable in qualitative exploration of black sands than the measurements of γ-ray intensities above the shore sands due to the random arrangement of the layers of these sands below surface

  9. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    Science.gov (United States)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  10. Experimental Study on Gas Slippage of Tight Gas Sands in Kirthar Fold Belt Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    AFTAB AHMEDMAHESAR

    2017-07-01

    Full Text Available The laboratory experiments on samples from Kirthar fold belt of lower Indus basin Sindh Pakistan were carried out to investigate the effect of gas slippage under varying conditions of pore pressures and overburden stress. The samples were dried in an oven at temperature of 600C and were randomly selected for measurement of permeability and porosity. Permeability was measured using nitrogen gas, while the porosity measurements were made using helium gas expansion porosimeter. The bulk volume was determined by measuring sample diameter and length with caliper. The permeability results suggest that gas slippage increases as if low pore pressures are used, which leads to higher measured permeability than intrinsic permeability of samples. An attempt was also made to estimate the permeability using existing correlations and found that there is large scatter in predicted permeability and measured data. This large amount of scatter in the predicted permeability values concludes that unless absolutely necessary, such correlations should not be used where accurate absolute permeability values are needed. Moreover, the permeability and porosity were plotted together to develop a relation between two properties; the power law fitting of the data well explains the relation between permeability and effective porosity

  11. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  12. Western Gas Sands Project. Status report, April 1--April 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-01

    Progress of government-sponsored projects directed toward increasing gas production from the low-permeability gas sands of the western United States is summarized. Work by the USGS toward resource assessment in the four primary study areas continued. Bartlesville Energy Technology Center continued work on fracture conductivity, rock-fluid interaction, and log evaluation and interpretation techniques. Experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data continued at Lawrence Livermore Laboratory. Gathering of bottom-hole pressure data from the Miller No. 1 well and Sprague No. 1 well in the Wattenberg Field, Colorado continued. Fracturing fluid/rock interaction tests have been completed by Terra Tek for Gas Producing Enterprises, Inc., on sandstone horizons in the lower Mesaverde. The Mitchell Energy Corporation Muse-Duke No. 1 was flowed 4,000 MCFGD in April. Fishing operations on the Mobil PCU F31-13G well were unsuccessful. Six zones of the first horizontal experimental hole in the Sandia Laboratories interface test series were mined back to examine the behavior of the hydraulic fracture at the interface. Data collection by CER Corporation and TRW for GRI's Analysis of Tight Formations project continued.

  13. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  14. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  15. Western Gas Sands Project. Status report, 1 July-31 July, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-01

    National Laboratories and Energy Technology Centers continued projects during July. Bartlesville Energy Technology Center continued work on core/fluid testing, fabrication of and improvements to confining pressure apparatus, advanced logging techniques and interpretation and reservoir simulation studies. At Lawrence Livermore Laboratory theoretical analysis and experimental programs continued for hydraulic fracturing. Testing of the borehole seismic and hydrophone systems for fracture mapping continued at Sandia Laboratories. The CER Corporation RB-MHF 3 well has been transferred to Rio Blanco Natural Gas Company for further testing. Cyclic gas injection and production continued at CIG's Miller No. 1 and Sprague No. 1 wells. The DOE well test facility was transported to the Rio Blanco Natural Gas Company well No. 397-19-1 Government. The cumulative production of Mitchell Energy Muse-Duke No. 1 as of July 31, 1979, was just over one billion cubic ft of gas. A flow log was run on the Mobil PCU F31-13G well. Exploratory coring for the Sandia Hole No. 6 fracture experiment continued in July with the completion of two additional holes.

  16. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  17. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  18. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    Science.gov (United States)

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  19. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Directory of Open Access Journals (Sweden)

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  20. BRIGHTEST CLUSTER GALAXIES AND CORE GAS DENSITY IN REXCESS CLUSTERS

    International Nuclear Information System (INIS)

    Haarsma, Deborah B.; Leisman, Luke; Donahue, Megan; Bruch, Seth; Voit, G. Mark; Boehringer, Hans; Pratt, Gabriel W.; Pierini, Daniele; Croston, Judith H.; Arnaud, Monique

    2010-01-01

    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey. The sample was imaged with the Southern Observatory for Astrophysical Research in R band to investigate the mass of the old stellar population. Using a metric radius of 12 h -1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L BCG ∝ M 0.18±0.07 cl , consistent with previous work. We found that 90% of the BCGs are located within 0.035 r 500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool-core (non-CC) clusters, following a power law of n e ∝ L 2.7±0.4 BCG (where n e is measured at 0.008 r 500 ). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.

  1. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands

    International Nuclear Information System (INIS)

    Nimana, Balwinder; Canter, Christina; Kumar, Amit

    2015-01-01

    Highlights: • A model to estimate energy consumption and GHG emissions in oil sands is presented. • The model is developed from fundamental engineering principles. • Cogeneration in the oil sands has the ability to offset GHG emissions. • The effect of key parameters is investigated through a sensitivity analysis. - Abstract: A model – FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in the Oil Sands) was developed to estimate project-specific energy consumption and greenhouse gas emissions (GHGs) in major recovery and extraction processes in the oil sands, namely surface mining and in situ production. This model estimates consumption of diesel (4.4–7.1 MJ/GJ of bitumen), natural gas (52.7–86.4 MJ/GJ of bitumen) and electricity (1.8–2.1 kW h/GJ of bitumen) as fuels in surface mining. The model also estimates the consumption of natural gas (123–462.7 MJ/GJ of bitumen) and electricity (1.2–3.5 kW h/GJ of bitumen) in steam assisted gravity drainage (SAGD), based on fundamental engineering principles. Cogeneration in the oil sands, with excess electricity exported to Alberta’s grid, was also explored. Natural gas consumption forms a major portion of the total energy consumption in surface mining and SAGD and thus is a main contributor to GHG emissions. Emissions in surface mining and SAGD range from 4.4 to 7.4 gCO 2 eq/MJ of bitumen and 8.0 to 34.0 gCO 2 eq/MJ of bitumen, respectively, representing a wide range of variability in oil sands projects. Depending upon the cogeneration technology and the efficiency of the process, emissions in oil sands recovery and extraction can be reduced by 16–25% in surface mining and 33–48% in SAGD. Further, a sensitivity analysis was performed to determine the effects of key parameters on the GHG emissions in surface mining and SAGD. Temperature and the consumption of warm water in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters

  2. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar

    DEFF Research Database (Denmark)

    Lassen, Rune Nørbæk; Sonnenborg, T.O.; Jensen, Karsten Høgh

    2015-01-01

    and transversely to the groundwater flow direction. As the injection continued, the main flow direction of the gaseous CO2 shifted and CO2 gas pockets with a gas saturation of up to 0.3 formed below lower-permeable sand layers. CO2 gas was detected in a GPR-panel 5 m away from the injection point after 21 h...... of leakage from a CCS site, and that even small changes in the formation texture can create barriers for the CO2 migration....

  3. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  4. Review of coaxial flow gas core nuclear rocket fluid mechanics

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    In a prematurely aborted attempt to demonstrate the feasibility of using a gas core nuclear reactor as a rocket engine, NASA initiated a number of studies on the relevant fluid mechanics problems. These studies were carried out at NASA laboratories, universities and industrial research laboratories. Because of the relatively sudden termination of most of this work, a unified overview was never presented which demonstrated the accomplishments of the program and pointed out the areas where additional work was required for a full understanding of the cavity flow. This review attempts to fulfill a part of this need in two important areas

  5. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    Science.gov (United States)

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  6. Long term contracts in portfolios of core LDC gas supply

    International Nuclear Information System (INIS)

    John, F.E.

    1992-01-01

    This paper recommends that local distribution companies (LDCs) should use a portfolio approach for their gas supply strategy. The author recommends that LDCs not rely on spot supplies to meet the peak needs of the core residential and commercial markets. He recommends that a secure supply through long-term contracts are better sources than spot or even intermediate term suppliers. The paper provides a brief outline format of the advantages to the use of a portfolio approach which include the rapid restructuring of the market, general changes in the market, and general market performance. By maintaining a portfolio, a list of available natural gas suppliers is always available. This portfolio also acts to compare pricing between short, medium, and long-term pricing for the LDCs

  7. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    Science.gov (United States)

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  8. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  9. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  10. Instrumented Pressure Testing Chamber (IPTC) Characterization of Methane Gas Hydrate-Bearing Pressure Cores Collected from the Methane Production Test Site in the Eastern Nankai Trough, Offshore Japan

    Science.gov (United States)

    Waite, W. F.; Santamarina, J. C.; Dai, S.; Winters, W. J.; Yoneda, J.; Konno, Y.; Nagao, J.; Suzuki, K.; Fujii, T.; Mason, D. H.; Bergeron, E.

    2014-12-01

    Pressure cores obtained at the Daini-Atsumi Knoll in the eastern Nankai Trough, the site of the methane hydrate production test completed by the Methane Hydrate Resources in Japan (MH21) project in March 2013, were recovered from ~300 meters beneath the sea floor at close to in situ pressure. Cores were subsequently stored at ~20 MPa and ~5°C, which maintained hydrate in the cores within stability conditions. Pressure core physical properties were measured at 10 MPa and ~6°C, also within the methane hydrate stability field, using the IPTC and other Pressure Core Characterization Tools (PCCTs). Discrete IPTC measurements were carried out in strata ranging from silty sands to clayey silts within the turbidite sequences recovered in the cores. As expected, hydrate saturations were greatest in more permeable coarser-grained layers. Key results include: 1) Where hydrate saturation exceeded 40% in sandy sediments, the gas hydrate binds sediment grains within the matrix. The pressure core analyses yielded nearly in situ mechanical properties despite the absence of effective stress in the IPTC. 2) In adjacent fine-grained sediment (hydrate saturation < 15%), hydrate did not significantly bind the sediment. IPTC results in these locations were consistent with the zero effective-stress limit of comparable measurements made in PCCT devices that are designed to restore the specimen's in situ effective stress. In sand-rich intervals with high gas hydrate saturations, the measured compressional and shear wave velocities suggest that hydrate acts as a homogeneously-distributed, load-bearing member of the bulk sediment. The sands with high gas hydrate saturations were prone to fracturing (brittle failure) during insertion of the cone penetrometer and electrical conductivity probes. Authors would like to express their sincere appreciation to MH21 and the Ministry of Economy, Trade and Industry for permitting this work to be disclosed at the 2014 Fall AGU meeting.

  11. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  12. Investigations on organics in the Libyan beach sand and water: extraction, spectroscopy and gas chromatography, Zwarah to East Tripoli coastline

    International Nuclear Information System (INIS)

    Ali, L.H.; El-Jawashi, S.A.; Ejbali, A.A.; Garbaj, M.J.

    1998-01-01

    Forty-three samples from fifteen locations extending along 200 kilometers from near the Tunisian borders to 20 kilometers east of Tripoli harbour were examined for their organic contents. Sampling was conducted under the following specifications. 1. Dry beach sand, 3-4 meters away from water (denoted ds). 2. Wet beach sand, obtained from 1 meter depth (denoted ws). 3. Beach water (denoted w). Known amounts of sand (ds or ws) and beach water (w) were extracted with a suitable volume of chloroform. Organics in the extracts were determined gravimetrically by complete evaporation of chloroform, the residue was further examined by gas chromatography, and distribution of carbon numbers in each sample were assessed. Alternatively, a direct determination of organics concentration in CHCl 3 solution was obtained spectrophotometrically from calibration curves of absorptions at 410nm and 260nm. Infrared study on organics isolated from different locations enabled the assessment of the degree of oxidation suffered by each sample. This was obtained by comparing the relative absorption values at 1736 and 1712cm -1 , normalized with respect to 2925 cm -1 ; C-H stretching vibration; to rule out effects due to concentration. Organics concentration in shore water ranged from 0.05 to 9.50 ppm, depending on location and industrial activities, while much higher concentrations, ranging from 50-1500 ppm were detected in dry and wet beach sand samples. (author)

  13. Evolution of the gas atmosphere during filing the sand moulds with iron alloys

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2009-10-01

    Full Text Available Evolution of atmosphere of the mould cavity when pouring the cast iron has been analyzed. It was find that in dry sand mold the cavity is filled by air throughout the casting time. In green sand the air is removed by the water vapor the hydrogen or carbon oxides formed in contact with the liquid metal. The theoretical results have been confirmed experimentally.

  14. Reducing the risk to Mars: The gas core nuclear rocket

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions

  15. H2 gas pressure calculation of FPM capsule failure at RSG-GAS reactor core

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Sunaryo, Geni Rina

    2002-01-01

    RSG-GAS has been irradiated FPM capsule for 236 times, one of those i.e. capsule number 228 has failure. The one of root cause of failure possibility is radiolysis reaction can be occurred in FPM capsule when it is filled with water during irradiation in the reactor core. The safety analysis of the radiolysis reaction in the capsule has been done. The oc cumulative hydrogen gas production can cause high pressure in the capsule then a mechanical damage occurred. The analysis was done at 10 MW of reactor power which equivalent with neutron flux of 0,6929 x 10 1 4 n/cm 2 sec and γ dose rate of 0,63x10 9 rad/hour. The assumption is the capsule is filled with water at maximum volume, i.e. 176.67 ml. The results of calculation showed that radiolysis reaction with γ and neutron produce hydrogen gas for nominal flow rate each are 494 atm and 19683 atm for γ and neutron radiolysis, respectively. H 2 gas pressure for 5% flow rate each are 723 atm. and 25772 atm., for γ and neutron radiolysis, respectively. The changing of the operation condition due to radiolysis together with one way valve' phenomena, can be produce hydrogen gas from water during irradiation in the reactor core and can be the one of root cause of capsule failure. This analysis recommended the FPM capsule preparation must be guaranteed no water or/and there is no possibility of water immersion in the capsule during irradiation in the core by more accurate leak test

  16. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Smith, J.; Hart, R.; Lazic, L.

    2009-01-01

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  17. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  18. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  19. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  20. Gas-core reactor power transient analysis. Final report

    International Nuclear Information System (INIS)

    Kascak, A.F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of the study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process. (auth)

  1. Gas core reactor power plants designed for low proliferation potential

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF 6 and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on 233 U born from thorium. Fission product removal was continuous. Newly born 233 U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of 233 U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors

  2. Unsteady thermal analysis of gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Lakkis, I.A.

    1993-01-01

    This thesis presents numerical analysis of transient heat transfer in an equivalent coolant-fuel rod cell of a typical gas cooled, fast nuclear reactor core. The transient performance is assumed to follow a complete sudden loss of coolant starting from steady state operation. Steady state conditions are obtained from solving a conduction problem in the fuel rod and a parabolic turbutent convection problem in the coolant section. The coupling between the two problems is accomplished by ensuring continuity of the thermal conditions at the interface between the fuel rod and the coolant. to model turbulence, the mixing tenght theory is used. Various fuel rod configurations have been tested for optimal transient performance. Actually, the loss of coolant accident occurs gradually at an exponential rate. Moreover, a time delay before shutting down the reactor by insertion of control rods usually exists. It is required to minimize maximum steady state cladding temperature so that the time required to reach its limiting value during transient state is maximum. This will prevent the escape of radioactive gases that endanger the environment and the public. However, the case considered here is a limiting case representing what could actually happen in the worst probable accident. So, the resutls in this thesis are very indicative regarding selection of the fuel rode configuration for better transient performance in case of accidents in which complete loss of collant occurs instantaneously

  3. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  4. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  5. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  6. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S. [National Nuclear Energy Agency (Batan), PUSPIPTEK-Serpong Tangerang (Indonesia)

    2000-07-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  7. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S.

    2000-01-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  8. Aseismic study of high temperature gas-cooled reactor core with block-type fuel, 3

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1985-01-01

    A two-dimensional horizontal seismic experiment with single axis and simultaneous two-axes excitations was performed to obtain the core seismic design data on the block-type high temperature gas-cooled reactor. Effects of excitation directions and core side support stiffness on characteristics of core displacements and reaction forces of support were revealed. The values of the side reaction forces are the largest in the excitation of flat-to-flat of hexagonal block. Preload from the core periphery to the core center are effective to decrease core displacements and side reaction forces. (author)

  9. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    Science.gov (United States)

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  10. Visual detection of gas shows from coal core and cuttings using liquid leak detector

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. [United States Geological Survey, Denver, CO (United States)

    2006-09-15

    Coal core descriptions are difficult to obtain, as they must be obtained immediately after the core is retrieved and before the core is closed in a canister. This paper described a method of marking gas shows on a core surface by coating the core with a water-based liquid leak detector and photographing the subsequent foam developed on the core surface while the core is still in the core tray. Coals from a borehole at the Yukon Flats Basin in Alaska and the Maverick Basin in Texas were used to illustrate the method. Drilling mud and debris were removed from the coal samples before the leak detector solution was applied onto the core surfaces. A white froth or dripping foam developed rapidly at gas shows on the sample surfaces. A hand-held lens and a binocular microscope were used to magnify the foaming action. It was noted that foaming was not continuous across the core surface, but was restricted to localized points along the surface. It was suggested that the localized point foaming may have resulted from the coring process. However, the same tendency toward point gas show across the sample surface was found in some hard, well-indurated samples that still had undisturbed bedding and other sedimentary structures. It was concluded that gas shows marked as separate foam centres may indicate a real condition of local permeability paths. Results suggested that the new gas show detection method could be used in core selection studies to reduce the costs of exploration programs. 6 refs., 4 figs.

  11. Digital Core Modelling for Clastic Oil and Gas Reservoir

    Science.gov (United States)

    Belozerov, I.; Berezovsky, V.; Gubaydullin, M.; Yur’ev, A.

    2018-05-01

    "Digital core" is a multi-purpose tool for solving a variety of tasks in the field of geological exploration and production of hydrocarbons at various stages, designed to improve the accuracy of geological study of subsurface resources, the efficiency of reproduction and use of mineral resources, as well as applying the results obtained in production practice. The actuality of the development of the "Digital core" software is that even a partial replacement of natural laboratory experiments with mathematical modelling can be used in the operative calculation of reserves in exploratory drilling, as well as in the absence of core material from wells. Or impossibility of its research by existing laboratory methods (weakly cemented, loose, etc. rocks). 3D-reconstruction of the core microstructure can be considered as a cheap and least time-consuming method for obtaining petrophysical information about the main filtration-capacitive properties and fluid motion in reservoir rocks.

  12. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  13. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  14. Calculation of the RSG-GAS core using computer code citation-3D

    International Nuclear Information System (INIS)

    Taryo, T.; Rokhmadi

    1998-01-01

    Since core reactivity is one of the reactor safety parameters, this R and D has been carried out. To carry out the R and D, the code called WIMSD4 was used respectively for generating cross section and diffusion parameters. The code CITATION was then applied to estimate core reactivity in the RSG-GAS core. To verify the result of the calculation, data and information of the RSG-GAS Typical Working Core Were used. To Prove the codes reliably used, the case of all control elements down in the reactor core and that of all control rods up in the core were applied. The result taking into account those cases showed respectively that K eff are less and greater than unity (K eff eff >1)

  15. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure

  16. The N terminus of cGAS de-oligomerizes the cGAS:DNA complex and lifts the DNA size restriction of core-cGAS activity.

    Science.gov (United States)

    Lee, Arum; Park, Eun-Byeol; Lee, Janghyun; Choi, Byong-Seok; Kang, Suk-Jo

    2017-03-01

    Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme in the innate immune system. Recent studies using core-cGAS lacking the N terminus investigated the mechanism for binding of double-stranded (ds) DNA and synthesis of 2',3'-cyclic GMP-AMP (cGAMP), a secondary messenger that ultimately induces type I interferons. However, the function of the N terminus of cGAS remains largely unknown. Here, we found that the N terminus enhanced the activity of core-cGAS in vivo. Importantly, the catalytic activity of core-cGAS decreased as the length of double-stranded DNA (dsDNA) increased, but the diminished activity was restored by addition of the N terminus. Furthermore, the N terminus de-oligomerized the 2 : 2 complex of core-cGAS and dsDNA into a 1 : 1 complex, suggesting that the N terminus enhanced the activity of core-cGAS by facilitating formation of a monomeric complex of cGAS and DNA. © 2017 Federation of European Biochemical Societies.

  17. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  18. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  19. Evaluation Of Oxide And Silicide Mixed Fuels Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem; Suparlina, Lily

    2000-01-01

    Fuel exchange of the RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is 250 gr, 2.98 gr/cm 3 , and 19.75%, respectively, will be performed in-step wise. In every cycle of exchange with 5/1 mode, it is needed to evaluate the parameter of reactor core operation. The parameters of the reactor operation observed are criticality mass of fuels, reactivity balance, and fuel reactivity that give effect to the reactor operation. The evaluation was done at beginning of cycle of the first and second transition core with compared between experiment and calculation results. The experiments were performed at transition core I and II, BOC, and low power. At transition core I, there are 2 silicide fuels (RI-224 and R1-225) in the core and then, added five silicide fuels (R1-226, R1-252, R1-263, and R1-264) to the core, so that there are seven silicide fuels in the transition core II. The evaluation was done based on the experiment of criticality, control rod calibration, fuel reactivity of the RSG-GAS transition core. For inserting 2 silicide fuels in the transition core I dan 7 fuels in the transition core II, the operation of RSG-GAS core fulfilled the safety margin and the parameter of reactor operation change is not occur drastically in experiment and calculation results. So that, the reactor was operated during 36 days at 15 MW, 540 MWD at the first transition core. The general result showed that the parameter of reactor operation change is small so that the fuel exchange from uranium oxide to uranium silicide in the next step can be done

  20. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  1. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  2. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  3. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  4. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    Science.gov (United States)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  5. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  6. Papers of a Canadian Institute conference : Tapping into new opportunities in oil sands supply and infrastructure : natural gas, diluent, pipelines, cogeneration

    International Nuclear Information System (INIS)

    2003-01-01

    Participants at this conference were provided the opportunity to hear various views of several industry leaders on topics related to oil sands supply and infrastructure. Some of the issues addressed were: the latest project developments and pipeline infrastructure expansion initiatives in the oil sands industry; the growing natural gas supply requirements for oil sands production; how to effectively manage stakeholder issues in the context of rapid growth; an update on the supply and demand balance for diluent; demand for cogeneration and the implications of transmission system congestion; and, market development prospects for heavy crude and the need for additional refinery capacity. The Minister of Alberta Economic Development also made a special presentation. There were fifteen presentations made at the conference, of which nine were indexed separately for inclusion in this database. refs., tabs., figs

  7. Rapid changes in ice core gas records - Part 1: On the accuracy of methane synchronisation of ice cores

    Science.gov (United States)

    Köhler, P.

    2010-08-01

    Methane synchronisation is a concept to align ice core records during rapid climate changes of the Dansgaard/Oeschger (D/O) events onto a common age scale. However, atmospheric gases are recorded in ice cores with a log-normal-shaped age distribution probability density function, whose exact shape depends mainly on the accumulation rate on the drilling site. This age distribution effectively shifts the mid-transition points of rapid changes in CH4 measured in situ in ice by about 58% of the width of the age distribution with respect to the atmospheric signal. A minimum dating uncertainty, or artefact, in the CH4 synchronisation is therefore embedded in the concept itself, which was not accounted for in previous error estimates. This synchronisation artefact between Greenland and Antarctic ice cores is for GRIP and Byrd less than 40 years, well within the dating uncertainty of CH4, and therefore does not calls the overall concept of the bipolar seesaw into question. However, if the EPICA Dome C ice core is aligned via CH4 to NGRIP this synchronisation artefact is in the most recent unified ice core age scale (Lemieux-Dudon et al., 2010) for LGM climate conditions of the order of three centuries and might need consideration in future gas chronologies.

  8. Analysis of addition of the safety rods at RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; S, Tagor Malem; K, Iman

    2002-01-01

    The silicide fuel loading of the RSG-GAS core is planned to increase from 250 gU to 300 gU. Increasing of fuel loading will prolong the operation cycle length from 25 days to 32,5 days, but ability of reactivity compensation by control rods system decreased because the reactivity shut-down margin is available only 1,03 %, expectation is 2.2 %. One of solutions is added two safety control rods in B-3 and G-10 positions the aim of installing two safety rods (BKP) in RSG-GAS core is to increase core safety margin. So before using the safety control rods in the RSG-GAS core, it is necessary to know its performance, one of the tests showing its performance is to measure the reactivity of the safety control rods. Measurement of safety control rods were done to know each reactivity worth of safety control rods at middle cycle so that the safety rod be used in the RSG-GAS core. Measurement done by using calibration control rods with couple compensation method which always using in the RSG-GAS core to measure the existing control rods. The results of measurement showed that two safety rods (BKP01 and BKP02) have reactivity worth of 93.5 cent and 87.5 cent, respectively. the total reactivity worth of safety control rods is 1.38%. So the two safety rods can be used to increase safety margin of the RSG-GAS core if the fuel is exchanged to 300 gU of loading

  9. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

  10. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  11. Monitoring and groundwater/gas sampling in sands densified with explosives

    Directory of Open Access Journals (Sweden)

    Carlos A. Vega-Posada

    2014-01-01

    Full Text Available Este manuscrito presenta los resultados de un estudio de densificación de suelos en campo utilizando explosivos y realizado en un relleno sanitario localizado en Carolina de Sur, Estados Unidos; este estudio se realizó con el objeto de determinar los tipos de gases que se liberan y sus respectivas concentraciones in situ después del proceso de densificación. Se utilizó un sistema de sonda BAT para recolectar las muestras de aguas subterráneas y de gas en la mitad del estrato en estudio, así como para medir la evolución de las presiones del agua durante y después de la detonación de las cargas explosivas. Adicionalmente, se hicieron mediciones topográficas a través del eje central longitudinal de la zona de estudio después de cada explosión para medir la magnitud y la efectividad de esta técnica de densificación en depósitos de arena sueltas. Los resultados de este estudio mostraron que: a el sistema de sonda BAT puede ser una técnica confiable para recolectar muestra de agua subterránea y gas en campo antes y después de la explosión; b la masa de suelo afectada por la detonación de los explosivos licuó por un periodo de 6 horas, mientras el esfuerzo vertical efectivo alcanzó sus valores iniciales después de 3 días; y c se observaron deformaciones verticales significativas en el área de estudio después de cada explosión, lo cual indica que la masa de suelo fue exitosamente densificada.

  12. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    Science.gov (United States)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  13. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... cores and firn need to be corrected for this diffusive fractionation artifact. We present a novel, semi-empirical method to accurately estimate the magnitude of the diffusive fractionation in the ice core record. Our method (1) consists of a relatively simple analytical calculation; (2) requires only...... commonly available ice core data; (3) is not subject to the uncertainties inherent to estimating the accumulation rate, temperature, close-off depth and depth-diffusivity relationship back in time; (4) does not require knowledge of the true atmospheric variations, but uses the smoothed records obtained...

  14. Evaluation of the oxide and silicide fuels reactivity in the RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; M S, Tagor; S, Lily; Pinem, S.

    2000-01-01

    Fuel exchange of The RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is, 250 gr, 2.98 gr/cm 3 , and 19.75 % respectively, will be performed in-step wise. In every cycle of exchange with 5/l mode, it is needed to evaluate the parameter of reactor core operation. One of the important operation parameters is fuel reactivity that gives effect to the core reactivity. The experiment was performed at core no. 36, BOC, low power which exist 2 silicide fuels. The evaluation was done based on the RSG-GAS control rod calibration consisting of 40 fuels and 8 control rod.s. From 40 fuels in the core, there are 2 silicide fuels, RI-225/A-9 and RI-224/C-3. For inserting 2 silicide fuels, the reactivity effect to the core must be know. To know this effect , it was performed fuels reactivity experiment, which based on control rod calibration. But in this case the RSG-GAS has no other fresh oxide fuel so that configuration of the RSG-GAS core was rearranged by taking out the both silicide fuels and this configuration is used as reference core. Then silicide fuel RI-224 was inserted to position F-3 replacing the fresh oxide fuel RI-260 so the different reactivity of the fuels is obtained. The experiment result showed that the fuel reactivity change is in amount of 12.85 cent (0.098 % ) The experiment result was compared to the calculation result, using IAFUEL code which amount to 13.49 cent (0.103 %) The result showed that the reactivity change of oxide to silicide fuel is small so that the fuel exchange from uranium oxide to uranium silicide in the first step can be done without any significant change of the operation parameter

  15. Thermodynamic performance of a gas-core fission reactor

    International Nuclear Information System (INIS)

    Klein, W.

    1987-01-01

    The purpose of this thesis was to investigate the thermodynamic behaviour of a critical quantity of gaseous uranium-fluorides in chemical equilibrium with a graphite wall. From the very beginning a container was considered with cooled walls. As it was evident that a nuclear reactor working with gaseous fuel should run at much higher temperatures than classical LWR or HTGR reactors, most of the investigations were performed for walls with a surface temperature of 1800 to 2000 K. It was supposed that such a surface temperature would be technologically possible for a heat load between 1 and 5 MWatt m -2 . Cooling with high pressure helium-gas has to keep balance with this heat flux. The technical construction of such a wall will be a problem in itself. It is thought that the experiences with re-entry-vessels in space-technology can be used. A basic assumption in all the calculations is that the U-C-F reactor gas 'sees' a graphite wall, possibly graphite tiles supported by heat resistant materials like SiN 2 , SiC 2 and at a lower temperature level by niobium-steel. Such a gastight compound-system is not necessarily of high-tensile strength materials. It has to be surrounded by a cooled neutron moderator-reflector which in its turn must be supported by a steel-wall at room temperature holding pressure of the order of 100 bar (10 MPa). The design of such a compound-wall is a task for the future. 116 refs.; 28 figs.; 29 tabs

  16. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  17. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  18. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  19. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    Science.gov (United States)

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    The BP-3-USGS well was drilled at the southwestern corner of Great Sand Dunes National Park in the San Luis Valley, south-central Colorado, 68 feet (ft, 20.7 meters [m]) southwest of the National Park Service’s boundary-piezometer (BP) well 3. BP-3-USGS is located at latitude 37°43ʹ18.06ʺN. and longitude 105°43ʹ39.30ʺW., at an elevation of 7,549 ft (2,301 m). The well was drilled through poorly consolidated sediments to a depth of 326 ft (99.4 m) in September 2009. Water began flowing from the well after penetrating a clay-rich layer that was first intercepted at a depth of 119 ft (36.3 m). The base of this layer, at an elevation of 7,415 ft (2,260 m) above sea level, likely marks the top of a regional confined aquifer recognized throughout much of the San Luis Valley. Approximately 69 ft (21 m) of core was recovered (about 21 percent), almost exclusively from clay-rich zones. Coarser grained fractions were collected from mud extruded from the core barrel or captured from upwelling drilling fluids. Natural gamma-ray, full waveform sonic, density, neutron, resistivity, spontaneous potential, and induction logs were acquired. The well is now plugged and abandoned.

  20. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  1. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  2. Comparison of tree coring and soil gas sampling for screening of contaminated sites

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Stalder, Marcel; Riis, Charlotte

    and then identify high risk areas. The uptake of BTEX into trees varies to a greater extent with the tree species and the site conditions than chlorinated solvents, which lead to greater uncertainty. Both methods have their advantages and disadvantages. Hence, the methods supplement each other. Based on results......Site characterization is often time consuming and a financial burden for the site owners, which raises a demand for rapid and inexpensive (pre)screening methods. Phytoscreening by tree coring has shown to be a useful tool to detect subsurface contamination, especially of chlorinated solvents...... suitable as initial screening methods for site characterization. The aim of this study is to compare tree coring and soil gas sampling to evaluate to which extent tree coring may supplement or substitute soil gas sampling as a site contaminant screening tool. And where both methods are feasible, evaluate...

  3. KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE

    International Nuclear Information System (INIS)

    Wang, K.-S.; Kuan, Y.-J.; Liu, S.-Y.; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18 K -17 K emission of CH 3 CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH 3 CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within ∼15'' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the 'population diagram' method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH 3 CN fractional abundances of 10 -8 to 10 -7 are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH 3 CN molecules.

  4. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  5. Verification for excess reactivity on beginning equilibrium core of RSG GAS

    International Nuclear Information System (INIS)

    Daddy Setyawan; Budi Rohman

    2011-01-01

    BAPETEN is an institution authorized to control the use of nuclear energy in Indonesia. Control for the use of nuclear energy is carried out through three pillars: regulation, licensing, and inspection. In order to assure the safety of the operating research reactors, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the Power Peaking Factor in the equilibrium silicide core of RSG GAS reactor by computational method using MCNP-ORIGEN. This verification calculation results for is 9.4 %. Meanwhile, the RSG-GAS safety analysis report shows that the excess reactivity on equilibrium core of RSG GAS is 9.7 %. The verification calculation results show a good agreement with the report. (author)

  6. Evaluation of RSG-GAS Core Management Based on Burnup Calculation

    International Nuclear Information System (INIS)

    Lily Suparlina; Jati Susilo

    2009-01-01

    Evaluation of RSG-GAS Core Management Based on Burnup Calculation. Presently, U 3 Si 2 -Al dispersion fuel is used in RSG-GAS core and had passed the 60 th core. At the beginning of each cycle the 5/1 fuel reshuffling pattern is used. Since 52 nd core, operators did not use the core fuel management computer code provided by vendor for this activity. They use the manually calculation using excel software as the solving. To know the accuracy of the calculation, core calculation was carried out using two kinds of 2 dimension diffusion codes Batan-2DIFF and SRAC. The beginning of cycle burn-up fraction data were calculated start from 51 st to 60 th using Batan-EQUIL and SRAC COREBN. The analysis results showed that there is a disparity in reactivity values of the two calculation method. The 60 th core critical position resulted from Batan-2DIFF calculation provide the reduction of positive reactivity 1.84 % Δk/k, while the manually calculation results give the increase of positive reactivity 2.19 % Δk/k. The minimum shutdown margin for stuck rod condition for manual and Batan-3DIFF calculation are -3.35 % Δk/k dan -1.13 % Δk/k respectively, it means that both values met the safety criteria, i.e <-0.5 % Δk/k. Excel program can be used for burn-up calculation, but it is needed to provide core management code to reach higher accuracy. (author)

  7. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  8. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    Science.gov (United States)

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The role of fission gas in the analysis of hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E A [Gesellschaft fuer Kernforschung mbH, INR Kernforschungszentrum, Karlsruhe (Germany)

    1977-07-01

    This paper summarizes recent work at Karlsruhe with the goal of understanding the effects of fission gas in hypothetical core disruptive accidents. The fission gas behavior model is discussed. The computer programs LANGZEIT and KURZZEIT describe the long-term and the transient gas behavior, respectively. Recent improvements in the modeling and a comparison of results with experimental data are reported. A somewhat detailed study of the role of fission gas in transient overpower (TOP) accidents was carried out. If pessimistic assumptions, like pin failure near the axial midplane are made, these accidents end in core disassembly. The codes HOPE and KADIS were used to analyze the initiating and the disassembly phase in these studies. Improvements of the codes are discussed. They include an automatic data transfer from HOPE to KADIS, and a new equation of state in KADIS, with an improved model for fission gas behavior. The analysis of a 15 cents/sec reactivity ramp accident is presented. Different pin failure criteria are used. In the cases selected, the codes predict an energetic disassembly. For the much discussed loss-of-flow driven TOP, detailed models are presently not available at Karlsruhe. Therefore, only a few comments and the results of a few scoping calculations will be presented.

  10. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  11. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  12. Seismic response of high temperature gas-cooled reactor core with block-type fuel, (2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1980-01-01

    For the aseismic design of a high temperature gas-cooled reactor (HTGR) with block-type fuel, it is necessary to predict the motion and force of core columns and blocks. To reveal column vibration characteristics in three-dimensional space and impact response, column vibration tests were carried out with a scale model of a one-region section (seven columns) of the HTGR core. The results are as follows: (1) the column has a soft spring characteristic based on stacked blocks connected with loose pins, (2) the column has whirling phenomena, (3) the compression spring force simulating the gas pressure has the effect of raising the column resonance frequency, and (4) the vibration behavior of the stacked block column and impact response of the surrounding columns show agreement between experiment and analysis. (author)

  13. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  14. Neutronics analysis on mini test fuel in the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran S; Tagor M Sembiring

    2016-01-01

    Research on UMo fuel for research reactor has been developed. The fuel of research reactor is uranium molybdenum low enrichment with high density. For supporting the development of fuel fabrication, an neutronic analysis of mini fuel plates in the RSG-GAS core was performed. The aim of analysis is to determine the numbers of fuel cycles in the core to know the maximum fuel burn-up. The mini fuel plates of U_7Mo-Al and U_6Zr-Al with densities of 7.0 gU/cc and 5.2 gU/cc, respectively, will be irradiated in the RSG-GAS core. The size of both fuels, namely 630 x 70.75 x 1.30 mm were inserted to the 3 plates of dummy fuel. Before the fuel will be irradiated in the core, a calculation for safety analysis from neutronics and thermal-hydraulics aspects were required. However, in this paper, it will be discussed safety analysis of the U_7Mo-Al and U_6Zr-Al mini fuels from neutronic point of view. The calculation was done using WIMSD-5B and Batan-3DIFF codes. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. If it is compared, the power density of U_7Mo-Al mini fuel is bigger than U_6Zr-Al fuel. (author)

  15. Surveying the Dense Gas in Barnard 1 and NGC 1333 from Cloud to Core Scales

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee; Teuben, Peter; Lee, Katherine; Fernandez-Lopez, Manuel; Looney, Leslie; Rosolowsky, Erik; Classy Collaboration

    2013-07-01

    The CARMA Large Area Star formation Survey (CLASSy) is mapping molecular emission across large areas of the nearby Perseus and Serpens Molecular Clouds. With an angular resolution of 7 arcsec, CLASSy probes dense gas on scales from a few thousand AU to parsecs with CARMA-23 and single-dish observations. The resulting maps of N2H+, HCN, and HCO+ J=1-0 trace the kinematics and structure of the high-density gas in regions covering a wide range of intrinsic star formation activity. This poster presents an overview of three completed CLASSy fields, NGC 1333, Barnard 1, and Serpens Main, and then focuses on the dendrogram analysis that CLASSy is using to characterize the emission structure. We have chosen a dendrogram analysis over traditional clump finding because dendrograms better encode the hierarchical nature of cloud structure and better facilitate analysis of cloud properties across the range of size scales probed by CLASSy. We present a new dendrogram methodology that allows for non-binary mergers of kernels, which results in a gas hierarchy that is more true to limitations of the S/N in the data. The resulting trees from Barnard 1 and NGC 1333 are used to derive physical parameters of the identified gas structures, and to probe the kinematic relationship between gas structures at different spatial scales and evolutionary stages. We derive a flat relation between mean internal turbulence and structure size for the dense gas in both regions, but find a difference between the magnitude of the internal turbulence in regions with and without protostars; the dense gas in the B1 main core and NGC 1333 are characterized by mostly transonic to supersonic turbulence, while the B1 filaments and clumps southwest of the main core have mostly subsonic turbulence. These initial results, along with upcoming work analyzing the completed CLASSy observations, will be used to test current theories for star formation in turbulent molecular clouds.

  16. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  17. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    International Nuclear Information System (INIS)

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1 degrees C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm 3 with less than 1% error

  18. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    Energy Technology Data Exchange (ETDEWEB)

    Thies, C. [ed.; Geddis, A.M.; Guzman, A.G. [and others

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  19. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  20. Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group

    Science.gov (United States)

    Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.

    2013-01-01

    We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.

  1. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  2. Core design studies on various forms of coolants and fuel materials. 2. Studies on liquid heavy metal and gas cooled cores, small cores and evaluation of 4-type cores

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Sakashita, Yoshiyuki; Naganuma, Masayuki; Takaki, Naoyuki; Mizuno, Tomoyasu; Ikegami, Tetsuo

    2001-01-01

    Alternative concepts to sodium cooled fast reactors, such as heavy metal liquid cooled reactors and gas cooled fast reactors were studied in Phase-1 of the feasibility studies, aiming at simplification of the system, high thermal efficiency and enhancing safety. Fuel and core specifications and nuclear characteristics were surveyed to meet the targets for commercialization of fast reactor cycle. Nuclear characteristics of small fast reactor cores were also surveyed from the perspective of the possibility of multi-purpose use and dispersed power stations. The key points of the design study for each concept in Phase-2 were summarized from the aspect of the screening of the candidates for FR commercialization. (author)

  3. CuO-In2O3 Core-Shell Nanowire Based Chemical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoxin Li

    2014-01-01

    Full Text Available The CuO-In2O3 core-shell nanowire was fabricated by a two-step method. The CuO nanowire core (NWs was firstly grown by the conventional thermal oxidation of Cu meshes at 500°C for 5 hours. Then, the CuO nanowires were immersed into the suspension of amorphous indium hydroxide deposited from the In(AC3 solution by ammonia. The CuO nanowires coated with In(OH3 were subsequently heated at 600°C to form the crystalline CuO-In2O3 core-shell structure, with In2O3 nanocrystals uniformly anchored on the CuO nanowires. The gas sensing properties of the formed CuO-In2O3 core-shell nanowires were investigated by various reducing gases such as hydrogen, carbon monoxide, and propane at elevated temperature. The sensors using the CuO-In2O3 nanowires show improved sensing performance to hydrogen and propane but a suppressed response to carbon monoxide, which could be attributed to the enhanced catalytic properties of CuO with the coated porous In2O3 shell and the p-n junction formed at the core-shell interface.

  4. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  5. DENSE GAS IN MOLECULAR CORES ASSOCIATED WITH PLANCK GALACTIC COLD CLUMPS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinghua; Li, Jin Zeng; Liu, Hong-Li [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Wu, Yuefang; Chen, Ping; Hu, Runjie [Department of Astronomy, Peking University, 100871 Beijing (China); Liu, Tie [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Zhang, Tianwei [Peking University Health Science Center, Xueyuan Road 38th, Haidian District, Beijing 100191 (China); Meng, Fanyi [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 (Germany); Wang, Ke, E-mail: ywu@pku.edu.cn [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2016-03-20

    We present the first survey of dense gas toward Planck Galactic Cold Clumps (PGCCs). Observations in the J = 1–0 transitions of HCO{sup +} and HCN toward 621 molecular cores associated with PGCCs were performed using the Purple Mountain Observatory’s 13.7 m telescope. Among them, 250 sources were detected, including 230 cores detected in HCO{sup +} and 158 in HCN. Spectra of the J = 1–0 transitions from {sup 12}CO, {sup 13}CO, and C{sup 18}O at the centers of the 250 cores were extracted from previous mapping observations to construct a multi-line data set. The significantly low detection rate of asymmetric double-peaked profiles, together with the good consistency among central velocities of CO, HCO{sup +}, and HCN spectra, suggests that the CO-selected Planck cores are more quiescent than classical star-forming regions. The small difference between line widths of C{sup 18}O and HCN indicates that the inner regions of CO-selected Planck cores are no more turbulent than the exterior. The velocity-integrated intensities and abundances of HCO{sup +} are positively correlated with those of HCN, suggesting that these two species are well coupled and chemically connected. The detected abundances of both HCO{sup +} and HCN are significantly lower than values in other low- to high-mass star-forming regions. The low abundances may be due to beam dilution. On the basis of an inspection of the parameters given in the PGCC catalog, we suggest that there may be about 1000 PGCC objects that have a sufficient reservoir of dense gas to form stars.

  6. Operability test report for core sample truck number one flammable gas modifications

    International Nuclear Information System (INIS)

    Akers, J.C.

    1997-01-01

    This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA

  7. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  8. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  9. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  10. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  11. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  12. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  13. Cavity temperature and flow characteristics in a gas-core test reactor

    Science.gov (United States)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  14. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    International Nuclear Information System (INIS)

    Guo, X.; Wehrmeyer, J.A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-var-epsilon model, RNG k-var-epsilon model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. copyright 1997 American Institute of Physics

  15. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    Science.gov (United States)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  16. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  17. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  18. Towards the development of rapid screening techniques for shale gas core properties

    Science.gov (United States)

    Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert

    2013-04-01

    Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content

  19. Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... be tuned by simply changing the pressure of the gas [1]. The emission of efficient dispersive wave (DW) in the deep-UV has been already observed in a uniform Ar-filled hollow-core fiber with tunability from 200 to 320 nm by changing the gas pressure and pulse energy [2]. In the quest of optimizing...

  20. A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores

    International Nuclear Information System (INIS)

    Chen, Gary; Anghaie, Samim

    1999-01-01

    A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)

  1. Analysis Of Temperature Effects On Reactivity Of The Rsg-Gas Core Using Silicide Fuels

    International Nuclear Information System (INIS)

    Surbakti, Tukiran; Pinem, Surian

    2001-01-01

    RSG-GAS has been operating using new silicide fuels so that it is necessary to estimate and to measure the effect of temperature on reactivity of the core. The parameters to be determined due to temperature effect are reactivity coefficient of moderator temperature, temperature coefficient of fuel element and power reactivity coefficient. By doing a couple compensation method, determination of reactivity coefficient as well as the reactivity coefficient of moderator temperature can be obtained. Furthermore, coefficient of the reactivity was successfully estimated using the combination of WIMS-D4 and Batan-2DIFF. The cell calculation was done by using WIMS-D4 code to get macroscopic cross section and Batan-2DIFF code is used for core calculation. The calculation and experimental results of reactivity coefficient do not show any deviation from RSG-GAS safety margin. The results are -2,84 sen/ o C, -1,29 sen/MW and -0,64 sen/ o C for reactivity coefficients of temperature, power, fuel element and moderator temperature, respectively. All of 3 parameters are absolutely met with safety criteria

  2. NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2016-03-01

    Full Text Available Abstract NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE. Research of UMo fuel for research reactor has been developing  right now. The fuel of  research reactor used is uranium low enrichment with high density. For supporting the development of fuel, an assessment of mini fuel in the RSG-GAS core was performed. The mini fuel are U7Mo-Al and U6Zr-Al with densitis of 7.0gU/cc and 5.2 gU/cc, respectively. The size of both fuel are the same namely 630x70.75x1.30 mm were inserted to the 3 plates of dummy fuel. Before being irradiated in the core, a calculation for safety analysis  from neutronics and thermohydrolics aspects were required. However, in this paper will discuss safety analysis of the U7Mo-Al and U6Zr-Al mini fuels from neutronic point of view.  The calculation was done using WIMSD-5B and Batan-3DIFF code. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. Power density of U7Mo-Al mini fuel bigger than U6Zr-Al fuel.   Key words: mini fuel, neutronics analysis, reactor core, safety analysis   Abstrak ANALISIS NEUTRONIK ELEMEN BAKAR UJI MINI DI TERAS RSG-GAS. Penelitian tentang bahan bakar UMo untuk reaktor riset terus berkembang saat ini. Bahan bakar reaktor riset yang digunakan adalah uranium pengkayaan rendah namun densitas tinggi.  Untuk mendukung pengembangan bahan bakar dilakukan uji elemen bakar mini di teras reakror RSG-GAS dengan tujuan menentukan jumlah siklus di dalam teras sehingga tercapai fraksi bakar maksimum. Bahan bakar yang diuji adalah U7Mo-Al dengan densitas 7,0 gU/cc dan U6Zr-Al densitas 5,2 gU/cc. Ukuran kedua bahan bakar uji tersebut adalah sama 630x70,75x1,30 mm dimasukkan masing masing kedalam 3 pelat dummy bahan bakar. Sebelum diiradiasi ke dalam teras reaktor maka perlu dilakukan perhitungan keselamatan baik secara neutronik maupun termohidrolik. Dalam makalah ini

  3. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  4. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  5. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  6. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  7. Bituminous sands : tax issues

    International Nuclear Information System (INIS)

    Patel, B.

    2004-01-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs

  8. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  9. Analysis of Beryllium Having Irradiated at the RSG-GAS Core using ORIGEN2 Code

    International Nuclear Information System (INIS)

    Jaja Sukmana; Jonnie AK; S-Suwarto; Irwan

    2012-01-01

    Analysis of activation products generated by irradiated beryllium at the RSG-GAS core has been done using ORIGEN2 code. By assuming that irradiation is 176 days, neutron flux average of 2.30e+14 n/cm 2 s, radioisotopes rose from activated Be are tritium, lithium, beryllium, carbon, magnesium, aluminum, silicon, argon, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, and lead. The highest activity after 100 days of irradiation demonstrated by Be-10 (7.99 E-03 Curie), H-3 (2.97 E-03 Curie), Cr-51, Fe-55 and Co-60. Radioactivity generated getting smaller when irradiation time are long. From this analysis it can be conclude that radioactivity was caused by impurities present in Be such as Mn-54, Fe-59, Zn-65, and Li-6. (author)

  10. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  11. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  12. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  13. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  14. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  15. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  16. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  17. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    International Nuclear Information System (INIS)

    Schroedter, Lasse

    2013-08-01

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10 15 W/cm 2 . For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  18. The impact of a grain of sand: increasing production speed in flexible risers generates significant savings in gas production

    NARCIS (Netherlands)

    Bokhorst, E. van; Blokland, H.

    2012-01-01

    Deep-sea oil and gas production normally involves the use of flexible risers that comprise a metal carcass with a large number of enveloping layers that safeguard the integrity of the pipe system. The flexible risers are hung from a floating platform and may be supported by several floating buoys to

  19. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  20. Technical review comments on the environmental impact statement for the proposed Lone Pine Resources Ltd. Great Sand Hills Natural Gas Development

    International Nuclear Information System (INIS)

    1992-01-01

    Lone Pine Resources is proposing to construct and operate a natural gas production and transportation system in the Freefight Lake area of the Great Sand Hills in Saskatchewan. The initial development proposal consists of 58 gas wells at 160-acre spacing, with associated infrastructure. After drilling, completion, and tie-ins, the wells would be operated for an estimated 25 y. Following completion of construction, disturbed well sites and some pipeline rights of way would be fenced off and necessary reclamation, erosion control, and revegetation measures would be implemented and continued until revegetation standards are met. The thin vegetation, poorly developed soils, and wind exposure renders the project area vulnerable to disturbance, and the area's terrain, plant communities, wildlife, and surface and ground water are subject to potential biophysical impacts. About 4.6% of the total project area is expected to be affected temporarily by construction of the project. Although the project area is formally designated as a critical wildlife habitat, it is believed that the proposed project can be constructed and operated with only minor impacts on wildlife. Groundwater contamination will be avoided by enforcing strict drilling regulations, including containment of all drilling fluids. If approved, the project would create economic benefits to the Fox Valley-Maple Creek area, mainly during construction. Potential impacts on the esthetic character of the area are considered to be minor

  1. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  2. Thermal hydraulic And RSG-Gas Core Reactivity Characteristics Due To Cold Water Insertion Accident

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Suparlina, Lily; Tukiran

    2000-01-01

    Under normal operating condition,the primary coolant is circulated by 2 out of the 3 primary coolant pumps. Unnecessary operation of the reserve pump would result in a temperatur decrease of the primary coolant by less than 5 o C. the corresponding increase of reactivity amounts to Δρ ≤0,1 %. The analysis was done using silicide core configuration data with 3.55 gU /cm 3 fuel loading. The calculation model was done with and without automatic control rod. The calculation results for the worst case condition, shows that reactor reached the maximum power 28.52 MW at 81.1 seconds, after the accident occurred. The maximal fuel element, cladding and outlet coolant temperatures are 148.3 o C,142.1 o C, and 75.7 o C, respectively. Safety margins for DNBR and flow instability reached 1.25 and 4.20, respectively. Comparing to the RSG-GAS safety margin at transient condition reguirement >1.48, RSG-GAS has enough safety margin if the power trip executed at 114% of 25 MW

  3. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  4. Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto

    2006-04-15

    Amid generation IV of nuclear power plants, the Gas Turbine - Modular Helium Reactor, designed by General Atomics, is the only core with an energy conversion efficiency of 50%; the safety aspects, coupled to construction and operation costs lower than ordinary Light Water Reactors, renders the Gas Turbine - Modular Helium reactor rather unequaled. In the present studies we investigated the possibility to operate the GT-MHR with two types of fuels: LWRs waste and thorium; since thorium is made of only fertile {sup 232}Th, we tried to mix it with pure {sup 233}U, {sup 235}U or {sup 239}Pu; ex post facto, only uranium isotopes allow the reactor operation, that induced us to examine the possibility to use a mixture of uranium, enriched 20% in {sup 235}U, and thorium. We performed all calculations by the MCNP and MCB codes, which allowed to model the reactor in a very detailed three-dimensional geometry and to describe the nuclides transmutation in a continuous energy approach; finally, we completed our studies by verifying the influence of the major nuclear data libraries, JEFF, JENDL and ENDF/B, on the obtained results.

  5. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  6. Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores

    Directory of Open Access Journals (Sweden)

    M. Döring

    2018-06-01

    Full Text Available Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess extracted from ancient air in Greenland ice cores using published accumulation-rate (Acc datasets. We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories and associated δ15N datasets, mimicking real Holocene data that we use as true values (targets to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the subjective impact of manual parameter tuning, leading to reproducible temperature estimates. In contrast to many other ice-core-based temperature reconstruction methods, the presented approach is completely independent from ice-core stable-water isotopes, providing the opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc by using a combination of a Monte Carlo based iterative approach and the analysis of remaining mismatches between modelled and target data, based on cubic-spline filtering of random numbers and the laboratory-determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which led as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution function. For the study on synthetic data, 95 % of the mismatches compared to the synthetic target data are in an envelope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0

  7. Casting core for a cooling arrangement for a gas turbine component

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-01-20

    A ceramic casting core, including: a plurality of rows (162, 166, 168) of gaps (164), each gap (164) defining an airfoil shape; interstitial core material (172) that defines and separates adjacent gaps (164) in each row (162, 166, 168); and connecting core material (178) that connects adjacent rows (170, 174, 176) of interstitial core material (172). Ends of interstitial core material (172) in one row (170, 174, 176) align with ends of interstitial core material (172) in an adjacent row (170, 174, 176) to form a plurality of continuous and serpentine shaped structures each including interstitial core material (172) from at least two adjacent rows (170, 174, 176) and connecting core material (178).

  8. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [Department of Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Zhang, Xiaojia [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Aarseth, Sverre J., E-mail: bbliu1208@gmail.com [Institute of Astronomy, Cambridge University, Cambridge CB3 0HA (United Kingdom)

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.

  9. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    International Nuclear Information System (INIS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.; Aarseth, Sverre J.

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10 –7 M ☉ yr –1 ) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency

  10. Summary of the engineering assessment of radioactive sands and residues, Lowman Site, Lowman, Idaho

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Lowman site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive sands and residues at Lowman, Idaho. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of radioactive sands and residues and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 191,000 tons of radioactive sands, residues, and contaminated soils at the Lowman site constitutes the most significant environmental impact, although windblown radioactive sands and external gamma radiation also are factors

  11. Engineering assessment of radioactive sands and residues, Lowman Site, Lowman, Idaho

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Lowman site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive sands and residues at Lowman, Idaho. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of radioactive sands and residues and radiation exposure of individuals and nearby populations, and investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 191,000 tons of radioactive sands, residues, and contaminated soils at the Lowman site constitutes the most significant environmental impact, although windblown radioactive sands and external gamma radiation also are factors

  12. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  13. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  14. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  15. Study on the seismic verification test program on the experimental multi-purpose high-temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Taketani, K.; Aochi, T.; Yasuno, T.; Ikushima, T.; Shiraki, K.; Honma, T.; Kawamura, N.

    1978-01-01

    The paper describes a program of experimental research necessary for qualitative and quantitative determination of vibration characteristics and aseismic safety on structure of reactor core in the multipurpose high temperature gas-cooled experimental reactor (VHTR Experimental Reactor) by the Japan Atomic Energy Research Institute

  16. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  17. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  18. Primary successions of vegetation on technogenic sand patches in oil and gas producing districts of the middle Ob' river basin

    Energy Technology Data Exchange (ETDEWEB)

    Shilova, I I

    1977-11-01

    Intensive economic exploitation of the natural resources of the oil-and-gas producing districts of the central Ob' basin has led to increased exposure of sandy patches over the landscape. These sandy areas are becoming a common site. Technogenic factors involved include, for example, construction projects, oil-drilling and the like. Exposure is accelerated by wind and water erosion. Efforts are underway to reintroduce verdure in the region, and a study has been underway of the features of the ecotope and the stages of natural overgrowth of the area of reclamation. This overgrowth is proceeding well. Vegetation is of the syngenetic succession type, involving four successive stages and formation of associations of a zonal character. Seventy-four species of yeast, 2 species of fungi, 2 of lichens, 19 of Bryophyton and 106 of vascular spore- and covered-seed plants of the area have been recorded, and are tabulated. Recultivation will require due attention to existing conditions. 14 references.

  19. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  20. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  1. Design and construction of a large-scale sand-bentonite seal for controlled gas release from a L/ILW repository - The GAST project at GTS

    International Nuclear Information System (INIS)

    Rueedi, J.; Marschall, P.; Vaissiere, R. de la; Jung, H.; Reinhold, M.; Steiner, P.; Garcia-Sineriz, J.L.

    2012-01-01

    Document available in extended abstract form only. Gases (hydrogen, methane, carbon dioxide) may accumulate in the emplacement caverns of a geological repository for low/intermediate-level waste (L/ILW) due to the corrosion and degradation of the wastes. Nagra is evaluating the concept of an engineered gas transport system (EGTS), aimed at limiting the gas overpressures in the backfilled underground structures of a repository on an acceptable level without compromising the radionuclide retention capacity of the engineered barrier system (EBS). The main design elements of the EGTS are (i) specially designed backfill materials for the emplacement caverns, characterized by high porosity and high compressive strength and (ii) gas permeable tunnel seals, consisting of sand/bentonite mixtures with a bentonite content of 20% to 30%. Preliminary experimental studies on the laboratory scale confirmed the low water permeability and the enhanced gas transport capacity of the S/B mixtures. These experiments have shown the ability to design S/B mixtures with specific target permeabilities for water and gas flow. Complementary numerical studies were conducted with two-phase flow modeling codes to simulate the buildup of gas overpressures in the different sections of the repository. The modeling studies reveal a variety of gas related design optimizations, indicating that the gas overpressures in the underground structures can be limited to a level which conforms to the long-term safety requirements. Thus, the seal geometry (length, cross-sectional area) can be subjected to the optimization process just as the geotechnical properties of the backfill material (gas / water permeability, clay content, compressive strength). In this context, it is expected that material heterogeneities at engineering scales will, at least to some extent, lead to a water saturation and a gas invasion behaviour that differs from those observed in small-scale lab experiments. Therefore, validation

  2. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    Science.gov (United States)

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  3. A Long Gravity-Piston Corer Developed for Seafloor Gas Hydrate Coring Utilizing an In Situ Pressure-Retained Method

    Directory of Open Access Journals (Sweden)

    Lin-Yi Gu

    2013-07-01

    Full Text Available A corer, which can obtain long in situ pressure-retained sediments of up to 30 m core containing gas hydrates, has been applied in the South China Sea (SCS dozens of times. The corer presented in this paper is a convenient, efficient and economical long in situ pressure-retained coring and research tool for submarine sediments, that can applied to completely cope with all sediments close to the seafloor ranging from shallow waters to the deep sea depths of 6000 m. This article mainly presents the overall structure, working principles, key pressure-retained components, coring mechanism, sea trials and outlook of the corer. The analyses found that the coring ability was affected by formation characteristics, the outer diameter of the core barrels and inner diameter of the core liners, the shapes of the cutter and the dead weight of the corer. This study can provide the practical basis for the structural optimization of this type of corer and designs for corers with greater penetrability. Sea trials showed that the developed corer presented in this paper can support the in situ pressure of the seafloor sediment core, which is an improvement over the conventional piston corer.

  4. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    Jiang, Liming; Sun, Jianmeng; Wang, Haitao; Liu, Xuefeng

    2011-01-01

    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  5. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  6. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  7. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  8. Neutronic Analysis of the RSG-GAS Compact Core without CIP Silicide 3.55 g U/cc and 4.8 g U/cc

    International Nuclear Information System (INIS)

    Jati S; Lily S; Tukiran S

    2004-01-01

    Fuel conversion from U 3 O 8 -Al to U 3 Si 2 -Al 2.96 g U/cc density in the RSG-GAS core had done successfully step by step since 36 th core until 44 th core. So that, since the 45 th core until now (48 th core) had been using full of silicide 2.96 g U/cc. Even though utilization program of silicide fuel with high density (3.55 g U/cc and 4.8 g U/cc) and optimize operation of RSG-GAS core under research. Optimalitation of core with increasing operation cycle have been analyzing about compact core. The mean of compact core is the RSG-GAS core with decrease number of IP or CIP position irradiation. In this research, the neutronic calculation to cover RSG-GAS core and RSG-GAS core without CIP that are using U 3 Si 2 -Al 2.96 g U/cc, 3.55 g U/cc and 4.8 g U/cc had done. Two core calculation done at 15 MW power using SRAC-ASMBURN code. The calculation result show that fuel conversion from 2.96 g U/cc density to 3.55 g U/cc and 4.8 g U/cc will increasing cycle length for both RSG-GAS core and RSG-GAS compact core without CIP. However, increasing of excess reactivity exceeded from nominal value of first design that 9.2%. Change of power peaking factor is not show significant value and still less than 1.4. Core fuelled with U 3 Si 2 -Al 4.8 g U/cc density have maximum discharge burn-up which exceeded from licensing value (70%). RSG-GAS compact core without CIP fuelled U 3 Si 2 -Al 2.96 g U/cc have longer cycle operation then RSG-GAS core and fulfil limitation neutronic parameter at the first design value. (author)

  9. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  10. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  11. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  12. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  13. Experimental investigation of sanding propensity for the Andrew completion

    Energy Technology Data Exchange (ETDEWEB)

    Venkitaraman, A.; Li, H. [Schlumberger Perforating and Testing Center (United Kingdom); Leonard, A. J.; Bowden, P. R. [BP Exploration (United Kingdom)

    1998-12-31

    A series of laboratory experiments were performed on three reservoir core samples selected from two plot wells to confirm the likelihood of sand production during the completion phase of the planned Andrew horizontal wells, and to perform risk analysis of formation failure at the time of underbalance perforation, and expected producing conditions. CT scans revealed no perforation failure, and the core samples did not show any propensity to produce sand during single-phase oil flow. Transient sand production was observed when water cut was introduced, but sand production declined as the percentage of water cut was increased. There was no evidence of sand production in the core samples during depletion testing either, and the wells were subsequently completed with perforated cemented liners without sand control. No sand problems have been encountered in two years of production, with some wells in water cut and declined reservoir pressure of 200 psi. 8 refs., 3 tabs., 5 figs.

  14. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Susilo, Jati; Kuntoro, Iman

    2002-01-01

    Improvement of the efficiency of reactor operation can be chivvied by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 0,84 % Δk/k and longest time operation about 1,19 time in the safety criteria that is power peaking factor less then 1,4 and margin control element worth less then volume in the first design that -2,2% Δk/k

  15. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Jati-Susilo; Iman-Kuntoro

    2003-01-01

    Improvement of the efficiency of reactor operation can be achieved by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 1.06 % Δk/k and longest time operation about 1.19 time in the safety criteria that is power peaking factor less then 1.4 and margin control element worth less then value in the first design that -2.2% Δk/k

  16. (FeCo)3Si-SiOx core-shell nanoparticles fabricated in the gas phase

    International Nuclear Information System (INIS)

    Bai Jianmin; Xu Yunhao; Thomas, John; Wang Jianping

    2007-01-01

    A method of fabricating core-shell nanoparticles by using an integrated nanoparticle deposition technique in the gas phase is reported. The principle of the method is based on nanoparticle growth from the vapour phase, during which elements showing lower surface energies prefer to form the shells and elements showing higher surface energies prefer to stay in the cores. This method was applied successfully to the Fe-Co-Si ternary system to fabricate core-shell-type nanoparticles. The nanoparticles were exposed in air after collection to achieve oxidation. The analysis results based on transmission electron microscopy (TEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and a superconducting quantum interference device (SQUID) showed that the core parts are magnetic materials of body-centred cubic (bcc) structured (FeCo) 3 Si of 15 nm in diameter, and the shell parts are amorphous SiO x of 2 nm in thickness. These core-shell-type nanoparticles show a magnetic anisotropy constant of about 7 x 10 5 erg cm -3 and a saturation magnetization of around 1160 emu cm -3 , which is much higher than that of iron oxide. After annealing at 300 deg. C in air (FeCo) 3 Si-SiO x core-shell-type nanoparticles showed a little bit of a drop in magnetic moment, while pure FeCo nanopariticles totally lost their magnetic moment. This means that the shells of SiO x are dense enough to prevent the magnetic cores from oxidation

  17. A gas extraction system for the measurement of carbon dioxide and carbon isotopes in polar ice cores

    International Nuclear Information System (INIS)

    Steig, E.

    1992-06-01

    Knowledge of the distribution of Carbon 13 in the glacial ocean, atmosphere, and biosphere is important to understanding the causes of glacial/interglacial changes in atmospheric CO 2 levels. Although deep-ocean Carbon 13 values are well-constrained by ocean sediment studies, model-based estimates of changes in the carbon budget for the biosphere and atmosphere vary considerably. Measurement of atmospheric Carbon 13 in CO 2 in ice cores will provide additional constraints on this budget and will also improve estimates of changes in the ocean surface layer Carbon 13. Direct measurement of ancient atmospheric Carbon 13 can be accomplished through polar ice core studies. A gas-extraction line for ice cores has been designed and constructed with particular attention to the specific difficulties of measuring Carbon 13 in CO 2 . The ice is shaved, rather than crushed, to minimize fractionation effects resulting from gas travel through long air-paths in the ice. To minimize the risk of isotopic contamination and fractionation within the vacuum line, CO 2 is separated immediately from the air; the CO 2 concentration is then measured by a simple pressure/volume comparison rather than by gas chromatography or spectroscopy. Measurements from Greenland ice core samples give an average value of 280±2 ppM CO 2 for preindustrial samples, demonstrating that the extraction system gives accurate, precise determinations Of CO 2 concentrations. Measurement of δ 13 C from polar ice samples has not been achieved at this time. However, results on standard air samples demonstrate a precision for δ 13 C of less than 0.2 per-thousand at the 95% confidence level

  18. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  19. Degradation and leaching behaviour of 14C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    International Nuclear Information System (INIS)

    Kubiak, R.

    1996-12-01

    Degradation and leaching behaviour of 14 C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The 14 C-loss during application was 4.8-8.2%. The 14 C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of 14 C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of 14 C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  20. Degradation and leaching behaviour of {sup 14}C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, R

    1996-12-01

    Degradation and leaching behaviour of {sup 14}C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The {sup 14}C-loss during application was 4.8-8.2%. The {sup 14}C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of {sup 14}C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of {sup 14}C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  1. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism

    KAUST Repository

    Majhi, Sanjit Manohar

    2018-04-25

    In this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.

  2. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    decreases with height in the reversed direction. The height of 0.5 H is the height of vortex core in the reversed flow region. The vortex core is a critical point in the flow region where few particles are transited. In the reversed region, the reversed mass flux of sand particles is 25% of the mass flux in the flow direction. This research may contribute to scientific understanding of the mechanisms of sand motion and wind flow over leeward of dune and it is likely to be significant in desertification control.

  3. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  4. The Analysis of the Effect of Coolant Channel Width on Fuel Loading of the RSG-GAS Core

    International Nuclear Information System (INIS)

    Surbakti; Tukiran

    2004-01-01

    The RGS-GAS using uranium silicide fuel, plate type and 250 g U of loading is planned to increase the fuel loading to 300 g U even to 400 g U. The silicide fuel has advantages when increase the fuel loading in the same volume. Because of that case, it is necessary to analyze the effect of coolant channel width on fuel loading of the RSG-GAS core. Analyzing the effect the work which done is to generate cell and core calculation using WIMSD/4 and Batan-2DIFF codes. The WIMSD/4 code is used to generate cross section of core material and Batan-2DIFF is used to calculate the effective multiplication factor. The model that used in this calculation there are three kind of fuel loading namely, 250 g U, 300 g U and 400 g U. The coolant channel width is simulated from 1.75 mm to 2.55 mm. From that fuel loadings, it is analyzed which coolant channel width gave the best effective multiplication factor. From result of analysis showed that the best effective multiplication factor is on the coolant channel width of 2.55 mm for third of fuel loadings. (author)

  5. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks; TOPICAL

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  6. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  7. Integral manifolding structure for fuel cell core having parallel gas flow

    Science.gov (United States)

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  8. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  9. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  10. Geologic assessment of undiscovered conventional oil and gas resources in the Lower Paleogene Midway and Wilcox Groups, and the Carrizo Sand of the Claiborne Group, of the Northern Gulf coast region

    Science.gov (United States)

    Warwick, Peter D.

    2017-09-27

    The U.S. Geological Survey (USGS) recently conducted an assessment of the undiscovered, technically recoverable oil and gas potential of Tertiary strata underlying the onshore areas and State waters of the northern Gulf of Mexico coastal region. The assessment was based on a number of geologic elements including an evaluation of hydrocarbon source rocks, suitable reservoir rocks, and hydrocarbon traps in an Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System defined for the region by the USGS. Five conventional assessment units (AUs) were defined for the Midway (Paleocene) and Wilcox (Paleocene-Eocene) Groups, and the Carrizo Sand of the Claiborne Group (Eocene) interval including: (1) the Wilcox Stable Shelf Oil and Gas AU; (2) the Wilcox Expanded Fault Zone Gas and Oil AU; (3) the Wilcox-Lobo Slide Block Gas AU; (4) the Wilcox Slope and Basin Floor Gas AU; and (5) the Wilcox Mississippi Embayment AU (not quantitatively assessed).The USGS assessment of undiscovered oil and gas resources for the Midway-Wilcox-Carrizo interval resulted in estimated mean values of 110 million barrels of oil (MMBO), 36.9 trillion cubic feet of gas (TCFG), and 639 million barrels of natural gas liquids (MMBNGL) in the four assessed units. The undiscovered oil resources are almost evenly divided between fluvial-deltaic sandstone reservoirs within the Wilcox Stable Shelf (54 MMBO) AU and deltaic sandstone reservoirs of the Wilcox Expanded Fault Zone (52 MMBO) AU. Greater than 70 percent of the undiscovered gas and 66 percent of the natural gas liquids (NGL) are estimated to be in deep (13,000 to 30,000 feet), untested distal deltaic and slope sandstone reservoirs within the Wilcox Slope and Basin Floor Gas AU.

  11. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  12. Safety analysis of RSG-GAS Silicide core using one line cooling system

    International Nuclear Information System (INIS)

    Endiah-Puji-Hastuti

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW

  13. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    Science.gov (United States)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  14. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  15. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    guides via a photonic bandgap and the other guides by virtue of an inhibited coupling between core and cladding mode constituents. For the former fibre type, we explore how the bandgap is formed using a photonic analogue of the tight-binding model and how it is related to the anti-resonant reflection...... on electromagnetically induced transparency in a rubidium filled hollow-core photonic crystal fibre, the CW-pumped hydrogen Raman laser and the generation of multi-octave spanning stimulated Raman scattering spectral combs....

  16. Core level photoelectron spectroscopy of LiGaS2 and Ga-S bonding in complex sulfides

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Isaenko, L.I.; Kesler, V.G.; Lobanov, S.I.

    2010-01-01

    The electronic parameters of the lithium thiogallate LiGaS 2 have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference Δ 2p (S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value Δ 2p (S-Ga) = 141.9 eV found for LiGaS 2 is very close to that evaluated for AgGaS 2 . This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS 2 and AgGaS 2 .

  17. Core level photoelectron spectroscopy of LiGaS{sub 2} and Ga-S bonding in complex sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.r [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, 13, Lavrentieva Ave., Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Lobanov, S.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2010-05-14

    The electronic parameters of the lithium thiogallate LiGaS{sub 2} have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference {Delta}{sub 2p}(S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value {Delta}{sub 2p}(S-Ga) = 141.9 eV found for LiGaS{sub 2} is very close to that evaluated for AgGaS{sub 2}. This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS{sub 2} and AgGaS{sub 2}.

  18. Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model

    Science.gov (United States)

    Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck

    2016-07-01

    We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.

  19. Wettability modification of rock cores by fluorinated copolymer emulsion for the enhancement of gas and oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Feng Chunyan [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Kong Ying, E-mail: yingkong1967@yahoo.com.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Jiang Guancheng [MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249 (China); Yang Jinrong; Pu Chunsheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Zhang Yuzhong [Key Lab of Hollow Fibre Membrane Materials and Membrane Process, Tianjin Polytechnic University, Tianjin 300160 (China)

    2012-07-01

    The fluorine-containing acrylate copolymer emulsion was prepared with butyl acrylate, methacrylic acid and 1H, 1H, 2H, 2H-perfluorooctyl acrylate as monomers. Moreover, the structure of the copolymer was verified by Fourier transform infrared (FTIR), nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) and X-ray photoelectron spectroscopy (XPS) analyses. The results showed that all the monomers had been copolymerized and the presence of fluorine moieties. The contact angle (CA) analyses, capillary rise and imbibition spontaneous tests were used to estimate the influence of the copolymer emulsion on the wettability of gas reservoirs. It was observed that the rock surface was of large contact angles of water, oilfield sewage, hexadecane and crude oil after treatment with the emulsion. The capillary rise results indicated that the contact angles of water/air and oil/air systems increased from 60 Degree-Sign and 32 Degree-Sign to 121 Degree-Sign and 80 Degree-Sign , respectively, due to the emulsion treatment. Similarly, because of wettability alteration by the fluoropolymer, the imbibition of water and oil in rock core decreased significantly. Experimental results demonstrated that the copolymer emulsion can alter the wettability of porous media from strong liquid-wetting to gas-wetting. This work provides a cost-effective method to prepare the fluoropolymer which can increase gas deliverability by altering the wettability of gas-condensate reservoirs and mitigating the water block effect.

  20. Riddle of the sands

    Energy Technology Data Exchange (ETDEWEB)

    Rolheiser, P

    1998-09-01

    A geological model of the Alberta landscape during the period stretching from about 110 million to 100 million years ago during the Cretaceous period when dinosaurs roamed the earth, was sketched. Today, the region contains the Cold Lake oil sands deposit. Imperial Oil began large-scale production at Cold Lake in 1985. The formations within the area are the source of almost half of Imperial Oil`s daily crude oil production and account for one in every 20 barrels of oil produced daily in Canada. The bitumen is produced using cyclic steam stimulation where steam is injected at high pressure into the underground reservoir, fracturing the sandstone and heating the bitumen it holds to thin it so that it can then flow through well bores to the surface. Conventional geological theory suggested that the Cold Lake reservoir was the remains of a prehistoric river delta. In 1994, Imperial Oil established a Cold Lake sequence stratigraphy project to verify this theory. This highly complex project involves volumes of geophysical well-log data from the 2,500 wells at Cold Lake, core samples cut from more than 600 of these wells and microscopic fossilized remains of 100-million-year-old flora extracted from the core samples, and seismic information. The interpreted data helps to create a three-dimensional model of the reservoir`s structure and help define its boundaries. Results have shown that the Cold Lake deposit was created from at least 13 intersecting river beds. Each of the rivers flowed for a few hundred thousand years and deposited sands of varying quality in different layers and patterns. The oil came about 40 million years later after the plant and animal materials containing hydrogen and carbon were broken down by heat and pressure to form oil. 1 fig.

  1. Pressure-Coring of the Gas-bearing Devonian Black Shales

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, R. E.; Dixon, J. A.; McIver, R. D.

    1979-10-01

    A Christensen model pressure-retaining core barrel is being used in the drilling of two EGSP research wells. This effort supported by two other techniques is designed to evaluate the most effective technique to provide meaningful resource assessments. One well has been successfully drilled and the accumulated samples are currently being evaluated. The second well is currently being drilled.

  2. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  3. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  4. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  5. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    International Nuclear Information System (INIS)

    Sforza, P.M.; Cresci, R.J.

    1997-01-01

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical

  6. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  7. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  8. In-reactor testing of the closed cycle gas core reactor---the nuclear light bulb concept

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Slutz, S.A.; Harms, G.A.; Latham, T.S.; Roman, W.C.; Rodgers, R.J.

    1993-01-01

    The Nuclear Light Bulb (NLB) concept is an advanced closed cycle space propulsion rocket engine design that offers unprecidented performance characteristics in terms of specific impulse (>1800 s) and thrust (>445 kN). The NLB is a gas-core nuclear reactor making use of thermal radiation from a high temperature U-plasma core to heat the hydrogen propellant to very high temperatures (∼4000 K). The following paper describes analyses performed in support of the design of in-reactor tests that are planned to be performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in order to demonstrate the technical feasibility of this advanced concept. The tests will examine the stability of a hydrodynamically confined fissioning U-plasma under steady and transient conditions. Testing will also involve study of propellant heating by thermal radiation from the plasma and materials performance in the nuclear environment of the NLB. The analyses presented here include neutronic performance studies and U-plasma radiation heat-transport studies of small vortex-confined fissioning U-plasma experiments that are irradiated in the ACRR. These analyses indicate that high U-plasma temperatures (4000 to 9000 K) can be sustained in the ACRR for periods of time on the order of 5 to 20 s. These testing conditions are well suited to examine the stability and performance requirements necessary to demonstrate the feasibility of this concept

  9. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core

    Czech Academy of Sciences Publication Activity Database

    Pulyalina, A. Y.; Rostovtseva, V. A.; Pientka, Zbyněk; Vinogradova, L. V.; Polotskaya, G. A.

    2018-01-01

    Roč. 58, č. 4 (2018), s. 296-303 ISSN 0965-5441 Institutional support: RVO:61389013 Keywords : gas separation * hybrid membranes * star-shaped macromolecules Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.493, year: 2016

  10. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  11. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  12. Fuel cycles and advanced core designs for the Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Simon, R.H.; Hamilton, C.J.; Hunter, R.S.

    1982-01-01

    Studies indicate that a 1200 MW(e) Gas-Cooled Fast Breeder Reactor could achieve compound system doubling times of under ten years when using advanced oxide or carbide fuels. In addition, when thorium is used in the breeding blankets, enough U-233 can be generated in each GCFR to supply several advanced converter reactors with fissionable material and this symbiotic relationship could provide energy for the world for centuries. (author)

  13. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  14. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  15. Thermal modeling of core sampling in flammable gas waste tanks. Part 1: Push-mode sampling

    International Nuclear Information System (INIS)

    Unal, C.; Stroh, K.; Pasamehmetoglu, K.O.

    1997-01-01

    The radioactive waste stored in underground storage tanks at Hanford site is routinely being sampled for waste characterization purposes. The push- and rotary-mode core sampling is one of the sampling methods employed. The waste includes mixtures of sodium nitrate and sodium nitrite with organic compounds that can produce violent exothermic reactions if heated above 160 C during core sampling. A self-propagating waste reaction would produce very high temperatures that eventually result in failure of the tank and radioactive material releases to environment. A two-dimensional thermal model based on a lumped finite volume analysis method is developed. The enthalpy of each node is calculated from the first law of thermodynamics. A flash temperature and effective contact area concept were introduced to account the interface temperature rise. No maximum temperature rise exceeding the critical value of 60 C was found in the cases studied for normal operating conditions. Several accident conditions are also examined. In these cases it was found that the maximum drill bit temperature remained below the critical reaction temperature as long as a 30 scfm purge flow is provided the push-mode drill bit during sampling in rotary mode. The failure to provide purge flow resulted in exceeding the limiting temperatures in a relatively short time

  16. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  17. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  18. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R.E.

    1996-04-15

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  19. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Raymond, R.E.

    1996-01-01

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ''beyond extremely unlikely'' frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  20. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  1. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    Science.gov (United States)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  2. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  3. Fuel Summary for Peach Bottom Unit 1 High-Temperature Gas-Cooled Reactor Cores 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Karel I. Kingrey

    2003-04-01

    This fuel summary report contains background and summary information for the Peach Bottom Unit 1, High-Temperature, Gas-Cooled Reactor Cores 1 and 2. This report contains detailed information about the fuel in the two cores, the Peach Bottom Unit 1 operating history, nuclear parameters, physical and chemical characteristics, and shipping and storage canister related data. The data in this document have been compiled from a large number of sources and are not qualified beyond the qualification of the source documents. This report is intended to provide an overview of the existing data pertaining to spent fuel management and point to pertinent reference source documents. For design applications, the original source documentation must be used. While all referenced sources are available as records or controlled documents at the Idaho National Engineering and Environmental Laboratory (INEEL), some of the sources were marked as informal or draft reports. This is noted where applicable. In some instances, source documents are not consistent. Where they are known, this document identifies those instances and provides clarification where possible. However, as stated above, this document has not been independently qualified and such clarifications are only included for information purposes. Some of the information in this summary is available in multiple source documents. An effort has been made to clearly identify at least one record document as the source for the information included in this report.

  4. Criticality safety assessment on the RSG-GAS spent fuel storage for anticipating the next core conversion program

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Kuntoro, Iman; Zuhair; Liem, Peng Hong

    2003-01-01

    Criticality assessment on the spent fuel storage racks of the RSG-GAS multipurpose reactor has been conducted to support the undergoing core conversion program, in which higher uranium fuel densities of silicide (up to 4.8 gU.cm -3 ) and molybdenum (up to 8.3 gU.cm -3 ) fuel elements are adopted to enhance the reactor performance, core cycle length and reactor utilization. In the assessment, the k eff of the rack as a function of fuel density is calculated for fresh fuel elements which is a very conservative approach recommended by IAEA. Besides fuel densities, effects of water densities due to pool water temperature variation, and the fuel elements' orientation on the k eff are analyzed as well. The criticality calculations are all carried out by using MNCP4B2 Monte Carlo code with ENDF/B-VI library. For the library sensitivity, JENDL-3.3 library is also used and compared. The calculation results show the most reactive condition is for the case when the spent fuel racks are filled with fresh U-6Mo fuel element with meat density of 8.30 gU.cm -3 . For all fuel types, density and operating condition, the calculated k eff with 3 times standard deviations are confirmed less than the allowable value of 0.95. It can be concluded that the existing spent fuel storage racks can be safely used for storing the planned high density uranium fuels. (author)

  5. APPLICATION OF POLYSTYRENE FOAM CORE FUSIBLE PATTERNS IN PRODUCTION OF GAS TURBINES’ CAST PARTS

    Directory of Open Access Journals (Sweden)

    O. I. Shinsky

    2016-01-01

    Full Text Available The task of replacing the LVM dissolves polystyrene molding on models is at the present time, technologically, economically and environmentally promising from the point of view of industrial applications for gas turbine plants in Ukraine. The authors proposed and tested manufacturing process of casting ceramic molds way to remove the polystyrene model of the dissolution of her organic solvents. Kinetic parameters of the process of dissolving and removing patterns of degradation products the polystyrene in the group of solvents depending on the type and amount of polystyrene were identified. The absence of surface defects of castings, reduction of roughness, increased their accuracy class in comparison to accepted technological regulations of the process of production, which reduced the cost of machined parts and increased utilization of expensive heat-resistant alloys were produced.

  6. A near infrared spectroscopic study of the interstellar gas in the starburst core of M82

    International Nuclear Information System (INIS)

    Lester, D.F.; Carr, J.; Joy, M.; Gaffney, N.

    1990-01-01

    Researchers used the McDonald Observatory Infrared Grating Spectrometer, to complete a program of spatially resolved spectroscopy of M82. The inner 300 pc of the starburst was observed with 4 inch (50 pc) resolution. Complete J, H and K band spectra with resolution 0.0035 micron (lambda/delta lambda=620 at K) were measured at the near-infrared nucleus of the galaxy. Measurements of selected spectral features including lines of FeII, HII and H2 were observed along the starburst ridge-line, so the relative distribution of the diagnostic features could be understood. This information was used to better define the extinction towards the starburst region, the excitation conditions in the gas, and to characterize the stellar populations there

  7. A near infrared spectroscopic study of the interstellar gas in the starburst core of M82

    Science.gov (United States)

    Lester, Dan F.; Carr, John; Joy, Marshall; Gaffney, Niall

    1990-01-01

    Researchers used the McDonald Observatory Infrared Grating Spectrometer, to complete a program of spatially resolved spectroscopy of M82. The inner 300 pc of the starburst was observed with 4 inch (50 pc) resolution. Complete J, H and K band spectra with resolution 0.0035 micron (lambda/delta lambda=620 at K) were measured at the near-infrared nucleus of the galaxy. Measurements of selected spectral features including lines of FeII, HII and H2 were observed along the starburst ridge-line, so the relative distribution of the diagnostic features could be understood. This information was used to better define the extinction towards the starburst region, the excitation conditions in the gas, and to characterize the stellar populations there.

  8. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  9. Laser frequency standards based on gas-filled hollow-core fibres

    DEFF Research Database (Denmark)

    Triches, Marco

    The work presented in this thesis has been developed within the Marie-Curie Initial Training Network (ITN) called Quantum Sensor Technologies and Applications (QTea), funded under the EU-FP7 program (contract-N MCITN-317485). The ITN QTea project is aimed at preparing a cohort of early-stage rese......The work presented in this thesis has been developed within the Marie-Curie Initial Training Network (ITN) called Quantum Sensor Technologies and Applications (QTea), funded under the EU-FP7 program (contract-N MCITN-317485). The ITN QTea project is aimed at preparing a cohort of early......-stage researchers for the emerging challenges in quantum technology. The scientific scope of the network is focused on the physics of modern quantum sensors for gravitational probing, rotation sensing, field probes, magnetic surface microscopy,atomic clocks and precision spectroscopy. This work naturally falls...... realization of a portable system and on the theoretical identification of the most important parameters for in-fiber gas spectroscopy applications. The scope of the project is to reduce the gap that prevents the state of the art technology from being commercialized. This thesis aims at: (a) characterizing...

  10. MouldingSandDB – a modern database storing moulding sands properties research results

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available The complexity of foundry processes requires the use of modern, advanced IT tools for optimization, storage and analysis of t echnicaldata. Properties of moulding and core sands that are collected in research laboratories, manufacturers, and finally in the foundries, are not in use later on. It seems important to create a database that will allow to use the results stored, along with the possibility of searching according to set criteria, adjusted to casting practice. This paper presents part of the database named „MouldingSandDB”, which allows to collect and search data for synthetic moulding sands.

  11. Summary of research and information needs for the management of selected onshore energy minerals: oil shale, tar sands, arctic oil and gas, and uranium. Final report 1982-83

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The report assesses research needs for the management, regulation, reclamation, and conservation of oil shale, tar sands, arctic oil and gas, and uranium deposits currently under federal jurisdiction and concludes that additional research is required to achieve the goals of good management, including conservation, protection of life and property, and minimization of environmental degradation. The report recommends (1) establishment of a standing advisory scientific and engineering committee on onshore minerals management research to influence future research directions and implementation; (2) development of a comprehensive library and data center for research results; and (3) encouragement of the operation of demonstration-scale production facilities where they are lacking. More detailed summaries of current knowledge and perceived research needs are to be found in the four interim reports of the committee.

  12. Numerical simulation of mud erosion rate in sand-mud alternate layer and comparison with experiment

    Science.gov (United States)

    Yoshida, T.; Yamaguchi, T.; Oyama, H.; Sato, T.

    2015-12-01

    For gas production from methane hydrates in sand-mud alternate layers, depressurization method is expected as feasible. After methane hydrate is dissociated, gas and water flow in pore space. There is a concern about the erosion of mud surface and it may result in flow blockage that disturbs the gas production. As a part of a Japanese National hydrate research program (MH21, funded by METI), we developed a numerical simulation of water-induced mud erosion in pore-scale sand-mud domains to model such mud erosion. The size of which is of the order of 100 micro meter. Water flow is simulated using a lattice Boltzmann method (LBM) and mud surface is treated as solid boundary with arbitrary shape, which changes with time. Periodic boundary condition is adopted at the domain boundaries, except for the surface of mud layers and the upper side. Shear stress acting on the mud surface is calculated using a momentum-exchange method. Mud layer is eroded when the shear stress exceeds a threshold coined a critical shear stress. In this study, we compared the simulated mud erosion rate with experimental data acquired from an experiment using artificial sand-mud core. As a result, the simulated erosion rate agrees well with that of the experiment.

  13. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    Science.gov (United States)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  14. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  15. The behavior of gaseous iodine in sand

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1974-01-01

    Radioactive iodine gas was passed through 10 different sands collected at rivers and hills. The relation between the amount of the loaded gas and the amount of adsorbed gas was determined at room temperature, 50 -- 60 0 C, and 90 -- 100 0 C under humidity of 2 sand. This amount was about 1 -- 3 times as much as that of monomolecular membrane adsorption, 0.2 -- 0.3 μg/cm 2 . The decrease of adsorption amount that accompanies the increase of humidity is attributable to the decrease of effective surface area of sand due to the presence of water. The transport of iodine in sand was studied by passing gaseous iodine through a glass tubing packed with sand. The distribution in the flow direction of iodine indicated that the ease of desorption depends upon the situation of adsorption. Easily desorbed case was named Henry type adsorption. Hardly desorbed case was named absorption type. Discussion is made on experimental results. (Fukutomi, T.)

  16. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    Science.gov (United States)

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  17. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  18. Gas phase synthesis of core-shell Fe@FeO{sub x} magnetic nanoparticles into fluids

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Sitki, E-mail: aksitki61@gmail.com; Thornton, Stuart C.; Binns, Chris [University of Leicester, Department of Physics and Astronomy (United Kingdom); Denby, Phil [Ensol As, Nesttun (Norway)

    2016-12-15

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO{sub x} nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO{sub x} nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 10{sup 4} J/m{sup 3} (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO{sub x} suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM{sup −1} s{sup −1}.

  19. Phase II, Title I engineering assessment of radioactive sands and residues, Lowman Site, Lowman Idaho

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium sand residues at the Lowman, Idaho, site. Services normally include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 90,000 tons of sand residues at the Lowman site constitutes the most significant environmental impact, although external gamma radiation is also a factor. The two alternative actions presented are dike construction, fencing, and maintenance (Option I); and consolidation of the piles, addition of a 2-ft-thick stabilization cover, and on-site cleanup (Option II). Both options include remedial action at off-site structures. Cost estimates for the two options are $393,000 and $590,000

  20. Phase II, Title I engineering assessment of radioactive sands and residues, Lowman Site, Lowman Idaho

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium sand residues at the Lowman, Idaho, site. Services normally include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 90,000 tons of sand residues at the Lowman site constitutes the most significant environmental impact, although external gamma radiation is also a factor. The two alternative actions presented are dike construction, fencing, and maintenance (Option I); and consolidation of the piles, addition of a 2-ft-thick stabilization cover, and on-site cleanup (Option II). Both options include remedial action at off-site structures. Cost estimates for the two options are $393,000 and $590,000.

  1. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  2. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer

    Science.gov (United States)

    Cohen, Grégory J. V.; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as 222Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and 222Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. 222Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this

  3. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  4. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2014-12-20

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as

  5. Prevention and investigations of core degradation in case of beyond design accidents of the 2400 MWTH gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Bertrand, F.; Gatin, V.; Bentivoglio, F.; Gueneau, C.

    2011-01-01

    The present paper deals with studies carried out to assess the ability of the core of the Gas Fast Reactor (GFR) to withstand beyond design accidents. The work presented here is aimed at simulating the behaviour of this core by using analytical models whose input parameters are calculated with the CATHARE2 code. Among possible severe accident initiators, the Unprotected Loss Of Coolant Accident (ULOCA of 3 Inches diameter) is investigated in detail in the paper with CATHARE2. Additionally, a simplified pessimistic assessment of the effect of a postulated power excursion that could result from the failure of prevention provisions is presented. (author)

  6. New generation expandable sand screens

    OpenAIRE

    Syltøy, Christer

    2014-01-01

    Master's thesis in Petroleum engineering This thesis aims to give a general insight into sand control and various sorts of sand control measures and applications of sand control tools. Special focus will be given to expandable sand screens – a technology which came about in the late 1990’s through the use of flexible, expandable tubulars as base pipe in sand screens. More specifically Darcy’s Hydraulic Endurance Screens, a compliant sand screen system using hydraulic activation, and the fu...

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  8. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  9. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  10. Assessment of Mud-Capped Dredge Pit Evolution Offshore Louisiana: Implications to Sand Excavation and Coastal Restoration

    Science.gov (United States)

    Xu, K.; Miner, M. D.; Bentley, S. J.; Li, C.; Obelcz, J.; O'Connor, M. C.

    2016-02-01

    The shelf offshore Louisiana is characterized by a dominantly muddy seafloor with a paucity of restoration-quality sand proximal to shore. Discrete sand deposits associated with ancient rivers that incised the shelf during lower sea-level positions occur close to shore. These shelf channel sands have been targeted for coastal restoration projects resulting in significant cost savings over more distal deposits. Several recent projects targeted shelf paleo-fluvial deposits comprising relatively deep (10 m) channel sands underlying a muddy overburden. Because of contrasting characteristics of cohesive mud vs. non-cohesive sand and potential modern fluvial mud supply from the Mississippi and Atchafalaya Rivers, long term pit evolution is poorly understood relative to their more common sand-only counterparts. Alterations to seafloor topography from dredging shelf sediment resources can potentially affect oil and gas infrastructure or other resources of concern (i.e. historic shipwrecks) located proximal to dredge pits. Site-specific data required to make accurate predictions and empirical measurements to test and validate predictive models were only available for Peveto Channel offshore Holly Beach, Louisiana. Here we present new geophysical and geological data (bathymetry, sidescan, subbottom, and radionuclide of sediment cores) and physical oceanographic observations (hydrodynamics and sediment dynamics) collected at Raccoon Island (dredged in 2013) dredge pit in Louisiana. These field data collections along with pre-existing data provide a time-series to capture evolution at Raccoon Island post-excavation. Conceptual morphological models will be developed for dredge pit evolution and testing effectiveness of setback buffers protecting pipelines, habitats, and cultural resources. Our results will increase decision making ability regarding safety and protecting environmental and cultural resources, and better management of valuable sand resources.

  11. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Nora, R.; Pak, A.; Scott, H. A.; Spears, B. K.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chung, H.-K. [International Atomic Energy Agency, Vienna (Austria); Lahmann, B.; Sio, H. [Plasma Fusion and Science Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-11-15

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  12. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    Science.gov (United States)

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  13. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  14. Log-inject-log in sand consolidation

    International Nuclear Information System (INIS)

    Murphy, R.P.; Spurlock, J.W.

    1977-01-01

    A method is described for gathering information for the determination of the adequacy of placement of sand consolidating plastic for sand control in oil and gas wells. The method uses a high neutron cross-section tracer which becomes part of the plastic and uses pulsed neutron logging before and after injection of the plastic. Preferably, the method uses lithium, boron, indium, and/or cadmium tracers. Boron oxide is especially useful and can be dissolved in alcohol and mixed with the plastic ingredients

  15. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship...... between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types...

  16. Sand and Gravel Deposits

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset is a statewide polygon coverage of sand, gravel, and stone resources. This database includes the best data available from the VT Agency of Natural...

  17. Sand and Gravel Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate...

  18. Retorting of bituminous sands

    Energy Technology Data Exchange (ETDEWEB)

    Chaney, P E; Ince, R W; Mason, C M

    1872-09-26

    This method of recovering oil from mined tar sands involves forming compacted tar sands pieces by special conditioning treatment that provides low internal permeability. The compacted pieces are then retorted in fixed bed form. The conditioning treatment can involve rolling of preformed pellets, compaction in a mold or pressure extrusion. Substantial collapsing of the bed during retorting is avoided. (9 claims) (Abstract only - original article not available from T.U.)

  19. Specialists' meeting on gas-cooled reactor core and high temperature instrumentation, Windermere, UK, 15-17 June 1982. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Specialists' Meeting on ''Gas-Cooled Reactor Core and High Temperature Instrumentation'' was held at the Beech Hill Hotel, Windermere in England on June 15-17 1982. The meeting was sponsored by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors and was hosted by the Windscale Nuclear Power Development Laboratories of the UKAEA. The meeting was attended by 43 participants from Belgium, France, Federal Republic of Germany, Japan, United Kingdom of Great Britain and Northern Ireland and the United States of America. The objective of the meeting was to provide a forum, both formal and informal, for the exchange and discussion of technical information relating to instrumentation being used or under development for the measurement of core parameters, neutron flux, temperature, coolant flow etc. in gas cooled reactors. The technical part of the meeting was divided into five subject sessions: (A) Temperature Measurement (B) Neutron Detection Instrumentation (C) HTR Instrumentation - General (D) Gas Analysis and Failed Fuel Detection (E) Coolant Mass Flow and Leak Detection. A total of twenty-five papers were presented by the participants on behalf of their organizations during the meeting. A programme of the meeting and list of participants are given in appendices to this report

  20. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  1. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  2. Canada's oil sands: nuclear power in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Calgary, Alberta (Canada)

    2008-07-01

    This paper discusses the role of nuclear power in Canada's oil sands industry. It outlines the oil sands resource in Alberta and the various industrial projects to recover the oil from the tar sands. It points to continuing innovation in technology since the 1930's. The hydrogen required for upgrading bitumen is made from natural gas. Finally, it discusses the next wave of oil sands production technologies.

  3. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  4. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  5. Thermodynamic parameters and transport coefficients of the U-C-F gas mixture in the steady flow gaseous core fission reactor

    International Nuclear Information System (INIS)

    Berg, M.S. van den.

    1995-01-01

    Thermodynamic parameters and transport coefficients have been calculated for a multicomponent reacting U-C-F gas mixture in the steady flow gaseous core fission reactor. Element abundances are consistent with thermodynamic equilibrium between the gas mixture and a cooled solid graphite wall at 2500 K. Results are presented for various pressures, a fluorine potential of 5.6 and temperatures between 2500 and 7000 K. As a result of dissociation processes of uranium and carbon fluoride compounds, ''effective'' values of thermodynamic parameters and transport coefficients show anomalous behaviour with respect to so-called ''frozen'' values. The chemical reaction energy of the U-C-F gas mixture has been calculated as the driving-force behind the process of fuel redistribution to attain criticality conditions inside a functioning reactor. (author)

  6. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  7. Comparative Study on Various Geometrical Core Design of 300 MWth Gas Cooled Fast Reactor with UN-PuN Fuel Longlife without Refuelling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-07-01

    Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (Dpower is 300 MWth. First calculation, we calculate survey parameter for UN-PuN fuel with fissile contain from Plutonium waste LWR for each geometry. The minimum power density is around 72 Watt/cc, and maximum power density 114 Watt/cc. After we calculate with various geometry core, when we use the balance geometry, the k-eff value flattest and more stable than the others.

  8. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  9. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Kazuki; Onishi, Toshikazu [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Saigo, Kazuya; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Tomida, Kengo, E-mail: s_k.tokuda@p.s.osakafu-u.ac.jp [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  10. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  11. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  12. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  13. Thermohydraulics in a high-temperature gas-cooled reactor prestressed-concrete reactor vessel during unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Araj, K.

    1983-01-01

    The hypothetical accident considered for siting considerations in High Temperature Gas-Cooled Reactors (HTGR) is the so called Unrestricted Core Heatup Accident (UCHA), in which all forced circulation is lost at initiation, and none of the auxillary cooling loops can be started. The result is a gradual slow core heatup, extending over days. Whether the liner cooling system (LCS) operates during this time is of crucial importance. If it does not, the resulting concrete decomposition of the prestressed concrete reactor vessel (PCRV) will ultimately cause containment building (CB) failure after about 6 to 10 days. The primary objective of the work described here was to establish for such accident conditions the core temperatures and approximate fuel failure rates, to check for potential thermal barrier failures, and to follow the PCRV concrete temperatures, as well as PCRV gas releases from concrete decomposition. The work was done for the General Atomic Corporation Base Line Zero reactor of 2240 MW(t). Most results apply at least qualitatively also to other large HTGR steam cycle designs

  14. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mohammed F.; Biancalana, Fabio [Max Planck Institute for the Science of Light, Guenther-Scharowsky Str. 1, DE-91058 Erlangen (Germany)

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  15. Coupled models of free methane gas and anaerobic oxidation of methane : from core to regional scales. Geologica Ultraiectina (339)

    NARCIS (Netherlands)

    Mogollón, J.M.

    2011-01-01

    Methane is a potent greenhouse gas that is produced in marine sediments containing high amounts of degrading organic carbon. It is therefore not surprising that marine sediments contain vast amounts of methane (500-5000 gigatons) present in dissolved (aqueous), free gas (gaseous), and solid

  16. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  17. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Daddy, E-mail: d.setyawan@bapeten.go.id [Center for Assessment of Regulatory System and Technology for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia); Rohman, Budi [Licensing Directorate for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  18. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  19. Full Core Criticality Modeling of Gas-Cooled Fast Reactor Using the SCALE6.0 and MCNP5 Code Packages

    International Nuclear Information System (INIS)

    Matijevic, M.; Jecmenica, R.; Pevec, D.; Trontl, K.

    2012-01-01

    The Gas-Cooled Fast Reactor (GFR) is one of the reactor concepts selected by the Generation IV International Forum (GIF) for the next generation of innovative nuclear energy systems. It was selected among a group of more than 100 prototypes and his commercial availability is expected by 2030. GFR has common goals of the rest GIF advanced reactor types: economy, safety, proliferation resistance, availability and sustainability. Several GFR fuel design concepts such as plates, rod pins and pebbles are currently being investigated in order to meet the high temperature constraints characteristic for a GFR working enviroment. In the previous study we have compared the fuel depletion results for heterogeneous GFR fuel assembly (FA), obtained with TRITON6 sequence of SCALE6.0 code system, with the MCNPX-CINDER90 and TRIPOLI-4-D codes. Present work is a continuation of neutronic criticality analysis of heterogeneous FA and full core configurations of a GFR concept using 3-D Monte Carlo codes KENO-VI/SCALE6.0 and MCNP5. The FA is based on a hexagonal mesh of fuel rods (uranium and plutonium carbide fuel, silicon carbide clad, helium gas coolant) with axial reflector thickness being varied for the purpose of optimization. Three reflector materials were analysed: zirconium carbide (ZrC), silicon carbide (SiC) and natural uranium. ZrC has been selected as a reflector material, having the best contribution to the neutron economy and to the reactivity of the core. The core safety parameters were also analysed: a negative temperature coefficient of reactivity was verified for the heavy metal fuel and coolant density loss. Criticality calculations of different FA active heights were performed and the reflector thickness was also adjusted. Finally, GFR full core criticality calculations using different active fuel rod heights and fixed ZrC reflector height were done to find the optimal height of the core. The Shannon entropy of the GFR core fission distribution was proved to be

  20. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  1. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    Science.gov (United States)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that

  2. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  3. Gas hydrates in the Ulleung Basin, East Sea of Korea

    Directory of Open Access Journals (Sweden)

    Byong-Jae Ryu Michael Riedel

    2017-01-01

    Full Text Available To develop gas hydrates as a potential energy source, geophysical surveys and geological studies of gas hydrates in the Ulleung Basin, East Sea off the east coast of Korea have been carried out since 1997. Bottom-simulating reflector (BSR, initially used indicator for the potential presence of gas hydrates was first identified on seismic data acquired in 1998. Based on the early results of preliminary R&D project, 12367 km of 2D multichannel reflection seismic lines, 38 piston cores, and multi-beam echo-sounder data were collected from 2000 to 2004. The cores showed high amounts of total organic carbon and high residual hydrocarbon gas levels. Gas composition and isotope ratios define it as of primarily biogenic origin. In addition to the BSRs that are widespread across the basin, numerous chimney structures were found in seismic data. These features indicate a high potential of the Ulleung Basin to host significant amounts of gas hydrate. Dedicated geophysical surveys, geological and experimental studies were carried out culminating in two deep drilling expeditions, completed in 2007 and 2010. Sediment coring (including pressure coring, and a comprehensive well log program complements the regional studies and were used for a resource assessment. Two targets for a future test-production are currently proposed: pore-filling gas hydrate in sand-dominated sediments and massive occurrences of gas hydrate within chimney-like structures. An environmental impact study has been launched to evaluate any potential risks to production.

  4. Sand (CSW4)

    CSIR Research Space (South Africa)

    Estuarine and Coastal Research Unit

    1982-12-01

    Full Text Available This report is one of a series on Cape Estuaries being published under the general title "The Estuaries of the Cape, Part 2". The report provides information on sand estuary: historical background, abiotic and biotic characteristics. It is pointed...

  5. Inland drift sand landscapes

    NARCIS (Netherlands)

    Fanta, J.; Siepel, H.

    2010-01-01

    Man has had a complex relationship with inland drift sands through the ages. For some centuries these landscapes were seen as a threat to society, especially agriculture and housing. At present we conserve these landscapes as important Natura 2000 priority habitats. In this book you may find these

  6. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  7. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  8. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Lasker, L.

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers

  9. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille

    2015-01-01

    ) or trichloroethylene (TCE) to evaluate their ability to locate source zones and contaminant hot spots. One test site represented a relatively homogeneous sandy soil and aquifer, and the second a more heterogeneous geology with both sandy and less permeable clay till layers overlying a chalk aquifer. Tree cores from...

  10. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Lasker, L. (ed.)

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers.

  11. Sulphur output from oil sands : dramatically changing Alberta's sulphur balance

    International Nuclear Information System (INIS)

    D'Aquin, G.

    2008-01-01

    This paper discussed sulphur production from Alberta's gas and oil sands industries. While sulfur derived from natural gas production in the province is expected to decline as natural gas reserves diminish, Alberta's oil sands contain high amounts of sulphur. It is not yet known how much sulphur will be produced from the province's oil sands facilities. Alberta had considerable stockpiles of sulphur in the 1970s. By 1980, inventories began to decline. By 1996, output had increased to 7.1 million tonnes. Alberta's sulphur inventory reached 9.7 million tonnes following the collapse of the Soviet Union's government mandated fertilizer industry. In 2006, sulphur supplies in Alberta reached 12 million tonnes. Reduced global output has now lowered sulphur stockpiles. Increases in sulphur prices tend to reduce market demand, and lower prices will not typically change the volume of sulphur produced as a byproduct of oil and gas operations. Bitumen-derived sulphur output is expected to exceed gas-derived sulphur output in the near future. Sulphur from oil sands processing is expected to increase by 5 million tonnes by 2017. Increased sulphur production levels in Alberta will present a significant challenge for all sectors of the hydrocarbon industry. It was concluded that developing a plan for storing, selling or disposing of the sulphur will help to ensure the profitability of oil sands operations

  12. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    Science.gov (United States)

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  13. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  14. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea

    2017-06-01

    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  15. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  16. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    Science.gov (United States)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  17. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  18. Automatized facility for express gamma-spectrometric studies of full-size core and muds of oil-gas wells

    International Nuclear Information System (INIS)

    Antropov, S.Yu.; Ermilov, A.P.; Ermilov, S.A.; Komarov, N.A.; Krokhin, I.I.

    2005-01-01

    In the automatized facility 'Sputnik-Geo' for automated core feeding of the conveyor belt with 5 m length is using. Activity measurement has being conducted by four scintillation gamma radiation detectors. Symmetrical location of the detectors relatively the core allows to exclude of the geometrical uncertainty of component. The spectrum processing and the control by conveyor engine are carried out by computer, which preserves the results of measurements in the database. For density measurement the scintillation detector with collimated source on the 137 Cs radionuclide base is applied. The facility is provided with the light-diode coefficient stabilization of detector amplification, that permits to operation time increase without spectrometers requalification by energy up to 1 working day

  19. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    International Nuclear Information System (INIS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi

    2017-01-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500 –Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  20. Oil sands supply outlook

    International Nuclear Information System (INIS)

    Dunbar, R.

    2004-01-01

    In March 2004, The Canadian Energy Research Institute released a report on the expected future supply from Alberta's oil sands. The report indicates that the future for the already well-established oil sands industry is promising, particularly given the outlook for oil prices. The challenges facing the industry include higher industry supply costs and the need for innovative commercial and technological solutions to address the risks of irregularities and changes in crude oil prices. In 2003, the industry produced 874 thousand barrels per day of synthetic crude oil and unprocessed crude bitumen. This represents 35 per cent of Canada's total oil production. Current production capacity has increased to 1.0 million barrels per day (mbpd) due to new projects. This number may increase to 3.5 mbpd by 2017. Some new projects may be deferred due to the higher raw bitumen and synthetic crude oil supply costs. This presentation provided supply costs for a range of oil sands recovery technologies and production projections under various business scenarios. tabs., figs

  1. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  2. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  3. The diffusion of sulphur from moulding sand to cast and methods of its elimination

    Directory of Open Access Journals (Sweden)

    M. Hosadyna

    2009-10-01

    Full Text Available The care of high quality castings requires taking into account the possible negative influence of decomposition products of moulding and core sands on the structure of castings produced. Such products are emitted both from the sands of I generation, meaning sands bound by bentonite, especially those containing carbon forming additives, as well as from the sands of II generation, meaning the sands with the binding materials or even the sands without any binders, such as the forms produced by using the LOST FOAM technology. The literature often refers to the negative effects of nitrogen emitted from the sands with the urea resins on the tendency to create surface defects. That is why the aim of this study was to assess the degree of sulphur diffusion to the ferroalloy castings and the proposal of its limitation.

  4. Measurement of reactivity worths of burnable poison rods in enriched uranium graphite-moderated core simulated to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi; Takeuchi, Motoyoshi; Kitadate, Kenji; Yoshifuji, Hisashi; Kaneko, Yoshihiko

    1980-11-01

    As the core design for the Experimental Very High Temperature Gas Cooled Reactor progresses, evaluation of design precision has become increasingly important. For a high precision design, it is required to have adequate group constants based on accurate nuclear data, as well as calculation methods properly describing the physical behavior of neutrons. We, therefore, assembled a simulation core for VHTR, SHE-14, using a graphite-moderated 20%-enriched uranium Semi-Homogeneous Experimental Critical Facility (SHE), and obtained useful experimental data in evaluating the design precision. The VHTR is designed to accommodate burnable poison and control rods for reactivity compensation. Accordingly, the experimental burnable poison rods which are similar to those to be used in the experimental reactor were prepared, and their reactivity values were measured in the SHE-14 core. One to three rods of the above experimental burnable poison rods were inserted into the central column of the SHE-14 core, and the reactivity values were measured by the period and fuel rod substitution method. The results of the measurements have clearly shown that due to the self-shielding effect of B 4 C particles the reactivity value decreases with increasing particle diameter. For the particle diameter, the reactivity value is found to increase linearly with the logarithm of boron content. The measured values and those calculated are found to agree with each other within 5%. These results indicate that the reactivity of the burnable poison rod can be estimated fairly accurately by taking into account the self-shielding effect of B 4 C particles and the heterogeneity of the lattice cell. (author)

  5. Preliminary fingerprinting analysis of Alberta oil sands and related petroleum products

    International Nuclear Information System (INIS)

    Yang, C.; Wang, Z.D.; Hollebone, B.; Brown, C.E.; Yang, Z.Y.; Landriault, M.; Fieldhouse, B.

    2009-01-01

    This paper reported on a study that presented a preliminary quantitative chemical characterization of Alberta oil sands and many other related Alberta oils such as oil sand bitumen, Cold Lake bitumen, Albian heavy synthetic crude, and Alberta Mixed sweet blend. The rapid increase in production of the Alberta oil sands has resulted in unprecedented environmental concern. The mining, extraction and production of oil sands such resulted in huge consumption of water resources, huge emission of greenhouse gas and large number of tailings ponds. In addition, accidental spills in the transportation and usage of oil sands will potentially cause considerable impact on the environment. It is therefore essential to have the ability to characterize Alberta oil sands and their oil products. The specific chemical properties of the oil sands bitumen must be known. Therefore, this study collected quantitative data on the concentration and distribution profiles of target compounds in Alberta oil sands and its petroleum products. The chemical fingerprints of 5 Alberta oil sands and their related petroleum products were studied using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS). The characterized hydrocarbons were n-alkanes; target alkylated PAHs and other EPA priority PAHs; biomarker terpanes and steranes; and bicyclic sesquiterpanes. The information acquired during this study will provide the basis for oil-oil correlation and differentiation in future environmental applications relevant to oil sands. 24 refs., 6 tabs., 4 figs.

  6. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    Science.gov (United States)

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  7. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  8. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  9. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  10. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  11. Development of C/C composite for the core component of the high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H

    2005-01-15

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite.

  12. Development of C/C composite for the core component of the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H.

    2005-01-01

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite

  13. Reference core design Mark-III of the experimental multi-purpose, high-temperature, gas-cooled reactor

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi; Ishiguro, Okikazu; Kuroki, Syuzi

    1977-10-01

    The reactivity control system is one of the important items in reactor design, but it is much restricted by structural design of fuel element and pressure vessel in the experimental multi-purpose, high-temperature reactor. Preceding the first conceptual design of the reactor, therefore, the reactivity control system composed of control rod, burnable poison and reserve shutdown system in Mark-II design was re-studied, and several improvements were indicated. (1) The diameter of control rods must be as large as possible because it is impossible to increase the number of control rods. (2) The accuracy in estimation of the reactivity to be compensated with control rods is important because of the mutual interference of pair control rods with the twin configuration in a fuel element. (3) The improvement of core performance in burnup is accompanied by the reduction of design margin for control rods. (4) Increase of the reactivity to be compensated with the burnable poison leads to increase of the core reactivity recovery with burnup, and the assertion of the decrease for recovery of reactivity leads to increase of the temperature dependency of reactivity compensated with control rods. (5) Reduction of reactivity to be compensated with control rods is thus limited by cancellation of the effects in the reactivity recovery and the reactivity temperature dependency. (6) The reserve shutdown system can be designed with margin under the condition of excluding the reactivity of burnup from that to be compensated. (auth.)

  14. Analysis of fluid-structure interaction mechanism of a Na-FBR core while the evacuation of a gas pocket

    International Nuclear Information System (INIS)

    Sargentini, Lucia

    2014-01-01

    The purpose of this study is to improve the knowledge about the core behavior of a sodium fast breeder reactor (Na-FBR) during vibrations through the fluid-structure interaction analysis. Namely, we investigate the flowering of the Phenix core during the SCRAM for negative reactivity (AURN) and the seismic behavior of the core of Astrid project. Three approaches are followed: experimental campaign, performing of analytical solution and development of numerical model. We create a flow regime map to identify the flow regimes in the fluid gap for very short times scales (as AURN) as well as longer time scales (as seismic oscillations). The most suitable equation system (Navier-Stokes, Euler or linearized Euler) is chosen to model the fluid flow in the numerical code. To our knowledge, for the first time, an analytical solution for free vibration and very narrow gaps is proposed. We designed two experimental apparatus (PISE-1a and PISE-2c) composed respectively by 1 and 19 hexagonal assemblies (two crowns) of Poly-methyl methacrylate (PMMA). Every PMMA assembly is fixed to a stainless steel twin-blades support allowing only orthogonal oscillations with respect to generating line of assembly. The twin-blades supports are designed to give the same range frequency of Phenix assembly in liquid sodium. The experimental equipment PISE-1a is used to determine the dynamic characteristics of PISE-2c assembly, to calibrate instrumentation and for validating our numerical model. Free vibration tests in air are performed to evaluate the dynamic characteristics of the body. Free vibration experiments in water allow to assess the added mass and added damping effect on the frequency. Even though the fluid flow during vibration should be completely bidimensional, the fluid flow is affected by a 3D effect - named 'jambage' - at the top and the basis of the assembly. This effect produces a lower frequency than the theoretical value. Tests are modeled with a bidimensional

  15. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    OpenAIRE

    Hue Ryan; Gladfelter Wayne; Gresback Ryan; Kortshagen Uwe

    2011-01-01

    Abstract Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown ...

  16. Finite element modeling of fluid/thermal/structural interaction for a gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1980-01-01

    Two nonlinear finite element formulations for application to a series of experiments in the Gas-Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element for moderately large deformations is combined with a finite element developed for an engineering description of a convecting fluid. Typical results from both elements are illustrated. A combined application for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal coupling is very important

  17. Canada's oil sands : opportunities and challenges to 2015 : an update

    International Nuclear Information System (INIS)

    2006-06-01

    This report updated an energy market assessment compiled and published by the National Energy Board (NEB) in 2004. Major changes resulting from recent developments in the oil sands industry were presented. The report was compiled from a series of informal meetings and discussions with a cross-section of oil sands stakeholders. Influences on recent oil sands development and production growth included market development and pipelines; rising capital and labour costs; operating costs; environmental impact management; high crude oil prices; rising global energy demand; technology innovations; and a more stable investment climate. A comparison of key assumptions between the current analysis and the 2004 report was presented, along with estimates of operating and supply costs for various types of oil sands recovery methods. Potential markets for oil sands production were reviewed. Environmental and socio-economic impacts on the industry included the larger than anticipated water withdrawals from the Athabasca River for mining operations; and uncertainties over land reclamation methods. The industry has also been impacted by a limited supply of skilled workers in Alberta. It was observed that the potential for building cogeneration capacity has decreased since the 2004 report. It was concluded that the oil sands industry will continue to grow rapidly, but the rate of development will depend on the balance that is reached between the opposing forces that affect the oil sands. Natural gas costs, high oil prices, air emissions management issues and water usage will continue to be of concern. 6 tabs., 7 figs

  18. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante

    2016-08-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  19. Oil sands development update

    International Nuclear Information System (INIS)

    1999-01-01

    A detailed review and update of oil sands development in Alberta are provided covering every aspect of the production and economic aspects of the industry. It is pointed out that at present oil sands account for 28 per cent of Canadian crude oil production, expected to reach 50 per cent by 2005. Based on recent announcements, a total of 26 billion dollars worth of projects are in progress or planned; 20 billion dollars worth of this development is in the Athabasca area, the remainder in Cold Lake and other areas. The current update envisages up to 1,800,000 barrels per day by 2008, creating 47,000 new jobs and total government revenues through direct and indirect taxes of 118 billion dollars. Provinces other than Alberta also benefit from these development, since 60 per cent of all employment and income created by oil sands production is in other parts of Canada. Up to 60 per cent of the expansion is for goods and services and of this, 50 to 55 per cent will be purchased from Canadian sources. The remaining 40 per cent of the new investment is for engineering and construction of which 95 per cent is Canadian content. Aboriginal workforce by common consent of existing operators matches regional representation (about 13 per cent), and new developers are expected to match these standards. Planned or ongoing development in environmental protection through improved technologies and optimization, energy efficiency and improved tailings management, and active support of flexibility mechanisms such as emission credits trading, joint implementation and carbon sinks are very high on the industry's agenda. The importance of offsets are discussed extensively along with key considerations for international negotiations, as well as further research of other options such as sequestration, environmentally benign disposal of waste, and enhanced voluntary action

  20. Frac sand in the United States: a geological and industry overview

    Science.gov (United States)

    Benson, Mary Ellen; Wilson, Anna B.; Bleiwas, Donald I.

    2015-01-01

    A new mineral rush is underway in the upper Midwest of the United States, especially in Wisconsin and Minnesota, for deposits of high-quality frac sand that the mining industry calls “Northern White” sand or “Ottawa” sand. Frac sand is a specialized type of sand that is added to fracking fluids that are injected into unconventional oil and gas wells during hydraulic fracturing (fracking or hydrofracking), a process that enhances petroleum extraction from tight (low permeability) reservoirs. Frac sand consists of natural sand grains with strict mineralogical and textural specifications that act as a proppant (keeping induced fractures open), extending the time of release and the flow rate of hydrocarbons from fractured rock surfaces in contact with the wellbore.

  1. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  2. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  3. Heat-resistant agent used for control sand of steam huff and puff heavy oil well

    Science.gov (United States)

    Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.

    2018-01-01

    Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.

  4. Design of Screens for Sand Control of Wells

    Directory of Open Access Journals (Sweden)

    Ján Pinka

    2006-04-01

    Full Text Available Drilling, completion, production, and reservoir engineers, supervisors, foremen, superintendents, service company personnel, technologists and anyone involved with recommending, selecting, designing or on-site performance of well completions or workovers where sand production is, or may become, a serious problem will benefit from this course. Less sand influx can be expected in a horizontal well than in a vertical well. If horizontal holes in weak formation sands can be successfully gravel packed, the result could be significantly higher well productivity than with a liner, screen or pre-packed screen alone. The article covers innovative screens for sand control used in oil and gas industry from the world leaders in total completion. The type of screen (wire wrapped, reinforced, pre-packed, ect. should also be chosen with due consideration to running-in condition (curve radius, compression when the screens are pushed along the drain hole, etc..

  5. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    Science.gov (United States)

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. Copyright © 2013. Published by Elsevier Ltd.

  6. Magnitude and reactivity consequences of accidental moisture ingress into the Modular High-Temperature Gas-Cooled Reactor core

    International Nuclear Information System (INIS)

    Smith, O.L.

    1992-01-01

    Accidental admission of moisture into the primary system of a Modular High-Temperature Gas-Cooled Reactor (MHTGR) has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moistureingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. Rate and magnitude of steam buildup are found to be dominated by major system features such as break size in comparison with safety valve capacity and reliability, while being less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions

  7. Magnitude and reactivity consequences of moisture ingress into the modular High-Temperature Gas-Cooled Reactor core

    International Nuclear Information System (INIS)

    Smith, O.L.

    1992-12-01

    Inadvertent admission of moisture into the primary system of a modular high-temperature gas-cooled reactor has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moisture-ingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. The rate and magnitude of steam buildup are found to be dominated by major system features such as break size compared with safety valve capacity and reliability and less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions

  8. The splitting of P and NG and oil sands rights: an historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, F. D. [Alberta Department of Energy, Edmonton, AB (Canada)

    1997-12-31

    Changes in the Mines and Minerals Act of Alberta are described to illustrate the evolution of the priorities and thinking over time that led to the present administration of oil sands and natural gas as separate minerals. Natural gas was first excluded from the definition of bituminous sands in 1955. The definition of bituminous sands was changed in 1957 to include natural gas once again. In a further change in 1978, both petroleum and natural gas were excluded from the definition of oil sands. More changes followed in 1984, when petroleum was added back into the definition, leaving natural gas as the only mineral excluded from the definition of oil sands. The 1984 change was triggered by changes in the Oil Sands Conservation Act. It is the current definition, which includes `sands and other rock materials containing crude bitumen, and any other mineral substances, other than natural gas, in association with that crude bitumen`. It was a resource conservation issue in the past, and it is a conservation issue today, although much influenced by changes in technology and increased knowledge and understanding of the relevant factors. 2 tabs.

  9. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  10. Insight conference reports : Western Canada oil sands

    International Nuclear Information System (INIS)

    2005-01-01

    This conference presented issues of concern to the Canadian oil sands industry. Focal points included supply and the potential for market growth as well as opportunities and challenges faced by the industry in the current market. Various projects were discussed, including the Northern Lights and Fort Hill projects. Reserves and resource booking procedures were examined, as well as issues concerning the streamlining of regulatory barriers and various approaches to the Kyoto Protocol and greenhouse gas (GHG) emissions. Oil sands portfolios were reviewed as well as issues concerning the recovery of titanium and zircon, the economics of Steam Assisted Gravity Drainage (SAGD) options and innovations in technology and sub-surface risk assessment for in-situ projects. Transportation initiatives were examined as well as pipeline issues and storage infrastructure development. Issues concerning financing as well as the economic environment of the oil sands industry were also discussed. The conference featured 20 presentations, of which 5 have been catalogued separately for inclusion in this database. tabs, figs

  11. Gas dusulfurization

    International Nuclear Information System (INIS)

    Powell, B.E.; Bakhshi, V.S.; Randolph, D.A.

    1984-01-01

    A process for adsorbing sulfur dioxide from a gas comprising contacting a gas containing SO 2 , such as a flue gas, with about stoichiometric amounts of a specially prepared calcium oxide so that substantially all of the sulfur dioxide content is reacted throughout the calcium oxide particle to form a calcium sulfate reaction product. The useful calcium oxide particles comprise a highly voided skeletal structure of very large surface area and large pore volume with numerous macro pores. Such particles are obtained by flash calcining sand-size grains of calcium carbonate, such as aragonite, calcite or dolomite

  12. Impact of erosion and accretion on the distribution of enterococci in beach sands.

    Science.gov (United States)

    Gast, Rebecca J; Gorrell, Levi; Raubenheimer, Britt; Elgar, Steve

    2011-09-15

    Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is not known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 1 m depth were collected at three sites across the beach face in Kitty Hawk, North Carolina before, during and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites also was determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.

  13. Sand, jams and jets

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H. [James Franck Institute and Department of Physics, University of Chicago (United States)]. E-mail: h-jaeger@uchicago.edu

    2005-12-01

    Granular media are offering new insights into problems in condensed-matter physics and materials science, as Heinrich Jaeger explains. The remarkable properties of granular materials are so familiar that most of us do not even notice them. It is clear, for example, that we cannot walk on water unless the temperature has dropped below freezing. However, we take it for granted that sand will support our weight as if it were a solid, even though it can also be poured like a liquid under the same ambient conditions. From breakfast cereal, sugar and flour to construction materials, mining products and pharmaceuticals, granular media are present everywhere in our daily lives. (U.K.)

  14. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  15. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  16. The state of the warm and cold gas in the extreme starburst at the core of the Phoenix galaxy cluster (SPT-CLJ2344-4243)

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Swinbank, Mark; Edge, Alastair C.; Hogan, Michael T.; Wilner, David J.; Bayliss, Matthew B.; Veilleux, Sylvain; Benson, Bradford A.; Marrone, Daniel P.; McNamara, Brian R.; Wei, Lisa H.

    2014-01-01

    We present new optical integral field spectroscopy (Gemini South) and submillimeter spectroscopy (Submillimeter Array) of the central galaxy in the Phoenix cluster (SPT-CLJ2344-4243). This cluster was previously reported to have a massive starburst (∼800 M ☉ yr –1 ) in the central, brightest cluster galaxy, most likely fueled by the rapidly cooling intracluster medium. These new data reveal a complex emission-line nebula, extending for >30 kpc from the central galaxy, detected at [O II]λλ3726, 3729, [O III]λλ4959, 5007, Hβ, Hγ, Hδ, [Ne III]λ3869, and He II λ4686. The total Hα luminosity, assuming Hα/Hβ = 2.85, is L Hα = 7.6 ± 0.4 ×10 43 erg s –1 , making this the most luminous emission-line nebula detected in the center of a cool core cluster. Overall, the relative fluxes of the low-ionization lines (e.g., [O II], Hβ) to the UV continuum are consistent with photoionization by young stars. In both the center of the galaxy and in a newly discovered highly ionized plume to the north of the galaxy, the ionization ratios are consistent with both shocks and active galactic nucleus (AGN) photoionization. We speculate that this extended plume may be a galactic wind, driven and partially photoionized by both the starburst and central AGN. Throughout the cluster we measure elevated high-ionization line ratios (e.g., He II/Hβ, [O III]/Hβ), coupled with an overall high-velocity width (FWHM ≳ 500 km s –1 ), suggesting that shocks are likely important throughout the interstellar medium of the central galaxy. These shocks are most likely driven by a combination of stellar winds from massive young stars, core-collapse supernovae, and the central AGN. In addition to the warm, ionized gas, we detect a substantial amount of cold, molecular gas via the CO(3-2) transition, coincident in position with the galaxy center. We infer a molecular gas mass of M H 2 = 2.2 ± 0.6 × 10 10 M ☉ , which implies that the starburst will consume its fuel in ∼30 Myr if

  17. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  18. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Directory of Open Access Journals (Sweden)

    Annette Filges

    2015-09-01

    Full Text Available Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System – European Research Infrastructure, a cavity ring-down spectroscopy (CRDS-based measurement system for the autonomous measurement of the greenhouse gases (GHGs CO2 and CH4, as well as CO and water vapour was designed, tested and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight, performance (long-term stability, low maintenance, robustness, full automation and safety issues (fire-prevention regulations. The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc. mounted into a frame suitable for integration in the avionics bay of the Airbus A330 and A340 series. To enable robust and automated operation of the IAGOS-core GHG package over 6-month deployment periods, numerous technical issues had to be addressed. An inlet system was designed to eliminate sampling of larger aerosols, ice particles and water droplets, and to provide additional positive ram-pressure to ensure operation throughout an aircraft altitude operating range up to 12.5 km without an upstream sampling pump. Furthermore, no sample drying is required as the simultaneously measured water vapour mole fraction is used to correct for dilution and spectroscopic effects. This also enables measurements of water vapour throughout the atmosphere. To allow for trace gas measurements to be fully traceable to World Meteorological Organization scales, a two-standard calibration system has been designed and tested, which periodically provides calibration gas to the instrument during flight and on ground for each 6-month deployment period. The first of the IAGOS-core GHG packages is scheduled for integration in 2015. The aim is to have five systems operational within 4 yr, providing regular, long-term GHG observations covering major parts of the globe. This paper presents results from recent test

  19. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    International Nuclear Information System (INIS)

    Basol, Mit; Kielb, John F.; MuHooly, John F.; Smit, Kobus

    2007-01-01

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  20. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Directory of Open Access Journals (Sweden)

    Christina Locke

    Full Text Available Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes

  1. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Science.gov (United States)

    Locke, Christina

    2015-01-01

    Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes during a period of

  2. Application of random seismic inversion method based on tectonic model in thin sand body research

    Science.gov (United States)

    Dianju, W.; Jianghai, L.; Qingkai, F.

    2017-12-01

    The oil and gas exploitation at Songliao Basin, Northeast China have already progressed to the period with high water production. The previous detailed reservoir description that based on seismic image, sediment core, borehole logging has great limitations in small scale structural interpretation and thin sand body characterization. Thus, precise guidance for petroleum exploration is badly in need of a more advanced method. To do so, we derived the method of random seismic inversion constrained by tectonic model.It can effectively improve the depicting ability of thin sand bodies, combining numerical simulation techniques, which can credibly reducing the blindness of reservoir analysis from the whole to the local and from the macroscopic to the microscopic. At the same time, this can reduce the limitations of the study under the constraints of different geological conditions of the reservoir, accomplish probably the exact estimation for the effective reservoir. Based on the research, this paper has optimized the regional effective reservoir evaluation and the productive location adjustment of applicability, combined with the practical exploration and development in Aonan oil field.

  3. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  4. Oil sands and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    2004-07-01

    Oil sands are a significant resource for Alberta and Canada with continuing growth opportunity. There is a need to ensure sustainable development of the oil sands resources from a social, economic and environmental perspective. The industry has succeeded in terms of proven reserves, technology advancements, reduced operating costs, reliability and market accessibility. Some of the major challenges facing the industry include high capital cost, infrastructure, social services and keeping pace with growth. This presentation outlined the proactive measures that the oil sands industry has taken to manage environmental issues such as sulphur dioxide and nitrogen oxide emissions, greenhouse gases, water management and land reclamation. tabs., figs.

  5. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    Asgarpour, S.

    2004-01-01

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  6. Gas and Oil Flow through Wellbore Flaws

    Science.gov (United States)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  7. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    Science.gov (United States)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  9. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  10. Namibia : triaxial test on sand

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Jacobsen, Kim P.

    In connection with a harbour project the friction angle of a fine sand is required. On Friday 13 March 1998 the Danish Geotechnical Institute (DGI) delivered app. 2.5 kg sand for testing at the Geotechnical Engineering Laboratory, Aalborg University. The present Data Report summarises the results...... of two CID, isotropically consolidated, drained triaxial tests carried out according to the instructions in DG1 letter dated 13 March 1998....

  11. Technology unlocks tar sands energy

    Energy Technology Data Exchange (ETDEWEB)

    Law, C

    1967-09-25

    Tar sand processing technology has been developed primarily in the categories of extraction techniques and in-situ processing. In October, a $235 million venture into tar sand processing will be inspected by visitors from many points on the globe. A synthetic crude of premium quality will be flowing through a 16-in. pipeline from the Tar Island plant site of Great Canadian Oil Sands to Edmonton. This processing plant uses an extractive mining technique. The tar sand pay zone in this area averages approximately 150 ft in thickness with a 50-ft overburden. It has been estimated that the tar sands cannot be exploited when the formation thickness is less than 100 ft and overburden exceeds the same amount. This indicates that extraction techniques can only be used to recover approximately 15% of the tar sand deposits. An in-situ recovery technique developed by Shell of Canada is discussed in detail. In essence it is selective hydraulic fracturing, followed by the injection of emulsifying chemicals and steam.

  12. Reference core design Mark-I and -II of the experimental, multi-purpose, high-temperature, gas-cooled reactor

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Hirano, Mitsumasa; Aruga, Takeo; Yasukawa, Sigeru

    1977-10-01

    Reactivity worth of the control rods and power distribution in the initial hot-clean core of reference core design Mark-I and -II have been studied. The need for burnable poison was confirmed, because of the limitations in number, diameter and reactivity worth of the control rods due to structures of pressure vessel and fuel element and to safety of the core. While the initial excess reactivity is reduced by use of the burnable poison, the recovery of core reactivity with burnup of the burnable poison requires a complicated withdrawal sequence of the control rods. The radial power gradient in the core is not large, due to orifice control of the coolant helium flow, effectiveness of the reflector in the small core and continuous distribution of burnup in the core by one-batch refuelling scheme. The local peaking factor in unit orifice regions, therefore, is the most important core design. Control of the axial power distribution is necessary to reduce the maximum fuel temperature and the exponential power distribution peaked toward the inlet of the core is most suitable. However, insertion of the control rods from top of the core disturbs the axial power distribution, so this effect must be considered in design of the withdrawal sequence of control rods. Nuclear properties of the core were revealed from results of the study for the initial hot-clean core. (auth.)

  13. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  14. Engaging Canadians: national oil sands dialogues - A background paper

    International Nuclear Information System (INIS)

    Carson, Bruce

    2010-01-01

    It is expected that the world's energy demand will grow significantly between now and the year 2050. Hydrocarbons will have an important role to play in meeting this increasing demand and unconventional sources such as oil sands will become more and more important. The Canadian Association of Petroleum Producers (CAPP) has been engaged in a dialogue process to examine the environmental, economic and social impacts of the oil sands industry and the aim of this background paper is to provide stakeholders with some context. The paper highlights the fact that although the oil sands industry gives rise to environmental issues such as greenhouse gas emissions, air pollutants, land disturbance and water use, the environmental performance of the industry has been improving in recent years thanks to new technologies.

  15. Sand dune of Ruby, Arizona, an anthropogenically created biodiversity hotspot for wasps and their velvet ant parasitoids

    Science.gov (United States)

    Justin O. Schmidt

    2013-01-01

    A large artificial sand dune composed of finely crushed mine tailings was produced by deep mining operations at Ruby, Arizona. Today, the ghost town of Ruby is an important historical location and biodiversity refuge, with the newly formed dune forming the core of the refuge. The dune provides ideal nesting habitat for at least 13 species of sand-loving wasps,...

  16. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  17. Opportunities for CANDU for the Alberta oil sands

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Hau, K.; Zhou, X.; Dunbar, R.B.

    2003-01-01

    The Alberta oil sands bitumen deposits comprise of one of the largest sources hydrocarbon in the world, and have emerged as the fastest growing, soon to be dominant, source of crude oil in Canada. The oil industry has made great strides in improving the effectiveness of gathering this resource. In particular, alternatives to open-pit mining have been developed which enable in-site recovery of underground deposits with a minimum of environmental disruption. The main challenge that remains is the large quantity of energy needed in the process of extracting the oil and upgrading it to commercial levels. For a typical in-situ extraction project, about 18% of the energy content of the oil produced is used up in the extraction process, while a further 5% is used in generating hydrogen to upgrade the bitumen to synthetic crude oil. Looking ahead, even as improvements in energy use efficiency, (and hydrocarbon use efficiency) counterbalance the increases in hydrocarbon demand from economic growth (particularly in the developing world), Canada and Alberta recognize that the oil sands resource will be needed, and both support the development of this resource in an environmentally responsible way. The large energy requirement for the oil sands extraction process represents a challenge with regard to both environmental impact and security of supply. The use of natural gas, the current energy supply, has impacts in terms of air quality (via NOX and other emissions) and also represents a large greenhouse gas emissions component. As the oil sands industry expands, the availability of natural gas also becomes a concern, as does price and price stability. With this background, the opportunity for nuclear reactors to provide an economical, reliable, virtually zero-emission source of energy for the oil sands becomes very important. Over the last few years, developments in oil sands extraction technology, and developments in CANDU technology through the Advanced CANDU Reactor, (ACR

  18. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  19. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw

    2005-01-01

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235 U, which represents the 20% of the fresh uranium, 233 U, which is produced by the transmutation of fertile 232 Th, and 239 Pu, which is produced by the transmutation of fertile 238 U. In order to compensate the depletion of 235 U with the breeding of 233 U and 239 Pu, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235 U. At the same time, the amount of 235 U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k eff and mass evolution, reaction rates, neutron flux and spectrum at the

  20. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  1. Core conversion study from silicide to molybdenum fuel in the Indonesian 30 MW multipurpose reactor G.A. Siwabessy (RSG-GAS)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2005-01-01

    This paper describes the core conversion from silicide to molybdenum core through a series of silicide (2.96 gU cm -3 ) - molybdenum (3.55 gUcm -3 ) mixed transition cores for the Indonesian 30 MW-Multipurpose G.A. Siwabessy (RSGGAS) reactor. The core calculations are carried out using the two-dimensional multigroup neutron diffusion method code of Batan-EQUIL-2D. The calculated results showed that the proposed silicide-molybdenum mixed transition cores, using the same refueling/reshuffling scheme, meet the safety criteria and it can be used in safely converting from an all-silicide core to an all-molybdenum core. (author)

  2. A Primer on Alberta’s Oil sands Royalties

    Directory of Open Access Journals (Sweden)

    Sarah Dobson

    2015-12-01

    Full Text Available Fulfilling its campaign promise, the new NDP government announced a review of Alberta’s royalty framework in June 2015. The province receives royalty revenue from three main sources – natural gas, crude oil, and oil sands. Since the 2009-10 fiscal year the largest contributor to Alberta’s royalty revenues has been the oil sands. If you want a sense of how important oil sands royalties have been for Alberta’s finances, consider this: In the 2014–15 fiscal year, the government collected just over $5 billion from oil sands royalties. These royalties covered over 10 per cent of the province’s operational expenses of $48.6 billion in the same fiscal year. Over the last six fiscal years the oil sands have contributed an average of 10 per cent of revenues to provincial coffers. This makes oil sands royalties the fourth largest contributor behind personal income taxes (23 per cent, federal transfers (13 per cent and corporate income taxes (11 per cent. But how many Albertans really understand how the royalty system works? What do we mean when we say “royalty”? How does the Alberta Government calculate royalties on oil sands producers? If the system is going to change, it’s important that Albertans understand how the current system works. That is what this paper is designed to do. For Albertans to properly judge the impact of new policy, they need a solid understanding of the current policy environment. We all know that oil prices have dropped and oil sands producers are losing profitability. As such, changes to the royalty system could have a deep and profound impact on the sector. Here are some of the issues this primer will study: • Pre-payout projects vs. post-payout projects, in other words, the classification of projects for royalty purposes based on whether the cumulative costs of a project exceed its cumulative revenues • Monthly payment of royalties vs. annual payment • Understanding the unit price of bitumen and how that

  3. Alberta's oil sands fiscal system : historical context and system performance

    International Nuclear Information System (INIS)

    2007-01-01

    This report described the fiscal system applied to Alberta's oil sands. It is the first technical report forming part of a series designed to provide information and to invite comment as part of the Government of Alberta's public review of the fiscal system applied to the province's oil and gas resources. Specifically, this report assessed the robustness of Alberta's oil sands fiscal system and assessed how the regime balanced the risks and rewards to both investors and Albertans across a range of expected and probable economic outcomes. The report provided an explanation of the history and context of Alberta's royalty regime and included a case-by-case approach. It also provided a discussion of the oil sands fiscal system description. Next, it described the methodology employed for the analysis of the oil sands fiscal system. It also provided the assumptions for 5 scenario cases and presented the fiscal map approach for assessing project economics and fiscal system performance. Last, summary observations were presented. It was found that the oil sands fiscal system is very flexible for adverse economic conditions and much less so for highly profitable conditions. tabs., figs

  4. Saskatchewan's place in the Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Calgary, AB (Canada)

    2009-07-01

    This paper provided a detailed description of the oil sands geology and physical properties and highlighted some of the novel recovery technologies that are being developed for shallow in-situ reservoirs in Alberta and Saskatchewan. Canada's oil sands are well known around the world, with Alberta's mined and in-situ oil sands reservoirs being well developed with mature commercial technologies. Shallow in-situ oil sands located in both Saskatchewan and Alberta will be the next frontier in Canadian petroleum development. Shallow reservoirs will need to be developed with new environmentally sound in-situ technologies that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. It was concluded that innovation has been the key to developing the immense and complex technology oil contained in Canada's heavy oil reservoirs and also in its shallow and deep in-situ oil sands reservoirs. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 88 refs., 3 tabs., 8 figs.

  5. Estimation of Sand Production Rate Using Geomechanical and Hydromechanical Models

    Directory of Open Access Journals (Sweden)

    Son Tung Pham

    2017-01-01

    Full Text Available This paper aims to develop a numerical model that can be used in sand control during production phase of an oil and gas well. The model is able to predict not only the onset of sand production using critical bottom hole pressure inferred from geomechanical modelling, but also the mass of sand produced versus time as well as the change of porosity versus space and time using hydromechanical modelling. A detailed workflow of the modelling was presented with each step of calculations. The empirical parameters were calibrated using laboratory data. Then the modelling was applied in a case study of an oilfield in Cuu Long basin. In addition, a sensitivity study of the effect of drawdown pressure was presented in this paper. Moreover, a comparison between results of different hydromechanical models was also addressed. The outcome of this paper demonstrated the possibility of modelling the sand production mass in real cases, opening a new approach in sand control in petroleum industry.

  6. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  7. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  8. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  9. Coastal geology and recent origins for Sand Point, Lake Superior

    Science.gov (United States)

    Fisher, Timothy G.; Krantz, David E.; Castaneda, Mario R.; Loope, Walter L.; Jol, Harry M.; Goble, Ronald J.; Higley, Melinda C.; DeWald, Samantha; Hansen, Paul

    2014-01-01

    Sand Point is a small cuspate foreland located along the southeastern shore of Lake Superior within Pictured Rocks National Lakeshore near Munising, Michigan. Park managers’ concerns for the integrity of historic buildings at the northern periphery of the point during the rising lake levels in the mid-1980s greatly elevated the priority of research into the geomorphic history and age of Sand Point. To pursue this priority, we recovered sediment cores from four ponds on Sand Point, assessed subsurface stratigraphy onshore and offshore using geophysical techniques, and interpreted the chronology of events using radiocarbon and luminescence dating. Sand Point formed at the southwest edge of a subaqueous platform whose base is probably constructed of glacial diamicton and outwash. During the post-glacial Nipissing Transgression, the base was mantled with sand derived from erosion of adjacent sandstone cliffs. An aerial photograph time sequence, 1939–present, shows that the periphery of the platform has evolved considerably during historical time, infl uenced by transport of sediment into adjacent South Bay. Shallow seismic refl ections suggest slump blocks along the leading edge of the platform. Light detection and ranging (LiDAR) and shallow seismic refl ections to the northwest of the platform reveal large sand waves within a deep (12 m) channel produced by currents fl owing episodically to the northeast into Lake Superior. Ground-penetrating radar profi les show transport and deposition of sand across the upper surface of the platform. Basal radiocarbon dates from ponds between subaerial beach ridges range in age from 540 to 910 cal yr B.P., suggesting that Sand Point became emergent during the last ~1000 years, upon the separation of Lake Superior from Lakes Huron and Michigan. However, optically stimulated luminescence (OSL) ages from the beach ridges were two to three times as old as the radiocarbon ages, implying that emergence of Sand Point may have begun

  10. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  11. Physical properties of sand parts produced using a Voxeljet VX1000 three-dimensional printer

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Successful case studies of metal casting applications using sand moulds and cores produced by additive manufacturing (AM processes have been widely reported in the literature. The layered- based manufacturing process has revolutionised traditional sand moulding methods. This is essentially due to the numerous advantages of AM, including the reduction of design lead time and the ability to manufacture objects with complex geometry in a rapid turnaround time. Locally-available AM processes that are capable of producing sand moulds and cores include laser sintering (LS and three-dimensional printing (3DP, with the latter AM process growing in dominance over the former. However, a better understanding of the properties of parts produced by AM processes is required in order for the processes to be fully adopted by the foundry industry. Crucial characteristics of 3DP sand parts related to strength, dimensional accuracy, and hardness are not well- known in terms of their magnitude and in comparison with conventionally-moulded sand parts. In this investigation, the physical properties of test specimens produced under standard manufacturing conditions, using a Voxeljet VX1000 machine, were assessed for bend and tensile strength, hardness, friability, and surface finish. The physical properties of the 3DP test specimens were then compared with the properties of laboratory hand- rammed test specimens. The results of the investigation suggest that the properties of AM-fabricated sand parts are inferior to sand parts produced by conventional moulding processes.

  12. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  13. Differentiation of Palaeogene sand by glauconitic and geochemical fingerprinting, Siri Canyon, Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Olivarius, M.; Knudsen, Christian; Svendsen, Johan B.

    2011-07-01

    The submarine Siri Canyon is NE-SW-oriented and located in the Danish North Sea. It contains a number of oil reservoirs with glauconite-rich sand. The reservoirs of interest in the Nini oil field are the Late Paleocene Tyr Member of the Lista Formation and the Kolga Member of the Sele Formation, presumably of Early Eocene age. These members have previously been known as the Ty and Hermod members. The sand shows signs of injection, both in cores and in seismic data. The aim of this work is to chemically characterise and fingerprint the sand in order to reveal the origin of the sand found in three horizontal wells, which could have been injected from one or both of the Tyr and Kolga members. Core samples were collected from two vertical wells of known stratigraphy to make a basis of comparison, whereas samples of the cuttings were collected from the three horizontal wells with ages primarily corresponding to the Kolga Member. The purpose was moreover to evaluate whether cuttings samples can be used for fingerprinting as an alternative to core samples. The interest in discriminating between the ages of the injected sand is the fact that the reservoir properties (porosity and permeability) are largely controlled by the original composition of the sand. Consequently, results from this study could affect the property modelling of the field. (LN)

  14. Process of extracting oil from stones and sands. [heating below cracking temperature and above boiling point of oil

    Energy Technology Data Exchange (ETDEWEB)

    Bergfeld, K

    1935-03-09

    A process of extracting oil from stones or sands bearing oils is characterized by the stones and sands being heated in a suitable furnace to a temperature below that of cracking and preferably slightly higher than the boiling-point of the oils. The oily vapors are removed from the treating chamber by means of flushing gas.

  15. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  16. Pan Am tar sand bid revealed

    Energy Technology Data Exchange (ETDEWEB)

    Gray, E

    1968-12-16

    Muskeg Oil Co., wholly-owned subsidiary of Pan American Canada Oil Co. Ltd., hopes to expand its proposed initial 8,000 bpd in situ Athabasca tar sand production scheme to an ultimate rate of 60,000 bpd. The Muskeg recovery process involves an in situ combustion technique developed by Pan American and applied successfully in experimental work in the Athabasca area. The underground burning process develops heat in the formation, reduces crude bitumen viscosity, and displaces the bitumen to the producing wells. Core analyses have been used to determine bitumen in place, wherever possible. Values for uncored wells were based on logs, through development of an empirical relationship between formation resistivity measured by focused logging devices and bitumen content determined by core analysis. The proposed recovery process is a 10-acre well spacing with 9-spot configuration. The McMurray Formation will be fractured hydraulically and preheated by a combustion process. The bitumen will be recovered by a combustion displacement process utilizing air and water.

  17. Modelling offshore sand wave evolution

    NARCIS (Netherlands)

    Nemeth, Attila; Hulscher, Suzanne J.M.H.; van Damme, Rudolf M.J.

    2007-01-01

    We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport

  18. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  19. Geology on a Sand Budget

    Science.gov (United States)

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  20. Emission of BTEX and PAHs from molding sands with furan cold setting resins containing different contents of free furfuryl alcohol during production of cast iron

    Directory of Open Access Journals (Sweden)

    Mariusz Holtzer

    2015-11-01

    Full Text Available At present, furan resin is the largest selling no-bake system of moulding sands. The most commonly used furan no-bake binders (FNB are condensation products of furfuryl alcohol (FA urea, formaldehyde and phenol. They are generally cured by exposure to organic sulfonic acids. FNB provide excellent mold and core strength, cure rapidly and allow the sand to be reclaimed at fairly high yields, generally 75%-80%, especially in applications where due allowance is made for the need to keep total sulfur content below 0.1%. However, due to probable carcinogenic properties of furfuryl alcohol, the EU Directive limits the content of this substance (in a monomer form in resin to 25%. The classification of furfuryl alcohol and the resulting furan resin products has changed from "harmful" to "toxic" by inhalation? The aim of this study was to determine the effect of free furfuryl alcohol content in the resin on the emission of harmful substances from the BTEX (Benzene Toluene Ethylbenzene & Xylene and PAHs (polycyclic aromatic hydrocarbon group exposed to high temperature and how it affects the emissions allowance of reclaimed sand in the matrix. Three resins from a leading manufacturer were examined, which contain a free furfuryl alcohol content of 71%-72%, about 50% and < 25%, respectively. The hardener for each resin was 65% aqueous solution of paratoluenesulfonic acid. Tests were carried out in semi-industrial conditions where liquid cast-iron was poured into sample sand mold at 1,350 ìC. The matrix of the studied sands was reclaimed in the amount of 0, 50%, 100%, respectively. With the increase of free furfuryl alcohol content, the volume of evolved gases decreased. For all resins the main component from the BTEX group dominating in the emitted gases was benzene; however toluene also appeared in the amount of a few percentages. In contrast, ethylbenzene and xylenes occurred only in the gases emitted from resin-bonded sands with the largest furfuryl

  1. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  2. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  3. Moisture diffusion coefficients determination of furan bonded sands and water based foundry coatings

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Tiedje, Niels Skat

    2016-01-01

    Moisture content in furan bonded sand and water based coatings can be one of the main causes for gas related defects in large cast iron parts. Moisture diffusion coefficients for these materials are needed to precisely predict the possible moisture levels in foundry moulds. In this study, we first...... provide an example on how it is possible to apply this knowledge to estimate moisture variation in a sand mould during production....

  4. Sulphur output from oil sands : dramatically changing Alberta's sulphur balance

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquin, G. [Con-Sul Inc., Bigfork, MT (United States)

    2008-07-01

    This paper discussed sulphur production from Alberta's gas and oil sands industries. While sulfur derived from natural gas production in the province is expected to decline as natural gas reserves diminish, Alberta's oil sands contain high amounts of sulphur. It is not yet known how much sulphur will be produced from the province's oil sands facilities. Alberta had considerable stockpiles of sulphur in the 1970s. By 1980, inventories began to decline. By 1996, output had increased to 7.1 million tonnes. Alberta's sulphur inventory reached 9.7 million tonnes following the collapse of the Soviet Union's government mandated fertilizer industry. In 2006, sulphur supplies in Alberta reached 12 million tonnes. Reduced global output has now lowered sulphur stockpiles. Increases in sulphur prices tend to reduce market demand, and lower prices will not typically change the volume of sulphur produced as a byproduct of oil and gas operations. Bitumen-derived sulphur output is expected to exceed gas-derived sulphur output in the near future. Sulphur from oil sands processing is expected to increase by 5 million tonnes by 2017. Increased sulphur production levels in Alberta will present a significant challenge for all sectors of the hydrocarbon industry. It was concluded that developing a plan for storing, selling or disposing of the sulphur will help to ensure the profitability of oil sands operations.

  5. Tidal dynamics in the sand motor lagoon

    NARCIS (Netherlands)

    De Vries, S.; Radermacher, M.; De Schipper, M.A.; Stive, M.J.F.

    2015-01-01

    The Sand Motor is a mega-nourishment characterized by a very large sand volume of around 20 million m3 placed along the Dutch coast. The Sand Motor is a pilot project to evaluate the performance of an alternative nourishment strategy with respect to different functions of the coastal system. Within

  6. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    Science.gov (United States)

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  7. Use of computed X-ray tomographic data for analyzing the thermodynamics of a dissociating porous sand/hydrate mixture

    International Nuclear Information System (INIS)

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-01-01

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation

  8. Canada's oil sands, opportunities and challenges to 2015 : an energy market assessment

    International Nuclear Information System (INIS)

    2004-05-01

    The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This report provides an assessment of the current state of the oil sands industry and the potential for growth. It also identifies the major issues and challenges associated with the development of Canada's oil sands, one of the world's largest hydrocarbon resources. Initial production of Canada's oil sands began in 1967. The resource has become more economic to develop in recent years due to higher energy prices and new technologies. The economic potential of Canada's oil sands has been recognized internationally. Canadian oil sands production in 2004 will surpass 160,000 cubic metres per day. By 2015, production is expected to more than double to meet market demands. The challenges facing the industry include higher natural gas prices, capital cost overruns and environmental impacts. The major factors that affect the rate of oil sands development include natural gas supply, energy demand, oil and gas pricing, markets and pipelines, environmental considerations, emerging technologies, geopolitical issues, and labour. This report includes key findings for the following four key components: economic potential and development of the resource base; markets and pipelines; environmental and socio-economic impacts; and, potential spin-off developments in the electricity and petrochemical industries. 26 tabs., 53 figs

  9. Preliminary fiscal evaluation of Alberta oil sands terms

    International Nuclear Information System (INIS)

    Van Meurs, P.

    2007-01-01

    The cost of oil sands projects varies significantly. While costs have escalated considerably over the past few years, oil prices have gone significantly higher. This report provided an economic evaluation of the current fiscal terms applicable to Alberta oil sands. The analysis was done to evaluate the profitability of oil sand projects to investors under current conditions based on the generic royalty regime based on bitumen values. The objective of the royalty review was to determine whether Albertans received a fair share from their oil and gas resources. It discussed the wide variety of oil sands projects in Alberta using five case studies as examples. Cases involving steam assisted gravity drainage (SAGD) operations were assessed for both the Athabasca Mine and Cold Lake. The report provided a discussion of the economic assumptions including economic cases as well as production, costs and price data. It then provided the preliminary results of the economic-fiscal evaluation from the investor perspective including profitability indicators; international comparisons; internal rate of return; and net present value. The government perspective was also discussed with reference to attractiveness indicators; royalties as a percentage of bitumen values; and non-discounted and discounted government take. A royalty and tax feature analysis was also provided. Several issues for possible further review were also presented. tabs

  10. Oil sands development in a carbon constrained world

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, J. [Alberta Research Council, Devon, AB (Canada)

    2006-07-01

    The challenges facing oilsands development in Alberta were discussed in this PowerPoint presentation. In 2005, 71 per cent of Alberta's export value was derived from energy and mining. The author addressed the issue that resource based economies have rarely succeeded in the long term. He then demonstrated how such economies could capture value from technology. The primary focus was on the goal to develop and adapt greenhouse gas (GHG) transformational technologies that will break the link between hydrocarbon energy use and GHG emissions. The role of oil sands in this endeavour was also discussed. Alberta's oil sands are the world's largest hydrocarbon resource, with 315 b bbls proven reserves, and 2.5 t bbls potential reserves. As an important economic driver for Alberta, oil sands production is expected to grow significantly in the next 2 decades. Since bitumen production is more energy intensive than conventional oil, the industry is faced with the challenge of sustainable development. Concentrated GHG emissions create opportunities to proceed with long-term oil sands development with a sustainable level of GHG emissions, but technology and infrastructure are needed to take advantage of them. Current carbon dioxide (CO{sub 2}) storage projects in Alberta were highlighted. The economic potential of geological storage of CO{sub 2} through acid gas injection or deep disposal was discussed in terms of enhanced oil recovery, enhanced coalbed methane recovery, enhanced gas recovery and cost avoidance of CO{sub 2} per tonne. It was emphasized that a long-term vision and commitment is needed to balance with short term problems solving and longer-term strategic agendas. tabs., figs.

  11. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie delta

    Science.gov (United States)

    Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.

    2000-01-01

    As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.

  12. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were compositions range from −65.2 to −80.7‰ for methane, −53.1 to −55.2‰ for ethane is consistent with mainly microbial gas sources, although one value recorded of −35.4‰ for propane

  13. Evaluation of methods to sample fecal indicator bacteria in foreshore sand and pore water at freshwater beaches.

    Science.gov (United States)

    Vogel, Laura J; Edge, Thomas A; O'Carroll, Denis M; Solo-Gabriele, Helena M; Kushnir, Caitlin S E; Robinson, Clare E

    2017-09-15

    Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear. Sampling was conducted at six freshwater beaches with different sand types to evaluate sampling methods for characterizing the abundance of E. coli in the foreshore reservoir as well as the partitioning of E. coli between different components in the foreshore reservoir (pore water, saturated sand, unsaturated sand). Methods were evaluated for collection of pore water (drive point, shovel, and careful excavation), unsaturated sand (top 1 cm, top 5 cm), and saturated sand (sediment core, shovel, and careful excavation). Ankle-depth surface water samples were also collected for comparison. Pore water sampled with a shovel resulted in the highest observed E. coli concentrations (only statistically significant at fine sand beaches) and lowest variability compared to other sampling methods. Collection of the top 1 cm of unsaturated sand resulted in higher and more variable concentrations than the top 5 cm of sand. There were no statistical differences in E. coli concentrations when using different methods to sample the saturated sand. Overall, the unsaturated sand had the highest amount of E. coli when compared to saturated sand and pore water (considered on a bulk volumetric basis). The findings presented will help determine the appropriate sampling strategy for characterizing FIB abundance in the foreshore reservoir as a means of predicting its potential impact on nearshore surface water quality and public health risk. Copyright © 2017 Elsevier Ltd. All rights

  14. METHOD OF PROCESSING MONAZITE SAND

    Science.gov (United States)

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  15. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En.

    2002-01-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 O) starting from sea sand in an easy and economic way. (Author)

  16. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm 2 , 1000 0 C cladding temperature, and (2) 40 h at 40 W/cm 2 , 1200 0 C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370 0 C

  17. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  18. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  19. Examination of oil sands projects : gasification, CO{sub 2} emissions and supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, K. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2008-10-15

    Non-conventional resources such as Alberta's oil sands are experiencing increased global interest because of the decline in global conventional oil and natural gas reserves. Bitumen extraction and upgrading is an energy intensive process. This paper provided a general discussion of Alberta's oil sands reserves, production and energy requirements. The paper discussed the application of different technologies to the oil sands, and in particular, the use of gasification as a method to produce bitumen-derived synthesis gas. Two oil sands projects currently under construction and implementing gasification technology were briefly described. The paper also provided a comparison of emission intensities from projects that employ gasification leading to a forecast of carbon dioxide equivalent emissions from the oil sands. The impact of Alberta's legislation and the federal framework on greenhouse gas emissions were also examined. Last, the paper discussed a supply cost methodology to compare an integrated extraction and upgrading project using gasification versus a similar project using a conventional steam methane reforming process (SMR). It was concluded that after comparing carbon dioxide emission intensities across different types of projects, the type of project that would be most heavily impacted by greenhouse gas emissions penalties was an in-situ extraction with an upgrading project that employed gasification technology. 36 refs., 5 tabs., 12 figs., 1 appendix.

  20. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  1. Comparison between results of detailed tectonic studies on borehole core vs microresistivity images of borehole wall from gas-bearing shale complexes, Baltic Basin, Poland.

    Science.gov (United States)

    Bobek, Kinga; Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Structural analysis of borehole core and microresistivity images yield an information about geometry of natural fracture network and their potential importance for reservoir stimulation. Density of natural fractures and their orientation in respect to the maximum horizontal stress has crucial meaning for hydraulic fractures propagation in unconventional reservoirs. We have investigated several hundred meters of continuous borehole core and corresponding microresistivity images (mostly XRMI) from six boreholes in the Pomeranian part of the Early Paleozoic Baltic Basin. In general, our results challenge the question about representatives of statistics based on structural analyses on a small shale volume represented by borehole core or borehole wall images and credibility of different sets of data. Most frequently, fractures observed in both XRMI and cores are steep, small strata-bound fractures and veins with minor mechanical aperture (0,1 mm in average). These veins create an orthogonal joint system, locally disturbed by fractures associated with normal or by gently dipping thrust faults. Mean fractures' height keeps in a range between 30-50 cm. Fracture density differs significantly among boreholes and Consistent Lithological Units (CLUs) but the most frequent means falls in a range 2-4 m-1. We have also payed an attention to bedding planes due to their expected coupling with natural fractures and their role as structural barriers for vertical fracture propagation. We aimed in construction for each CLU the so-called "mean brick", which size is limited by an average distance between two principal joint sets and between bedding fractures. In our study we have found out a discrepancy between structural profiles based on XRMI and core interpretation. For some CLUs joint fractures densities, are higher in cores than in XRMI. In this case, numerous small fractures were not recorded due to the limits of XRMI resolution. However, the most veins with aperture 0,1 mm

  2. Oil-sands giants leaving smaller environmental footprints

    International Nuclear Information System (INIS)

    Stonehouse, D.

    1999-01-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO 2 ) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO 2 which has been linked to global warming. By year 2006, all of Syncrude's processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO 2 ) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle faster

  3. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...

  4. ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226

    Science.gov (United States)

    Talia, M.; Pozzi, F.; Vallini, L.; Cimatti, A.; Cassata, P.; Fraternali, F.; Brusa, M.; Daddi, E.; Delvecchio, I.; Ibar, E.; Liuzzo, E.; Vignali, C.; Massardi, M.; Zamorani, G.; Gruppioni, C.; Renzini, A.; Mignoli, M.; Pozzetti, L.; Rodighiero, G.

    2018-05-01

    We present ALMA observations at 107.291 GHz (band 3) and 214.532 GHz (band 6) of GMASS 0953, a star-forming galaxy at z = 2.226 hosting an obscured active galactic nucleus (AGN) that has been proposed as a progenitor of compact quiescent galaxies (QGs). We measure for the first time the size of the dust and molecular gas emission of GMASS 0953 that we find to be extremely compact (˜1 kpc). This result, coupled with a very high interstellar medium (ISM) density (n ˜ 105.5 cm-3), a low gas mass fraction (˜0.2), and a short gas depletion time-scale (˜150 Myr), implies that GMASS 0953 is experiencing an episode of intense star formation in its central region that will rapidly exhaust its gas reservoirs, likely aided by AGN-induced feedback, confirming its fate as a compact QG. Kinematic analysis of the CO(6-5) line shows evidence of rapidly rotating gas (Vrot = 320^{+92}_{-53} km s-1), as observed also in a handful of similar sources at the same redshift. On-going quenching mechanisms could either destroy the rotation or leave it intact leading the galaxy to evolve into a rotating QG.

  5. Log analysis in the shallow oil sands of the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Vohs, J.B.

    1976-01-01

    Many fields in the San Joaquin Valley of California produce oil from a depth of 2,500 ft or less. During the period of primary production in these fields, evaluation of potential pay intervals from logs was restricted to examination of ES logs and correlation. With the introduction of secondary and tertiary recovery techniques the need for more and better answers, more quickly available, became apparent. However, several log-analysis problems had to be resolved. Formation evaluation using well logs was complicated by the shaliness of the sand intervals, the low and variable salinity of the formation waters, and the presence of low-pressure-gas (depleted) zones in many of the shallow sands. Solutions to these problems have required more modern logging programs and interpretation techniques. Logs available for the evaluation of these sands are the dual induction-laterolog, the compensated formation density log, the compensated neutron log, and the microlaterolog or proximity log. With this suite of logs it is possible to determine the shale content, porosity, saturation in the flushed zone, and water saturation of the sand, and to locate the low-pressure-gas sands and depleted zones. In cases where freshwater and oil are interlayered, it is possible to tell which sands contain oil and which contain only water. Because a quick interpretation is required, wellsite techniques are called for. These will be described

  6. Oil sands and heavy oil development issues and prospects under a Liberal government

    International Nuclear Information System (INIS)

    Shiry, J.

    1993-01-01

    A short review is presented of some of the factors affecting development of the western Canadian oil sands and heavy oil deposits to the year 2000. The Alberta oil sands resource has at least 1 trillion bbl of recoverable oil. At current prices, technology is the key to reducing costs to a more economic level. Cash operating costs have halved to $15/bbl over the past decade and the oil sands companies have programs to halve that figure again. A problem is the rising cost of natural gas as a fuel, which could jeopardize further development of both oil sand and heavy oil resources. In Saskatchewan, over 25 billion bbl of heavy oil are estimated to be in place. The biggest question is what percentage can be recovered; again, technology such as horizontal wells, 3-dimensional seismic, and steam assisted recovery is playing an important role. Concerns are expressed about the intentions of the new Liberal government concerning oil sand/heavy oil development, especially on the issues of foreign investment, exports, and environmental policy. A Liberal energy policy is not likely to allow U.S. direct investment in an oil sands plant to be tied to export of production, and the energy- and emissions-intensive nature of the oil sand/heavy oil industry will tend to make environmental approvals difficult

  7. Simulating cold production by a coupled reservoir-geomechanics model with sand erosion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Xue, S. [Petro-Geotech Inc., Calgary, AB (Canada)

    2002-06-01

    This paper presents a newly developed fully coupled reservoir-geomechanics model with sand erosion. Sand production occurs during aggressive production induced by the impact of viscous fluid flow and the in situ stress concentration near a wellbore, as well as by perforation tips in poorly consolidated formations. This compromises oil production, increases well completion costs, and reduces the life cycles of equipment down hole and on the surface. The proposed model can be used for sand production studies in conventional oil/gas reservoirs such as the North Sea as well as in heavy oil reservoirs such as in northwestern Canada. Instead of generating a high permeability network in reservoirs, the enhanced oil production is determined by the increase in the effective wellbore radius. This paper presents the general model. A detailed study on the capillary pressure and the impact of multiphase flow on sanding and erosion will be conducted at a later date. It appears that 2 phase flow can be important to elastoplasticity if no significant sand erosion has occurred. It was determined that high porosity is induced by erosion and capillary pressure. Two phase flow can be important when the built-up drag force carries sand-fluid slurry into the well. It is concluded that viscosity and flow velocity can help estimate the slurry transport, sand rate and enhanced oil production. 22 refs., 3 tabs., 11 figs.

  8. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 3. Gas and drilling

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 3 contains papers from the sessions on natural gas supporting research, western gas sands project, drilling technology, and environmental effects. Individuals were processed for inclusion in the Energy Data Base.

  9. Construction of the core of the 'heavy water-gas' reactor EL 4; Structures du coeur du reacteur 'eau- lourde-gaz EL 4'

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J L; Foulquier, H; Thome, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The core of this reactor consists of a vessel containing heavy water, through which pass a series of pressure tubes for circulation of the cooling gas under boat pressure. The basic specifications which greatly influenced the design of this construction relate to aspects of safety in operation (fuel loading from both faces of the reactor, replacement of the components on both faces), neutronic demands (minimum absorption of the components lattice parameter, diameter of the pressure tubes) and thermal considerations (output temperature 500 C). These specifications have led to a' horizontal arrangement of the pressure tubes and raised very difficult problems of clearance, which make it impossible (for the dimensions of EL 4) to resort to expansion bellows on the pressure tubes. The result is a semi-rigid vessel in which the pressure tubes contribute to a large extent the mechanical resistance of the system by acting as a brace, whence the high stresses on the joints and pressure tubes (and the choice of zirconium alloys). The construction components include the pressure tube, the joints, the thermal insulation and the liner tube. A brief account is given of the testing methods used and the performances of these various units is particular. The safety factors foreseen for the pressure tube, and the design and manufacture, taking account of tolerances of the thickened ends necessary for fitting the tubes in place and designing the joints. The joints connecting the pressure tubes to the reactor tank, which are only accessible through the inside of the channel prolonging the pressure tube. These joints must not be a weak part in the construction. Two types have been developed: a rolled joint where the ends of the pressure tube are directly flanged onto the tank, and a welded joint using zircaloy-stainless steel transition pieces added to the ends of the pressure tube. All these joints are made by remote control and are removable. Two solutions have been found to the

  10. Studies in Phlebotomine Sand Flies.

    Science.gov (United States)

    1982-06-30

    Reporte de dos casos de [a ology of a sand fly, P/mlebolomu’,s diabolicuw Hall. in forma anergica difusa. Der matol. Rev. Mex. southwestern -Texas...Contribuiin al estudio de los Phmle- CDC, Veterinary Public Health Notes. USDHEW. bwmwnn de Costa Rica (Diptera, Psychodidae). Tesis. CDC. October. pp. 6- 7...janeiron R. j. 195 pp. the Unrited States (D1)pre ra: Psscfirdidae). j. Ortiz, 1. 1965a. Contribuci~in a! estudio tie los flebor- Partrsirtrl. 30:274-275

  11. Stuck in the tar sands : how the federal government's proposed climate change strategy lets oil companies off the hook

    International Nuclear Information System (INIS)

    2008-10-01

    The credibility of any federal climate change strategy must be measured against its ability to reduce emissions from the tar sands. However, the federal government has proposed a climate change strategy that would allow tar sands producers to double their total emissions over the next decade. This report discussed how the federal government's proposed climate change strategy lets oil companies off the hook. The report discussed the problems and harmful effects associated with tar sands development, including greenhouse gas emissions; water depletion and pollution; toxic air emissions; destruction of the boreal forest; violation of native rights; threat to energy security; and negative socio-economic spin-off from an overheated economy. The federal government's proposed strategy was also assessed in terms of its weak greenhouse gas targets; ignoring the recent growth in tar sands emissions; adopting intensity-based targets instead of hard caps on greenhouse gas pollution, allowing total emissions from the tar sands to keep climbing; putting off critical measures until 2018; awarding oil companies hundreds of millions of dollars in credits for meeting targets they have already adopted voluntarily; lowballing the price of oil and downplaying future growth in tar sands emissions; ignoring huge portions of the oil industry's greenhouse gas pollution; letting oil companies buy their way out at rockbottom prices instead of forcing them to reduce their own emissions; and subsidizing increased tar sands production. It was concluded that the federal government's proposed plan to reduce greenhouse gas emissions was inadequate, because it failed to crack down on rising greenhouse gas emissions from the tar sands, one of Canada's most carbon intensive and fastest growing industries. 29 refs., 1 appendix

  12. Research and information needs for management of tar sands development. Interim report Apr-May 83

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    The report discusses important research and information needs for federal lease management of lands with tar sands resources. Short-term needs include more complete definition and characterization of deposits, hydrology, and regions downwind from tar sands areas. Longer-term needs include demonstration-scale operations to resolve production, waste management, and reclamation problems and to provide opportunities for measurement, analysis, and assessment of mining and processing wastes and emissions. Most of the known federal tar sands resource is in eastern Utah and contains about 25 billion barrels of bitumen. Recent legislation provides that existing mining claims and oil and gas leases may be converted to combined hydrocarbon leases including tar sands. Federal approval, which must be applied for by November 1983, is a condition for conversion.

  13. Spectral analysis of detector signals and the effect of gas and vapor bubbles in the core of the SUR-100 reactor

    International Nuclear Information System (INIS)

    Song, P.S.

    1981-01-01

    A series of experiments was performed in the SUR-100 reactor, Hanover, and evaluated by means of statistical analysis methods in order to extend the knowledge about the influence of voids on the neutron flux and facilitate the interpretation of spectra of neutron flux fluctuations measured in power reactors. The investigations were performed in a relatively low frequency band, because the neutron flux spectra generated by air bubbles crossing the reactor core without any essential change in velocity and shape show the typical features of global reactivity effects. A strong relation between the spectra shapes and the transit times of bubbles through the core can be observed. Concerning the experiments with boiling coolant, pronounced neutron flux oscillations were measured originating from periodical flow instabilities in the coolant channel. The neutron flux oscillations depend upon the subcooling of the water and upon the heating power and have evidently the same frequency like the flow oscillations. (orig.) [de

  14. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Daniel

    2017-12-30

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production.

    A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Leg II in 2009 and recently confirmed with coring in 2017.

    A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.

  15. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  16. Galveston Island, Texas, Sand Management Strategies

    Science.gov (United States)

    2016-07-01

    billion m3 of beach quality sand . However, Texas projects to date have not utilized these sources because of transportation costs. The lack of nearby...estimate that the San Luis Pass flood shoal contains approximately 11.8 million yd3 of beach quality sand . However, it is expected that if permits...a source of beach- quality sand . 2. Sand could be intercepted before it reaches the present dry beach. ERDC/CHL TR-16-13 55 3. The volume of

  17. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  18. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  19. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  20. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  1. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  2. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  3. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  4. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  5. Fort St. Vrain core performance

    International Nuclear Information System (INIS)

    McEachern, D.W.; Brown, J.R.; Heller, R.A.; Franek, W.J.

    1977-07-01

    The Fort St. Vrain High Temperature Gas Cooled Reactor core performance has been evaluated during the startup testing phase of the reactor operation. The reactor is graphite moderated, helium cooled, and uses coated particle fuel and on-line flow control to each of the 37 refueling regions. Principal objectives of startup testing were to determine: core and control system reactivity, radial power distribution, flow control capability, and initial fission product release. Information from the core demonstrates that Technical Specifications are being met, performance of the core and fuel is as expected, flow and reactivity control are predictable and simple for the operator to carry out

  6. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  7. Sedimentary controls on modern sand grain coat formation

    Science.gov (United States)

    Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.

    2017-05-01

    Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that

  8. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  9. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  10. Anatomy of a shoreface sand ridge revisted using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf