WorldWideScience

Sample records for gas handling system

  1. Gas-handling system for studies of tritium-containing materials

    International Nuclear Information System (INIS)

    Carstens, D.H.W.

    1975-01-01

    A gas handling system for preparation and study of tritium containing compounds and materials is described. The system at any one time can handle amounts of DT gas up to about 3 moles and has provisions for purification, storage, and measurement of the gas. Experimental conditions covering the ranges 20 to 800 0 C and 0.1 Pa to 137 MPa (10 -2 torr to 20,000 psi) can be maintained. (auth)

  2. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  3. Maintenance of the JET active gas handling system

    International Nuclear Information System (INIS)

    Brennan, P.D.; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks

  4. Sophisticated fuel handling system evolved

    International Nuclear Information System (INIS)

    Ross, D.A.

    1988-01-01

    The control systems at Sellafield fuel handling plant are described. The requirements called for built-in diagnostic features as well as the ability to handle a large sequencing application. Speed was also important; responses better than 50ms were required. The control systems are used to automate operations within each of the three main process caves - two Magnox fuel decanners and an advanced gas-cooled reactor fuel dismantler. The fuel route within the fuel handling plant is illustrated and described. ASPIC (Automated Sequence Package for Industrial Control) which was developed as a controller for the plant processes is described. (U.K.)

  5. Design and safety evaluation of radioactive gas handling and storage in the FFTF

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Hale, J.P.; Halverson, T.G.

    1976-01-01

    During the operation of the Fast Flux Test Facility (FFTF), radioactive gases, primarily xenon and krypton, will be produced which will require processing and storing. Two systems have been installed in the FFTF for handling these gases: (1) one to handle, primarily, the reactor cover gas system, and (2) a second to handle the cells and cover gas systems, other than the reactor, whose atmosphere may become contaminated. The system that processes the reactor cover gas, which is argon, is called the Radioactive Argon Processing System (RAPS). The effluent argon from RAPS will normally be sufficiently decontaminated to allow its reuse as the reactor cover gas. If the radioactive level in the RAPS becomes too high, the exhaust stream will be diverted to the Cell Atmosphere Processing System (CAPS), a system which can function as a backup to RAPS. The design and operation of the RAPS and CAPS systems are described and certain safety aspects of the systems are discussed. It is shown that these systems adequately provide the cleanup services required and that they provide the safety margins necessary to assure adequate safety to the public

  6. Proposed master-slave and automated remote handling system for high-temperature gas-cooled reactor fuel refabrication

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1974-01-01

    The Oak Ridge National Laboratory's Thorium-Uranium Recycle Facility (TURF) will be used to develop High-Temperature Gas-Cooled Reactor (HTGR) fuel recycle technology which can be applied to future HTGR commercial fuel recycling plants. To achieve recycle capabilities it is necessary to develop an effective material handling system to remotely transport equipment and materials and to perform maintenance tasks within a hot cell facility. The TURF facility includes hot cells which contain remote material handling equipment. To extend the capabilities of this equipment, the development of a master-slave manipulator and a 3D-TV system is necessary. Additional work entails the development of computer controls to provide: automatic execution of tasks, automatic traverse of material handling equipment, automatic 3D-TV camera sighting, and computer monitoring of in-cell equipment positions to prevent accidental collisions. A prototype system which will be used in the development of the above capabilities is presented. (U.S.)

  7. Modification in existing SF6 gas handling system at 14UD BARC-TIFR Pelletron Accelerator, Mumbai

    International Nuclear Information System (INIS)

    Ninawe, N.G.; Gupta, S.K.; Ramjilal; Sparrow, Hillary; Sharma, S.C.; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    BARC-TIFR 14 UD Pelletron Accelerator facility at TIFR, Mumbai is operational since inception 1989. The accelerator is housed inside a pressure vessel of 6 metre diameter, 25 metre long and 525m 3 volume. The accelerator tank is pressurized with SF 6 at 80 to 100 psig in order to achieve 14MV. The inventory of SF 6 gas is about 18,000 Kg (approximately) at 80 psig. SF 6 gas can be transported from Accelerator tank to storage tank using gas handling system, which consists of oil free compressor, vacuum pump, dust filters, oil filters, dryers etc

  8. A Gas Target with a Tritium Gas Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1963-12-15

    A detailed description is given of a simple tritium gas target and its tritium gas filling system, and how to put it into operation. By using the T (p,n) He reaction the gas target has been employed for production of monoenergetic fast neutrons of well defined energy and high intensity. The target has been operated successfully for a long time.

  9. Liquefied natural gas (LNG) : production, storage and handling. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, S; Jaron, K; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2003-07-01

    This Canadian Standard on the production, storage and handling of liquefied natural gas (LNG) was prepared by the Technical Committee on Liquefied Natural Gas under the jurisdiction of the Steering Committee on Oil and Gas Industry Systems and Materials. It establishes the necessary requirements for the design, installation and safe operation of LNG facilities. The Standard applies to the design, location, construction, operation and maintenance of facilities at any location of the liquefaction of natural gas and for the storage, vaporization, transfer, handling and truck transport of LNG. The training of personnel involved is also included as well as containers for LNG storage, including insulated vacuum systems. It includes non-mandatory guidelines for small LNG facilities but does not apply to the transportation of refrigerants, LNG by rail, marine vessel or pipeline. This latest edition contains changes in working of seismic design requirements and minor editorial changes to several clauses to bring the Standard closer to the US National Fire Protection Association's Committee on Liquefied Natural Gas Standard while maintaining Canadian regulatory requirements. The document is divided into 12 sections including: general requirements; plant site provisions; process equipment; stationary LNG storage containers; vaporization facilities; piping system and components; instrumentation and electrical services; transfer of LNG and refrigerants; fire protection, safety and security; and, operating, maintenance and personnel training. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2003. 6 tabs., 6 figs., 3 apps.

  10. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1984-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantities of gases required to feel the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. The lay-out and design of the different components is described and operational experience is presented. (author)

  11. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  12. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1985-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantitites of gases required to feed the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. In this paper the lay-out and design of the different components is described and operational experience is presented

  13. Methodology and results of risk assessment of interconnections within the JET active gas handling system

    International Nuclear Information System (INIS)

    Ballantyne, P.R.; Bell, A.C.; Konstantellos, A.; Hemmerich, J.L.

    1992-01-01

    The Joint European Torus (JET) Active Gas Handling System (AGHS) is a complex interconnection of numerous subsystems. While individual subsystems were assessed for their risk of operation, an assessment of the effects of inadvertent interconnections was needed. A systematic method to document the assessment was devised to ease the assessment of complex plant and was applied to the AGHS. The methodology, application to AGHS, the four critical issues and required plant modifications as a result of this assessment are briefly discussed in this paper

  14. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  15. Protecting worker health and safety using remote handling systems

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL's existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling

  16. Improvements in or relating to handling of flue gas

    International Nuclear Information System (INIS)

    Ingham, R.V.

    1986-01-01

    The patent describes improvements in the method for handling flue gas from the burning of fossil fuels. The method relates to cleaning the flue gas, from which the sulphur compounds are removed. The gas in then heated by heat derived from a nuclear source, which may be nuclear waste. The heat treatment gives efficient atmospheric dispersion from the chimney. (U.K.)

  17. Overview of the performance of the JET active gas handling system during and after DTE1

    International Nuclear Information System (INIS)

    Laesser, R.; Atkins, G.; Bell, A.

    1999-02-01

    The JET Active Gas Handling System (AGHS) was designed, built and commissioned to handle safely radioactive tritium gas mixtures, to supply tritium (T 2 ) and deuterium (D 2 ) to the JET torus, to process the exhaust gases with the main purpose to enrich and re-use T 2 and D 2 , to detritiate tritiated impurities and to keep discharges far below the approved daily release limits. In addition, the AGHS had to supply the necessary ventilation air streams during maintenance or repair inside or outside of the AGHS building. During the first Deuterium-Tritium Experiment (DTE1) at JET in 1997 the AGHS fulfilled all these tasks in an excellent manner. No unauthorised or unplanned tritium releases occurred and no operational delays were caused by the AGHS. In fact, this was the first true demonstration that quantities of tritium in the tens of grams range can be processed and recycled safely and efficiently in a large fusion device. At the start of DTE1 20 g of tritium were available on the JET site. About 100 g of tritium were supplied from the AGHS to the users which necessitated the recycling of tritium at least five times. Approximately 220 tritium plasma shots were performed during DTE1. Large amounts of tritium were temporarily trapped in the torus. This overview presents the performance of the whole AGHS during DTE1 as well as general aspects such as the preparation for DTE1; the quantities of gases supplied from the AGHS to the users and pumped back to the AGHS; tritium accountancy; interlock systems; failure of equipment; and gives detailed information of the gas processing in each subsystem of the AGHS. As a consequence of the performance of the AGHS during DTE1 we can state confidently that the AGHS is ready for further Deuterium-Tritium Experiments. (author)

  18. An overview of process instrumentation, protective safety interlocks and alarm system at the JET facilities active gas handling system

    International Nuclear Information System (INIS)

    Skinner, N.; Brennan, P.; Brown, K.; Gibbons, C.; Jones, G.; Knipe, S.; Manning, C.; Perevezentsev, A.; Stagg, R.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The Joint European Torus (JET) Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-systems that supply, process and recover tritium from gases used in the JET Machine. Operations require a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and approximately 500 process variables are measured. The different types and application of process instruments are presented with specially adapted or custom-built versions highlighted. Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and alarm system provides an essential safety function. In the event of failure modes, each hardwired interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design of the interlock and alarm system is outlined and general methodology described. Practical experience gained during plant operations is summarised and the methods employed for routine functional testing of essential instrument systems explained

  19. 40 CFR 65.161 - Continuous records and monitoring system data handling.

    Science.gov (United States)

    2010-07-01

    ... section. (D) Owners and operators shall retain the current description of the monitoring system as long as... Routing to a Fuel Gas System or a Process § 65.161 Continuous records and monitoring system data handling...) Monitoring system breakdowns, repairs, preventive maintenance, calibration checks, and zero (low-level) and...

  20. The gas cushion technique as a handling means for the remote removal of tokamak segments

    International Nuclear Information System (INIS)

    Removille, J.; Stephano, R.

    1983-01-01

    The gas cushion technique has been studied as offering a compact, flexible and safe way of handling massive objects. The evolution of the gas-cushion handling philosophy is discussed and examples presented related to the displacements of different loads in the torus and in the reactor hall. A short technical comparison with the C-frame handling concept is made in the conclusion. (author)

  1. FY 1998 annual report on the preliminary research and development of techniques for developing resources from gas-hydrate. Studies on gas-hydrate exploration, excavation techniques, methods for assessing environmental impacts, and gas hydrate handling systems; 1998 nendo gas hydrate shigenka gijutsu sendoken kaihatsu seika hokokusho. Tansanado ni kansuru kenkyu kaihatsu, kussaku gijutsu nado ni kansuru kenkyu kaihatsu, kankyo eikyo hyokaho no kenkyu kaihatsu, riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D project is for the preliminary studies on development of the following 4 types of techniques for developing resources from gas-hydrates (GH): (1) gas-hydrate exploration, (2) excavation techniques, (3) methods for assessing environmental impacts, and (4) gas hydrate handling systems. The FY 1988 R and D results are described. For gas-hydrate exploration, the methods for analyzing inorganic ions and trace quantities of elements, which are necessary for accurately estimating the offshore GH around Japan, are established; and case studies are conducted for methods of predicting GH deposit forming mechanisms, and stability fields of GH, based on terrestrial heat flow and seismic data. For excavation techniques, GH decomposition rate is analyzed using a laboratory system which reproduces conditions of excavation of GH layers. For methods for assessing environmental impacts, a geo-hazard predicting model is established, to study ground displacement and gas leakage sensing systems and data transmission systems to cope with the hazards. For gas hydrate handling systems, an overall system is studied, and storage and transportation systems are outlined. (NEDO)

  2. Gas power plant with CO2 handling. A study of alternative technologies

    International Nuclear Information System (INIS)

    Bolland, Olav; Hagen, Roger I.; Maurstad, Ola; Tangen, Grethe; Juliussen, Olav; Svendsen, Hallvard

    2002-01-01

    The report documents a study which compares 12 different technologies for gas power plants with CO 2 handling. The additional costs in removing the CO 2 in connection with electricity production is calculated to at least 18-19 oere /kWh compared to conventional gas power production without CO 2 capture. The calculated extra costs are somewhat higher than previously published figures. The difference is mainly due to that the estimated costs for pipelines and injection system for CO 2 are higher than in other studies. The removal of CO 2 in connection with gas power production implies increased use of natural gas. The most developed technologies would lead to a procentual increase in the gas consumption per kWh electricity of 18-25%. Gas power plants based on the present technologies would have efficiencies in the size of 46-49%. The efficiency of power plants without CO 2 handling is supposed to be 58%. There is no foundation for pointing out a ''winner's' among the compared technologies in the study. The present available technologies excepted, there are no technology which stands out as better than the others from an economic viewpoint. Gas turbine with membrane based separation of oxygen from air (AZEP) has a potential for lower costs but implies challenging technological development and thence considerable technological risks. Two technologies, capture of carbon from natural gas previous to combustion and exhaust gas purification based on absorption, may be employed in 3 - 4 years. The other technologies require more development and maturing. Three of the technologies may be particularly interesting because hydrogen may be produced as a byproduct. Demonstration plant and choice of technology: 1) There is a limited need for demonstration plants with respect to technology development. 2) It is important for the technology development to be able to test various technologies in a laboratory or in a flexible pilot plant. 3) Many technologies and components may be

  3. Fiscal 1997 project on the R and D of industrial scientific technology under consignment from NEDO (book on the handling / gas lift system). Report on the results of the R and D of the overall base technology of ocean resources (R and D of submarine oil drilling technology, etc.); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shine Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Kaiyo shigen sogo kiban gijutsu no kenkyu kaihatsu (kaitei sekiyu kussaku gijutsu nado kenkyu kaihatsu) seika hokokusho (handling / gas lift system hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper conducted a R and D on the handling of drilling equipment in drilling/collecting of submarine oil and the gas lift of artificial oil extraction technology. As to each equipment of a barge style handling system, conducted were assembly/adjustment/trial run on land and pipe handling experiments on sea. In the experiment, confirmed were pipe transfer function, lifting function, fitting function, grasping function, etc. In the ocean experiment, studied were pipe bending stress, Karman vortex control effects, etc. Relating to the gas lift system, experiments were made on confirmation of fabrication/performance of air compressor. Moreover, a technique of air transportation to the blowing inlet of the gas lift pipe was established by developing an air blowing system and fabricating a long-distance flexible pipe. Concerning the gas/liquid/solid three-phase separator, a cyclone separator was developed, and improvement in lifting efficiency was confirmed. Helped by these, the problems of the gas lift system were almost solved, and a possibility of the commercial-base production system was obtained. 2 refs., 182 figs., 47 tabs.

  4. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    Sekiguchi, N.; Rindo, H.; Akiyama, T.; Miyazawa, T.; Heki, H.

    1981-05-01

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  5. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  6. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  7. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  8. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  9. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    Science.gov (United States)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  10. Gas fueling system for SST-1

    International Nuclear Information System (INIS)

    Dhanani, Kalpeshkumar R.; Khan, Ziauddin; Raval, Dilip; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, Mohammad Shoaib; Pradhan, Subrata

    2015-01-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in Institute for Plasma Research. For plasma break down and initiation, the piezoelectric valve based gas feed system is implemented as primary requirement due to its precise control, easy handling, low costs for both construction and maintenance and its flexibility in working gas selection. The main functions of SST-1 gas feed system are to feed the required amount of ultrahigh purity hydrogen gas for specified period into the vessel during plasma operation and ultrahigh helium gas for glow discharge cleaning. In addition to these facilities, the gas feed system is used to feed a mixture gas of hydrogen and helium as well as other gases like nitrogen and Argon during divertor cooling etc. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before the plasma operation during each SST-1 plasma operation with precise control. This paper will present the technical development and the results of gas fueling in SST-1. (author)

  11. N2 gas station and gas distribution system for TLD personnel monitoring gas based semi-automatic badge readers

    International Nuclear Information System (INIS)

    Chourasiya, G.; Pradhan, S.M.; Kher, R.K.; Bhatt, B.C

    2003-01-01

    Full text: New improvised hot gas based Auto TLD badge reader has several advantages over the earlier contact heating based manual badge reader. It requires constant supply of N 2 gas for its operation; The gas supplied using replaceable individual gas cylinders may have some safety hazards in their handling. It was therefore considered worthwhile to setup a N 2 gas assembly/ station outside the lab area and to bring regulated gas supply through network of tubes with proper regulation to the individual readers. The paper presents detailed description of the gas station and distribution system. The system is quite useful and offers several practical advantages for readout of TLD badges on the semiautomatic badge readers based on gas heating. Important advantage from dosimetric point of view is avoidance of gas flow rate fluctuations and corresponding variations in TL readouts

  12. ATA diagnostic data handling system: an overview

    International Nuclear Information System (INIS)

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-01-01

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year

  13. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  14. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  15. Gas Fuelling System for SST-1Tokamak

    Science.gov (United States)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  16. Concept for a LNG Gas Handling System for a Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Michael Rachow

    2017-09-01

    Full Text Available Nowadays, ships are using LNG as main engine fuel because based on the facts that LNG has no sulphur content, and its combustion process, LNG produces low NOx content compared to heavy fuel oil and marine diesel oil. LNG is not only produces low gas emission, but may have economic advantages. In the engine laboratory of maritime studies department in Warnemunde, Germany, there is a diesel engine type MAN 6L23/30 A, where the mode operation of these engine would be changed to dual fuel engine mode operation. Therefore, in this thesis, the use dual fuel engine will be compared where it will utilize natural gas and marine diesel oil and select the required components for fuel gas supply system. By conducting the process calculation, engine MAN 6L23/30 A requires the capacity natural gas of 12.908  for 5 days at full load. A concept for LNG supply system would be arranged from storage tank until engine manifold. Germanischer Lloyd and Project Guide of dual fuel engine will be used as a guidelines to develop an optimal design and arrangement which comply with the regulation.

  17. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  18. Refueling system for the gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given

  19. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  20. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  1. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  2. Efficiency Evaluation of Handling of Geologic-Geophysical Information by Means of Computer Systems

    Science.gov (United States)

    Nuriyahmetova, S. M.; Demyanova, O. V.; Zabirova, L. M.; Gataullin, I. I.; Fathutdinova, O. A.; Kaptelinina, E. A.

    2018-05-01

    Development of oil and gas resources, considering difficult geological, geographical and economic conditions, requires considerable finance costs; therefore their careful reasons, application of the most perspective directions and modern technologies from the point of view of cost efficiency of planned activities are necessary. For ensuring high precision of regional and local forecasts and modeling of reservoirs of fields of hydrocarbonic raw materials, it is necessary to analyze huge arrays of the distributed information which is constantly changing spatial. The solution of this task requires application of modern remote methods of a research of the perspective oil-and-gas territories, complex use of materials remote, nondestructive the environment of geologic-geophysical and space methods of sounding of Earth and the most perfect technologies of their handling. In the article, the authors considered experience of handling of geologic-geophysical information by means of computer systems by the Russian and foreign companies. Conclusions that the multidimensional analysis of geologicgeophysical information space, effective planning and monitoring of exploration works requires broad use of geoinformation technologies as one of the most perspective directions in achievement of high profitability of an oil and gas industry are drawn.

  3. Development of tritium-handling technique

    International Nuclear Information System (INIS)

    Ohmura, Hiroshi; Hosaka, Akio; Okamoto, Takahumi

    1988-01-01

    The overview of developing activities for tritium-handling techniques in IHI are presented. To establish a fusion power plant, tritium handling is one of the key technologies. Recently in JAERI, conceptual design of FER (Fusion Experimental Reactor) has been carried out, and the FER system requires a processing system for a large amount of tritium. IHI concentrate on investigation of fuel gas purification, isotope separation and storage systems under contract with Toshiba Corporation. Design results of the systems and each components are reviewed. IHI has been developing fundamental handling techniques which are the ZrNi bed for hydrogen isotope storage and isotope separation by laser. The ZrNi bed with a tritium storage capacity of 1000 Ci has been constructed and recovery capability of the hydrogen isotope until 10 -4 Torr {0.013 Pa} was confirmed. In laser isotope separation, the optimum laser wave length has been determined. (author)

  4. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  5. Remote-handled transuranic system assessment appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

  6. Remote-handled transuranic system assessment appendices. Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives

  7. 30 CFR 75.817 - Cable handling and support systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to minimize... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable handling and support systems. 75.817...

  8. Study and Evaluation of Innovative Fuel Handling Systems for Sodium-Cooled Fast Reactors: Fuel Handling Route Optimization

    Directory of Open Access Journals (Sweden)

    Franck Dechelette

    2014-01-01

    Full Text Available The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth but can be extrapolated to power reactors and are compatible with the mutualisation of one FHS coupled with two reactors. These three concepts are then intercompared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the “mixed way” FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option.

  9. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  10. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  11. CANDU-9/480-SEU fuel handling system assessment document

    International Nuclear Information System (INIS)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.; Morikawa, D. T.

    1996-11-01

    This report summarize the rationale for the CANDU 9 fuel handling system, and the design choices recommended for components of the system. Some of the design requirements applicable to the CANDU 9 480-SEU fuel handling design choices are described. These requirements imposed by the CANDU 9 project. And the design features for the key components of fuel handling system, such as the fuelling machine, the carriage, the new fuel transfer system and the irradiated fuel transfer system, are described. The carriage seismic load evaluations relevant to the design are contained in the appendices. The majority of the carriage components are acceptable, or will likely be acceptable with some redesign. The concept for the CANDU 9 fuel handling system is based on proven CANDU designs, or on improved CANDU technology. Although some development work must be done, the fuel handling concept is judged to be feasible for the CANDU 9 480-SEU reactor. (author). 2 refs

  12. Advanced handling-systems with enhanced performance flexibility

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the results of a project related to future applications and requirements for advanced handling systems. This report consists of six chapters. Following the description of the aims the tools for setting up the requirements for the handling systems including the experience during the data acquisition process is described. Furthermore some information is given about the current state of the art of robotics and manipulators. Of paramount importance are the descriptions of applications and related concepts in the following chapters leading to specific categories of advanced handling units. The paper closes with the description of the first concepts for realization. (orig./HP) [de

  13. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  14. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  15. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  16. System expansion for handling co-products in LCA of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2012-01-01

    This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system...... expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage...... in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use...

  17. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  18. Remote handling systems for the Pride application

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Lee, H.; Kim, S.; Kim, H.

    2010-10-01

    In this paper is described the development of remote handling systems for use in the pyro processing technology development. Remote handling systems mainly include a BDSM (Bridge transported Dual arm Servo-Manipulator) and a simulator, all of which will be applied to the Pride (Pyro process integrated inactive demonstration facility) that is under construction at KAERI. BDMS that will traverse the length of the ceiling is designed to have two pairs of master-slave manipulators of which each pair of master-slave manipulators has a kinematic similarity and a force reflection. A simulator is also designed to provide an efficient means for simulating and verifying the conceptual design, developments, arrangements, and rehearsal of the pyro processing equipment and relevant devices from the viewpoint of remote operation and maintenance. In our research is presented activities and progress made in developing remote handling systems to be used for the remote operation and maintenance of the pyro processing equipment and relevant devices in the Pride. (Author)

  19. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  20. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes design issues concerning remote maintenance of the ITER torus vacuum pumping system. Key issues under investigation in this report are bearings for inert gas operation, transporter integration options, cryopump access, gate valve maintenance frequency, tritium effects on materials, turbomolecular pump design, and remote maintenance. Alternative bearing materials are explored for inert gas operation. Encapsulated motors and rotary feedthroughs offer an alternative option where space requirements are restrictive. A number of transporter options are studied. The preferred scheme depends on the shielded reconfigured ducts to prevent streaming and activation of RH (remote handling) equipment. A radiation mapping of the cell is required to evaluate this concept. Valve seal and bellow life are critical issues and need to be evaluated, as they have a direct bearing on the provision of adequate RH equipment to meet scheduled and unscheduled maintenance outages. The limited space on the inboard side of the cryopumps for RH equipment access requires a reconfigured duct and manifold. A modified shielded duct arrangement is proposed, which would provide more access space, reduced activation of components, and the potential for improved valve seal life. Work at Mound Laboratories has shown the adverse effects of tritium on some bearing lubricants. Silicone-based lubricants should be avoided. (11 refs., 2 tabs., 31 figs.)

  1. 46 CFR 154.1850 - Entering cargo handling spaces.

    Science.gov (United States)

    2010-10-01

    ..., compressors, and compressor motors. (2) Gas-dangerous cargo control spaces. (3) Other spaces containing cargo... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in... ventilation system, is posted outside of each space under paragraph (a) of this section. (c) The master shall...

  2. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  3. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  4. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  5. The design of in-cell crane handling systems for nuclear plants

    International Nuclear Information System (INIS)

    Hansford, S.M.; Scott, R.

    1992-01-01

    The reprocessing and waste management facilities at (BNFL's) British Nuclear Fuels Limited's Sellafield site make extensive use of crane handling systems. These range from conventional mechanical handling operations as used generally in industry to high integrity applications through to remote robotic handling operations in radiation environments. This paper describes the design methodologies developed for the design of crane systems for remote handling operations - in-cell crane systems. In most applications the in-cell crane systems are an integral part of the plant process equipment and reliable and safe operations are a key design parameter. Outlined are the techniques developed to achieve high levels of crane system availability for operations in hazardous radiation environments. These techniques are now well established and proven through many years of successful plant operation. A recent application of in-cell crane handling systems design for process duty application is described. The benefits of a systematic design approach and a functionally-based engineering organization are also highlighted. (author)

  6. Data handling systems and methods of wiring

    International Nuclear Information System (INIS)

    Grant, J.

    1981-01-01

    An improved data handling system, for monitoring and control of nuclear reactor operations, is described in which time delays associated with scanning are reduced and noise and fault signals in the system are resolved. (U.K.)

  7. Evaluation of the Electronic Bubbler Gas Monitoring System for High Flow in the BaBar Detector

    International Nuclear Information System (INIS)

    Little, Angela

    2003-01-01

    We evaluated the gas monitoring system in the Instrumented Flux Return (IFR) portion of the BaBar detector at the Stanford Linear Accelerator Center (SLAC) to determine its suitability for flows greater than 80 cc/min. Future modifications to the IFR involve particle detectors with a higher gas flow rate than currently in use. Therefore, the bubbler system was tested to determine if it can handle high flow rates. Flow rates between 80 and 240 cc/min were analyzed through short term calibration and long term stability tests. The bubbler system was found to be reliable for flow rates between 80 and 160 cc/min. For flow rates between 200 and 240 cc/min, electronic instabilities known as baseline spikes caused a 10-20% error in the bubble rate. An upgrade would be recommended for use of the bubbler system at these flow rates. Since the planned changes in the IFR will require a maximum flow of 150 cc/min, the bubbler system can sufficiently handle the new gas flow rates

  8. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Science.gov (United States)

    2010-07-01

    ... addition: (1) If natural means provide adequate ventilation, then a mechanical ventilation system is not... areas where adequate ventilation is provided by natural means. You must test and recalibrate gas... install and maintain a ventilation system and gas monitors. Drilling fluid-handling areas must have the...

  9. Data-handling system for the Fly's Eye experiment

    International Nuclear Information System (INIS)

    Bergeson, H.E.; Cassiday, G.L.; Cooper, D.A.

    1975-01-01

    The Fly's Eye air scintillation experiment presents severe data-handling requirements for two reasons. First, nearly 1,000 photomultipliers each produce outputs at rates from 100 Khz to 20 Mhz. Second, much of the signal arrives before a trigger is formed. A data handling system which will deal with this problem is described. (orig.) [de

  10. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  11. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  12. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will last about 10-12 years. The paper describes the programme and objectives and deals with methods of handling and disposing of the radioactive waste material. The main new facility required is a Waste Packaging Building adjacent to the existing reactor in which the waste boxes will be filled, active waste encapsulated in concrete and the boxes cleaned, swabbed and monitored to comply with IAEA transport regulations. The handling machine concept and features are described. The assaying and packaging of the waste material, the control of box movement and the process of concrete encapsulation is described. The paper concludes with a description of the development programme to support the Project. The tasks include a study of cutting techniques, production and control of dust and smoke, viewing and lighting methods, filtration, decontamination and fixing of contamination

  13. A new system for the simultaneous measurement of δ{sup 13}C and δ{sup 15}N by IRMS and radiocarbon by AMS on gaseous samples: Design features and performances of the gas handling interface

    Energy Technology Data Exchange (ETDEWEB)

    Braione, Eugenia; Maruccio, Lucio; Quarta, Gianluca; D’Elia, Marisa; Calcagnile, Lucio, E-mail: lucio.calcagnile@unisalento.it

    2015-10-15

    We present the general design features and preliminary performances of a new system for the simultaneous AMS-{sup 14}C and IRMS δ{sup 13}C and δ{sup 15}N measurements on samples with masses in the μg range. The system consists of an elemental analyzer (EA), a gas splitting unit (GSU), a IRMS system, a gas handling interface (GHI) and a sputtering ion source capable of accepting gaseous samples. A detailed description of the system and of the control software supporting unattended operation are presented together with the first performance tests carried out by analyzing samples with masses ranging from 8 μgC to 2.4 mgC. The performances of the system were tested in term of stability of the ion beam extracted from the ion source, precision and accuracy of the results by comparing the measured isotopic ratios with those expected for reference materials.

  14. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  15. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  16. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  17. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    International Nuclear Information System (INIS)

    Xiong, Rui; Siegel, David; Ross, David

    2014-01-01

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity

  18. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  19. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands

    International Nuclear Information System (INIS)

    Lysebo, I.; Tufto, P.

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in this area is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands

  20. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  1. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  2. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  3. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  4. MFTF exception handling system

    International Nuclear Information System (INIS)

    Nowell, D.M.; Bridgeman, G.D.

    1979-01-01

    In the design of large experimental control systems, a major concern is ensuring that operators are quickly alerted to emergency or other exceptional conditions and that they are provided with sufficient information to respond adequately. This paper describes how the MFTF exception handling system satisfies these requirements. Conceptually exceptions are divided into one of two classes. Those which affect command status by producing an abort or suspend condition and those which fall into a softer notification category of report only or operator acknowledgement requirement. Additionally, an operator may choose to accept an exception condition as operational, or turn off monitoring for sensors determined to be malfunctioning. Control panels and displays used in operator response to exceptions are described

  5. Design of mini-multi-gas monitoring system based on IR absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Q.L.; Zhang, W.D.; Xue, C.Y.; Xiong, J.J.; Ma, Y.C.; Wen, F. [Northern University of China, Taiyuan (China)

    2008-07-15

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually all incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use file mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  6. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  7. Trends in the design and operation of off-gas cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    First, M.W.

    1980-01-01

    Trends in the design and operation of off-gas cleaning systems in nuclear facilities reflect the normal development by manufacturers of new and improved equipment and the demand for more safety, greater reliability, and higher collection efficiency as an aftermath of the well publicized accident at Three Mile Island. The latter event has to be viewed as a watershed in the history of off-gas treatment requirements for nuclear facilities. It is too soon to predict what these will be with any degree of assurance but it seems reasonable to expect greatly increased interest in containment venting systems for light water and LMFBR nuclear power reactors and more stringent regulatory requirements for auxiliary off-gas cleaning systems. Although chemical and waste handling plants share few characteristics with reactors other than the presence of radioactive materials, often in large amounts, tighter requirements for handling reactor off-gases will surely be transferred to other kinds of nuclear facilities without delay. Currently employed nuclear off-gas cleaning technology was largely developed and applied during the decade of the 1950s. It is regrettable that the most efficient and most economical off-gas treatment systems do not always yield the best waste forms for storage or disposal. It is even more regrettable that waste management has ceased to be solely a technical matter but has been transformed instead into a highly charged political posture of major importance in many western nations. Little reinforcement has been provided by detailed studies of off-gas treatment equipment failures that show that approximately 13% of over 9000 licensee event reports to the United States Nuclear Regulatory Commission pertained to failures in ventilating and cleaning systems and their monitoring instruments

  8. SLSF loop handling system. Volume I. Structural analysis

    International Nuclear Information System (INIS)

    Ahmed, H.; Cowie, A.; Ma, D.

    1978-10-01

    SLSF loop handling system was analyzed for deadweight and postulated dynamic loading conditions, identified in Chapters II and III in Volume I of this report, using a linear elastic static equivalent method of stress analysis. Stress analysis of the loop handling machine is presented in Volume I of this report. Chapter VII in Volume I of this report is a contribution by EG and G Co., who performed the work under ANL supervision

  9. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  10. Design and construction of γ-rays irradiation facility for remote-handling parts and components of fusion reactor

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Morita, Yousuke; Seguchi, Tadao

    1995-03-01

    For the evaluation of radiation resistance of remote-handling system for International Thermonuclear Experimental Reactor(ITER), 'high dose-rate and high temperature (upper 350degC) γ-rays irradiation facility' was designed and constructed. In this facility, the parts and components of remote-handling system such as sensing devices, motors, optical glasses, wires and cables, etc., are tested by irradiation with 2x10 6 Roentgen/h Co-60 γ-rays at a temperature up to 350degC under various atmospheres (dry nitrogen gas, argon gas, dry air and vacuum). (author)

  11. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  12. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  13. Feasibility study of CANDU-9 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.

    1996-12-01

    CANDU`s combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs.

  14. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  15. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  16. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  17. Measurement and control system for the ITER remote handling mock-up test

    International Nuclear Information System (INIS)

    Oka, K.; Kakudate, S.; Takiguchi, Y.; Ako, K.; Taguchi, K.; Tada, E.; Ozaki, F.; Shibanuma, K.

    1998-01-01

    The mock-up test platforms composed of full-scale remote handling (RH) equipment were developed for demonstrating remote replacement of the ITER blanket and divertor. In parallel, the measurement and control system for operating these RH equipment were constructed on the basis of open architecture with object oriented feature, aiming at realization of fully-remoted automatic operation required for ITER. This paper describes the design concept of the measurement and control system for the remote handling equipment of ITER, and outlines the measured performances of the fabricated measurement system for the remote handling mock-up tests, which includes Data Acquisition System (DAS), Visual Monitoring System (VMS) and Virtual Reality System (VRS). (authors)

  18. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  19. 20 CFR 658.401 - Types of complaints handled by the JS complaint system.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Types of complaints handled by the JS... § 658.401 Types of complaints handled by the JS complaint system. (a)(1) The types of complaints (JS related complaints) which shall be handled to resolution by the JS complaint system are as follows: (i...

  20. Evolution of a test article handling system for the SP-100 GES test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Davies, S.M.

    1987-01-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the nuclear assembly test article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operation. The test site operator, working in conjunction with the test article supplier, developed and evaluated several handling concepts resulting in the selection of a reference test article handling system. The development of the reference concept for the handling system is presented

  1. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    International Nuclear Information System (INIS)

    Treutterer, W.; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-01-01

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  2. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-10-15

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  3. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  4. Evolution of the Darlington NGS fuel handling computer systems

    International Nuclear Information System (INIS)

    Leung, V.; Crouse, B.

    1996-01-01

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs

  5. Evolution of the Darlington NGS fuel handling computer systems

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V; Crouse, B [Ontario Hydro, Bowmanville (Canada). Darlington Nuclear Generating Station

    1997-12-31

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs.

  6. Cover gas box for handling sodium

    International Nuclear Information System (INIS)

    Kuenstler, K.; Betzl, K.

    1978-01-01

    An inert atmosphere box has been developed to work with sodium experimentally and analytically. The volumen of the box is 0.6 m 3 . A blower mounted inside the work chamber constantly circulates the argon from the work chamber through a gas purification system (nickel-catalyst 6525 and molecular sieve 4A). The flow rate is 450 l/h. The box is equipped with neoprene gloves. The glove ports can be closed with interior flanges. The work chamber is constantly kept to a low superpressure of 25 mm water gange. In a bypass the oxygen concentration is measured with the OXYLYT-electrolyte cell and the water vapour concentration with the KEIDEL-electrolytic hygrometer. During long-term operation oxygen levels of 35 vpm and water vapour levels of 50 vpm can be hold even when the gloves are not covered. By means of putting a vessel with liquid sodium in the work chamber oxygen levels of 8 vpm and water vapour levels of 20 vpm can be attained for short times. The inert atmosphere purity can be improved by means of increasing the gas flow rate. (author)

  7. Development of remote handling techniques for the HLLW solidification plant

    International Nuclear Information System (INIS)

    Tosha, Yoshitsugu; Iwata, Toshio; Inada, Eiichi; Nagaki, Hiroshi; Yamamoto, Masao

    1982-01-01

    To develop the techniques for the remote maintenance of the equipment in a HLLW (high-level liquid waste) solidification plant, the mock-up test facility (MTF) has been designed and constructed. Before its construction, the specific mock-up equipment was manufactured and tested. The results of the test and the outline of the MTF are described. As the mock-up equipment, a denitrater-concentrator, a ceramic melter and a canister handling equipment were selected. Remote operation was performed according to the maintenance program, and the evaluation of the component was conducted on the easiness of operation, performance, and the suitability to remote handling equipment. As a result of the test, four important elements were identified; they were guides, lifting fixtures, remote handling bolts, and remote pipe connectors. Many improvements of these elements were achieved, and reflected in the design of the MTF. The MTF is a steel-framed and slate-covered building (25 mL x 20 mW x 27 mH) with five storys of test bases. It contains the following four main systems: pretreatment and off-gas treatment system, glass melting system, canister handling system and secondary waste liquid recovery system. Further development of the remote maintenance techniques is expected through the test in the MTF. (Aoki, K.)

  8. Enbridge system : crude types, transportation and handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A. [Enbridge Corp., Edmonton, AB (Canada)

    2009-07-01

    The supply of crude oil from the Western Canada Sedimentary Basin is expected to increase by approximately 2.1 million barrels per day by 2015. The crudes that Enbridge handles range from 19 API to 40 API and 0.1 per cent sulphur to 4.7 per cent sulphur. The diverse supply of crude oil that the Enbridge system handles includes conventional heavy, synthetic heavy, heavy high tan, heavy low residual, medium, light sour, heavy sour, light sweet, light sweet synthetic, condensate and olefinic crudes. This presentation discussed Enbridge's plans for infrastructure expansion, crude types and quality assurance program. The company's infrastructure plans include the expansion of regional pipelines to bring more supplies to the mainline; expansion of the mainline capacity to existing markets; and providing pipeline access to new markets. Merchant storage terminals will be provided in some locations. The quality of various crude types will be maintained through judicious sequencing and tank bottoms crossings. tabs., figs.

  9. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  10. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Urbon, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Garcia, A.; Cuarental, I.; Mota, F. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Micciche, G. [CR ENEA Brasimone, I-40035 Camugnano (BO) (Italy); Ibarra, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Casal, N. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  11. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    International Nuclear Information System (INIS)

    Queral, V.; Urbon, J.; Garcia, A.; Cuarental, I.; Mota, F.; Micciche, G.; Ibarra, A.; Rapisarda, D.; Casal, N.

    2011-01-01

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  12. Combined application of Product Lifecycle and Software Configuration Management systems for ITER remote handling

    International Nuclear Information System (INIS)

    Muhammad, Ali; Esque, Salvador; Aha, Liisa; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti; Jaervenpaeae, Jorma; Irving, Mike; Damiani, Carlo; Semeraro, Luigi

    2009-01-01

    The advantages of Product Lifecycle Management (PLM) systems are widely understood among the industry and hence a PLM system is already in use by International Thermonuclear Experimental Reactor (ITER) Organization (IO). However, with the increasing involvement of software in the development, the role of Software Configuration Management (SCM) systems have become equally important. The SCM systems can be useful to meet the higher demands on Safety Engineering (SE), Quality Assurance (QA), Validation and Verification (V and V) and Requirements Management (RM) of the developed software tools. In an experimental environment, such as ITER, the new remote handling requirements emerge frequently. This means the development of new tools or the modification of existing tools and the development of new remote handling procedures or the modification of existing remote handling procedures. PLM and SCM systems together can be of great advantage in the development and maintenance of such remote handling system. In this paper, we discuss how PLM and SCM systems can be integrated together and play their role during the development and maintenance of ITER remote handling system. We discuss the possibility to investigate such setup at DTP2 (Divertor Test Platform 2), which is the full scale mock-up facility to verify the ITER divertor remote handling and maintenance concepts.

  13. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  14. Superphenix 1 primary handling system fabrication and testing

    International Nuclear Information System (INIS)

    Branchu, J.; Ebbinghaus, K.; Gigarel, C.

    1985-01-01

    Primary handling covers the operations performed for spent fuel removal, new fuel insertion, and the insodium storage outside the new or spent fuel vessel. This equipment typifies many of the difficulties encountered with the project as a whole: fabrication coordination when several countries are involved and design and construction of very large, relatively complex components. Detailed design studies were mainly influenced by thermal and seismic requirements, as applicable to sodium-immersed structures. Where possible, well-tried mechanical solutions were used, but widely differing techniques were involved, ranging from the high precision fabrication of structures and mechanisms comprising numerous component parts, implying complex machining operations. No particular problems were encountered during the sodium testing of the primary handling equipment. Trends for the 1500-MW (electric) breeder include investigation of the advisability of fuel storage in the core lattice and the possibility of handling system simplification

  15. Planning and control of automated material handling systems: The merge module

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Hurink, Johann L.; Schutten, Johannes M.J.; Zijm, Willem H.M.; Schuur, Peter; Hu, Bo; Morasch, Karl; Pickl, Stefan; Siegle, Markus

    2011-01-01

    We address the field of internal logistics, embodied in Automated Material Handling Systems (AMHSs), which are complex installations employed in sectors such as Baggage Handling, Physical Distribution, and Parcel & Postal. We work on designing an integral planning and real-time control architecture,

  16. SIMULASI GROUP TECHNOLOGY SYSTEM UNTUK MEMINIMALKAN BIAYA MATERIAL HANDLING DENGAN METODE HEURISTIC

    Directory of Open Access Journals (Sweden)

    Much. Djunaidi

    2006-04-01

    Full Text Available Group Technology System merupakan metode pengaturan fasilitas produksi (machine groups yang dibutuhkan untuk memproses suatu part family tertentu ke dalam sel-sel manufaktur. Pengaturan tata letak di CV. Sonytex yang berdasarkan process layout mengakibatkan perusahaan menghadapi permasalahan berupa tingginya kebutuhan material handling. Salah satu kriteria kinerja dalam pembentukan sel manufaktur pada GTS adalah meminimasi total jarak material handling, sehingga dapat mengurangi biaya material handling dan meningkatkan produktivitas. Dalam penelitian ini digunakan tiga metode, yaitu Bond Energy Algorithm (BEA, Rank Order Clustering (ROC dan Rank Order Clustering 2 (ROC2. Hasil dari penelitian ini adalah dengan menerapkan group technology systems diperoleh total pengurangan jarak material handling sebesar 70 m dan penghematan biaya material handling sebesar Rp 1.534.978,-. Berdasarkan model simulasi, relayout dengan metode BEA meningkatkan jumlah produksi sebesar 1 unit produk/hari dan penurunan waktu tunggu sebesar 0,575 menit.

  17. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  18. Design method of control system for HTGR fuel handling process with control Petri net

    International Nuclear Information System (INIS)

    Han Zandong; Luo Sheng; Liu Jiguo

    2008-01-01

    As a complex mechanical system,the fuel handling system (FHS) of pebble-bed high temperature gas cooled reactor (HTGR) is with the features of complicated structure, numerous control devices and strict working scheduling. It is very important to precisely describe the function of FHS and effectively design its control system. A design method of control system based on control Petri net (CPN) is introduced in this paper. By associating outputs and operations with places, associating inputs and conditions with transitions, and introducing macro-places and macro-actions, the CPN realizes hierarchy design of complex control system. Based on the analysis of basic functions and working flow of FHS, its control system is described and designed by CPN. According to the firing regulation of transition,the designed CPN can be easily converted into LAD program of PLC, which can be implemented on the FHS simulating control test-bed. Application illuminates that proposed method has the advantages of clear design structure, exact description power and effective design ability of control program, which can meet the requirements of FHS control sys-tem design. (authors)

  19. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  20. Mock-up test on key components of ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Matsumoto, Yasuhiro; Taguchi, Koh; Kozaka, Hiroshi; Shibanuma, Kiyoshi; Tesini, Alessandro

    2009-01-01

    The maintenance operation of the ITER in-vessel component, such as a blanket and divertor, must be executed by the remote equipment because of the high gamma-ray environment. During the Engineering Design Activity (EDA), the Japan Atomic Energy Agency (then called as Japan Atomic Energy Research Institute) had been fabricated the prototype of the vehicle manipulator system for the blanket remote handling and confirmed feasibility of this system including automatic positioning of the blanket and rail deployment procedure of the articulated rail. The ITER agreement, which entered into force in the last year, formally decided that Japan will procure the blanket remote handling system and the JAEA, as the Japanese Domestic Agency, is continuing several R and Ds so that the system can be procured smoothly. The residual key issues after the EDA are rail connection and cable handling. The mock-ups of the rail connection mechanism and the cable handling system were fabricated from the last year and installed at the JAEA Naka Site in this March. The former was composed of the rail connecting mechanism, two rail segments and their handling systems. The latter one utilized a slip ring, which implemented 80 lines for power and 208 lines for signal, because there is an electrical contact between the rotating spool and the fixed base. The basic function of these systems was confirmed through the mock-up test. The rail connection mechanism, for example, could accept misalignment of 1.5-2 mm at least. The future test plan is also mentioned in the paper.

  1. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  2. The FMEA Analysis for Fuel Handling System at Cernavoda Unit 2

    International Nuclear Information System (INIS)

    Park, Jin Hee; Kim, Tae Woon; Rhee, Bo Wook; Yoon, Chul; Kim, Hyeong Tae; Cho, In Gil; Kim, Seong Ho

    2006-01-01

    A Nuclear Safety Evaluation was performed by an independent assessor at the request of the regulatory authority CNCAN (Comisia Nationala pentru Controlul Activitatilor Nucleare. National Committee for Nuclear Activities Control in Romania) to provide an independent overview of all the nuclear safety aspects of Cernavoda Unit 2 under construction and an expert opinion whether the completed Cernavoda Unit-2 Nuclear Power Plant would satisfy current Western European nuclear safety objectives and practices. A report was produced (Cernavoda 2 Nuclear Safety Expert Project, 'Task 10 . Safety Evaluation Report', A.F.Parsons, NNC Limited, December 2001) and contains recommendations either mandatory or advisory. The FMEA study, one of the mandatory recommendations, is performing now for fuel handling system and radioactive waste handling system for Cernavoda unit 2 in Romania sponsored by KHNP. In this paper, only the FMEA study for fuel handling system is presented

  3. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  4. JOYO operation support system 'JOYCAT' based on intelligent alarm handling

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Yamamoto, Hiroki; Sato, Masuo; Yoshida, Megumu; Kaneko, Tomoko; Terunuma, Seiichi; Takatsuto, Hiroshi; Morimoto, Makoto.

    1992-01-01

    An operation support system for the experimental fast reactor 'JOYO' was developed based on an intelligent alarm-handling. A specific feature of this system, called JOYCAT (JOYO Consulting and Analyzing Tool), is in its sequential processing structure that a uniform treatment by using design knowledge base is firstly applied for all activated alarms, and an exceptional treatment by using heuristic knowledge base is then applied only for the former results. This enables us to achieve real-time and flexible alarm-handling. The first alarm-handling determines the candidates of causal alarms, important alarms with which the operator should firstly cope, through identifying the cause-consequence relations among alarms based on the design knowledge base in which importance and activating conditions are described for each of 640 alarms in a frame format. The second alarm-handling makes the final judgement with the candidates by using the heuristic knowledge base described as production rules. Then, operation manuals concerning the most important alarms are displayed to operators. JOYCAT has been in commission since September of 1990, after a wide scope of validation tests by using an on-site full-scope training simulator. (author)

  5. Development of remote handling system based on 3-D shape recognition technique

    International Nuclear Information System (INIS)

    Tomizuka, Chiaki; Takeuchi, Yutaka

    2006-01-01

    In a nuclear facility, the maintenance and repair activities must be done remotely in a radioactive environment. Fuji Electric Systems Co., Ltd. has developed a remote handling system based on 3-D recognition technique. The system recognizes the pose and position of the target to manipulate, and visualizes the scene with the target in 3-D, enabling an operator to handle it easily. This paper introduces the concept and the key features of this system. (author)

  6. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  7. ITER - TVPS remote handling critical design issues

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes critical design issues concerning remote maintenance of the ITER Torus Vacuum Pumping System (TVPS). The key issues under investigation are the regeneration/isolation valve seal and seal mechanism replacement; impact of inert gas operation; impact of remote handling (RH) on the building configuration and RH equipment requirements. Seal exchange concepts are developed and their impact on the valve design identified. Concerns regarding the design and operation of RH equipment in an inert gas atmosphere are also explored. The report compares preliminary RH equipment options, pumping equipment maintenance frequency and their impact on the building design, and makes recommendations where a conflict exists between pumping equipment and the building layout. (51 figs., 11 refs.)

  8. CHLOE: a system for the automatic handling of spark pictures

    International Nuclear Information System (INIS)

    Butler, J.W.; Hodges, D.; Royston, R.

    The system for automatic data handling uses commercially available or state-of-the-art components. The system is flexible enough to accept information from various types of experiments involving photographic data acquisition

  9. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  10. Development and implementation of automated radioactive materials handling systems

    International Nuclear Information System (INIS)

    Jacoboski, D.L.

    1992-12-01

    Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation

  11. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  12. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  13. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  14. Adaptive and energy efficient SMA-based handling systems

    Science.gov (United States)

    Motzki, P.; Kunze, J.; Holz, B.; York, A.; Seelecke, S.

    2015-04-01

    Shape Memory Alloys (SMA's) are known as actuators with very high energy density. This fact allows for the construction of very light weight and energy-efficient systems. In the field of material handling and automated assembly process, the avoidance of big moments of inertia in robots and kinematic units is essential. High inertial forces require bigger and stronger robot actuators and thus higher energy consumption and costs. For material handling in assembly processes, many different individual grippers for various work piece geometries are used. If one robot has to handle different work pieces, the gripper has to be exchanged and the assembly process is interrupted, which results in higher costs. In this paper, the advantages of using high energy density Shape Memory Alloy actuators in applications of material-handling and gripping-technology are explored. In particular, light-weight SMA actuated prototypes of an adaptive end-effector and a vacuum-gripper are constructed via rapid-prototyping and evaluated. The adaptive end-effector can change its configuration according to the work piece geometry and allows the handling of multiple different shaped objects without exchanging gripper tooling. SMA wires are used to move four independent arms, each arm adds one degree of freedom to the kinematic unit. At the tips of these end-effector arms, SMA-activated suction cups can be installed. The suction cup prototypes are developed separately. The flexible membranes of these suction cups are pulled up by SMA wires and thus a vacuum is created between the membrane and the work piece surface. The self-sensing ability of the SMA wires are used in both prototypes for monitoring their actuation.

  15. Experience in handling core subassemblies in sodium cooled reactor KNK and test rigs

    International Nuclear Information System (INIS)

    Althaus; Jansing; Kesseler; Kirchner; Menck

    1974-01-01

    Compared with a water cooled reactor plant a sodium cooled reactor plant presents a number of problems which result from the specific nature of sodium. These problems that must be faced during all handling operations are mainly: 1. The rapid reaction of sodium in air requires handling to be done only under cover gas. 2. The temperature of all sodium-wetted components is to be kept above the melting point of sodium. 3. Poor draining of removed reactor components due to the high surface tension of sodium and the associated danger of dripping radioactive sodium may produce radiation or contamination problems. 4. Sodium is not transparent. The sum of these and further influences dictate that the general handling usually is carried out without visual means, though a method is under development in the USA to use ultrasonic for under sodium 'viewing'. These limitations to sodium component handling are applicable to all sodium reactor plants, several of which are discussed in this report. After the description of the handling systems of the KNK plant now operating at Karlsruhe, the experience with the SNR test rig and finally the handling systems for SNR 300 and SNR 2 are discussed

  16. Design, fabrication and testing of the gas analysis system for the tritium recovery experiment, TRIO-01

    International Nuclear Information System (INIS)

    Finn, P.A.; Reedy, G.T.; Homa, M.I.; Clemmer, R.G.; Pappas, G.; Slawecki, M.A.; Graczyk, D.G.; Bowers, D.L.; Clemmer, E.D.

    1983-01-01

    The tritium recovery experiment, TRIO-01, required a gas analysis system which detected the form of tritium, the amount of tritium (differential and integral), and the presence and amount of other radioactive species. The system had to handle all contingencies and function for months at a time unattended during weekend operation. The designed system, described herein, consisted of a train of components which could be grouped as desired to match tritium release behavior

  17. Reactor helium system, design specification, operation and handling

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-06-01

    Apart from detailed design specification of the helium cover gas system of the Ra reactor, this document includes description of the operating regime, instructions for manipulations in the system with the aim of achieving and maintaining stationary gas circulation [sr

  18. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  19. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  20. Modeling and Application of Pneumatic Conveying for Spherical Fuel Element in Pebble-Bed Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Zhou Shuyong; Wang Junsan; Wang Yuding; Cai Ruizhong; Zhang Xuan; Cao Jianting

    2014-01-01

    The fuel handling system is an important system for on-load refueling in pebble-bed modular high-temperature gas-cooled reactor. A dynamic model of pneumatic conveying for spherical fuel element in fuel handling system was established to describe the pneumatically conveying process. The motion characteristics of fuel elements in pipeline and the effect of fuel elements on gas velocity were studied using the model. The results show that the theoretical analyses are consistent with the experimental. The research has been used in developing full scope simulator for pebble-bed modular high-temperature gas-cooled reactor, also provides references for the design and optimization of the fuel handling system. (author)

  1. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  2. Contamination confinement system of irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A. dos S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-06-01

    A study to prevent radioctivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the especification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  3. TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM

    International Nuclear Information System (INIS)

    T. A. Misiak

    1998-01-01

    This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications

  4. Three-dimensional television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Abel, E.

    1988-01-01

    The paper refers to work previously described on the development of 3-D Television Systems. 3-D TV had been developed with a view to proving whether it was a useful remote handling tool which would be easy to use and comfortable to view. The paper summarizes the work of evaluation trials at UK facilities and reviews the developments which have subsequently taken place. 3-D TV systems have been found to give improved performance in terms of speed and accuracy of operations and to reduce the number of camera views required. (author)

  5. A versatile gas interface for routine radiocarbon analysis with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Fahrni, S.M. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Hajdas, I. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Zhang, Y.L. [Department of Chemistry and Biochemistry, University of Bern, 3012 Berne (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, 3012 Berne (Switzerland); Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2013-01-15

    In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 {mu}g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO{sub 2} into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO{sub 2} can be provided in four different ways to the versatile gas interface. As a primary method, CO{sub 2} is delivered in glass or quartz ampoules. In this case, the CO{sub 2} is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO{sub 2} is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO{sub 2} is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given.

  6. Development of a Remote Handling System in an Integrated Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Hyo Jik Lee

    2013-10-01

    Full Text Available Over the course of a decade-long research programme, the Korea Atomic Energy Research Institute (KAERI has developed several remote handling systems for use in pyroprocessing research facilities. These systems are now used successfully for the operation and maintenance of processing equipment. The most recent remote handling system is the bridge-transported dual arm servo-manipulator system (BDSM, which is used for remote operation at the world's largest pyroprocess integrated inactive demonstration facility (PRIDE. Accurate and reliable servo-control is the basic requirement for the BDSM to accomplish any given tasks successfully in a hotcell environment. To achieve this end, the hardware and software of a digital signal processor-based remote control system were fully custom-developed and implemented to control the BDSM. To reduce the residual vibration of the BDSM, several input profiles, including input shaping, were carefully chosen and evaluated. Furthermore, a time delay controller was employed to achieve good tracking performance and systematic gain tuning. The experimental results demonstrate that the applied control algorithms are more effective than conventional approaches. The BDSM successfully completed its performance tests at a mock-up and was installed at PRIDE for real-world operation. The remote handling system at KAERI is expected to advance the actualization of pyroprocessing.

  7. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  8. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  9. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  10. Bifurcation methods of dynamical systems for handling nonlinear ...

    Indian Academy of Sciences (India)

    physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.

  11. Mechatronics of fuel handling mechanism for fast experimental reactor 'Joyo'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Akikazu (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center)

    1984-01-01

    The outline of the fast experimental reactor ''Joyo'' is introduced, and the fuel handling mechanism peculiar to fast reactors is described. The objectives of the construction of Joyo are to obtain the techniques for the design, construction, manufacture, installation, operation and maintenance of sodium-cooled fast reactors independently, and to use it as an irradiation facility for the development of fuel and materials for fast breeder reactors. At present, the reactor is operated at 100 MW maximum thermal output for the second objective. Since liquid sodium is used as the coolant, the atmosphere of the fuel handling course changes such as liquid sodium at 250 deg C, argon gas at 200 deg C and water, in addition, the spent fuel taken out has the decay heat of 2.1 kW at maximum. The fuel handling works in the reactor and fuel transfer works, and the fuel handling mechanism of a fuel exchanger and that of a cask car for fuel handling are described. Relay sequence control system is used for the fuel handling mechanism of Joyo.

  12. Application of quality assurance guidelines to the high pressure gas system, building 331

    International Nuclear Information System (INIS)

    Hanel, S.

    1976-01-01

    Major improvements have been made to decrease the tritium release potential for LLL's tritium-handling facilities in Bldg. 331. Some of the major problems and solutions in designing and building the High Pressure Gas System, which was the first system to be rebuilt are described. To increase system safety, it was necessary to specify material and processes used in component manufacture, to inspect all materials and processes to ensure compliance with specifications, to use proper joint design, to use secondary containment in cases where specifications could not be met, and to exercise tighter control of operating procedures

  13. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  14. Conceptual design of divertor cassette handling by remote handling system for JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2007-01-01

    The JT-60SA aims to contribute and supplement ITER toward DEMO reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is prohibited. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor modules. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor module, which is 10 degrees wide in toroidal direction and weighs 500kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor module to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the module by a pallet installed from outside the VV. (author)

  15. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  16. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  17. The design, fabrication and testing of the gas analysis system for the tritium recovery experiment, TRIO-01

    International Nuclear Information System (INIS)

    Finn, P.A.; Bowers, D.L.; Clemmer, E.D.; Clemmer, R.G.; Graczyk, D.G.; Homa, M.I.; Pappas, G.; Reedy, G.T.; Slawecki, M.A.

    1983-01-01

    The tritium recovery experiment, TRIO-01, required a gas analysis system which detected the form of tritium, the amount of tritium (differential and integral), and the presence and amount of other radioactive species. The system had to handle all contingencies and function for months at a time; unattended during weekend operation. The designed system, described herein, consisted of a train of components which could be grouped as desired to match tritium release behavior

  18. Study over problems related to fuel and ash handling systems; Probleminventering braensle- och askhantering

    Energy Technology Data Exchange (ETDEWEB)

    Njurell, Rolf; Wikman, Karin [AaF-Energi och Miljoe AB, Stockhom (Sweden)

    2003-10-01

    There have been a lot of problems related to fuel and ash handling systems since the combustion of different types of biofuels started in the 70s. Many measures have been taken to solve some of the problems, but others have become part of the daily work. The purpose of this study has been to do a compilation of the fuel and ash handling problems that exist at different types of heat and power plants. The study over problems related to fuel and ash handling systems has been carried out through a questionnaire via the Internet. Directors at about 150 energy production plants were contacted by phone or e-mail in the beginning of the project and asked to participate in the study. 72 of these plants accepted to fill in the questionnaire. After several reminders by e-mails and phone calls there were in the end 32 plants that completed the form. Together they reported about 25 problems related to fuel handling and 27 problems related to ash handling. In general each of the plants reported one problem of each kind. Even if the material from the questionnaire is not enough to make statistical analysis a few conclusions can be made about the most common problems, the cause of the problems and where they appear. Fuel handling problems that occur at several plants are stoppage in the conveying equipment, bridging in the boiler silo or the tipping bunker and problems with the sieve for separation. The distribution of the fuel handling problems is almost equal for all equipment parts (receiving, separation, transport etc.). For the ash handling systems problems with transport of dry bottom ash dominate, followed by and the moistening of fly ash and transport of wet bottom ash. Most of the problems related to fuel handling are caused by the fuel quality. For example several plants have reported that bark is a fuel that is hard to handle. Nevertheless the quality for a specific fuel is not always bad when it is delivered to the plant but the fuel quality might change during

  19. System for handling and storing radioactive waste

    Science.gov (United States)

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  20. The on-board data handling system of the AFIS-P mission

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    The Antiproton Flux in Space experiment (AFIS) is a novel particle detector comprised of silicon photomultipliers and scintillating plastic fibers. Its purpose is to measure the trapped antiproton flux in low Earth orbit. To test the detector and the data acquisition system, a prototype detector will be flown aboard a high altitude research balloon as part of the REXUS/BEXUS program by the German Aerospace Center (DLR). This talk presents the on-board data handling system and the ground support equipment of AFIS-P. It will also highlight the data handling algorithms developed and used for the mission.

  1. Method for eliminating gas blocking in electrokinetic pumping systems

    Science.gov (United States)

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  2. Gas Dispatching and Management

    International Nuclear Information System (INIS)

    Schoettker, R.; Spiecker, U.

    1995-01-01

    Activities in large dispatch centres are usually divided into volume planning and contract management as well as grid control. Volume planning and contract management require high-performance computers for contractual and technical optimisation models, for contract handling models and communication with partner companies. For grid control, the use of computers for SCADA systems and for grid simulation and optimisation has become a fundamental requirement. In 1992, Ruhrgas replaced the hardware by a modern hardware concept featuring a fault-tolerant process computer for SCADA system interface processing. The work-place computers were substituted by sophisticated workstations integrated into a computer network and an X-Windows user interface based on the MOTIF standard was introduced. Effective cooperation between the dispatch centres of European gas companies is of paramount importance. One example of good cooperation is the contractual and physical handling of North Sea gas supplies at Emden. 4 figs

  3. Model-based design of supervisory controllers for baggage handling systems

    NARCIS (Netherlands)

    Swartjes, L.; van Beek, D.A.; Fokkink, W.J.; van Eekelen, J.A.W.M.

    2017-01-01

    The complexity of airport baggage handling systems in combination with the required high level of robustness makes designing supervisory controllers for these systems a challenging task. We show how a state of the art, formal, model-based design framework has been successfully used for model-based

  4. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  5. Off-gas system data summary for the ninth run of the large slurry fed melter

    International Nuclear Information System (INIS)

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  6. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    Science.gov (United States)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  7. 33 CFR 127.1101 - Piping systems.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... pipeline on a pier or wharf must be located so that it is not exposed to physical damage from vehicular...

  8. Design characteristics of pantograph type in vessel fuel handling system in SFR

    International Nuclear Information System (INIS)

    Kim, S. H.; Koo, G. H.

    2012-01-01

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied

  9. Design characteristics of pantograph type in vessel fuel handling system in SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The pantograph type in vessel fuel handling system in a sodium cooled fast reactor (SFR), which requires installation space for the slot in the upper internal structure attached under the rotating plug, is composed of an in vessel transfer machine (IVTM), a single rotating plug, in vessel storage, and a fuel transfer port (FTP). The pantograph type IVTM can exchange fuel assemblies through a slot, the design requirement of which should be essentially considered in the design of the in vessel fuel handling system. In addition, the spent fuel assemblies temporarily stored in the in vessel storage of the reactor vessel are removed to the outside of the reactor vessel through the FTP. The fuel transfer basket is then provided in the FTP, and a fuel transfer is performed by using it. In this study, the design characteristics for a pantograph type in vessel fuel handling system are reviewed, and the preconceptual designs are studied.

  10. Application of advanced handling techniques to transportation cask design

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1992-01-01

    Sandia National Laboratories supports the US Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) applying technology to the safe transport of nuclear waste. Part of that development effort includes investigation of advanced handling technologies for automation of cask operations at nuclear waste receiving facilities. Although low radiation levels are expected near transport cask surfaces, cumulative occupational exposure at a receiving facility can be significant. Remote automated cask handling has the potential to reduce both the occupational exposure and the time necessary to process a cask. Thus, automated handling is consistent with DOE efforts to reduce the lifecycle costs of the waste disposal system and to maintain public and occupational radiological risks as low as reasonably achievable. This paper describes the development of advanced handling laboratory mock-ups and demonstrations for spent fuel casks. Utilizing the control enhancements described below, demonstrations have been carried out including cask location and identification, contact and non-contact surveys, impact limiter removal, tiedown release, uprighting, swing-free movement, gas sampling, and lid removal operations. Manually controlled movement around a cask under off-normal conditions has also been demonstrated

  11. New handling systems as technical support for the working process. Part 6. Feeding devices

    Energy Technology Data Exchange (ETDEWEB)

    Becher, H; Burkhardt, R; Drexel, P; Graf, B; Krreis, W

    1982-03-01

    Social, technical and economic reasons require an enhanced application of handling systems such as industrial robots. Quality and efficiency of an industrial robot depends greatly on feeding devices, and the ARGE-HHS within its project new handling systems as a technical aid in the working process intends to analyze all feeding devices that are likely to be most suitable for advanced applications. Forty one feeding devices were developed, known devices were modified, adapted to different applications, and tested. A variety of feeding devices for most applications in the field of material handling is reported.

  12. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  13. FY 1984 annual report on the research and development of automatic sewing systems. Cloth handling techniques; 1984 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Kiji handling gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    The automatic sewing system technique research association has been commissioned by the Agency of Industrial Science and Technology for (research and development of automatic sewing systems). This program covers R and D of the elementary techniques for total systems and sewing preparation/processing, sewing/assembling, cloth handling, and system management/control. This report describes the results of the R and D efforts for the cloth handling techniques. The program for the cloth handling techniques covers all techniques related to cloth movement, positioning and processing in each sewing step from cloth receiving to completion of sewing. They include the elementary techniques for (1) cloth holding, (2) high-function positioning, and (3) soft cloth transfer. The program for the techniques (1) constructs, on a trial basis, the basic or functional models, and tests and evaluates them. The program for the techniques (2) classifies work shapes, processing types and processing steps, to help select the positioning methods. The program for the techniques (3) investigates necessary conditions for transfer methods and procedures in each step. (NEDO)

  14. Development of liquid handling techniques in microgravity

    Science.gov (United States)

    Antar, Basil N.

    1995-01-01

    A large number of experiments dealing with protein crystal growth and also with growth of crystals from solution require complicated fluid handling procedures including filling of empty containers with liquids, mixing of solutions, and stirring of liquids. Such procedures are accomplished in a straight forward manner when performed under terrestrial conditions in the laboratory. However, in the low gravity environment of space, such as on board the Space Shuttle or an Earth-orbiting space station, these procedures sometimes produced entirely undesirable results. Under terrestrial conditions, liquids usually completely separate from the gas due to the buoyancy effects of Earth's gravity. Consequently, any gas pockets that are entrained into the liquid during a fluid handling procedure will eventually migrate towards the top of the vessel where they can be removed. In a low gravity environment any folded gas bubble will remain within the liquid bulk indefinitely at a location that is not known a priori resulting in a mixture of liquid and vapor.

  15. Design of systems for handling radioactive ion exchange resin beads

    International Nuclear Information System (INIS)

    Shapiro, S.A.; Story, G.L.

    1979-01-01

    The flow of slurries in pipes is a complex phenomenon. There are little slurry data available on which to base the design of systems for radioactive ion exchange resin beads and, as a result, the designs vary markedly in operating plants. With several plants on-line, the opportunity now exists to evaluate the designs of systems handling high activity spent resin beads. Results of testing at Robbins and Meyers Pump Division to quantify the behavior of resin bead slurries are presented. These tests evaluated the following slurry parameters; resin slurry velocity, pressure drop, bead degradation, and slurry concentration effects. A discussion of the general characteristics of resin bead slurries is presented along with a correlation to enable the designer to establish the proper flowrate for a given slurry composition and flow regime as a function of line size. Guidelines to follow in designing a resin handling system are presented

  16. Advanced remote handling for future applications: The advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  17. Development of off-gas filters for reprocessing plants. Development and construction of an off-gas filter system for large reprocessing plants. Off-gas section of the resolver test stand of the IHCh

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Wilhelm, J.G.; Pfauter, C.; Jannakos, K.; Apenberg, W.; Lange, W.; Mendel, W.; Potgeter, G.; Zabel, G.

    1976-01-01

    The test of the highly impregnated iodine sorption material AC 6,120 was continued in the laboratory under simulated conditions of a 1,500 t/a uranium reprocessing plant. The influence of NO in nitrogen as the carrier gas on the removal efficiency of the sorption material has been especially examined. Several experiments on the removal efficiency of iodine sorption by the material AC 6,120 were carried out in the original off-gas of the French processing plant SAP Marcoule while the filter system was installed on the one side directly behind the dissolver and on the other side behind the iodine desorption columm. The first iodine filter developed at LAF II was installed in the off-gas line of the dissolver in the Karlsruhe reprocessing plant. The filter system for the dissolver off-gas handling test rig of the IHCh was specified and ordered with an engineering firm. The conception of the prototype off-gas filter system was selected and a lock and transport system allowing to replace filters was designed and subjected for testing. Five alternative solutions were set up in order to find the appropriate filter concept. The method of selection based on the evaluation of performance criteria. According to the selected solution a filter drum was designed and constructed. The lock of the filter system has been designed and realized. Preliminary tests have been made. (orig.) [de

  18. CLASSIFICATION OF THE MGR MUCK HANDLING SYSTEM

    International Nuclear Information System (INIS)

    R. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) muck handling system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description (QARD) (DOE 1998). This QA classification incorporates the current MGR design and the results of the ''Preliminary Preclosure Design Basis Event Calculations for the Monitored Geologic Repository (CRWMS M and O 1998a)

  19. Localization of cask and plug remote handling system in ITER using multiple video cameras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João, E-mail: jftferreira@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building.

  20. Localization of cask and plug remote handling system in ITER using multiple video cameras

    International Nuclear Information System (INIS)

    Ferreira, João; Vale, Alberto; Ribeiro, Isabel

    2013-01-01

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building

  1. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    Science.gov (United States)

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  2. The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data

    Science.gov (United States)

    Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba; hide

    2013-01-01

    The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.

  3. Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?

    Science.gov (United States)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo; Deletic, Ana; Fowdar, Harsha; Fu, Guangtao; Kleidorfer, Manfred; McCarthy, David; Steen Mikkelsen, Peter; Rauch, Wolfgang; Sweetapple, Chris; Vezzaro, Luca; Yuan, Zhiguo; Willems, Patrick

    2018-04-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, reviews the state-of-the-art and modelling tools developed recently to understand and manage GHG emissions from IUDS. Further, open problems and research gaps are discussed and a framework for handling GHG emissions from IUDSs is presented. The literature review reveals that there is a need to strengthen already available mathematical models for IUDS to take GHG into account.

  4. Pilot material handling system for radiation processing of agricultural and medical products

    International Nuclear Information System (INIS)

    Sandha, R.S.; Nageswar Rao, J; Dwivedi, Jishnu; Petwal, V.C.; Soni, H.C.

    2005-01-01

    A 10 MeV, 10 kW electron LINAC based radiation processing facility is being constructed at Centre for Advanced Technology, Indore for radiation processing of various food products like potatoes, onion, spices, home pack items and medical sterilization. A pilot material handling system has been designed, manufactured, and installed at CAT to verify process parameters viz. conveying speed, dose uniformity, and to study the effect of packing shape and size for radiation processing of different product. This paper describes various features of pilot material handling system. (author)

  5. Beyond the gas bubble

    International Nuclear Information System (INIS)

    Hilt, R.H.

    1990-01-01

    The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared

  6. Containment system of contamination in irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A.S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-01-01

    A study to prevent radiactivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the specification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  7. Handling and safety enhancement of race cars using active aerodynamic systems

    Science.gov (United States)

    Diba, Fereydoon; Barari, Ahmad; Esmailzadeh, Ebrahim

    2014-09-01

    A methodology is presented in this work that employs the active inverted wings to enhance the road holding by increasing the downward force on the tyres. In the proposed active system, the angles of attack of the vehicle's wings are adjusted by using a real-time controller to increase the road holding and hence improve the vehicle handling. The handling of the race car and safety of the driver are two important concerns in the design of race cars. The handling of a vehicle depends on the dynamic capabilities of the vehicle and also the pneumatic tyres' limitations. The vehicle side-slip angle, as a measure of the vehicle dynamic safety, should be narrowed into an acceptable range. This paper demonstrates that active inverted wings can provide noteworthy dynamic capabilities and enhance the safety features of race cars. Detailed analytical study and formulations of the race car nonlinear model with the airfoils are presented. Computer simulations are carried out to evaluate the performance of the proposed active aerodynamic system.

  8. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Science.gov (United States)

    2010-10-01

    ... (ECP) Braking Systems § 232.609 Handling of defective equipment with ECP brake systems. (a) Ninety-five... systems. 232.609 Section 232.609 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT...

  9. Waste Handling Building Conceptual Study

    International Nuclear Information System (INIS)

    G.W. Rowe

    2000-01-01

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system

  10. Comparison of high temperature gas particulate collectors for low level radwaste incinerator volume reduction systems

    International Nuclear Information System (INIS)

    Moscardini, R.L.; Johnston, J.R.; Waters, R.M.; Zievers, J.F.

    1983-01-01

    Incinerator system off-gases must be treated to prevent the release of particulates, noxious gases and radioactive elements to the environment. Fabric filters, venturi scrubbers, cyclone separators, an ceramic or metal filter candles have been used for particulate removal. Dry high temperature particulate collectors have the advantage of not creating additional liquid wastes. This paper presents a graphical comparison of different methods for filtering particles from high temperature incineration system off-gases. Eight methods of off-gas handling are compared. A much larger group may be present, but some judicious selection of different, but related systems was done for this paper based on experience with the Combustion Engineering Waste Incineration System (CE/WIS) Prototype. The eight types are: Inertial Devices, Electrostatic Precipitators (ESP), Standard Fabric Bags, Woven Ceramic Bags, Granular Beds, Sintered Metal Tubes, Felted Ceramic Bags and Ceramic Filter Candles. For high temperature LLRW particulate collection in incinerator off-gas systems, ceramic filter candles are the best overall choice

  11. Coal handling system structural analysis for modifications or plant life extension

    International Nuclear Information System (INIS)

    Dufault, A.; Weider, F.; Doyle, P.

    1989-01-01

    One neglected aspect of plant modification or life extension is the extent to which previous projects may have affected the integrity of existing structures. During the course of a project to backfit fire protection facilities to existing coal handling systems, it was found that past modifications had added loads to existing coal handling structures which exceeded the available design margin. This paper describes the studies that discovered the original problem areas, as well as the detailed analysis and design considerations used to repair these structures

  12. Track-mounted remote handling system for the Tokamak Fusion Engineering Test

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Daubert, R.L.; Yount, J.A.

    1982-01-01

    Concepts for remote handling machines (IVM) designed to transverse the interior of toroidal vessels with guidance and support from track systems have been developed for the proposed Tokamak Fusion Engineering Test (TFET). TFET has been proposed as an upgrade for the Tokamak Fusion Test Reactor (TFTR), currently nearing completion. The track-mounted IVMs were conceived to perform in-vessel remote maintenance for TFET, including removal and replacement of pump limiter blades and protective tiles as well as other maintenance-related tasks such as vessel wall inspection leak testing and interior cleanup. The conceptual IVMs consist of three manipulator arms mounted on a common frame member: a single power manipulator arm with high load carrying capacity and two lower-capacity servomanipulator arms. Descriptions of the IVM concepts, in-vessel track systems, and ex-vessel handling systems are presented

  13. Development of the Simulation Program for the In-Vessel Fuel Handling System of Double Rotating Plug Type

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, J. B.

    2011-01-01

    In-vessel fuel handling machines are the main equipment of the in-vessel fuel handling system, which can move the core assembly inside the reactor vessel along with the rotating plug during refueling. The in vessel fuel handling machines for an advanced sodium cooled fast reactor(SFR) demonstration plant are composed of a direct lift machine(DM) and a fixed arm machine(FM). These machines should be able to access all areas above the reactor core by means of the rotating combination of double rotating plugs. Thus, in the in vessel fuel handling system of the double rotating plug type, it is necessary to decide the rotating plug size and evaluate the accessibility of in-vessel fuel handling machines in given core configuration. In this study, the simulation program based on LABVIEW which can effectively perform the arrangement design of the in vessel fuel handling system and simulate the rotating plug motion was developed. Fig. 1 shows the flow chart of the simulation program

  14. Generic Planning and Control of Automated Material Handling Systems: Practical Requirements Versus Existing Theroy.

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Zijm, Willem H.M.; Schutten, Johannes M.J.; Schuur, Peter

    2011-01-01

    This paper discusses the problem of generic planning and control of Automated Material Handling Systems (AMHSs). The paper illustrates the relevance of this research direction, and then addresses three different market sectors where AMHSs are used. These market sectors are: baggage handling,

  15. Generic planning and control of automated material handling systems : practical requirements versus existing theory

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Schutten, Johannes M.J.; Schuur, Peter; Zijm, Willem H.M.

    2013-01-01

    This paper discusses the problem to design a generic planning and control architecture for utomated material handling systems (AMHSs). We illustrate the relevance of this research direction, and then address three different market sectors where AMHSs are used, i.e., baggage handling, distribution,

  16. Fort St. Vrain fuel-handling system RAM analysis

    International Nuclear Information System (INIS)

    Azizi, S.M.; Berg, G.E.; Burton, J.H.; Durand, R.E.; Larson, E.M.; Pepe, D.J.; Rutherford, P.D.; Novachek, F.J.

    1989-01-01

    Public Service of Company of Colorado (PSC) is planning to decommission its Fort St. Vrain plant in 1990. This requires removal of 1,500 separate assemblies from the core. With the low historical availability of the fuel-handling system (FHS), defueling time was estimated at 36 months. With plant expenses of approximately $1.6 million per month during defueling, this would mean a schedule cost of $58 million. With their contractor, Rockwell International, PSC embarked on a reliability, availability, and maintainability (RAM) analysis to reduce projected defueling time. Key elements included (a) estimating availability of the FHS using a limited historical record, (b) assessing the defueling critical path, and (c) proposing and evaluating design/operational improvements. The most cost-effective improvements are being implemented and are expected to provide a reduction of >18 months in schedule and a net savings of $20 to 25 million. The paper describes the FHS design and operation, major problems associated with fuel-handling operations, and results and recommendations

  17. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  18. CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM

    International Nuclear Information System (INIS)

    S.E. Salzman

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  19. Progress in standardization for ITER Remote Handling control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro; Ranz, Roberto; Kozaka, Hiroshi

    2014-01-01

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013

  20. Progress in standardization for ITER Remote Handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, David Thomas, E-mail: david.hamilton@iter.org [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Tesini, Alessandro [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Ranz, Roberto [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Kozaka, Hiroshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan)

    2014-10-15

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013.

  1. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  2. Inverse simulation system for evaluating handling qualities during rendezvous and docking

    Science.gov (United States)

    Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan

    2017-08-01

    The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.

  3. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  4. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    International Nuclear Information System (INIS)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  5. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  6. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  7. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  8. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  9. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  10. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  11. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    The automated material transport system (AMTS) was conceived for the transport of samples within the material and process control laboratory (MPCL), located in the plutonium processing building of the special isotope separation (SIS) facility. The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing glove boxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with a minimum of waiting periods and nonproductive activities. The AMTS design requirements, design verification mockup plan, and AMTS mockup procurement specification were established prior to cancellation of the SIS project. Due to the AMTS's flexibility, the need for technology development, and applicability to other US Department of Energy facilities, mockup of the AMTS continued. This paper discusses the system design features, capabilities, and results of initial testing

  12. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  13. Proceedings of the 1. international conference on CANDU fuel handling systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Besides information on fuel loading and handling systems for CANDU and PHWR reactors, the 25 papers in these proceedings also include some on dry storage, modification to fuel strings at Bruce A, and on the SLAR (spacer location and repositioning) system for finding and moving garter springs. The individual papers have been abstracted separately.

  14. Proceedings of the 1. international conference on CANDU fuel handling systems

    International Nuclear Information System (INIS)

    1996-01-01

    Besides information on fuel loading and handling systems for CANDU and PHWR reactors, the 25 papers in these proceedings also include some on dry storage, modification to fuel strings at Bruce A, and on the SLAR (spacer location and repositioning) system for finding and moving garter springs. The individual papers have been abstracted separately

  15. LHCB RICH gas system proposal

    CERN Document Server

    Bosteels, Michel; Haider, S

    2001-01-01

    Both LHCb RICH will be operated with fluorocarbon as gas radiator. RICH 1 will be filled with 4m^3 of C4F10 and RICH 2 with 100m^3 of CF4. The gas systems will run as a closed loop circulation and a gas recovery system within the closed loop is planned for RICH 1, where the recovery of the CF4 will only be realised during filling and emptying of the detector. Inline gas purification is foreseen for the gas systems in order to limit water and oxygen impurities.

  16. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  17. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  18. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  19. Concept design of divertor remote handling system for the FAST machine

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Labate, C.; Renno, F. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Brolatti, G.; Crescenzi, F.; Crisanti, F. [CR ENEA Frascati, Via E. Fermi 27, Frascati (RM) (Italy); Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Lucca, F. [LT Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)

    2013-10-15

    The paper presents a concept design of a remote handling (RH) system oriented to maintenance operations on the divertor second cassette in FAST, a satellite of ITER tokamak. Starting from ITER configuration, a suitably scaled system, composed by a cassette multifunctional mover (CMM) connected to a second cassette end-effector (SCEE), can represent a very efficient solution for FAST machine. The presence of a further system able to open the divertor port, used for RH aims, and remove the first cassette, already aligned with the radial direction of the port, is presumed. Although an ITER-like system maintains essentially shape and proportions of its reference configuration, an appropriate arrangement with FAST environment is needed, taking into account new requirements due to different dimensions, weights and geometries. The use of virtual prototyping and the possibility to involve a great number of persons, not only mechanical designers but also physicist, plasma experts and personnel assigned to remote handling operations, made them to share the multiphysics design experience, according to a concurrent engineering approach. Nevertheless, according to the main objective of any satellite tokamak, such an approach benefits the study of enhancements to ITER RH system and the exploration of alternative solutions.

  20. Automated cassette-to-cassette substrate handling system

    Science.gov (United States)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  1. Interim design status and operational report for semiremote handling fixtures: size reduction system

    International Nuclear Information System (INIS)

    Ballard, A.S.

    1977-02-01

    Crushing of HTGR fuel elements is accomplished by a three-stage crushing system consisting of two overhead eccentric jaw crushers, a double-roll crusher, and an oversize reduction system to ensure complete reduction to the desired size. The crushing system is mounted in a special framework which enables gravity flow, eliminates material transport, and minimizes material holdup. The system has been designated UNIFRAME because of the integrated nature of the equipment. This report addresses the demonstration of semiremote maintenance of the crusher in a nonradioactive environment. Although the crusher maintenance system has some remote handling capability inherent in its design, the scope of this initial program is limited to the handling of selected components and allows for manual assistance in certain circumstances. This mode of operation is designated semiremote maintenance and is intended as an effort to gather experience

  2. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    International Nuclear Information System (INIS)

    TEDESCHI, D.J.

    2000-01-01

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports

  3. A simulation-based approach for evaluating logging residue handling systems.

    Science.gov (United States)

    B. Bruce Bare; Benjamin A. Jayne; Brian F. Anholt

    1976-01-01

    Describes a computer simulation model for evaluating logging residue handling systems. The flow of resources is traced through a prespecified combination of operations including yarding, chipping, sorting, loading, transporting, and unloading. The model was used to evaluate the feasibility of converting logging residues to chips that could be used, for example, to...

  4. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  5. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    Science.gov (United States)

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  6. Daya Bay Antineutrino Detector gas system

    Science.gov (United States)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  7. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Shuff, R., E-mail: robin.shuff@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Van Uffelen, M.; Damiani, C. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Tesini, A.; Choi, C.-H. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Meek, R. [Oxford Technologies Limited, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom)

    2014-10-15

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper.

  8. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    International Nuclear Information System (INIS)

    Shuff, R.; Van Uffelen, M.; Damiani, C.; Tesini, A.; Choi, C.-H.; Meek, R.

    2014-01-01

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper

  9. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  10. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  11. 46 CFR 121.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied Petroleum Gas (LPG) Systems... 46 Shipping 4 2010-10-01 2010-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST...

  12. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  13. KNOWLEDGE-BASED ROBOT VISION SYSTEM FOR AUTOMATED PART HANDLING

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses an algorithm incorporating a knowledge-based vision system into an industrial robot system for handling parts intelligently. A continuous fuzzy controller was employed to extract boundary information in a computationally efficient way. The developed algorithm for on-line part recognition using fuzzy logic is shown to be an effective solution to extract the geometric features of objects. The proposed edge vector representation method provides enough geometric information and facilitates the object geometric reconstruction for gripping planning. Furthermore, a part-handling model was created by extracting the grasp features from the geometric features.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf ‘n kennis-gebaseerde visiesisteemalgoritme wat in ’n industriёle robotsisteem ingesluit word om sodoende intelligente komponenthantering te bewerkstellig. ’n Kontinue wasige beheerder is gebruik om allerlei objekinligting deur middel van ’n effektiewe berekeningsmetode te bepaal. Die ontwikkelde algoritme vir aan-lyn komponentherkenning maak gebruik van wasige logika en word bewys as ’n effektiewe metode om geometriese inligting van objekte te bepaal. Die voorgestelde grensvektormetode verskaf voldoende inligting en maak geometriese rekonstruksie van die objek moontlik om greepbeplanning te kan doen. Voorts is ’n komponenthanteringsmodel ontwikkel deur die grypkenmerke af te lei uit die geometriese eienskappe.

  14. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  15. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  16. Handle system integration as an enabler in an internet of things smart environment

    CSIR Research Space (South Africa)

    Coetzee, L

    2012-06-01

    Full Text Available . The existing main components of the demonstrator are: ? BeachComber: a bearer-agnostic event-driven platform able to receive and send messages via numerous channels (Butgereit & Coetzee, 2011). ? ThingMemory: an enterprise-scale application where a cyber...-hardware platform linked to a number of different sensors and actuators. ? HandleProxy: a newly-created building block acting as proxy to the Handle System. ? Runtime configurable decision engine (embedded within ThingMemory) that, based on received information...

  17. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  18. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  19. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Maidi Madjid

    2010-01-01

    Full Text Available Abstract In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  20. City gas supply management system. Toshi gas kyokyu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-07-05

    Supply and control system of city gas (about 90% is LNG) at Tokyo Gas Company is summarized. The LNG is delivered from the high pressure, A-middle pressure and B-middle pressure stations through the low pressure governors at about 3,000 locations to the low-pressure conduit networks. The information system department uses a large-size general purpose IBM computer as a host computer, control computers at each station, and communication networks consisted mainly of the in-house wireless networks. The trunk lines are all looped, and the important facilities are dualized. Characteristic functions include the supply prediction, which takes into account the past supply and ambient temperature records, a day of the week for a particular date, and demand fluctuation trends; adjustments of each holder based on the prediction and restrictions; and piping network simulation to decide gas manufacturing patterns, and determine reasonability of local construction of complicated conduits. The monitoring and control system as the central nerve includes a quick block-wide operation at an accident from earthquake and the like to prevent wide area disasters. 8 figs., 1 tab.

  1. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  2. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Science.gov (United States)

    2010-08-31

    .... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372

  3. Trends in Modern Exception Handling

    Directory of Open Access Journals (Sweden)

    Marcin Kuta

    2003-01-01

    Full Text Available Exception handling is nowadays a necessary component of error proof information systems. The paper presents overview of techniques and models of exception handling, problems connected with them and potential solutions. The aspects of implementation of propagation mechanisms and exception handling, their effect on semantics and general program efficiency are also taken into account. Presented mechanisms were adopted to modern programming languages. Considering design area, formal methods and formal verification of program properties we can notice exception handling mechanisms are weakly present what makes a field for future research.

  4. EBR-II argon cooling system restricted fuel handling I and C upgrade

    International Nuclear Information System (INIS)

    Start, S.E.; Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software

  5. FY 1987 report on the result of the R and D of an automatic sewing system. Cloth handling technology; 1987 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Kiji handling gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The paper summarized the R and D of a cloth handling technology which is an element technology of an automatic sewing system by the Automatic Sewing System Technology Research Association. The cloth handling technology is divided into the following three: (1) cloth grasp technology; (2) high-functional positioning technology; (3) element technology of soft cloth conveying technology. In (1), development of the following was conducted: vertical grasp-type module, horizontal grasp-type module, cloth handling-type module, and auxiliary device. Prototypes of each were trially manufactured for experiment on the function confirmation. In (2), the following were conducted: development of experimental models of module handler and module controller for commercialization; study of visual/tactile sense composite multiple-arm cooperative movement control. In (3), in the studies having been made so far, specifications for an experimental model for joint sawing and specifications for the conveying system were studied, and experimental models of stock module and junction module were manufactured/tested/evaluated to study confirmation of function/performance. In this fiscal year, in the light of these results obtained, prototypes of each element device were developed. At the same time, the connection of these element devices made up an experimental model for joint sawing, and effectiveness of the element technology was confirmed in the system. (NEDO)

  6. Preference Handling for Artificial Intelligence

    OpenAIRE

    Goldsmith, Judy; University of Kentucky; Junker, Ulrich; ILOG

    2009-01-01

    This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.

  7. Improving Vehicle Ride and Handling Using LQG CNF Fusion Control Strategy for an Active Antiroll Bar System

    Directory of Open Access Journals (Sweden)

    N. Zulkarnain

    2014-01-01

    Full Text Available This paper analyses a comparison of performance for an active antiroll bar (ARB system using two types of control strategy. First of all, the LQG control strategy is investigated and then a novel LQG CNF fusion control method is developed to improve the performances on vehicle ride and handling for an active antiroll bar system. However, the ARB system has to balance the trade-off between ride and handling performance, where the CNF consists of a linear feedback law and a nonlinear feedback law. Typically, the linear feedback is designed to yield a quick response at the initial stage, while the nonlinear feedback law is used to smooth out overshoots in the system output when it approaches the target reference. The half car model is combined with a linear single track model with roll dynamics which are used for the analysis and simulation of ride and handling. The performances of the control strategies are compared and the simulation results show the LQG CNF fusion improves the performances in vehicle ride and handling.

  8. Gas system proposal for the LHCb muon system

    CERN Document Server

    Hahn, F; Lindner, R

    2001-01-01

    This document describes the gas system proposed for the LHCb Muon system, following the Gas Working Group mandate to ensure the uniform approach to gas technology and controls across the LHC detectors. Standard technical design modules are employed as fas as possible, in order to minimise design overheads and long term support costs.

  9. A gas conditioning and analysis system

    International Nuclear Information System (INIS)

    Busch, F.R.

    1974-01-01

    A system for carrying out a rapid analysis of explosive gas-mixtures is described. This system comprises a conduit connecting a sample taking point to a detection chamber, said chamber containing a mass of liquid into which the gas sample is discharged and being provided with a detecting unit for analyzing gases and with separate gas exit and liquid exit. The liquid is sent to a level-regulating chamber, whereas said gas exit sends the gas to a gas-stopping chamber which is in turn, connected to the conduit leading to a discharge point, and a vacuum pump for drawing up the gas sample into the system. This can be apply to nuclear power stations [fr

  10. Study of ITER equatorial port plug handling system and vacuum sealing interface

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Jean-Pierre [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, F-13108 Saint-Paul-lez-Durance (France)], E-mail: jean-pierre.martins@cea.fr; Doceul, Louis; Marol, Sebastien; Delchie, Elise [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Cordier, Jean-Jacques; Levesy, Bruno; Tesini, Alessandro [ITER International Organization, F-13108 Saint-Paul-lez-Durance cedex (France); Ciattaglia, Emanuela [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Tivey, Richard [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Gillier, Rene; Abbes, Christophe [GARLOCK - Sealing Technologies - 90, rue de la roche du Geai, F-42029 St-Etienne cedex 1 (France)

    2009-06-15

    In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling. The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements. The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.

  11. Techniques for remote maintenance of in-cell material-handling system in the HFEF/N main cell

    International Nuclear Information System (INIS)

    Tobias, D.A.; Frickey, C.A.

    1975-01-01

    Operations in the main cell of HFEF/N have required development of remote handling equipment and unique techniques for maintaining the in-cell material-handling system. Specially designed equipment is used to remove a disabled crane or electromechanical manipulator bridge from its support rails and place it on floor stands for repair or maintenance. Support areas for the main cell, such as the spray chamber and hot repair area, provide essential decontamination, repair, and staging areas for the in-cell material-handling-system equipment and tools. A combined engineering and technical effort in upgrading existing master-slave manipulators has definitely reduced the requirements for their maintenance. The cell is primarily for postirradiation examination of LMFBR materials and fuel elements

  12. Handling And Safety Aspects Of Fiber Optic Laser Beam Delivery Systems

    Science.gov (United States)

    Schonborn, K.-H.; Wodrich, W.

    1988-06-01

    Using lasers for therapeutic applications is getting more and more accepted. In ophthalmology Ar-lasers for intraocular applications are quite common. The Nd:YAG-laser is used as a high power tool in connection with silica fibers for different extracorporal and intracorporal applications. The CO2-laser is the cutting laser, one problem being the beam transmission: The state of the art in fibers is not sufficient up to now. Because of the high power used safety against laser radiation hazard is of great importance. The safety in laser use is primarily dependent on the surgeons cautiousness, e.g. using laser protection goggels, observing that the spot of the aiming beam is present etc. On the other hand the laser and fiber system has to be inherently safe by appropriate technical means as far as possible. An additional aspect adding to safety is the handling: With easier system handling less attention of the surgeon is necessary for driving the apparatus. Thus he can concentrate on the patient and on the procedure. In considering the fiber system one important point in handling and safety is the coupling of the fiber to the laser head. The development philosophy in this coupling may be divided into two groups: - one is trying to use standard connectors which were initially developed for data transmission; - the other is using special connectors. One example of the first group is the guiding of the laser beam from the Ar-laser to the slit-lamp in ophtalmology. Here the well-known F-SMA connectors together with a special fiber with adapted numerical aperture are used. The advantage of such a system is the low price of the connector. For high power lasers such as the clinical Nd:YAG lasers with 40 to 150 W those connectors are not suitable. Up to now every laser manufacturer developed his own connector system in this field.

  13. Availability analysis of the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  14. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  15. A versatile system for the rapid collection, handling and graphics analysis of multidimensional data

    International Nuclear Information System (INIS)

    O'Brien, P.M.; Moloney, G.; O'Oconnor, A.; Legge, G.J.F.

    1991-01-01

    The paper discusses the performances of a versatile computerized system developed at the Microanalytical Research Centre of the Melbourne University, for handling multiparameter data that may arise from a variety of experiments - nuclear, accelerator mass spectrometry, microprobe elemental analysis or 3-D microtomography. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development. It has been reprogramed to run on a DG DS7540 workstation. The whole system of software has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology - a VME bus computer with a real-time operating system and a RISC workstation running UNIX and the X-window environment

  16. CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING VENTILATION SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    2000-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building ventilation system structures, systems and components (SSCs) performed by the MGR Preclosure Safety and Systems Engineering Section. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 2000). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 2000). This QA classification incorporates the current MGR design and the results of the ''Design Basis Event Frequency and Dose Calculation for Site Recommendation'' (CRWMS M andO 2000a) and ''Bounding Individual Category 1 Design Basis Event Dose Calculation to Support Quality Assurance Classification'' (Gwyn 2000)

  17. Hot gas handling device and motorized vehicle comprising the device

    NARCIS (Netherlands)

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.

    2012-01-01

    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  18. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  19. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    International Nuclear Information System (INIS)

    Sanatkumar, A.; Jit, I.; Muralidhar, G.

    1996-01-01

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs

  20. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    Energy Technology Data Exchange (ETDEWEB)

    Sanatkumar, A; Jit, I; Muralidhar, G [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs.

  1. Enhanced wood fuel handling: market and design studies

    Energy Technology Data Exchange (ETDEWEB)

    Landen, R.; Rippengal, R.; Redman, A.N.

    1997-09-01

    This report examines the potential for the manufacture and sale of novel wood fuel handling systems as a means of addressing users' concerns regarding current capital costs and potential high labour costs of non-automated systems. The report considers fuel handling technology that is basically appropriate for wood-fired heating systems of between c.100kW and c.1MW maximum continuous rating. This report details work done by the project collaborators in order to: (1) assess the current status of wood fuel handling technology; (2) evaluate the market appetite for improved wood fuel handling technology; (3) derive capital costs which are acceptable to customers; (4) review design options; and (5) select one or more design options worthy of further development. The current status of wood fuel handling technology is determined, and some basic modelling to give guidance on acceptable capital costs of 100-1000kW wood fuel handling systems is undertaken. (author)

  2. Daya Bay Antineutrino Detector Gas System

    OpenAIRE

    Band, H. R.; Cherwinka, J. J.; Chu, M-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experimen...

  3. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  5. Droplet evaporation and combustion in a liquid-gas multiphase system

    Science.gov (United States)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  6. FY 1983 annual report on the research and development of automatic sewing systems. Cloth handling techniques; 1983 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Kiji handling gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    The automatic sewing system technique research association has been commissioned by the Agency of Industrial Science and Technology for (research and development of automatic sewing systems). This program covers R and D of the elementary techniques for total systems and sewing preparation/processing, sewing/assembling, cloth handling, and system management/control. This report describes the results of the R and D efforts for the cloth handling techniques. The program for the cloth holding techniques classifies the elementary works from cloth picking-up to completion of sewing, classifies the holding methods, and analyzes the holding functions, to establish the design guidelines for the holding device functions. The basic designs of a total of 9 holding modules and the holding module with a built-in sensor are drawn, evaluated and investigated. The program for the highly functional positioning techniques analyzes the current sewing/pressing works, and analyzes and systemizes the related elementary works, to establish the design guidelines for the light module handler functions. The program for the soft cloth transfer techniques analyzes the works and investigates the transfer-related factors for delivery of cloth within the process, to establish the design guidelines for the hardware configuration. (NEDO)

  7. Fuel handling and storage systems in nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The scope of this Guide includes the design of handling and storage facilities for fuel assemblies from the receipt of fuel into the nuclear power plant until the fuel departs from that plant. The unirradiated fuel considered in this Guide is assumed not to exhibit any significant level of radiation so that it can be handled without shielding or cooling. This Guide also gives limited consideration to the handling and storage of certain core components. While the general design and safety principles are discussed in Section 2 of this Guide, more specific design requirements for the handling and storage of fuel are given in detailed sections which follow the general design and safety principles. Further useful information is to be found in the IAEA Technical Reports Series No. 189 ''Storage, Handling and Movement of Fuel and Related Components at Nuclear Power Plants'' and No. 198 ''Guide to the Safe Handling of Radioactive Wastes at Nuclear Power Plants''. However, the scope of the Guide does not include consideration of the following: (1) The various reactor physics questions associated with fuel and absorber loading and unloading into the core; (2) The design aspects of preparation of the reactor for fuel loading (such as the removal of the pressure vessel head for a light water reactor) and restoration after loading; (3) The design of shipping casks; (4) Fuel storage of a long-term nature exceeding the design lifetime of the nuclear power plant; (5) Unirradiated fuel containing plutonium

  8. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  9. SRV-automatic handling device

    International Nuclear Information System (INIS)

    Yamada, Koji

    1987-01-01

    Automatic handling device for the steam relief valves (SRV's) is developed in order to achieve a decrease in exposure of workers, increase in availability factor, improvement in reliability, improvement in safety of operation, and labor saving. A survey is made during a periodical inspection to examine the actual SVR handling operation. An SRV automatic handling device consists of four components: conveyor, armed conveyor, lifting machine, and control/monitoring system. The conveyor is so designed that the existing I-rail installed in the containment vessel can be used without any modification. This is employed for conveying an SRV along the rail. The armed conveyor, designed for a box rail, is used for an SRV installed away from the rail. By using the lifting machine, an SRV installed away from the I-rail is brought to a spot just below the rail so that the SRV can be transferred by the conveyor. The control/monitoring system consists of a control computer, operation panel, TV monitor and annunciator. The SRV handling device is operated by remote control from a control room. A trial equipment is constructed and performance/function testing is carried out using actual SRV's. As a result, is it shown that the SRV handling device requires only two operators to serve satisfactorily. The required time for removal and replacement of one SRV is about 10 minutes. (Nogami, K.)

  10. Progress in the design, R and D and procurement preparation of the ITER Divertor Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Esqué, Salvador, E-mail: Salvador.Esque@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hille, Carine van; Ranz, Roberto; Damiani, Carlo [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Palmer, Jim; Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: •The ITER Divertor Remote Handling System (DRHS) reference design is presented. •Different R and D activities that have contributed to the development and validation of the current reference design are reported. •The DRHS turns to be a unique system in terms of complexity due to size of the to-be-handled components, the novelty of the remote operations and the operational conditions. -- Abstract: The ITER Divertor Remote Handling System (DRHS) consists of a number of dedicated remote handling equipment and tooling that will provide the means to perform the exchange of the divertor system in a full-remote way. In order to achieve this objective the DRHS will need to perform a number of novel and complex remote operations in a contaminated and space-constrained environment, in rather poor lightening conditions. Fusion for Energy has recently launched the tendering phase for the in-kind procurement of the DRHS. The procurement is based on a set of system requirements and functional specifications supported by a reference design which are presented and discussed in this paper along with the main outcomes of the different R and D activities that have contributed to the development and validation of the current reference design.

  11. Flexible path optimization for the Cask and Plug Remote Handling System in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Alberto, E-mail: avale@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Fonte, Daniel; Valente, Filipe; Ferreira, João [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gonzalez, Carmen [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: ► Complementary approach for path optimization named free roaming that takes full advantage of the rhombic like kinematics of the Cask and Plug Remote Handling System (CPRHS). ► Possibility to find trajectories not possible in the past using the line guidance developed in a previous work, in particular when moving the Cask Transfer System (CTS) beneath the pallet or in rescue missions. ► Methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. -- Abstract: The Cask and Plug Remote Handling System (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell Building and the Tokamak Building in ITER along pre-defined optimized trajectories. A first approach for CPRHS path optimization was previously proposed using line guidance as the navigation methodology to be adopted. This approach might not lead to feasible paths in new situations not considered during the previous work, as rescue operations. This paper addresses this problem by presenting a complementary approach for path optimization inspired in rigid body dynamics that takes full advantage of the rhombic like kinematics of the CPRHS. It also presents a methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. The results gathered from 500 optimized trajectories are summarized. Conclusions and open issues are presented and discussed.

  12. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes further design issues concerning remote maintenance of torus vacuum pumping systems options for ITER. The key issues under investigation in this report are flask support systems for valve seal exchange operations for the compound cryopump scheme and remote maintenance of a proposed multiple turbomolecular pump (TMP) system, an alternative ITER torus exhaust pumping option. Previous studies have shown that the overhead support methods for seal exchange flask equipment could malfunction due to valve/flask misalignment. A floor-mounted support system is described in this report. This scheme provides a more rigid support system for seal exchange operations. An alternative torus pumping system, based on the use of multiple TMPs, is studied from a remote maintenance standpoint. In this concept, centre distance spacing for pump/valve assemblies is too restrictive for remote maintenance. Recommendations are made for adequate spacing of these assemblies based on commercially-available 0.8 m and 1.0 m diameter valves. Fewer pumps will fit in this arrangement, which implies a need for larger TMPs. Pumps of this size are not commercially available. Other concerns regarding the servicing and storage of remote handling equipment in cells are also identified. (9 figs.)

  13. A computerized system for handling renal size measurements from urograms

    International Nuclear Information System (INIS)

    Claesson, I.; Jacobsson, B.F.; Riha, M.

    1987-01-01

    The size of a kidney, as measured on an urogram, is a sensitive indicator of renal damage in a child with urinary tract infection, and renal surface area correlates well with glomerular filtration rate. Sequential measurements can be invaluable in evaluating the efficacy of a regimen of treatment. A system utilizing a personal microcomputer has been developed to facilitate the measuring procedure and the handling and analysis of data. (orig.)

  14. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  15. Remotely controlled inspection and handling systems for decommissioning tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, W.; Haferkamp, H.

    1993-01-01

    The Institut fur Werkstoffkunde at the University of Hanover has recently developed three remotely controlled systems for different underwater inspection and dismantling tasks. ODIN I is a tool guiding device, particularly being designed for the dismantling of the steam dryer housing of the KRB A power plant at Gundremmingen, Germany. After being approved by the licencing organization TUEV Bayern, hot operation started in November 1992. The seven axes remotely controlled handling system ZEUS, consisting of a three translatory axes guiding machine and a tool handling device with four rotatory axes, has been developed for the demonstration of underwater plasma arc cutting of spherical metallic components with great wall thicknesses. A specially designed twin sensor system and a modular torch, exchanged by means of a remote controlled tool changing device, will be used for different complex cutting tasks. FAUST, an autonomous, freediving underwater vehicle, was designed for complex inspection, maintenance and dismantling tasks. It is equipped with two video cameras, an ultrasonic and a radiologic sensor and a small plasma torch. A gripper and a subsidiary vehicle for inspection may be attached. (author)

  16. 20 CFR 658.421 - Handling of JS-related complaints.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Handling of JS-related complaints. 658.421... ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Job Service Complaint System Federal Js Complaint System § 658.421 Handling of JS-related complaints. (a) No JS-related complaint shall be handled at the...

  17. 49 CFR 192.11 - Petroleum gas systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the requirements...

  18. Gas replacement system for fuel cell. Nenryo denchi no gas chikan hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T

    1990-02-14

    When stopping the operation of a fuel cell, the gas in the reaction gas system is purged using such an inert gas as nitrogen for inactivation. A gas source such as inert gas bomb must be prepared beforehand for the purpose. This invention relates to a method of production of inert gas from the air collected from atmosphere to use it as the purge gas. The air collected from the atmosphere is passed through an oxygen remover filled with oxidation catalyst to remove oxygen, and dehumidified by a dehumidifier filled with drying agent, the obtained inert drying gas with nitrogen as the main constituent being used as the purge gas. Copper system catalyst supported by silica is used as the oxidation catalyst, and silica gel as the drying agent. After the operation of the fuel cell is re-started, a part of the high temperature fuel gas extracted from the reaction gas system is introduced to the oxygen remover for the reduction of oxidation catalyst and for heat regeneration of dehumidifying agent by the contained hydrogen. 1 fig.

  19. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  20. Gas Control System for HEAO-B

    Science.gov (United States)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  1. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  2. Evaluation of Four Bedside Test Systems for Card Performance, Handling and Safety.

    Science.gov (United States)

    Giebel, Felix; Picker, Susanne M; Gathof, Birgit S

    2008-01-01

    SUMMARY: OBJECTIVE: Pretransfusion ABO compatibility testing is a simple and required precaution against ABO-incompatible transfusion, which is one of the greatest threats in transfusion medicine. While distinct agglutination is most important for correct test interpretation, protection against infectious diseases and ease of handling are crucial for accurate test performance. Therefore, the aim of this study was to evaluate differences in test card design, handling, and user safety. DESIGN: Four different bedside test cards with pre-applied antibodies were evaluated by 100 medical students using packed red blood cells of different ABO blood groups. Criteria of evaluation were: agglutination, labelling, handling, and safety regarding possible user injuries. Criteria were rated subjectively according to German school notes ranging from 1 = very good to 6 = very bad/insufficient. RESULTS: Overall, all cards received very good/good marks. The ABO blood group was identified correctly in all cases. Three cards (no. 1, no. 3, no. 4) received statistically significant (p labelling (1.5 vs. 2.2-2.4), handling (1.9-2.0 vs. 2.5), and user safety (2.5 vs. 3.4). Analysis of card self-explanation revealed no remarkable differences. CONCLUSION: Despite good performance of all card systems tested, the best results when including all criteria evaluated were obtained with card no. 4 (particularly concerning clear agglutination), followed by cards no. 2, no. 1, and no. 3.

  3. Manipulator and materials handling systems for reactor decommissioning -Cooperation between the university and the plant operator

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, F. W.; Haferkamp, H.

    1995-01-01

    Nuclear reactor dismantling requires suitable handling systems for tools and disassembled components, as well as qualified and reliable disassembly and cutting techniques. From the angle of radiation protection, remote-controlled handling techniques and underwater techniques are the methods of choice, the latter particularly in continuation of plant operating conditions, and this all the more the more disassembly work proceeds towards the reactor core. With the experience accumulated for 20 years now by the Institut fuer Werkstoffkunde (materials science) of Hannover University by basic research and application-oriented development work in the field of thermal cutting technology, especially plasma arc cutting techniques, as well as development work in the field of remote-controlled materials handling systems, the institute is the cut-out partner for disassembly tasks in reactor decommissioning. (Orig./DG) [de

  4. Optimized hardware design for the divertor remote handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  5. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands; Haandtering av radioaktive avleiringer i olje- og gassproduksjon i Norge, Storbritania og Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Lysebo, I.; Tufto, P

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in thisarea is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands.

  6. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  7. Notification: Audit of Security Categorization for EPA Systems That Handle Hazardous Material Information

    Science.gov (United States)

    Project #OA-FY18-0089, January 8, 2018. The OIG plans to begin preliminary research to determine whether the EPA classified the sensitivity of data for systems that handle hazardous waste material information as prescribed by NIST.

  8. Monitored Retrievable Storage conceptual system study: dry receiving and handling facility

    International Nuclear Information System (INIS)

    1984-01-01

    A preconceptual design and estimate for a MRS receiving and handling (R and H) facility at a hypothetical site in the United States are presented. The facility consists of a receiving and handling building plus associated operating buildings, system, and site development features. The R and H building and the supporting buildings and site development features are referred to as the R and H area. Adjoining the R and H area will be an interim waste storage area currently being considered by others. The desirability of building a full capacity (3000-MTU) MRS facility initially versus adding additional capacity at a later date in a phased construction program was investigated. Several advantages of phased construction include incorporation of new designs, modification of receiving-handling-packaging, and changes in regulatory requirements or the waste management program which may develop following startup and operation of an 1800-MTU MRS facility. The cost of a 3000-MTU MRS facility constructed initially was estimated at $193,200,000. If a phased construction program was implemented, including escalation to the mid-point of Phase 2 construction, a capital expenditure of $215,300,000 is estimated - a cost penalty of $22,100,000 or about 11% for phased construction

  9. A critical analysis of the X.400 model of message handling systems

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Dorregeest, Evert

    1988-01-01

    The CCITT X.400 model of store and forward Message Handling Systems (MHS) serves as a common basis for the definition of electronic mail services and protocols both within CCITT and ISO. This paper presents an analysis of this model and its related recommendations from two perspectives. First the

  10. Gas Cylinder Safety, Course 9518

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  11. FFTF fission gas monitor computer system

    International Nuclear Information System (INIS)

    Hubbard, J.A.

    1987-01-01

    The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled test reactor located on the Hanford site. A dual computer system has been developed to monitor the reactor cover gas to detect and characterize any fuel or test pin fission gas releases. The system acquires gamma spectra data, identifies isotopes, calculates specific isotope and overall cover gas activity, presents control room alarms and displays, and records and prints data and analysis reports. The fission gas monitor system makes extensive use of commercially available hardware and software, providing a reliable and easily maintained system. The design provides extensive automation of previous manual operations, reducing the need for operator training and minimizing the potential for operator error. The dual nature of the system allows one monitor to be taken out of service for periodic tests or maintenance without interrupting the overall system functions. A built-in calibrated gamma source can be controlled by the computer, allowing the system to provide rapid system self tests and operational performance reports

  12. Impacts of Mackenzie gas project on water supply systems of northern communities : Fort Simpson as a case study

    International Nuclear Information System (INIS)

    Mathrani, M.; Johnson, K.

    2007-01-01

    The proposed Mackenzie Gas Project (MGP) is a 1220-kilometre natural gas pipeline system along the Mackenzie Valley of Canada's Northwest Territories. The line will connect northern onshore gas fields with North American markets. Four major Canadian oil and gas companies and a group representing the Aboriginal peoples of Canada's Northwest Territories are partners in the proposed MGP. The MGP is currently in the project definition stage that involves examining the effect of the project on northern communities. Fort Simpson is located on an island, on the forks of the Mackenzie and Liard Rivers and is proposed as the major route for the MGP with the construction of barge handling areas, storage areas, camps/housing units and use of air and highway facilities. These activities are expected to result in burden on local civil infrastructure systems including water supply systems. Although the environmental impacts of the project on the community's infrastructure systems are projected by the MGP proponents, the local authority wanted to conduct its own assessment of the impacts on local water supply system. This paper presented the results of a study that examined the amount of water used by the community based upon available water use records and the current operational and maintenance costs based upon available financial documents. The study also estimated future water requirements based upon MGP activities and associated population growth. Current and future economic rates were also determined. 13 refs., 6 tabs

  13. Aerobot Sampling and Handling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to: ?Derive and document the functional and technical requirements for Aerobot surface sampling and sample handling across a range of...

  14. 46 CFR 153.280 - Piping system design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must meet...

  15. Development of Pneumatic Transport System (PTS) for safe handling of uranium oxide powder in UMP/UED

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Tonnage quantity radioactive uranium oxide powder of particle size sub micron to 100 micron is handled in Uranium Metal Plant (UMP), UED/BARC for production of nuclear grade uranium metal, required for fuelling research reactors - Dhruva and Cirus. A Pneumatic Transfer System (PTS) using vacuum has been introduced and is being used for handling radioactive powder to improve radiation protection

  16. Safety of Cargo Aircraft Handling Procedure

    Directory of Open Access Journals (Sweden)

    Daniel Hlavatý

    2017-07-01

    Full Text Available The aim of this paper is to get acquainted with the ways how to improve the safety management system during cargo aircraft handling. The first chapter is dedicated to general information about air cargo transportation. This includes the history or types of cargo aircraft handling, but also the means of handling. The second part is focused on detailed description of cargo aircraft handling, including a description of activities that are performed before and after handling. The following part of this paper covers a theoretical interpretation of safety, safety indicators and legislative provisions related to the safety of cargo aircraft handling. The fourth part of this paper analyzes the fault trees of events which might occur during handling. The factors found by this analysis are compared with safety reports of FedEx. Based on the comparison, there is a proposal on how to improve the safety management in this transportation company.

  17. 46 CFR 184.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gas systems. 184.240 Section 184.240 Shipping COAST... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.240 Gas systems. Cooking systems... requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied...

  18. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  19. Thermal oxidation vitrification flue gas elimination system

    International Nuclear Information System (INIS)

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-01-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO x emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ''greenhouse gas'' contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition

  20. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  1. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  2. Evolving the JET virtual reality system for delivering the JET EP2 shutdown remote handling tasks

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adrian, E-mail: adrian.williams@oxfordtechnologies.co.uk [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, Oxon, OX14 1RJ (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sanders, Stephen [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, Oxon, OX14 1RJ (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Weder, Gerard [Tree-C Technology BV, Buys Ballotstraat 8, 6716 BL Ede (Netherlands); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bastow, Roger; Allan, Peter; Hazel, Stuart [CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2011-10-15

    The quality, functionality and performance of the virtual reality (VR) system used at JET for preparation and implementation of remote handling (RH) operations has been progressively enhanced since its first use in the original JET remote handling shutdown in 1998. As preparation began for the JET EP2 (Enhanced Performance 2) shutdown it was recognised that the VR system being used was unable to cope with the increased functionality and the large number of 3D models needed to fully represent the JET in-vessel components and tooling planned for EP2. A bespoke VR software application was developed in collaboration with the OEM, which allowed enhancements to be made to the VR system to meet the requirements of JET remote handling in preparation for EP2. Performance improvements required to meet the challenges of EP2 could not be obtained from the development of the new VR software alone. New methodologies were also required to prepare source, CATIA models for use in the VR using a collection of 3D software packages. In collaboration with the JET drawing office, techniques were developed within CATIA using polygon reduction tools to reduce model size, while retaining surface detail at required user limits. This paper will discuss how these developments have played an essential part in facilitating EP2 remote handling task development and examine their impact during the EP2 shutdown.

  3. Evolving the JET virtual reality system for delivering the JET EP2 shutdown remote handling tasks

    International Nuclear Information System (INIS)

    Williams, Adrian; Sanders, Stephen; Weder, Gerard; Bastow, Roger; Allan, Peter; Hazel, Stuart

    2011-01-01

    The quality, functionality and performance of the virtual reality (VR) system used at JET for preparation and implementation of remote handling (RH) operations has been progressively enhanced since its first use in the original JET remote handling shutdown in 1998. As preparation began for the JET EP2 (Enhanced Performance 2) shutdown it was recognised that the VR system being used was unable to cope with the increased functionality and the large number of 3D models needed to fully represent the JET in-vessel components and tooling planned for EP2. A bespoke VR software application was developed in collaboration with the OEM, which allowed enhancements to be made to the VR system to meet the requirements of JET remote handling in preparation for EP2. Performance improvements required to meet the challenges of EP2 could not be obtained from the development of the new VR software alone. New methodologies were also required to prepare source, CATIA models for use in the VR using a collection of 3D software packages. In collaboration with the JET drawing office, techniques were developed within CATIA using polygon reduction tools to reduce model size, while retaining surface detail at required user limits. This paper will discuss how these developments have played an essential part in facilitating EP2 remote handling task development and examine their impact during the EP2 shutdown.

  4. Alarm handling systems and techniques developed to match operator tasks

    International Nuclear Information System (INIS)

    Bye, A.; Moum, B.R.

    1997-01-01

    This paper covers alarm handling methods and techniques explored at the Halden Project, and describes current status on the research activities on alarm systems. Alarm systems are often designed by application of a bottom-up strategy, generating alarms at component level. If no structuring of the alarms is applied, this may result in alarm avalanches in major plant disturbances, causing cognitive overload of the operator. An alarm structuring module should be designed using a top-down approach, analysing operator's tasks, plant states, events and disturbances. One of the operator's main tasks during plant disturbances is status identification, including determination of plant status and detection of plant anomalies. The main support of this is provided through the alarm systems, the process formats, the trends and possible diagnosis systems. The alarm system should both physically and conceptually be integrated with all these systems. 9 refs, 5 figs

  5. Alarm handling systems and techniques developed to match operator tasks

    Energy Technology Data Exchange (ETDEWEB)

    Bye, A; Moum, B R [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-09-01

    This paper covers alarm handling methods and techniques explored at the Halden Project, and describes current status on the research activities on alarm systems. Alarm systems are often designed by application of a bottom-up strategy, generating alarms at component level. If no structuring of the alarms is applied, this may result in alarm avalanches in major plant disturbances, causing cognitive overload of the operator. An alarm structuring module should be designed using a top-down approach, analysing operator`s tasks, plant states, events and disturbances. One of the operator`s main tasks during plant disturbances is status identification, including determination of plant status and detection of plant anomalies. The main support of this is provided through the alarm systems, the process formats, the trends and possible diagnosis systems. The alarm system should both physically and conceptually be integrated with all these systems. 9 refs, 5 figs.

  6. Refinaria do Nordeste: petroleum coke handling system; Refinaria do Nordeste: desafios do sistema de movimentacao de coque verde de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Luiz G. de; Cabral, Jose Mauro B. [PETROBRAS S.A., Ipojuca, PE (Brazil). Refinaria do Nordeste (RNEST); Lucredi, Hedewandro A. [PETROBRAS S.A., Paulinia, SP (Brazil). Refinaria de Paulinia (REPLAN); Barros, Francisco Carlos da C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Delayed Coking Units - DCU - are adequate to the scheme for processing heavy oils where the market of fuel oil or asphalt is low or not profitable. The DCU's are conversion units that produce, in addition to the gas and liquid distilled products, the petcoke. The petcoke, depending on the characteristics, is used in various applications like as in the aluminum, iron, thermoelectric and cement industries. The petcoke is solid and its logistics is quite different from most of the products handled by PETROBRAS; therefore, this product has been a constant challenge in relation to the market requirements. Due to the importance of the DCU at Refinaria do Nordeste, and the petcoke production capacity, the coke handling system was projected in order to ensure the refinery operational continuity. The project permits the expedition and loading of 10,000 tons of petcoke within a period of 12 hours of work for cargo vessel. In the development of the processing project of Refinaria do Nordeste efforts were made to optimize the Delayed Coking Unit for the production of distilled products and the quality of the coke. The DCU operating conditions were projected so as to produce petcoke with quality adequate to the iron and aluminum industry. (author)

  7. Structural analysis of fuel handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L S.S. [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The purpose of this paper has three aspects: (i) to review `why` and `what` types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs.

  8. Structural analysis of fuel handling systems

    International Nuclear Information System (INIS)

    Lee, L.S.S.

    1996-01-01

    The purpose of this paper has three aspects: (i) to review 'why' and 'what' types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs

  9. Cask and plug handling system design in port cell

    International Nuclear Information System (INIS)

    Martins, Jean-Pierre; Friconneau, Jean-Pierre; Gabellini, Eros; Keller, Delphine; Levesy, Bruno; Selvi, Anna; Tesini, Alessandro; Utin, Yuri; Wagrez, Julien

    2011-01-01

    The ITER maintenance strategy relies partly on the remote transfer of components from vacuum vessel to hot cells. This function will be fulfilled by transfer cask systems. This paper describes the recent design progresses on interfaces in order to increase components handling feasibility by implementing continuous guiding features that avoid cantilevered loads on the in-cask tractor. Also the design has progressed in order to allow generic docking of the casks. When the cask is connected to the port, it becomes part of the machine first confinement boundary, thus it must provide tightness continuity. This high level safety function was one of the main concerns of a finite element analysis study that has been performed to assess the behavior of the whole system. Numerical analysis methodology and results are explained and shown in order to highlight how it has reinforced the knowledge of the system.

  10. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  11. Study on removal technology for thorium in the waste gas-lamp mantle

    International Nuclear Information System (INIS)

    Shi Yucheng; Wang Chengbao; Zhang Ping; Xu Lingqi; Jiang Shangen

    1999-01-01

    The author describes thorium removal technology and its application in the handling of the waste gas-lamp mantle that produced during the production of gas-lamp process. After laboratory test, pilot test, trial run and engineering scale use, the thorium removal technology is mainly as follows: soak the waste gas-lamp mantle into the ceramic vat with the nitric acid solution twice and wash it with the tap water twice. The volume of the ceramic vat is 500 L and the concentration of the nitric acid solution is 2 mol/L. After handling, the thorium removal rate can reach 99.97% and the residual thorium will be less than 160 Bq/kg. The waste gas-lamp mantle can be buried under the ground or be handled in the other ways just as the harmless waste. The nitric acid solution, in which gas-lamp mantle has been soaked, should be extracted with TBP, then back extracted with diluted hydrochloric acid. After supplementing the thorium nitrate into the back extracted liquid, the liquid can be reused in the gas-lamp mantle production. The waste water from the handling process can be handled together with waste water from production process

  12. Integrated Payload Data Handling Systems Using Software Partitioning

    Science.gov (United States)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  13. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  14. Non-POSIX File System for LHCb Online Event Handling

    CERN Document Server

    Garnier, J C; Cherukuwada, S S

    2011-01-01

    LHCb aims to use its O(20000) CPU cores in the high level trigger (HLT) and its 120 TB Online storage system for data reprocessing during LHC shutdown periods. These periods can last a few days for technical maintenance or only a few hours during beam interfill gaps. These jobs run on files which are staged in from tape storage to the local storage buffer. The result are again one or more files. Efficient file writing and reading is essential for the performance of the system. Rather than using a traditional shared file-system such as NFS or CIFS we have implemented a custom, light-weight, non-Posix network file-system for the handling of these files. Streaming this file-system for the data-access allows to obtain high performance, while at the same time keep the resource consumption low and add nice features not found in NFS such as high-availability, transparent fail-over of the read and write service. The writing part of this streaming service is in successful use for the Online, real-time writing of the d...

  15. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were compositions range from −65.2 to −80.7‰ for methane, −53.1 to −55.2‰ for ethane is consistent with mainly microbial gas sources, although one value recorded of −35.4‰ for propane

  16. Research on Handling Stability of Steering-by-wire System

    Directory of Open Access Journals (Sweden)

    Yuan Ying

    2017-01-01

    Full Text Available The main function of steer-by-wire (SBW system are improving steering characteristics, security and stability of the vehicle. In this paper, the variable steering ratio of SBW system is analyzed, and the method of steering ratio based on fuzzy control and neural network are researched. In order to solve the actual working condition, the wheel angle may not reach the expected value, this paper establishes a twodegree-of-freedom (2-DOF vehicle model, and a Matlab/Simulink simulation model, in which a control strategy based on PID controller is put forward to control the front wheel steering angle. Simulation results show that proposed control strategy based on fuzzy neural network can effectively reduce lateral deviation and improve the handling stability and comfortability of the vehicle.

  17. Water-saving liquid-gas conditioning system

    Science.gov (United States)

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  18. An Optimized Small Tissue Handling System for Immunohistochemistry and In Situ Hybridization.

    Directory of Open Access Journals (Sweden)

    Giovanni Anthony

    Full Text Available Recent development in 3D printing technology has opened an exciting possibility for manufacturing 3D devices on one's desktop. We used 3D modeling programs to design 3D models of a tissue-handling system and these models were "printed" in a stereolithography (SLA 3D printer to create precision histology devices that are particularly useful to handle multiple samples with small dimensions in parallel. Our system has been successfully tested for in situ hybridization of zebrafish embryos. Some of the notable features include: (1 A conveniently transferrable chamber with 6 mesh-bottomed wells, each of which can hold dozens of zebrafish embryos. This design allows up to 6 different samples to be treated per chamber. (2 Each chamber sits in a well of a standard 6-well tissue culture plate. Thus, up to 36 different samples can be processed in tandem using a single 6 well plate. (3 Precisely fitting lids prevent solution evaporation and condensation, even at high temperatures for an extended period of time: i.e., overnight riboprobe hybridization. (4 Flat bottom mesh maximizes the consistent treatment of individual tissue samples. (5 A magnet-based lifter was created to handle up to 6 chambers (= 36 samples in unison. (6 The largely transparent resin aids in convenient visual inspection both with eyes and using a stereomicroscope. (7 Surface engraved labeling enables an accurate tracking of different samples. (8 The dimension of wells and chambers minimizes the required amount of precious reagents. (9 Flexible parametric modeling enables an easy redesign of the 3D models to handle larger or more numerous samples. Precise dimensions of 3D models and demonstration of how we use our devices in whole mount in situ hybridization are presented. We also provide detailed information on the modeling software, 3D printing tips, as well as 3D files that can be used with any 3D printer.

  19. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    Accurate description of thermodynamic properties of natural gas systems is of great significance in the oil and gas industry. For this application, non-cubic equations of state (EoSs) are advantageous due to their better density and compressibility description. Among the non-cubic models, GERG-2008...... is a new wide-range EoS for natural gases and other mixtures of 21 natural gas components. It is considered as a standard reference equation suitable for natural gas applications where highly accurate thermodynamic properties are required. Soave's modification of Benedict-Webb-Rubin (Soave-BWR) Eo......S is another model that despite its empirical nature, provides accurate density description even around the critical point. It is much simpler than GERG-2008 and easier to handle and generalize to reservoir oil fluids. This study presents a comprehensive comparison between GERG-2008 and other cubic (SRK and PR...

  20. Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods

    Science.gov (United States)

    Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.

    2016-01-01

    Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  1. Gas detection system

    International Nuclear Information System (INIS)

    Allan, C.J.; Bayly, J.G.

    1975-01-01

    The gas detection system provides for the effective detection of gas leaks over a large area. It includes a laser which has a laser line corresponding to an absorption line of the gas to be detected. A He-Xe laser scans a number of retroreflectors which are strategically located around a D 2 O plant to detect H 2 S leaks. The reflected beam is focused by a telescope, filtered, and passed into an infrared detector. The laser may be made to emit two frequencies, one of which corresponds with an H 2 S absorption line; or it may be modulated on and off the H 2 S absorption line. The relative amplitude of the absorbed light will be a measure of the H 2 S present

  2. Simulation-based design process for the verification of ITER remote handling systems

    International Nuclear Information System (INIS)

    Sibois, Romain; Määttä, Timo; Siuko, Mikko; Mattila, Jouni

    2014-01-01

    Highlights: •Verification and validation process for ITER remote handling system. •Simulation-based design process for early verification of ITER RH systems. •Design process centralized around simulation lifecycle management system. •Verification and validation roadmap for digital modelling phase. -- Abstract: The work behind this paper takes place in the EFDA's European Goal Oriented Training programme on Remote Handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. One of the projects of this programme focuses on the verification and validation (V and V) of ITER RH system requirements using digital mock-ups (DMU). The purpose of this project is to study and develop efficient approach of using DMUs in the V and V process of ITER RH system design utilizing a System Engineering (SE) framework. Complex engineering systems such as ITER facilities lead to substantial rise of cost while manufacturing the full-scale prototype. In the V and V process for ITER RH equipment, physical tests are a requirement to ensure the compliance of the system according to the required operation. Therefore it is essential to virtually verify the developed system before starting the prototype manufacturing phase. This paper gives an overview of the current trends in using digital mock-up within product design processes. It suggests a simulation-based process design centralized around a simulation lifecycle management system. The purpose of this paper is to describe possible improvements in the formalization of the ITER RH design process and V and V processes, in order to increase their cost efficiency and reliability

  3. Development of simulator for remote handling system of ITER blanket

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakanhira, Masataka; Matsumoto, Yasuhiro; Shibanuma, K.

    2007-01-01

    The maintenance activity in the ITER has to be performed remotely because 14 MeV neutron caused by fusion reaction induces activation of structural material and emission of gamma ray. In general, it is one of the most critical issues to avoid collision between the remote maintenance system and in-vessel components. Therefore, the visual information in the vacuum vessel is required strongly to understand arrangement of these devices and components. However, there is a limitation of arrangement of viewing cameras in the vessel because of high intensity of gamma ray. It is expected that enough numbers of cameras and lights are not available because of arrangement restriction. Furthermore, visibility of the interested area such as the contacting part is frequently disturbed by the devices and components, thus it is difficult to recognize relative position between the devices and components only by visual information even if enough cameras and lights are equipped. From these reasons, the simulator to recognize the positions of each devices and components is indispensable for remote handling systems in fusion reactors. The authors have been developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robot simulation software ''ENVISION''. The simulator is connected to the control system of the manipulator which was developed as a part of the blanket maintenance system in the EDA and can reconstruct the positions of the manipulator and the blanket module using the position data of the motors through the LAN. In addition, it can provide virtual visual information, such as the connecting operation behind the blanket module with making the module transparent on the screen. It can be used also for checking the maintenance sequence before the actual operation. The developed simulator will be modified further adding other necessary functions and finally completed as a prototype of the actual simulator for the blanket remote handling system

  4. Operation of data acquisition and handling system in the INS-SF cyclotron

    International Nuclear Information System (INIS)

    Yasue, M.; Omata, K.

    1976-01-01

    Operations of following data processing routines are described. 1) One-dimensional multiplexer PHA. 2) Two-dimensional multiplexer PHA. 3) Two or three parameter data handling: Digital gating, dumping of raw data onto MT and processing in function modes. These processing routines are executed under the control of a real time disk operating system in TOSBAC-40C. (auth.)

  5. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  6. Safety issues in robotic handling of nuclear weapon parts

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.

    1993-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems

  7. [Phylogeny of gas exchange systems].

    Science.gov (United States)

    Jürgens, K D; Gros, G

    2002-04-01

    Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is

  8. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  9. Development of a control system for a heavy object handling manipulator. Application to a remote maintenance system for ITER blanket module

    International Nuclear Information System (INIS)

    Yoshimi, Takashi; Tsuji, Kouichi; Miyagawa, Shinichi; Kubo, Tomomi; Kakudate, Satoshi; Tada, Eisuke

    2001-01-01

    This paper describes a control system for the heavy object handling manipulator. It has been developed for the blanket module remote maintenance system of ITER (International Thermonuclear Fusion Experimental Reactor). A rail-mounted vehicle-type manipulator is proposed for the precise handling of a blanket module which is about 4 tons in weight. Basically, this manipulator is controlled by teaching-playback technique. When grasping or releasing the module, the manipulator sags and the position of the end-effector changes about 50 [mm]. Applying only the usual teaching-playback control makes the smooth operation of setting/removing modules to/from the vacuum vessel wall difficult due to this position change. To solve this proper problem of heavy object handling manipulator, we have developed a system which uses motion patterns generated from two kinds of teaching points. These motion patterns for setting/removing heavy objects are generated by combining teaching points for positioning the manipulator with and without grasping the object. When these motion patterns are applied, the manipulator can transfer the object's weight smoothly at the setting/removing point. This developed system has been applied to the real-scale mock-up of the vehicle manipulator and through the actual module setting/removing experiments, we have verified its effectiveness and realized smooth maintenance operation. (author)

  10. The development and evaluation of a stereoscopic television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Murphy, S.P.; Smith, C.W.

    1990-01-01

    This paper describes the development and evaluation of a stereoscopic television system at Harwell Laboratory. The theory of stereo image geometry is outlined, and criteria for the matching of stereoscopic pictures are given. A stereoscopic television system designed for remote handling tasks has been produced, it provides two selectable angles of view and variable convergence, the display is viewed via polarizing spectacles. Evaluations have indicated improved performance with no problems of operator fatigue over a wide range of applications. (author)

  11. CAMAC - A modular instrumentation system for data handling. Revised description and specification

    International Nuclear Information System (INIS)

    1977-03-01

    CAMAC is a modern data handling system in widespread use with on-line digital computers. It is based on a digital highway for data and control. The CAMAC specifications ensures compatibility between equipment from different sources. The revised specification introduces several new features, but is consistent with the previous version (EUR 4100e, 1969). The CAMAC system was specified by European laboratories, through the Esone Committee, and has been endorsed by the USAEC NIM Committee, who have an identical specification (TID-25875)

  12. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  13. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  14. System of treating flue gas

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas

  15. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  16. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  17. CERN Sells its Electronic Document Handling System

    CERN Multimedia

    2001-01-01

    The EDH team. Left to right: Derek Mathieson, Rotislav Titov, Per Gunnar Jonsson, Ivica Dobrovicova, James Purvis. Missing from the photo is Jurgen De Jonghe. In a 1 MCHF deal announced this week, the British company Transacsys bought the rights to CERN's Electronic Document Handling (EDH) system, which has revolutionised the Laboratory's administrative procedures over the last decade. Under the deal, CERN and Transacsys will collaborate on developing EDH over the coming 12 months. CERN will provide manpower and expertise and will retain the rights to use EDH, which will also be available freely to other particle physics laboratories. This development is an excellent example of the active technology transfer policy CERN is currently pursuing. The negotiations were carried out through a fruitful collaboration between AS and ETT Divisions, following the recommendations of the Technology Advisory Board, and with the help of SPL Division. EDH was born in 1991 when John Ferguson and Achille Petrilli of AS Divisi...

  18. Effect of push handle height on net moments and forces on the musculoskeletal system during standardized wheelchair pushing tasks

    NARCIS (Netherlands)

    Van Der Woude, L H; Van Koningsbruggen, C M; Kroes, A L; Kingma, I

    1995-01-01

    The aim of this investigation was to analyze the external forces and biomechanical loading on the musculoskeletal system during wheelchair pushing, in relation to different push handle heights. In addition, recommendations for wheelchair pushing in accordance with push handle height are made. Eight

  19. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  20. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  1. Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia

    Science.gov (United States)

    Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.

    2018-02-01

    In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.

  2. Gas processing industrial hygiene needs

    International Nuclear Information System (INIS)

    D'Orsie, S.M.

    1992-01-01

    Handling of gases and natural gas liquids provides many opportunities for workers to be exposed to adverse chemical and physical agents. A brief overview of common hazards found in the processing of gas and natural gas liquids is presented in this paper. Suggestions on how an employer can obtain assistance in evaluating his workplace are also presented.presented

  3. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    Marinescu, N.; Predescu, D.; Valeca, S.

    2013-01-01

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  4. Gas system 2016: Press conference 17 January 2017 + Gas consumption by administrative regions

    International Nuclear Information System (INIS)

    2017-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2016: A first part presents the national data about gas consumption, production of gas-fired power plants, new gas uses (diesel-gas substitution, biomethane..) and their environmental impacts, and the development of the Internet open-data platform. A second part presents the regional gas consumptions with a focus on industrial clients

  5. Computer systems and software description for gas characterization system

    International Nuclear Information System (INIS)

    Vo, C.V.

    1997-01-01

    The Gas Characterization System Project was commissioned by TWRS management with funding from TWRS Safety, on December 1, 1994. The project objective is to establish an instrumentation system to measure flammable gas concentrations in the vapor space of selected watch list tanks, starting with tank AN-105 and AW-101. Data collected by this system is meant to support first tank characterization, then tank safety. System design is premised upon Characterization rather than mitigation, therefore redundancy is not required

  6. Treatment of plutonium-contaminated solid waste: a review of handling systems

    International Nuclear Information System (INIS)

    Meredith, B.E.; Hardy, A.R.

    1985-02-01

    Handling techniques are reviewed to identify those suitable for adaptation for use in transporting large items of redundant plutonium contaminated plant and equipment to a remotely operated size reduction facility, moving them into the facility, presenting them to size reduction equipment and loading the processed waste into drums. It is concluded that an integrated system based on a combination of slatted conveyors, roller tables, air transporters and manipulators, merits further consideration. An appropriate experimental programme is outlined. (author)

  7. Comparison of control systems applied to the handling of radioactive reactor components

    International Nuclear Information System (INIS)

    Robinson, C.; Harris, E.G.; Dyer, P.C.; Williams, J.G.B.

    1985-01-01

    The first generation of nuclear power stations have individual reactors each incorporating complete facilities for servicing components and refuelling. In the later designs, each power station has two reactors which are connected by a central block. This central block contains one set of facilities to service both reactors, but to improve the station capability, some of these are to be replicated. The central block incorporates a hoist well which was used during construction for the accessing of complete components. On completion of this work, the physical size of the hoist well is such as to permit the incorporation of additional facilities if these are shown to be operationally and economically desirable. Since a number of years of power operation has elapsed, the advantages of back-fitting to existing fuel-handling facilities has been illustrated. Since the mechanical arrangements and operating procedures are substantially similar for both the original and new handling facilities, the paper will illustrate the control systems provided for each. The configuration of the system is arranged to have two channels of control which complies with the current standard requirements in the United Kingdom. These requirements are more stringent than when the existing facility was designed and constructed, as described in the relevant sections of the paper. The new system has been designed and is being manufactured to comply with the Central Electricity Generating Board standard for nuclear fuel route interlock and control systems. (author)

  8. Sisifo-gas a computerised system to support severe accident training and management

    International Nuclear Information System (INIS)

    Castro, A.; Buedo, J.L.; Borondo, L.; Lopez, N.

    2001-01-01

    Nuclear Power Plants (NPP) will have to be prepared to face the management of severe accidents, through the development of Severe Accident Guides and sophisticated systems of calculation, as a supporting to the decision-making. SISIFO-GAS is a flexible computerized tool, both for the supporting to accident management and for education and training in severe accident. It is an interactive system, a visual and an easily handle one, and needs no specific knowledge in MAAP code to make complicate simulations in conditions of severe accident. The system is configured and adjusted to work in a BWR/6 technology plant with Mark III Containment, as it is Cofrentes NPP. But it is easily portable to every other kind of reactor, having the level 2 PSA (probabilistic safety analysis) of the plant to be able to establish the categories of the source term and the most important sequences in the progression of the accident. The graphic interface allows following in a very intuitive and formative way the evolution and the most relevant events in the accident, in the both system's way of work, training and management. (authors)

  9. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  10. Development of components for the gas-cooled fast breeder reactor program

    International Nuclear Information System (INIS)

    Dee, J.B.; Macken, T.

    1977-01-01

    The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core. The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. (Auth.)

  11. DDOS ATTACK DETECTION SIMULATION AND HANDLING MECHANISM

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2013-11-01

    Full Text Available In this study we discuss how to handle DDoS attack that coming from the attacker by using detection method and handling mechanism. Detection perform by comparing number of packets and number of flow. Whereas handling mechanism perform by limiting or drop the packets that detected as a DDoS attack. The study begins with simulation on real network, which aims to get the real traffic data. Then, dump traffic data obtained from the simulation used for detection method on our prototype system called DASHM (DDoS Attack Simulation and Handling Mechanism. From the result of experiment that has been conducted, the proposed method successfully detect DDoS attack and handle the incoming packet sent by attacker.

  12. Graphical models for simulation and control of robotic systems for waste handling

    International Nuclear Information System (INIS)

    Drotning, W.D.; Bennett, P.C.

    1992-01-01

    This paper discusses detailed geometric models which have been used within a graphical simulation environment to study transportation cask facility design and to perform design and analyses of robotic systems for handling of nuclear waste. The models form the basis for a robot control environment which provides safety, flexibility, and reliability for operations which span the spectrum from autonomous control to tasks requiring direct human intervention

  13. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum

  14. Worklist handling in workflow-enabled radiological application systems

    Science.gov (United States)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim; von Berg, Jens

    2000-05-01

    For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.

  15. 46 CFR 154.1350 - Flammable gas detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed flammable gas detection system that has sampling points in: (1) Each cargo pump room; (2) Each cargo...

  16. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  17. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  18. TOPEX: An expert system for estimating and analyzing the operating costs of oil and gas production facilities

    International Nuclear Information System (INIS)

    Greffioz, J.; Olver, A.J.; Schirmer, P.

    1993-01-01

    TOPEX is a new approach to operating costs estimation of oil and gas installations. It does not rely on knowledge of the capital cost of the installation and uses a computerized expert system (or knowledge base). Estimates are generated from specific details of the equipment and systems and general databases of prices and man hours. A novel methodology has been developed for quantifying the operational complexity of an installation which is then correlated with operations manpower. The use of a computerized application allows rapid calculation of estimates so that what-if and sensitivity studies can be readily done. The knowledge base provides a powerful tool to handle the large amounts of data involved and acts as a repository for the expertise used in its development

  19. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Pfahler, Patrick

    2012-12-17

    produced and, together with all other ingredients of muon veto and buffer, delivered to the experiment, where they were mixed and tuned in due consideration of the individual requirements of the different liquids. For the filling and handling of the DC-far detector, the underground laboratory was equipped with a comprehensive liquid-handling, gas-handling and monitoring-system, which provides all necessary functions to flush, fill, operate and empty the detector safely. Using these systems, the DC-far detector was flushed and filled in accordance with an especially developed sequence, which considered critical filling points and avoided unnecessary stress on the different detector vessels. By the means of this, the far detector of Double Chooz could be filled without damaging the detector vessels. In addition, it could be demonstrated that the quality and cleanliness of the detector liquids were maintained during filling. As a result of this, Double Chooz was able to acquire first neutrino data and to publish its first result of {Theta}{sub 13} with sin{sup 2}(2{Theta}{sub 13})=0.109 {+-} 0.030(stat.) {+-} 0.025(syst.).

  20. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    International Nuclear Information System (INIS)

    Pfahler, Patrick

    2012-01-01

    , together with all other ingredients of muon veto and buffer, delivered to the experiment, where they were mixed and tuned in due consideration of the individual requirements of the different liquids. For the filling and handling of the DC-far detector, the underground laboratory was equipped with a comprehensive liquid-handling, gas-handling and monitoring-system, which provides all necessary functions to flush, fill, operate and empty the detector safely. Using these systems, the DC-far detector was flushed and filled in accordance with an especially developed sequence, which considered critical filling points and avoided unnecessary stress on the different detector vessels. By the means of this, the far detector of Double Chooz could be filled without damaging the detector vessels. In addition, it could be demonstrated that the quality and cleanliness of the detector liquids were maintained during filling. As a result of this, Double Chooz was able to acquire first neutrino data and to publish its first result of Θ 13 with sin 2 (2Θ 13 )=0.109 ± 0.030(stat.) ± 0.025(syst.).

  1. Gas characterization system software acceptance test procedure

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  2. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  3. The sample handling system for the Mars Icebreaker Life mission: from dirt to data.

    Science.gov (United States)

    Davé, Arwen; Thompson, Sarah J; McKay, Christopher P; Stoker, Carol R; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J; Willson, David; Bonaccorsi, Rosalba; Rask, Jon

    2013-04-01

    The Mars Icebreaker Life mission will search for subsurface life on Mars. It consists of three payload elements: a drill to retrieve soil samples from approximately 1 m below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system. Collecting samples from ice-rich soils on Mars in search of life presents two challenges: protection of that icy soil--considered a "special region" with respect to planetary protection--from contamination from Earth, and delivery of the icy, sticky soil to spacecraft instruments. We present a sampling device that meets these challenges. We built a prototype system and tested it at martian pressure, drilling into ice-cemented soil, collecting cuttings, and transferring them to the inlet port of the SOLID2 life-detection instrument. The tests successfully demonstrated that the Icebreaker drill, sample handling system, and life-detection instrument can collectively operate in these conditions and produce science data that can be delivered via telemetry--from dirt to data. Our results also demonstrate the feasibility of using an air gap to prevent forward contamination. We define a set of six analog soils for testing over a range of soil cohesion, from loose sand to basalt soil, with angles of repose of 27° and 39°, respectively. Particle size is a key determinant of jamming of mechanical parts by soil particles. Jamming occurs when the clearance between moving parts is equal in size to the most common particle size or equal to three of these particles together. Three particles acting together tend to form bridges and lead to clogging. Our experiments show that rotary-hammer action of the Icebreaker drill influences the particle size, typically reducing particle size by ≈ 100 μm.

  4. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  5. Gas characterization system software acceptance test report

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  6. Progress in the conceptual design of the ITER cask and plug remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Darren, E-mail: darren.locke@f4e.europa.eu [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); González Gutiérrez, Carmen; Damiani, Carlo [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Friconneau, Jean-Pierre; Martins, Jean-Pierre [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS.

  7. Progress in the conceptual design of the ITER cask and plug remote handling system

    International Nuclear Information System (INIS)

    Locke, Darren; González Gutiérrez, Carmen; Damiani, Carlo; Friconneau, Jean-Pierre; Martins, Jean-Pierre

    2014-01-01

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS

  8. Penentuan Kebijakan Perawatan dan Optimasi Persediaan Suku Cadang pada Coal Handling System PLTU Paiton

    Directory of Open Access Journals (Sweden)

    Fadeli Muhammad F

    2012-09-01

    Full Text Available Fasilitas yang terdapat pada sebuah pembangkit listrik membutuhkan perawatan agar dapat berfungsi  sesuai dengan kapasitasnya. Salah satu fasilitas yang membutuhkan perawatan pada PLTU Paiton adalah fasilitas coal handling system. Perusahaan perlu menerapkan strategi perawatan yang tepat agar biaya perawatan yang dikeluarkan dapat optimal. Permasalahan yang ada pada PLTU Paiton adalah strategi perawatan yang ada masih belum bisa mengatasi kemungkinan kegagalan yang terjadi dan aktivitas perawatan yang dilakukan tidak didukung oleh ketersediaan suku cadang yang dibutuhkan. Hal tersebut menyebabkan biaya perawatan yang dikeluarkan menjadi tidak optimal. Penelitian ini menggunakan metode reliability centered maintenance (RCM II yang dikombinasikan dengan metode evaluasi dari electrical power research institute (EPRI untuk menentukan strategi perawatan yang tepat terhadap coal handling system. Permasalahan persediaan untuk mendukung implementasi penerapan strategi perawatan akan diselesaikan dengan metode probabilistic economic order quantity (EOQ model. Penggunaan metode RCM II yang dikombinasikan dengan metode evaluasi dari EPRI dan penggunaan metode probabilistic EOQ model bertujuan untuk mengoptimalkan biaya perawatan yang dikeluarkan.

  9. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  10. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    Science.gov (United States)

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  11. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  12. Gas system 2015: Press conference 21 January 2016 + Gas consumption by administrative regions

    International Nuclear Information System (INIS)

    2016-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2015: Gas consumption resumed despite warm conditions in 2015. Gas demand for power generation in gas-fired power plants has strongly increased, due to favourable economic conditions. 2015 was characterised by the lowest LNG imports to France ever, which entailed a still intensive use of the North-South link, despite transits to Spain and Italy back to 5 year average level. New gas uses and biomethane permitted to avoid 490,000 tonnes of CO 2 emissions in 2015. A second part presents the regional gas consumptions by administrative regions

  13. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  14. Implementation of a new Disruption Mitigation System into the control system of JET

    Energy Technology Data Exchange (ETDEWEB)

    Jachmich, Stefan, E-mail: s.jachmich@fz-juelich.de [Laboratory for Plasma Physics, Ecole Royale Militaire/Koninklijke Militaire School, B-1000 Brussels (Belgium); Kruezi, Uron; Card, Peter; Deakin, Kieron; Kinna, David [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Koslowski, Hans Rudolf; Lambertz, Horst Toni [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • A new Disruption Mitigation System based on Massive Gas Injection has been installed at JET. • The control of the attached gas handling system had to be integrated into the JET-operation. • An interlock system has been built to cope with the interaction of the DMS with other auxiliary systems. • The system has been commissioned and first example of DMS used to ameliorate a disruption are shown. - Abstract: A new Disruption Mitigation System (DMS) based on Massive Gas Injections (MGI) has been installed at the JET-tokamak. The key component of this system is a fast eddy current driven valve, which is capable of injecting up to 4.6 × 10{sup −3} MPa m{sup 3} in less than 5 ms. Along with this valve a new gas handling system has been installed, whose control had to be integrated into the JET-operation. The operation of the DMS requires interaction with several other systems. Although Massive Gas Injections are used to ameliorate potentially severe damage to the tokamak plant and plasma facing components caused by disruptions, they introduce a high risk for example to auxiliary heating systems or diagnostics, which could be damaged by high vacuum pressures. In addition to this, the presence of high pressure (of noble and flammable gases) in combination with high voltages represents a risk not only to the actual DMS plant itself (in case of a failure) but also to personnel in the vicinity. These varieties of risks have been addressed and are described in this article.

  15. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  16. Evaluation of a pilot fish handling system at Bruce NGS 'A'

    International Nuclear Information System (INIS)

    Griffiths, J.S.

    1985-10-01

    A pilot fish recovery system using a Hidrostal fish pump was tested in the Bruce NGS 'A' forebay during June, 1984. Despite low forebay fish concentrations, the system was capable of capturing 97,000 alewife/day (3900 kg) if operated continuously. Post-pumping survival averaged 97%. It is estimated that a single pump could handle alewife runs in the 40,000 to 70,000 kg range, but multiple pumps or a single larger pump would be required to assure station protection from the largest runs (>100,000 kg). Results indicate that tank/trailer return of pumped fish is feasible, but other alternatives for returning fish to Lake Huron are also being considered

  17. Fabrication Of Control Rod System Of The RSG-GAS

    International Nuclear Information System (INIS)

    Sudirdjo, Hari; Setyono; Prasetya, Hendra

    2001-01-01

    Eight units of control rod mechanical system of RSG-GAS has been fabricated. The control rod mechanical system of RSG-GAS consist of guide tube and lifting rod. Complete construction of the control rod mechanical system of RSG-GAS are guide tube, lifting rod, absorber, and absorber casing. The eight units of the control rod mechanical system of RSG-GAS has been fabricated according to the mechanical engineering design

  18. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  19. SLSF loop handling system. Volume III. AISC code evaluations and analysis of critical attachments

    International Nuclear Information System (INIS)

    Ahmed, H.; Cowie, A.; Malek, R.A.; Rafer, A.; Ma, D.; Tebo, F.

    1978-10-01

    SLSF loop handling system was analyzed for deadweight and postulated dynamic loading conditions using a linear elastic static equivalent method of stress analysis. Stress computations of Cradle and critical attachments per AISC Code guidelines are presented. HFEF is credited with in-depth review of initial phase of work

  20. Experimental robot gripper control for handling of soft objects

    Science.gov (United States)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  1. Report on achievements of research and development of an automatic sewing system in fiscal 1986. Cloth handling technology; 1986 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Kiji handling gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The Automatic Sewing System Technology Research Association was commissioned from the Agency of Industrial Science and Technology on the 'development of an automatic sewing system'. The association has performed the research and development by dividing the subject into such component technologies as a total system and sewing preparation and processing technology, a sewing and assembling technology, a cloth handling technology, and a system management and control technology. This paper reports the achievement of the research on the cloth handling technology. This technology may be divided into such component technologies as (1) the cloth holding technology, (2) the high-functional positioning technology, and (3) the soft cloth moving technology. For the technology (1), development was made on the principle models, such as the vertical holding and parallel holding type modules and the cloth operating type module, as well as on the principle model for an auxiliary equipment for holding cloth edges. For the technology (2), development was made on the handler, controller, and coordinated operation control and teaching system. Discussions were given on optimal device configuration, functions required in the devices, and evaluation methods, as the high-functional positioning technology for the sewing process and pressing process. Prototype devices were designed and fabricated. For the technology (3), prototype models of the improved version were fabricated for the stock module and confluence model, their functions and performances were confirmed, and problems and points requiring improvement were extracted for prototype fabrication. (NEDO)

  2. Report on achievements of research and development of an automatic sewing system in fiscal 1986. Cloth handling technology; 1986 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Kiji handling gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The Automatic Sewing System Technology Research Association was commissioned from the Agency of Industrial Science and Technology on the 'development of an automatic sewing system'. The association has performed the research and development by dividing the subject into such component technologies as a total system and sewing preparation and processing technology, a sewing and assembling technology, a cloth handling technology, and a system management and control technology. This paper reports the achievement of the research on the cloth handling technology. This technology may be divided into such component technologies as (1) the cloth holding technology, (2) the high-functional positioning technology, and (3) the soft cloth moving technology. For the technology (1), development was made on the principle models, such as the vertical holding and parallel holding type modules and the cloth operating type module, as well as on the principle model for an auxiliary equipment for holding cloth edges. For the technology (2), development was made on the handler, controller, and coordinated operation control and teaching system. Discussions were given on optimal device configuration, functions required in the devices, and evaluation methods, as the high-functional positioning technology for the sewing process and pressing process. Prototype devices were designed and fabricated. For the technology (3), prototype models of the improved version were fabricated for the stock module and confluence model, their functions and performances were confirmed, and problems and points requiring improvement were extracted for prototype fabrication. (NEDO)

  3. Conceptual design of the handling and storage system of the spent target vessel for neutron scattering facility 2

    International Nuclear Information System (INIS)

    Adachi, Junichi; Kaminaga, Masanori; Sasaki, Shinobu; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Hino, Ryutaro

    2002-01-01

    In designing the neutron scattering facility, a spent target vessel should be replaced with remote handling devices in order to protect radioactive exposure, since it would be highly activated through the high energy neutron irradiation caused by the spallation reaction between mercury of the target material and the MW-class proton beam. In the storage of the spent target vessel, it is necessary to consider decay heat of the target vessel and mercury contamination caused by vaporization of the residual mercury in the vessel. A conceptual design has been carried out to establish basic concept and to clarify its specification of main equipments on handling and storage systems for the spent target vessel. This report presents the basic concept and a system plot plan based on latest design works of remote handling devices such as a spent target vessel storage cask and a target vessel exchange trolley, which aim at reasonability and simplification. In addition, storage systems for the spent moderator vessel, the spent proton beam window and the spent reflector vessel are also investigated based on the plot plan. (author)

  4. Development of a Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Becker, A.B.; Pepper, W.J.

    1995-01-01

    Objective of developing this model (GSAM) is to create a comprehensive, nonproprietary, PC-based model of domestic gas industry activity. The system can assess impacts of various changes in the natural gas system in North America; individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system assesses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices. Distribution, storage, and utilization of natural gas in a dynamic market-gased analytical structure is assessed. GSAM is designed to provide METC managers with a tool to project impacts of future research, development, and demonstration benefits

  5. 21 CFR 58.107 - Test and control article handling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Test and control article handling. 58.107 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.107 Test and control article handling. Procedures shall be established for a system for the handling of the test and...

  6. Steelmaking gas prediction system; Sistema de predicao de gas de aciaria

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Pedro Henrique Boaventura; Sampaio, William Genelhu [USIMINAS, Ipatinga, MG (Brazil)

    2011-12-21

    The Usiminas, Steelmaking Plant located in Ipatinga - MG, has the necessity to complement its energy matrix with additional fuel (oil derived from petroleum presently). Despite the high cost of this fuel, 24,3% of the LDG gas was wasted due to inadequate size of the LDG gas holder and the inappropriate tool to manage the distribution of the fuel. This paper presents how the Steelmaking Gas Prediction System was developed aiming to improve its management and other actions to increase the gas usage minimizing the matrix complementation. (author)

  7. CRBRP design and test results for fuel handling systems, plugs, and seals

    International Nuclear Information System (INIS)

    Berg, G.E.

    1977-01-01

    The fuel handling system and reactor rotating plugs for the Clinch River Breeder Reactor Plant (CRBRP) are based primarily on existing technology and, in many respects, follow the concept developed for the Fast Flux Test Facility (FFTF). The equipment and the development programs initiated to verify its performance are described. Test results obtained from the development program, and the extent to which these results verified original design selections, or suggested potential improvements, are discussed

  8. Commissioning and maintenance experience of in-plant coal handling system of captive power plant at HWP, Manuguru (Paper No. 5.4)

    International Nuclear Information System (INIS)

    Murugappan, K.; Mohan Rao, A.C.; Sastry, M.S.N.

    1992-01-01

    For achieving a non-stop generation of power for a minimum period of one year can be a reality only if due importance is given to inplant coal handling system. The paper highlights the major commissioning and maintenance problem faced and corrective action taken for inplant coal handling system of the captive power plant at Heavy Water Plant, Manuguru. (author)

  9. Application Examples for Handle System Usage

    Science.gov (United States)

    Toussaint, F.; Weigel, T.; Thiemann, H.; Höck, H.; Stockhause, M.; Lautenschlager, M.

    2012-12-01

    Besides the well-known DOI (Digital Object Identifiers) as a special form of Handles that resolve to scientific publications there are various other applications in use. Others perhaps are just not yet. We present some examples for the existing ones and some ideas for the future. The national German project C3-Grid provides a framework to implement a first solution for provenance tracing and explore unforeseen implications. Though project-specific, the high-level architecture is generic and represents well a common notion of data derivation. Users select one or many input datasets and a workflow software module (an agent in this context) to execute on the data. The output data is deposited in a repository to be delivered to the user. All data is accompanied by an XML metadata document. All input and output data, metadata and the workflow module receive Handles and are linked together to establish a directed acyclic graph of derived data objects and involved agents. Data that has been modified by a workflow module is linked to its predecessor data and the workflow module involved. Version control systems such as svn or git provide Internet access to software repositories using URLs. To refer to a specific state of the source code of for instance a C3 workflow module, it is sufficient to reference the URL to the svn revision or git hash. In consequence, individual revisions and the repository as a whole receive PIDs. Moreover, the revision specific PIDs are linked to their respective predecessors and become part of the provenance graph. Another example for usage of PIDs in a current major project is given in EUDAT (European Data Infrastructure) which will link scientific data of several research communities together. In many fields it is necessary to provide data objects at multiple locations for a variety of applications. To ensure consistency, not only the master of a data object but also its copies shall be provided with a PID. To verify transaction safety and to

  10. Underground transportation and handling system for Pollux-casks

    International Nuclear Information System (INIS)

    Schrimpf, C.

    1988-01-01

    The concept for the underground transportation and handling system for Pollux-casks was optimized in a first phase by dividing the process in the repository up into the several transportation and manipulation steps. For each step, the possibilities were described and evaluated by means of a list of criteria (technical, safety and economical criteria). The following concept for the transportation and handling was developed: The casks are transported to the unloading area of the surface facilities by railway or truck. After removal of the transport protection, the entry control is performed. The cask is lifted from the vehicle and placed on a railbound transportation vehicle. This transport unit is transferred to the shaft and placed there ready for shaft hoisting. With the hoisting cage protruding, the transport unit is placed on the hoisting cage by means of a pushing-on device, locked, and then conveyed underground. After arrival on the emplacement level, the transport unit is pulled-off from the hoisting cage and taken over by a mine locomotive and transferred through the transportation and access drifts as far as to the emplacement site. There the locomotive pushed the rail transport vehicle into the emplacement drift, as far as to the designated emplacement position. At the emplacement position, the cask is again lifted by means of hoisting equipment. The rail transport vehicle is pulled out of the emplacement drift and returned to the surface for reloading. After deposition of the cask on the drift floor, the emplacement equipment is pulled back in order to give the operation space free for the slinger backfill truck. Within preceding tests two different backfilling techniques were investigated under realistic conditions: pneumatic backfilling and slinger backfilling. The slinger truck was found to be the most suitable for the designated purpose

  11. Development of a telerobotic system for handling contaminated process equipment

    International Nuclear Information System (INIS)

    Fisher, J.J.; Ward, C.R.; Schuler, T.F.

    1987-01-01

    E. I. du Pont de Nemours and Company is evaluating a unique eight-degree-of-freedom Telerobot manipulator to perform size-reduction and material handling operations on contaminated process equipment at the Savannah River Plant (SRP). The Telerobot will be installed in the proposed Transuranic (TRU) Waste Processing Facility, which is scheduled to be operational by 1990. A full-scale prototype Telerobot, manufactured by GCA Corporation, St. Paul, MN is being tested with other process equipment in the Components Test Facility at the Savannah River Laboratory (SRL). All telerobotic operations required in the TRU Waste Facility such as crate unpacking, equipment dismantling, material size-reduction, and selected maintenance operations are being tested. This paper discusses the major mechanical and control features of the Telerobot system. Several system enhancements were added by SRL, including a new quick-hand-change coupling and expanded software control functions. The new software enables a system operator to perform both teleoperated and automatic tasks through several operating modes. These enhancements, as well as future mechanical, control system, and software features, are reviewed

  12. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  13. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  14. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  15. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  16. Automation and remote handling activities in BARC: an overview

    International Nuclear Information System (INIS)

    Badodkar, D.N.

    2016-01-01

    Division of Remote Handling and Robotics, BARC has been working on design and development of various application specific remote handling and automation systems for nuclear front-end and back-end fuel cycle technologies. Division is also engaged in preservice and in-service inspection of coolant channels for Pressurized Heavy Water Reactors in India. Design and development of Reactor Control Mechanisms for Nuclear Research and Power Reactors (PHWRs and Compact LWRs) is another important activity carried out in this division. Robotic systems for Indoor and Outdoor surveillance in and around nuclear installations have also been developed. A line scan camera based system has been developed for measuring individual PHWR fuel pellet lengths as well as stack length. An industrial robot is used for autonomous exchange of pellets to achieve desired stack length. The system can be extended for active fuel pellets also. An automation system has been conceptualized for remote handling and transfer of spent fuel bundles from storage pool directly to the chopper unit of reprocessing plant. In case of Advanced Heavy Water Reactor which uses mixed oxides of (Th-Pu) and (Th-"2"3"3U ) as fuel, automation system for front-end fuel cycle has been designed, which includes Powder processing and pressing; Pellet handling and inspection; Pin handling and inspection; and Cluster assembly and dis-assembly in shielded facilities. System demonstration through fullscale mock-up facility is nearing completion. Above talk is presented on behalf of all the officers and staff of DRHR. The talk is mainly focused on development of an automated fuel fabrication facility for mixed oxides of (Th- Pu)/(Th-"2"3"3U ) fuel pins. An overview of divisional ongoing activities in the field of remote handling and automation are also covered. (author)

  17. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  18. A comparison of the consequences of different waste handling systems in two Danish communities

    DEFF Research Database (Denmark)

    Grunert, Suzanne C.; Thøgersen, John

    1995-01-01

    a system based solely on non-economic incentives. The main objective was to compare citizen`s beliefs and attitudes towards waste handling systems and their consequence for motivations to co-operate. Th groups of hypotheses concerning the beliefs-attitude relationship, differences in attitudes between...... cities, and the use of economic incentives were tested. Whereas beliefs influenced attitudes in the expected direction, the consequences of economi incentives for differences in attitudes were less clear....

  19. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  20. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  1. Safety and availability of the fuel handling system at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Santaliz, Jorge O.; Paredes, Juan A.

    1998-01-01

    The paper attempts the Fuel Handling (F/H) System maintenance and operating methodology at the Embalse Power Station. It doesn't refer to the F/H process, because it's common and well known by all the CANDU Stations. Instead of that, the presentation will be focused on people qualification, training and selection. Also the key subjects for a smooth and successful operation. Additionally will be remarked the human aspect and the role of the person in the organization. The safe and reliable operation of the CNE Fuel Handling System has been always target, supported by the operational experience. The accountability and fitness for the job were the main qualification for the crew members. They have very clear their role and the importance of equipment which they are operating or manipulating. The person who has greater experience and responsibility must struggle continuously to keep the safe and confident operation. Also we have to increase permanently our knowledge with a greater training and experience exchange with another CANDU 6 Station, like this Conference which let us to grow as persons and technicians. It also allows our utility to have access to other realities and work methods. (authors)

  2. Team effort leads to versatile handling solution for pipe manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    This article discussed the development of a new pipe-handling system that resulted in increased efficiencies in plant-to-yard transport for a custom steel pipe manufacturer. In the previous system, loaders would move finished pipe to the yard for storage. However, for transport loading, the pipe would have to be brought back indoors because only the inside cranes could handle loading the pipe without damaging the special outer coating on the pipe. In the new pipe-handling system, the loader is replaced with a Sennebogen 850 M rubber-tired material handler, which was developed for the steel recycling industry. The generator that comes on the material handler is retrofitted to power a purpose-built pipe-handler attachment. The machine's higher lifting reach allows for higher stacking, effectively increasing the capacity of the yard. The new pipe-handling machine allows trucks to be loaded right in the yard, eliminating the need to double-handle the pipe. 1 fig.

  3. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  4. Coastal effects of offshore energy systems. An assessment of oil and gas systems, deepwater ports, and nuclear power plants off the coast of New Jersey and Delaware. Volume II. Parts 1 and 2. Working papers 4 thru 10

    International Nuclear Information System (INIS)

    1976-11-01

    This report consists of ten working papers prepared as background material for the assessment of the effects of three proposed offshore energy systems on the coastal areas of New Jersey and Delaware. The three proposed offshore energy systems are: exploration for and development of offshore oil and gas, deepwater ports for supertankers, and floating nuclear powerplants. The 10 working papers cover: federal and state regulation of the three systems, the biological impacts, the risk of oil spills in developing oil and gas resources and operating deepwater ports, the air and water quality impacts, regional energy supply and demand considerations, the fiscal effects of developing the three systems, environmental studies, a safety analysis of floating nuclear powerplants, an analysis of fuel and waste handling of floating nuclear powerplants, and an analysis of the economic considerations of floating nuclear powerplants

  5. Modular data acquisition system and its use in gas-filled detector readout at ESRF

    Science.gov (United States)

    Sever, F.; Epaud, F.; Poncet, F.; Grave, M.; Rey-Bakaikoa, V.

    1996-09-01

    Since 1992, 18 ESRF beamlines are open to users. Although the data acquisition requirements vary a lot from one beamline to another, we are trying to implement a modular data acquisition system architecture that would fit with the maximum number of acquisition projects at ESRF. Common to all of these systems are large acquisition memories and the requirement to visualize the data during an acquisition run and to transfer them quickly after the run to safe storage. We developed a general memory API handling the acquisition memory and its organization and another library that provides calls for transferring the data over TCP/IP sockets. Interesting utility programs using these libraries are the `online display' program and the `data transfer' program. The data transfer program as well as an acquisition control program rely on our well-established `device server model', which was originally designed for the machine control system and then successfully reused in beamline control systems. In the second half of this paper, the acquisition system for a 2D gas-filled detector is presented, which is one of the first concrete examples using the proposed modular data acquisition architecture.

  6. Irradiation tests of critical components for remote handling system in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1996-03-01

    This report covers the gamma ray irradiation tests according to the Agreement of ITER R and D Task (T35) in 1994 and describes radiation hardness of the standard components for the ITER remote handling system which are categorized into the robotics (Subtask-1), the viewing system (Subtask-2) and the common components (Subtask-3). The gamma ray irradiation tests have been conducted using No.2 and No.3 cells at the cobalt building of Takasaki Establishment in JAERI. The radiation source is cobalt sixty (Co-60), and the maximum dose rate of No.2 and No.3 cells is about 1x10 6 R/h and 2x10 6 R/h, respectively. The environmental conditions of the irradiation tests are described below and all of components excepting electrical wires have been tested in the No.2 cell. [No.2 cell : Atmosphere and ambient temperature No.3 cell : Nitrogen gas and 250degC] As a whole, many of components have been irradiated up to the rated dose of around 1x10 10 rads and the following main results are obtained. The developed AC servo motor and periscope for radiation use have shown excellent durability with the radiation hardness tolerable for more than 10 9 rads. An electrical connector compatible with remote operation has also shown no degradation of electrical characteristics after the irradiation of 10 10 rads. As for polyimide insulated wires, the mechanical and electrical characteristics are not degradated after the irradiation of 10 9 rads and more radiation hardness can be expected than the anticipation. On the contrary, standard position sensors such as rotary encoder show extremely low radiation hardness and further efforts have to be made for improvements. (J.P.N.)

  7. Supply, storage and handling of elemental sulfur derived from sour gas

    International Nuclear Information System (INIS)

    Clark, P.D.; Davis, P.M.; Dowling, N.I.; Calgary Univ., AB

    2003-01-01

    This presentation reviews the supply picture for solid elemental sulfur. It also assesses methods for its storage as well as the disposal of the precursor hydrogen sulfide (H 2 S) by acid gas injection. Both above and below ground block storage is considered environmentally acceptable for sulfur storage as long as measures are taken to minimize the physical and biological breakdown of the sulfur. The preferred option is to store solid elemental sulfur underground, particularly if it is to remain in storage for a prolonged period. Future changes in supply of sulfur will likely be controlled by incremental production of sour gas and utilization of oil sands bitumen. It is expected that future sulfur production from conventional crude oil will remain static or will slowly decrease. The degree to which acid gas injection is applied to large sour gas developments in the Middle East and the Caspian regions will have a significant impact on world sulfur supply. 9 refs., 1 tab., 5 figs

  8. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Gorpani, B.

    2000-01-01

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  9. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Science.gov (United States)

    2010-10-01

    ... Protection Association, Battery March Park, Quincy, MA 02269, as follows: (1) A fuel system installed before... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the...

  10. A multi vector energy analysis for interconnected power and gas systems

    International Nuclear Information System (INIS)

    Devlin, Joseph; Li, Kang; Higgins, Paraic; Foley, Aoife

    2017-01-01

    Highlights: • The first multi vector energy system analysis for Britain and Ireland is performed. • Extreme weather driven gas demands were utilised to increase gas system stress. • GB gas system is capable of satisfying demand but restricts gas generator ramping. • Irish gas system congestion causes a 40% increase in gas generator short run cost. • Gas storage in Ireland relieved congestion reduced operational costs by 14%. - Abstract: This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

  11. Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants

    International Nuclear Information System (INIS)

    Guymon, R.H.; Casto, W.R.; Compere, E.L.

    1985-05-01

    Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment

  12. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  13. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  14. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  15. Remote technologies for handling spent fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1999-01-01

    The nuclear programme in India involves building and operating power and research reactors, production and use of isotopes, fabrication of reactor fuel, reprocessing of irradiated fuel, recovery of plutonium and uranium-233, fabrication of fuel containing plutonium-239, uranium-233, post-irradiation examination of fuel and hardware and handling solid and liquid radioactive wastes. Fuel that could be termed 'spent' in thermal reactors is a source for second generation fuel (plutonium and uranium-233). Therefore, it is only logical to extend remote techniques beyond handling fuel from thermal reactors to fuel from fast reactors, post-irradiation examination etc. Fabrication of fuel containing plutonium and uranium-233 poses challenges in view of restriction on human exposure to radiation. Hence, automation will serve as a step towards remotisation. Automated systems, both rigid and flexible (using robots) need to be developed and implemented. Accounting of fissile material handled by robots in local area networks with appropriate access codes will be possible. While dealing with all these activities, it is essential to pay attention to maintenance and repair of the facilities. Remote techniques are essential here. There are a number of commonalities in these requirements and so development of modularized subsystems, and integration of different configurations should receive attention. On a long-term basis, activities like decontamination, decommissioning of facilities and handling of waste generated have to be addressed. While robotized remote systems have to be designed for existing facilities, future designs of facilities should take into account total operation with robotic remote systems. (author)

  16. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  17. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  18. Design requirements and performance requirements for reactor fuel recycle manipulator systems

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1975-01-01

    The development of a new generation of remote handling devices for remote production work in support of reactor fuel recycle systems is discussed. These devices require greater mobility, speed and visual capability than remote handling systems used in research activities. An upgraded manipulator system proposed for a High-Temperature Gas-Cooled Reactor fuel refabrication facility is described. Design and performance criteria for the manipulators, cranes, and TV cameras in the proposed system are enumerated

  19. National safeguards system operations at a bulk-handling facility

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The presentation centers on the State System of Accounting and Control (SSAC) for bulk-handling facilities in the licenses sector of the US nuclear community. Details of those material control and accounting measures dealing with the national safeguards program are discussed in Session 6a. The concept and role of the Fundamental Nuclear Material Control (FNMC) Plan are discussed with the participants. In Session 6b, the lecture focusses on the international safeguards program of the US SSAC. The relationship of the national and international requirements is discussed as they relate to the IAEA INFCIRC/153 document. The purpose of this session is to enable participants to: (1) understand the basic MC and A elements in an SSAC; (2) understand which MC and A elements serve the country's national interests and those that serve IAEA safeguards

  20. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.

    2012-01-01

    Highlights: → A challenging issue in LCA is how to account for co-products' environmental burdens. → The two most commonly used procedures are system expansion and allocation. → System expansion appears to be more appropriate than allocation. → Indirect land use change is a consequence of diverting molasses from feed to fuel. → The inclusion of land use change worsens the GHG balance of molasses ethanol. -- Abstract: This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use change (ILUC) is a consequence of diverting molasses from feed to fuel, system expansion is the most adequate method when the purpose of the LCA is to support decision makers in weighing the options and consequences. As shown in the sensitivity analysis, an addition of carbon emissions from ILUC worsens the GHG balance of ethanol, with deforestation being a worst-case scenario where the fuel is no longer a net carbon saver but carbon emitter.

  1. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff.

    Science.gov (United States)

    Gurusamy, Kurinchi Selvan; Best, Lawrence Mj; Tanguay, Cynthia; Lennan, Elaine; Korva, Mika; Bussières, Jean-François

    2018-03-27

    Occupational exposure to hazardous drugs can decrease fertility and result in miscarriages, stillbirths, and cancers in healthcare staff. Several recommended practices aim to reduce this exposure, including protective clothing, gloves, and biological safety cabinets ('safe handling'). There is significant uncertainty as to whether using closed-system drug-transfer devices (CSTD) in addition to safe handling decreases the contamination and risk of staff exposure to infusional hazardous drugs compared to safe handling alone. To assess the effects of closed-system drug-transfer of infusional hazardous drugs plus safe handling versus safe handling alone for reducing staff exposure to infusional hazardous drugs and risk of staff contamination. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, OSH-UPDATE, CINAHL, Science Citation Index Expanded, economic evaluation databases, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov to October 2017. We included comparative studies of any study design (irrespective of language, blinding, or publication status) that compared CSTD plus safe handling versus safe handling alone for infusional hazardous drugs. Two review authors independently identified trials and extracted data. We calculated the risk ratio (RR) and mean difference (MD) with 95% confidence intervals (CI) using both fixed-effect and random-effects models. We assessed risk of bias according to the risk of bias in non-randomised studies of interventions (ROBINS-I) tool, used an intracluster correlation coefficient of 0.10, and we assessed the quality of the evidence using GRADE. We included 23 observational cluster studies (358 hospitals) in this review. We did not find any randomised controlled trials or formal economic evaluations. In 21 studies, the people who used the intervention (CSTD plus safe handling) and control (safe handling alone) were pharmacists or pharmacy

  2. Fatigue life analysis of cracked gas receiver of emergency cut-off system in gas gathering station

    Science.gov (United States)

    Hu, Junzhi; Zhou, Jiyong; Li, Siyuan

    2017-06-01

    Small-scale air compressor and gas receiver are used as the driving gas of the emergency cut-off system in gas gathering station. Operation of block valve is ensured by starting and stopping compressor automatically. The frequent start-stop of compressor and the pressure fluctuation pose a threat to the service life of gas receiver, and then affect normal operation of the emergency cut-off system and security of gas gathering station. In this paper, the fatigue life of a pressure vessel with axial semi-elliptical surface crack in the inner wall is analyzed under the varying pressure by means of the theory of fracture mechanics. The influences of the amplitude of pressure fluctuation and the initial crack size on the residual life of gas receiver are discussed. It provides a basis for setting the working parameters of gas receiver of emergency cut-off system and determining the maintenance cycle.

  3. New System For Tokamak T-10 Experimental Data Acquisition, Data Handling And Remote Access

    International Nuclear Information System (INIS)

    Sokolov, M. M.; Igonkina, G. B.; Koutcherenko, I. Yu.; Nurov, D. N.

    2008-01-01

    For carrying out the experiments on nuclear fusion devices in the Institute of Nuclear Fusion, Moscow, a system for experimental data acquisition, data handling and remote access (further 'DAS-T10') was developed and has been used in the Institute since the year 2000. The DAS-T10 maintains the whole cycle of experimental data handling: from configuration of data measuring equipment and acquisition of raw data from the fusion device (the Device), to presentation of math-processed data and support of the experiment data archive. The DAS-T10 provides facilities for the researchers to access the data both at early stages of an experiment and well afterwards, locally from within the experiment network and remotely over the Internet.The DAS-T10 is undergoing a modernization since the year 2007. The new version of the DAS-T10 will accommodate to modern data measuring equipment and will implement improved architectural solutions. The innovations will allow the DAS-T10 to produce and handle larger amounts of experimental data, thus providing the opportunities to intensify and extend the fusion researches. The new features of the DAS-T10 along with the existing design principles are reviewed in this paper

  4. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  5. Radioactive gas and hydrogen removal after a LOCE at the LOFT Facility

    International Nuclear Information System (INIS)

    McCormick-Barger, J.W.; Sumpter, K.C.

    1979-01-01

    The use of a silver-zeolite halogen adsorber placed in series with a hydrogen catalytic recombiner and a cryogenic noble gas adsorber assembly constitutes a waste gas processing system (WGPS) capable of handling hydrogen and fission product gases following a Loss-of-Coolant Experiment (LOCE). This paper describes: the types and quantities of gases expected to be found at the facility after a failed-fuel LOCE; the purpose of the WGPS; and the general configuration and expected decontamination factors associated with the LOFT WGPS

  6. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  7. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  8. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  9. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  10. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  11. Pressure regulation system for modern gas-filled detectors

    International Nuclear Information System (INIS)

    McDonald, R.J.

    1986-08-01

    A gas pressure and flow regulation system has been designed and constructed to service a wide variety of gas-filled detectors which operate at pressures of ∼2 to 1000 Torr and flow rate of ∼5 to 200 standard cubic centimeters per minute (sccm). Pressure regulation is done at the detector input by a pressure transducer linked to a solenoid leak valve via an electronic control system. Gas flow is controlled via a mechanical leak valve at the detector output. Interchangeable transducers, flowmeters, and leak valves allow for different pressure and flow ranges. The differential pressure transducer and control system provide automatic let-up of vacuum chambers to atmospheric pressure while maintaining a controlled overpressure in the detector. The gas system is constructed on a standard 19'' rack-mounted panel from commercially available parts. Five of these systems have been built and are routinely used for both ionization chambers and position-sensitive avalanche detectors

  12. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  13. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  14. A New Approach for Handling of Micro Parts in Bulk Metal Forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, M.

    2012-01-01

    of production [1]. This can fulfill the demands for mass production and miniaturization in industries and academic communities. According to the recent studies, topics related to materials, process and simulation have been investigated intensively and well documented. Machines, forming tools and handling...... systems are critical elements to complete micro forming technology for transferring knowledge to industries and toward miniature manufacturing systems (micro factory) [2]. Since most metal forming processes are multi stage, making a new handling system with high reliability on accuracy and speed...... have been optimized or handling systems based on new concepts for gripping and releasing micro parts have been proposed. Making a handling system for micro parts made by sheet metals or foils is easier than those in bulk metal forming because parts are attached to the sheet during the forming process...

  15. Complying with US and European complaint handling requirements.

    Science.gov (United States)

    Donawa, M E

    1997-09-01

    The importance of customer complaints for providing valuable information on the use of medical devices is clearly reflected in United States (US) and European quality system requirements for handling complaints. However, there are significant differences in US and European complaint handling requirements. This article will discuss those differences and methods for ensuring compliance.

  16. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Standen, G W [AECL-Ansaldo Consortium, Cernavoda (Romania); Tiron, C; Marinescu, S [Regia Nationala de Electricitate (RENEL), Cernavoda (Romania); [Filiala Centrala Nuclearo Electrica (FCNE), Cernavoda (Romania)

    1997-12-31

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system`s safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig.

  17. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  18. Challenges in the management of gas voids in safety related systems

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M.

    2009-01-01

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through a number

  19. Challenges in the management of gas voids in safety related systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M. [Westinghouse Electric Company LLC, Pittsburgh (United States)

    2009-04-15

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through

  20. Better fuel handling system performance through improved elastomers and seals

    Energy Technology Data Exchange (ETDEWEB)

    Wensel, R G; Metcalfe, R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-12-31

    In the area of elastomers, tests have identified specific compounds that perform well in each class of CANDU service. They offer gains in service life, sometimes by factors of ten or more. Moreover, the aging characteristics of these specific compounds are being thoroughly investigated, whereas many elastomers used previously were either non-specific or their aging was unknown. In this paper the benefits of elastomer upgrading, as well as the deficiencies of current station elastomer practices, are discussed in the context of fuel handling equipment. Guidelines for procurement, storage, handling and condition monitoring of elastomer seals are outlined. (author). 3 figs.

  1. Better fuel handling system performance through improved elastomers and seals

    International Nuclear Information System (INIS)

    Wensel, R.G.; Metcalfe, R.

    1996-01-01

    In the area of elastomers, tests have identified specific compounds that perform well in each class of CANDU service. They offer gains in service life, sometimes by factors of ten or more. Moreover, the aging characteristics of these specific compounds are being thoroughly investigated, whereas many elastomers used previously were either non-specific or their aging was unknown. In this paper the benefits of elastomer upgrading, as well as the deficiencies of current station elastomer practices, are discussed in the context of fuel handling equipment. Guidelines for procurement, storage, handling and condition monitoring of elastomer seals are outlined. (author). 3 figs

  2. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  3. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  4. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  5. Remotely-operated equipment for inspection, measurement and handling

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2008-01-01

    As part of the application of ALARA radiation dose reduction principles at CERN, inspection, measurement and handling interventions in controlled areas are being studied in detail. A number of activities which could be carried out as remote operations have already been identified and equipment is being developed. Example applications include visual inspection to check for ice formation on LHC components or water leaks, measurement of radiation levels before allowing personnel access, measurement of collimator or magnet alignment, visual inspection or measurements before fire service access in the event of fire, gas leak or oxygen deficiency. For these applications, a modular monorail train, TIM, has been developed with inspection and measurement wagons. In addition TIM provides traction, power and data communication for lifting and handling units such as the remote collimator exchange module and vision for other remotely operated units such as the TAN detector exchange mini-cranes. This paper describes the eq...

  6. LHCB: Non-POSIX File System for the LHCB Online Event Handling

    CERN Multimedia

    Garnier, J-C; Cherukuwada, S S

    2010-01-01

    LHCb aims to use its O(20000) CPU cores in the High Level Trigger (HLT) and its 120 TB Online storage system for data reprocessing during LHC shutdown periods. These periods can last between a few days and several weeks during the winter shutdown or even only a few hours during beam interfill gaps. These jobs run on files which are staged in from tape storage to the local storage buffer. The result are again one or more files. Efficient file writing and reading is essential for the performance of the system. Rather than using a traditional shared filesystem such as NFS or CIFS we have implemented a custom, light-weight, non-Posix file-system for the handling of these files. Streaming this filesystem for the data-access allows to obtain high performance, while at the same time keep the resource consumption low and add nice features not found in NFS such as high-availability, transparent failover of the read and write service. The writing part of this file-system is in successful use for the Online, real-time w...

  7. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  8. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  9. Five years of tritium handling experience at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1989-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tritium systems required for tokamak fusion reactors. TSTA currently consists of systems for evacuating reactor exhaust gas with compound cryopumps; for removing impurities from plasma exhaust gas and recovering the chemically-combined tritium; for separating the isotopes of hydrogen; for transfer pumping; or storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and tritium removal from effluent streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. TSTA has developed a Quality Assurance program for preparing and controlling the documentation of the procedures required for the design, purchase, and operation of the tritium systems. Operational experience under normal, abnormal, and emergency conditions is presented. One unique aspect of operations at TSTA is that the design personnel for the TSTA systems are also part of the operating personnel. This has allowed for the relatively smooth transition from design to operations. TSTA has been operated initially as a research facility. As the system is better defined, operations are proceeding toward production modes. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. The integration of these requirements into TSTA operations is discussed. 4 refs., 3 figs., 3 tabs

  10. Handling system for nuclear fuel cans to a fuel pellet feeder

    International Nuclear Information System (INIS)

    Vere, B.; Mathevon, P.

    1985-01-01

    The handling system comprises a first array of conveyors which takes a batch of casings from a delivery rack, alters the spacing between the casings, and delivers them to a vibrating table feeder, a second array of conveyors which readjusts the spacing between casing to its initial value and transfers the casings to a removal rack, and automatic and synchronized control means for ensuring the displacements of casings always in the same direction. The increase of spacing between casings can be used, before feeding, to allow them to be weighed one after the other, and after feeding, for cleaning the end part of fuel cans [fr

  11. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  12. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  13. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  14. Robotic requirements for plutonium handling automation

    International Nuclear Information System (INIS)

    Heywood, A.C.; Armantrout, G.A.

    1990-01-01

    While over 200,000 robots are in manufacturing service worldwide, only two are in use for the handling of plutonium in a glovebox. The difficulties of applying robotics to the glovebox environment include limited access for service and maintenance, radiation damage to electronics and insulators, and abrasion damage to bearings and sliding surfaces. The limited volume of the glovebox environment, and the need to handle heavy workloads, and the need to maximize work volume dictates the use of an overhead gantry system. This paper discusses how the application of such a system will require a robot with extensive safety features, a high degree of flexibility to perform a variety of tasks, and high reliability coupled with an easily serviced design. Substantial challenges exist in control system design, sensor and operator integration, and programming to achieve these goals

  15. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  16. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    International Nuclear Information System (INIS)

    Standen, G.W.; Tiron, C.; Marinescu, S.

    1996-01-01

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system's safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig

  17. A versatile data handling system for nuclear physics experiments based on PDP 11/03 micro-computers

    International Nuclear Information System (INIS)

    Raaf, A.J. de

    1979-01-01

    A reliable and low cost data handling system for nuclear physics experiments is described. It is based on two PDP 11/03 micro-computers together with Gec-Elliott CAMAC equipment. For the acquisition of the experimental data a fast system has been designed. It consists of a controller for four ADCs together with an intelligent 38k MOS memory with a word size of 24 bits. (Auth.)

  18. 33 CFR 127.109 - Lighting systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  19. ECG Sensor Verification System with Mean-Interval Algorithm for Handling Sport Issue

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2016-01-01

    Full Text Available With the development of biometric verification, we proposed a new algorithm and personal mobile sensor card system for ECG verification. The proposed new mean-interval approach can identify the user quickly with high accuracy and consumes a small amount of flash memory in the microprocessor. The new framework of the mobile card system makes ECG verification become a feasible application to overcome the issues of a centralized database. For a fair and comprehensive evaluation, the experimental results have been tested on public MIT-BIH ECG databases and our circuit system; they confirm that the proposed scheme is able to provide excellent accuracy and low complexity. Moreover, we also proposed a multiple-state solution to handle the heat rate changes of sports problem. It should be the first to address the issue of sports in ECG verification.

  20. 48 CFR 1852.211-70 - Packaging, handling, and transportation.

    Science.gov (United States)

    2010-10-01

    ... transportation. 1852.211-70 Section 1852.211-70 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND... and Clauses 1852.211-70 Packaging, handling, and transportation. As prescribed in 1811.404-70, insert the following clause: Packaging, Handling, and Transportation (SEPT 2005) (a) The Contractor shall...

  1. Modular data acquisition system and its use in gas-filled detector readout at ESRF

    International Nuclear Information System (INIS)

    Sever, F.; Epaud, F.; Poncet, F.; Grave, M.; Rey-Bakaikoa, V.

    1996-01-01

    Since 1992, 18 ESRF beamlines are open to users. Although the data acquisition requirements vary a lot from one beamline to another, we are trying to implement a modular data acquisition system architecture that would fit with the maximum number of acquisition projects at ESRF. Common to all of these systems are large acquisition memories and the requirement to visualize the data during an acquisition run and to transfer them quickly after the run to safe storage. We developed a general memory API handling the acquisition memory and its organization and another library that provides calls for transferring the data over TCP/IP sockets. Interesting utility programs using these libraries are the open-quote online display close-quote program and the open-quote data transfer close-quote program. The data transfer program as well as an acquisition control program rely on our well-established open-quote device server model close-quote, which was originally designed for the machine control system and then successfully reused in beamline control systems. In the second half of this paper, the acquisition system for a 2D gas-filled detector is presented, which is one of the first concrete examples using the proposed modular data acquisition architecture. copyright 1996 American Institute of Physics

  2. Operation and management of aging gas distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    McNorgan, J.D. (Southern California Gas Co., Los Angeles, CA (United States))

    1993-05-01

    Southern California Gas Company, transports billions of cubic feet of natural gas through large-diameter, high-pressure transmission lines, across hundreds of miles of varying terrain, to satisfy the needs of over four and a half million customers. Operating an aging gas system can be truly expensive. Repair costs are very high. Recent figures experienced by our company show that it cost over $800 to repair a main leak, $400 to replace a service, and over $40 a foot to replace even small sized mains. A hidden cost is the effect of the physical limitations imposed by an aging system. It could be under-sized, or limited to a low pressure, thus restricting the volume of gas that can be delivered. Additionally there is the potential loss of valuable gas through leaks or blow downs when making repairs or replacements, and the damage it could do to the environment. For some years Southern California Gas Company has had on-going special and routine pipe replacement programs. The special pipe replacement program is driven primarily to increase the safety of the system, while at the same time improving reliability of service to the customers and reducing their total costs.

  3. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  4. Opec's fratricidal gas

    International Nuclear Information System (INIS)

    Stauffer, T.

    1997-01-01

    The growing dependence of the world economy on natural gas has presented political problems to the OPEC states in terms of how to handle such exports within the oil quotes agreed between members. The impact in terms of relative gain or loss is presented for eleven OPEC members. (UK)

  5. Optimized production of vehicle gas - an environmental and energy system analyses of Soederaasens biogas plant.; Systemoptimerad produktion av fordonsgas - En miljoe- och energisystemanalys av Soederaasens biogasanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael; Ekman, Anna; Boerjesson, Paal

    2009-06-15

    In this study, an environmental and energy system analysis for a specific biogas plant is presented as well as suggestions and cost calculations for measures that could be implemented in order to optimise the system. The overarching purpose is also to present a model for similar studies of specific biogas plants. The analysis performed includes direct effects such as use of energy and emissions from the production of biogas, upgrading to vehicle gas, transport of substrate and digestate and storage and handling of digestate. Furthermore, indirect effects such as reduced methane leaching from conventional storage of manure, replacement of mineral fertilizers with digestate etc. are included as well. The energy balance for production and distribution of vehicle gas from Soederaasens biogas plant is calculated to 5,5 which could be compared to the energy balance for ethanol from wheat which is normally between 2 and 3. The greenhouse gas emissions are 16 gram CO{sub 2}-ekv./kWh, approximately 95 % lower compared to gasoline. In comparison, ethanol from wheat and RME reduce the emissions with some 80 % and 65 % respectively. The result is mainly affected of the methane leakage from the upgrading plant, reduced emissions of N{sub 2}O when digestate replaces mineral fertilizers and the assumptions made of how the electricity used in the system was produced. Regarding eutrophication, the emissions are calculated to 6 gram NO{sub 3}--ekv./kWh, primarily originating from storage and handling of digestate, which is somewhat lower than the reported emissions from production of ethanol and RME. Covering the digestate storages and produce process heat with wood chips, measures estimated to be cost neutral or even profitable for the biogas producer, is calculated to reduce the emissions of greenhouse gases to -13 gram/kWh. If all measures identified would be implemented, the emissions are reduced with 120 % with an extra cost of some 0.01 SEK/kWh vehicle gas

  6. Engineering Support for Handling Controller Conflicts in Energy Storage Systems Applications

    Directory of Open Access Journals (Sweden)

    Claudia Zanabria

    2017-10-01

    Full Text Available Energy storage systems will play a major role in the decarbonization of future sustainable electric power systems, allowing a high penetration of distributed renewable energy sources and contributing to the distribution network stability and reliability. To accomplish this, a storage system is required to provide multiple services such as self-consumption, grid support, peak-shaving, etc. The simultaneous activation of controllers operation may lead to conflicts, as a consequence the execution of committed services is not guaranteed. This paper presents and discusses a solution to the exposed issue by developing an engineering support approach to semi-automatically detect and handle conflicts for multi-usage storage systems applications. To accomplish that an ontology is developed and exploited by model-driven engineering mechanisms. The proposed approach is evaluated by implementing a use case example, where detection of conflicts is automatically done at an early design stage. Besides this, exploitable source code for conflicts resolution is generated and used during the design and prototype stages of controllers development. Thus, the proposed engineering support enhances the design and development of storage system controllers, especially for multi-usage applications.

  7. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  8. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  9. Z662-96: oil and gas pipeline systems; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-12-31

    This Standard is part of the pipeline systems and materials segment of the Canadian Standards Association (CSA)`s Transportation program. It covers the design, construction, operation and maintenance of oil and gas industry pipeline systems that carry (1) liquid hydrocarbons, including crude oil, multiphase fluids, condensate, liquid petroleum products, natural gas liquids, and liquefied petroleum gas, (2) oilfield water, (3) oilfield steam, (4) carbon dioxide used in oilfield enhanced recovery schemes, or (5) natural gas, manufactured gas, or synthetic gas. tabs. figs.

  10. 33 CFR 127.705 - Security systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...

  11. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  12. Close loop gas recirculation and purification system for INO RPC system

    International Nuclear Information System (INIS)

    Joshi, A.V.; Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.

    2013-01-01

    Close loop gas recirculation system (CLS) is designed to overcome problems. The present system is a pilot unit catering to about 12 RPC detectors of 2m ÃâĂŤ 2m size. The gas mixture is prepared in required concentration, in-situ, and circulated throughout the loop at controlled flow rates. The pressure band is adjusted to be within 20mm of water column. A Programmable Logic Controller (PLC) keeps track of pressure and flow rates, process sequence and safety conditions. The loss of gas is continuously monitored to assess effectiveness of CLS. The concentration of gas components in the mixtures is monitored by sampling through Residual Gas Analyzer (RGA). The RPC performance parameters, such as leakage current, noise rate, efficiency and cross-talk are monitored vis-a-vis CLS parameters. It has been found that RPC parameters respond in coordination with CLS functioning. Room pressure and temperature also seem to have influence on both of them

  13. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  14. Gas System 2013 at a glance

    International Nuclear Information System (INIS)

    2014-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2013: Total Consumption 2013 vs 2012: +1.4% gross consumption, -2% climate adjusted. Public Distribution Consumption 2013 vs 2012: +3.6% gross consumption, -1.9% climate adjusted. Industrial Customers Consumption 2013 vs 2012: -2.4% gross consumption. Power Generation: -50% since 2011. Industrial Customers 2012 vs 2013 (excluding power generation): +2%. Transported Quantities by GRTgaz 2013 vs 2012: Stability (-0.1%). LNG imports are down (-19%) compensated by pipe imports (+5%). Increasing outlet to the South-West, Congestion on North-South Link. Price spread between North and South. In 2013, gas gross consumption rose by 1.4 % on GRTgaz network, mainly because of colder climatic conditions, especially during the first half of the year, compared to 2012. Consumption of industrial customers connected to GRTgaz increased by 2 % (excluding power generation), mainly driven by sectors like Refineries, Chemistry, Glass and Materials. In 2013, GRTgaz transmission network ran under unusual gas flow conditions, especially with a continuing decrease of LNG imports (-19 %) and a low level in underground storages (-8 %)

  15. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    Given the abundant availability of gas and the significant installed capacity of the electricity from Gas Turbine Power Systems; effective maintenance of Gas Turbine Power Plants in Nigeria could be the panacea for achieving regular power generation and supply. The study identified environmental impact on the machines, ...

  16. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  17. Hazard Control Extensions in a COTS Based Data Handling System

    Science.gov (United States)

    Vogel, Torsten; Rakers, Sven; Gronowski, Matthias; Schneegans, Joachim

    2011-08-01

    EML is an electromagnetic levitator for containerless processing of conductive samples on the International Space Station. This material sciences experiment is running in the European Drawer Rack (EDR) facility. The objective of this experiment is to gain insight into the parameters of liquid metal samples and their crystallisation processes without the influence of container walls. To this end the samples are electromagnetically positioned in a coil system and then heated up beyond their melting point in an ultraclean environment.The EML programme is currently under development by Astrium Space Transportation in Friedrichshafen and Bremen; jointly funded by ESA and DLR (on behalf of BMWi, contract 50WP0808). EML consists of four main modules listed in Table 1. The paper focuses mainly on the architecture and design of the ECM module and its contribution to a safe operation of the experiment. The ECM is a computer system that integrates the power supply to the EML experiment, control functions and video handling and compression features. Experiment control is performed by either telecommand or the execution of predefined experiment scripts.

  18. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  19. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsubota, T. [Tokyo KOATSU Co., Ltd., 1-9-8 Shibuya, Shibuyaku, Tokyo 150-0002 (Japan)

    2016-06-15

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  20. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrecht, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  1. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  2. 33 CFR 127.107 - Electrical power systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one...

  3. Antipollution system to remove nitrogen dioxide gas

    Science.gov (United States)

    Metzler, A. J.; Slough, J. W.

    1971-01-01

    Gas phase reaction system using anhydrous ammonia removes nitrogen dioxide. System consists of ammonia injection and mixing section, reaction section /reactor/, and scrubber section. All sections are contained in system ducting.

  4. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  5. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  6. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    OpenAIRE

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object...

  7. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  8. Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER

    International Nuclear Information System (INIS)

    Rosa, Elena V.; Rios, Luis; Queral, Vicente

    2013-01-01

    Highlights: ► UPP interface requirements in the plug RH extraction/insertion for ITER. ► Analyze of maximum misalignment between port duct and port cell. ► Friction study between plug skids and VV port/ramp rails during the plug transfer. ► Definition of the tolerance in the plug skids to avoid the plug jamming. ► Concepts of gripping tools based on one gripping point and avoiding force feedback. -- Abstract: EFDA finances a training programme called Goal Oriented Training Programme for Remote Handling (GOT RH), whose goal is to train engineers in Remote Handling for ITER. As part of this training programme, the conceptual design of the mechanical interface between Upper Port Plug (UPP) and Cask and Plug Remote Handling System (CPRHS) as well as the conceptual design of the needed tools for UPP Remote Handling is carried out. The paper presents the conceptual design of the UPP/Gripping Tool Interface. This includes the conceptual design of the gripping tool for introducing/removing the UPP in/from the ITER port and the mechanical features on both sides of the UPP/Gripping Tool Interface (e.g. alignment features, mechanical connectors, fasteners). In order to develop the design of the interface between UPP and CPRHS it is necessary to first identify the functional requirements of the Transfer Cask System (TCS) and the CPRHS, such as required degrees of freedom (DoF), required performances of system, geometrical constraints, loading conditions, alignment requirements, RAMI requirements. These requirements are the input data for the design of the interface between UPP and gripping tool and some of them are also described in the paper

  9. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  10. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Burklin, C.E.; Campbell, L.M.; Campbell, M.V.

    1992-01-01

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO 2 ) emission per unit of energy produced. However, the contribution of atmospheric methane (CH 4 ) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  11. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  12. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  13. The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties

    Directory of Open Access Journals (Sweden)

    Sheridan Few

    2017-01-01

    Full Text Available There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model, to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energy system cost is relatively small (up to 0.4%, and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. We conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.

  14. Recent fuel handling experience in Canada

    International Nuclear Information System (INIS)

    Welch, A.C.

    1991-01-01

    For many years, good operation of the fuel handling system at Ontario Hydro's nuclear stations has been taken for granted with the unavailability of the station arising from fuel handling system-related problems usually contributing less than one percent of the total unavailability of the stations. While the situation at the newer Hydro stations continues generally to be good (with the specific exception of some units at Pickering B) some specific and some general problems have caused significant loss of availability at the older plants (Pickering A and Bruce A). Generally the experience at the 600 MWe units in Canada has also continued to be good with Point Lepreau leading the world in availability. As a result of working to correct identified deficiencies, there were some changes for the better as some items of equipment that were a chronic source of trouble were replaced with improved components. In addition, the fuel handling system has been used three times as a delivery system for large-scale non destructive examination of the pressure tubes, twice at Bruce and once at Pickering and performing these inspections this way has saved many days of reactor downtime. Under COG there are several programs to develop improved versions of some of the main assemblies of the fuelling machine head. This paper will generally cover the events relating to Pickering in more detail but will describe the problems with the Bruce Fuelling Machine Bridges since the 600 MW 1P stations have a bridge drive arrangement that is somewhat similar to Bruce

  15. The transport system for natural gas

    International Nuclear Information System (INIS)

    Bjoerndalen, Joergen; Nese, Gjermund

    2003-01-01

    In 2002, the actors on the Norwegian shelf in cooperation with the authorities established a new regime for sale and transport of gas. This article deals with some issues of interest relating to this new regime. The transport system for natural gas shows clear signs of being a natural monopoly, which makes it difficult to use the system efficiently. Two main problems of the current way of organizing are pointed out: (1) lack of price and market signals in capacity allocation and (2) unclear incentive effects. The article indicates a possible solution based on the form of organization that is used in the power market

  16. Physical aspects of the US oil and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.

    1979-11-01

    The purpose of this report is to describe the physical operations which take place within the petroleum and natural gas industries of the US. This information was the basis for the overall network design and the detailed data requirements for the Emergency Management Information System (EEMIS) of the US Department of Energy (DOE). Since EEMIS represents the entire oil and gas systems this report can be used to obtain a basic understanding of the entire energy system, from production to consumption, that is composed of the US oil and gas industries.

  17. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  18. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  19. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-01-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  20. The multiple gas-liquid subsea separation system: development and qualification of a novel solution for deep water field production

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie; Butin, Nicolas; Shaiek, Sadia; Hallot, Raymond [Saipem S.p.A., Milano (Italy)

    2012-07-01

    Subsea processing is more and more considered as a viable solution for the development of deep and ultra deep water fields. SAIPEM has developed a deep water gas separation and liquid boosting system, based on its proprietary 'Multi pipe' separator concept, providing a good flexibility in handling a wide range of steady and un-steady multiphase input streams using a relatively simple mechanical arrangement. The Multi pipe Concept features an array of vertical pipes for gas/liquid separation by gravity and adequate liquid hold up volumes. The operating principle is the same as standard gravity vessels. Specific inlet pipe arrangements have been worked out to enhance the separation efficiency and internals can be implemented to further optimize the performances. The limited diameter and wall thickness of the vertical pipes make the Multi pipe Concept particularly suited for deep and ultra-deep water applications and/or high pressure conditions where the selection of a single separator vessel could lead to unpractical wall thicknesses. In most cases, standard API or ASME pipes can be utilized for the Multi pipe Separator, thus enabling conventional fabrication methods, and in turn reducing cost and delivery time and opening opportunities for local content. The qualification testing program has seen two subsequent phases. The first qualification phase aimed at the confirmation of the hydrodynamic behavior of the system. In particular, the homogeneous distribution of the multiphase stream into the pipes and the stability of the liquid levels under un-steady inlet conditions were continuously assessed during the tests. This first qualification phase gave confidence in the viability of the Multi pipe and in its good hydrodynamic behavior under the different inlet conditions that can be encountered during field production. It proved that, having the same liquid level in all the separator pipes, whatever the inlet conditions are, the Multi pipe separator can be