WorldWideScience

Sample records for gas emissions related

  1. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  2. Total greenhouse gas emissions related to the Dutch crop production system

    NARCIS (Netherlands)

    Kramer, K.J.; Moll, H.C.; Nonhebel, S.

    1999-01-01

    This article discusses the greenhouse gas emissions (CO2, CH4, N2O) related to Dutch agricultural crop production. Emissions occur during agricultural processes (direct emissions) as well as in the life cycle of the required inputs (indirect emissions). An integrated approach assesses the total

  3. Greenhouse gas emissions related to agriculture and land-use practices

    International Nuclear Information System (INIS)

    Burke, L.M.; Lashof, D.A.

    1990-01-01

    This paper reports on the effects of increasing trace gas concentrations and concomitant climate change on agriculture which are likely to be substantial. With cropland and pasture now covering 2 , CH 4 , and N 2 O. Land clearing for agriculture and other purposes is responsible for 10 to 30% of total net CO 2 emissions; the rest is due to fossil fuel combustion. In addition, intentional burning of agricultural wastes, grasslands, and forests makes a significant contribution to global emissions of CO, CH 4 , NO x and N 2 O. Methane emissions from anaerobic respiration in rice (Oryza sativa L.) paddies and domestic animal remains account for 30 to 50% of the global total, making agriculture the dominant anthropogenic source of this gas. The amount of N 2 O emitted as a result of N fertilizer applications is highly uncertain, but may be on the order of 10% of total N 2 O emissions. Future agricultural greenhouse gas emissions will be affected by population growth, economic development, and agricultural practices. Greenhouse gas emissions are likely to increase substantially in the future unless steps are taken to control them. Investigating potential approaches to reducing these emissions while expanding production presents a major challenge to the agricultural research community

  4. Flue gas emissions from gas-fired cogeneration units <25 MWe

    International Nuclear Information System (INIS)

    Nielsen, M.; Wit, J. de

    1997-01-01

    A total of 900 MW e gas driven combined heat and power (CHP) has now been established in Denmark based on gas engines and gas turbine units less than 25 MW e each. Of the 900 MW e approx. 750 MW e are based on gas engines. Biogas is used as fuel for some 32 MW e of these. Emission limits for NO x and CO are 650 mg/nm 3 (ref. 5% O 2 and electrical efficiency 30% LCV). There is at present no limit for unburned hydrocarbons (UHC) for gas engines or gas turbines. The average emission of unburned hydrocarbons for the Danish gas engine driven CHP units is equal to approx. 3,5% of the fuel used. It is the target of this report to provide the basis for evaluating the planned UHC limit and possible adjustments of the present limit for NO x emission. The average NO x emission from gas turbines slightly exceeds the NO x emission from gas engines. This is due to a number of older gas turbines. Modern gas turbines can achieve significantly lower NO x emission compared to engines. The NO x emission from biogas driven engines is significantly higher than that of natural gas driven units. This is mainly due to NO x -unfavourable engine settings and the use of older units, as there are no legislation concerning NO x emission for the majority of these biogas driven units. The emission of CO and UHC is lower from gas turbines than from gas engines. The NO x emission can be reduced by SCR Catalyst systems. In Denmark 3 gas engine installations use this commercially available technology. Oxidation catalyst for UHC reduction at modern gas engine installations has proven relatively unsuccesful in Denmark until now. Only limited reductions are achieved and many catalysts are toxificated in less than 100 hours of operation. However, long-term field testing of promising UHC reducing catalysts is now being made. UHC reduction by incineration is at the prototype stage. No such plant has yet been set up in Denmark. (Abstract Truncated)

  5. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  6. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  7. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  8. Greenhouse gas emissions trading and project-based mechanisms. Proceedings - CATEP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Greenhouse gas emissions trading and project-based mechanisms for greenhouse gas reduction are emerging market-based instruments for climate change policy. This book presents a selection of papers from an international workshop co-sponsored by the OECD and Concerted Action on Tradeable Emissions Permits (CATEP), to discuss key research and policy issues relating to the design and implementation of these instruments. The papers cover the experience of developing and transition countries with greenhouse gas emissions trading and project-based mechanisms. In addition, the papers examine the use of tradeable permits in policy mixes and harmonisation of emissions trading schemes, as well as transition issues relating to greenhouse gas emissions trading markets.

  9. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  10. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  11. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  12. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  13. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Lenox, Carol; Kaplan, P. Ozge

    2016-01-01

    With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher. - Highlights: • MARKAL analysis of energy system GHG emissions reduction scenarios. • High methane leakage can eliminate the benefit that natural gas brings over coal. • A robust GHG reduction strategy takes into account upstream emissions for all fuels.

  14. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential.

    Science.gov (United States)

    Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning

    2018-06-01

    Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  16. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  17. Greenhouse gas emissions related to landscape elements in the subarctic environment at Churchill, Manitoba

    International Nuclear Information System (INIS)

    Churchill, J.; Tenuta, M.; Bello, R.; Papakyriakou, T.

    2006-01-01

    The relationship between greenhouse gas (GHG) emissions, landscape elements and major environmental regulators was studied. The hydrologic regimes of the Hudson Bay Lowlands are expected to change along with the extent of permafrost and composition of vegetation due to increased levels of GHGs associated with global warming. Two transects were created at a Polygonized-Peat Plateau (PPP) and a Spruce Forest (SF) site in 2005. A sub-set on 4 dominant landscape elements of each transect were used to estimate emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitric oxide (N 2 O) on a weekly basis from June to August. In order to obtain a good sampling representation of environmental conditions and of the gradients in plant communities, the entire transect at PPP was sampled monthly. In order to examine the role of soil conditions on the production and consumption of GHG leading to surface fluxes, soil gas samplers were installed at 2 depths at both sites. N 2 O production and consumption were found to be inconsequential at both sites. However, high methane emissions were observed when the volumetric moisture content (VMC) rose higher than 80 per cent at the edge of the ponds. Methane consumption was found to be related to low VMC values (20-40 per cent) for the tops of peat polygons. Soil atmosphere concentrations for CO 2 and CH 4 at PPP were typically much higher at depths of 23-32 cm compared to depths of 5-9 cm. Some of the wettest landscape elements had very high CH 4 content, but had no corresponding CH 4 flux from the soil surface, suggesting that the gas was consumed under aerobic conditions at the soil surface. It was concluded that GHG emissions from both sites were altered by both landscape elements and environmental regulators such as temperature and moisture. Future work will focus on identifying the association of these relationships to processes responsible for GHG emissions in subarctic environments. The impact of global warming on these

  18. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  19. Are greenhouse gas emissions and cognitive skills related? Cross-country evidence.

    Science.gov (United States)

    Omanbayev, Bekhzod; Salahodjaev, Raufhon; Lynn, Richard

    2018-01-01

    Are greenhouse gas emissions (GHG) and cognitive skills (CS) related? We attempt to answer this question by exploring this relationship, using cross-country data for 150 countries, for the period 1997-2012. After controlling for the level of economic development, quality of political regimes, population size and a number of other controls, we document that CS robustly predict GHG. In particular, when CS at a national level increase by one standard deviation, the average annual rate of air pollution changes by nearly 1.7% (slightly less than one half of a standard deviation). This significance holds for a number of robustness checks. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  1. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  2. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Weld County Colorado using δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making

  3. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  4. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    Energy Technology Data Exchange (ETDEWEB)

    Vanhala, Pekka, E-mail: pekka.vanhala@ymparisto.fi [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Bergström, Irina [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Haaspuro, Tiina [University of Helsinki, Department of Environmental Sciences, P.O. Box 65, Viikinkaari 1, 00014 Helsinki (Finland); Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland)

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO{sub 2} eq km{sup −2} and 2.8 t CO{sub 2} eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO{sub 2} eq km{sup −2} and 9.2 t CO{sub 2} eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality.

  5. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  6. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    Science.gov (United States)

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  7. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  8. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  9. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  10. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  11. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.

    2013-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements

  12. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  13. Greenhouse gas emission reduction options and strategies

    International Nuclear Information System (INIS)

    Kane, R.L.

    1994-01-01

    This paper describes the energy-related components of the Clinton Administration's Climate Change Action Plan. The Action Plan was formulated to meet the Administration's commitment of returning US emissions of greenhouse gases to 1990 levels by the year 2000. The paper discusses what the energy industry and energy consumers will be requested to do in order to meet this commitment. Several themes addressed in this paper include: (1) the largely voluntary nature of the actions identified in the Action Plan; (2) consideration of diverse opportunities to reduce emissions; (3) the outlook for US greenhouse gas emissions after 2000; and (4) actions involved for speeding the utilization of new, energy efficient technologies both domestically and abroad. The value of employing a diverse set of activities and the important role of technology improvements will be explored further in section 10 of this volume: ''Greenhouse Gas Emission Mitigation Strategies.'' Papers presented there include the utilization of more efficient fossil energy technologies, energy conservation and demand-side management programs, renewable energy and reforestation, and carbon dioxide capture and disposal

  14. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  15. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    Science.gov (United States)

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  16. Greenhouse gas emissions of pilot buildings in 2009-2011; Pilottikiinteistoejen kasvihuonekaasupaeaestoet vuosina 2009-2011

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, M.

    2012-07-01

    The Julia 2030 use of premises project sought to reduce the greenhouse gas emissions of selected pilot buildings by 10 per cent over the period from 2009 to 2011 by changing patterns of use. The project also provided an opportunity for further refinement of a climate calculator developed and maintained by WWF for reckoning greenhouse gas emissions of this kind. The use of premises project covered a total of 32 pilot buildings in Helsinki, Espoo, Vantaa, Kauniainen, Kirkkonummi and Kerava. These buildings included nurseries and schools, swimming baths, offices, multi-purpose activity buildings, depots, a sports hall and a health centre. The combined greenhouse gas emissions of the pilot buildings in 2011 amounted to 10,416 tCO{sub 2}e, which was 8 per cent lower than the total of 11,293 tCO{sub 2}e recorded in 2009. This means that the project fell slightly short of its targeted 10 per cent reduction in greenhouse gas emissions. The total greenhouse gas emissions of the pilot buildings adjusted for heating requirement amounted to 10,733 tCO{sub 2}e in 2011, which was about 7 per cent lower than in 2009. Reckoned on a per capita basis for employees or visitors, the total greenhouse gas emissions adjusted for heating requirement fell in 25 buildings, but increased in seven buildings over the period from 2009 to 2011. Particularly significant emission reductions were achieved in Vantaa, where all buildings were able to cut their emissions by between 9 and 45 per cent. The principal cause of greenhouse gas emissions in the pilot buildings was heating consumption, which also accounts for the increase in their unadjusted greenhouse gas emissions over the cold winters of 2009 and 2010. The second most important emission source in the pilot buildings was electricity consumption. Air travel contributed significantly to the overall greenhouse gas emissions of the pilot buildings used by employees taking work-related flights, whereas the contribution of paper consumption and

  17. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    Science.gov (United States)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These

  18. Fugitive emission inventory from Brazilian oil and gas industry (2000-2005) and discussion of mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, Flavia A.; D' Avignon, Alexandre; La Rovere, Emilio L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Centro Clima

    2008-07-01

    The objective of this work is to evaluate current emissions of GHGs within the Brazilian oil and gas industry, specifically the fugitive emissions arising from exploration and production. Besides, projects for mitigating these emissions and opportunities for the national industry are investigated. Results show that N{sub 2}O contributes little to fugitive emissions from the oil and gas industry, principally from gas sector. NMVOC emissions are significant, principally from the oil sector. In relation to CO{sub 2} and CH{sub 4} emissions, the oil sector emits more CO{sub 2} while the gas sector contributes more to CH{sub 4} emissions. In both sectors flaring is the activity that emits most CO{sub 2}. In relation to CH{sub 4} the principal contribution to emissions are from exploration and production onshore, although offshore activities as a whole play a greater part in the national industry. The results make it clear that the use of gas from flaring activity is a great opportunity for emission mitigation projects. From a business point of view, methane emissions could mean lost opportunities in selling natural gas. The Kyoto Protocol mechanisms, as the Clean Development Mechanism and Joint Implementation actions, provide the opportunity to stimulate investments in projects for reducing flaring and venting of associated gas. (author)

  19. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  20. Evaluation of greenhouse gas emissions from waste management approaches in the islands.

    Science.gov (United States)

    Chen, Ying-Chu

    2017-07-01

    Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.

  1. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  2. REDUCING GREENHOUSE GAS EMISSIONS AND THE INFLUENCES ON ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ANGHELUȚĂ PETRICĂ SORIN

    2016-06-01

    Full Text Available In the recent years, there has been observed a degradation of the environment. This has negative effects on human activities. Besides the influence of the environment on people, also the economic crisis had a negative contribution. The imbalances manifested in the environment influence the economic systems. This article presents an analysis of the greenhouse gas emissions. Also, there is a link between the greenhouse gas emissions and the economic development. In the situation in which the environmental pollution is increasingly affecting humanity, the transition to an economy with reduced greenhouse gas emissions appears to be a viable solution. This transition provides a number of opportunities, as well. Therefore, one of these opportunities is the one related to the employment. In this regard, retraining people working in polluting industries is very important

  3. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  4. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain.

    Science.gov (United States)

    Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M

    2015-07-01

    Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a

  5. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    Science.gov (United States)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a

  6. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  7. Modeling greenhouse gas emissions from dairy farms.

    Science.gov (United States)

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  8. Research on forecast technology of mine gas emission based on fuzzy data mining (FDM)

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chang-kai; Wang Yao-cai; Wang Jun-wei [CUMT, Xuzhou (China). School of Information and Electrical Engineering

    2004-07-01

    The safe production of coalmine can be further improved by forecasting the quantity of gas emission based on the real-time data and historical data which the gas monitoring system has saved. By making use of the advantages of data warehouse and data mining technology for processing large quantity of redundancy data, the method and its application of forecasting mine gas emission quantity based on FDM were studied. The constructing fuzzy resembling relation and clustering analysis were proposed, which the potential relationship inside the gas emission data may be found. The mode finds model and forecast model were presented, and the detailed approach to realize this forecast was also proposed, which have been applied to forecast the gas emission quantity efficiently.

  9. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... to the ability of the landfill gas management to reduce the emission should be set up, and how criteria are developed for when the monitoring activities can be terminated. Monitoring procedures are suggested centred on a robust method for measuring the total methane emission from the site, and quantitative...

  10. Monitoring greenhouse gas emissions from landfill sites

    International Nuclear Information System (INIS)

    Eade, G.

    2001-01-01

    Methane is the chief component of natural gas, but also occurs naturally by the anaerobic decomposition of organic matter in swamp areas, at landfill sites, in fact at any location where organic deposits are present. Carbon dioxide is also produced by the decomposition of organic material as well as being the primary by-product of combustion. This article focuses on techniques to test a wide variety of combustible and toxic gases, including surface emission testing of landfill sites. Specifically, it describes the Methane Emission Monitoring System (MEMS) developed by Hetek Solutions Inc., whose primary objective is to to effectively locate surface emissions of methane gas from active landfill sites using flame ionization (FI) technology, and to plot the 'hot spots' using a Differential Global Positioning System (DGPS), which provides sub-metre accuracy for plotting emissions locations at landfill sites. The FI equipment is installed on all-terrain vehicles (ATVs). Several thousand kilometers of pipeline inspections have been performed in Alberta and Saskatchewan using this system in the mid-1990s. The mobile FI/ATV units have been redesigned for landfill gas emission testing, equipped with new DGPS equipment and interface software. They meet the New Source Performance Standards (NSPS) drafted in the United States in 1996, which requires all landfill sites to be inspected for methane gas emissions. Using the FI/ATV combination, productivity over conventional walking inspection procedures increased some 400 per cent, while monitoring accuracy is equivalent to or better than those provided by previous conventional methods. The company can also provide the Optical Methane Detector (OMD) system using infrared technology. They are capable of performing 14,000 measurements per second, thus providing immediate response. To date, ATV emissions testing has been proven to be very effective in various types of gas detection. When interfaced with DGPS technology, computer

  11. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  12. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  13. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  14. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  15. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  16. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Anderson, J.F.; Kodjak, D.

    1997-01-01

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  17. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  18. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  19. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  20. State and Territory Greenhouse Gas Emissions 2004

    International Nuclear Information System (INIS)

    2006-06-01

    This document provides an overview of the latest available estimates of greenhouse gas emissions for Australia's States and Territories. Australia's total greenhouse gas emissions in 2004 amounted to 564.7 million tonnes. The State and Territory breakdown was: New South Wales: 158.7 million tonnes (Mt); Queensland: 158.5 Mt; Victoria: 123.0 Mt; Western Australia: 68.5 Mt; South Australia: 27.6 Mt; Northern Territory: 15.6 Mt; Tasmania: 10.7 Mt; ACT: 1.2 Mt. The summary of State and Territory inventories presented in this document reports estimates of greenhouse gas emissions for each State and Territory for the period 1990 to 2004. It is the first time that a complete annual time-series has been reported

  1. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  2. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  3. Canadian options for greenhouse gas emission reduction (COGGER)

    International Nuclear Information System (INIS)

    Robinson, J.; Fraser, M.; Haites, E.; Harvey, D.; Jaccard, M.; Reinsch, A.; Torrie, R.

    1993-09-01

    A panel was formed to assess the feasibility and cost of energy-related greenhouse gas (GHG) emissions reduction in Canada. The panel studies focused on the potential for increased energy efficiency and fuel switching and their effect in reducing CO 2 emissions by reviewing the extensive literature available on those topics and assessing their conclusions. Economically feasible energy savings are estimated mostly in the range of 20-40% savings by the year 2010 relative to a reference-case projection, with a median of 23%. The panel concluded that achieving the identified economic potential for increased energy efficiency by 2010 will depend on development of additional demand-side management or energy efficiency programs that go well beyond current policies and programs. Fuel switching will play a much smaller role in stabilizing energy-related CO 2 emissions than improved energy efficiency. Technology substitution and broader structural change would enable Canada to achieve significant reductions in CO 2 emissions; however, more research is needed on achieving emission reductions that would approach the levels estimated to be required globally for stabilization of atmospheric CO 2 concentrations. Achieving such emissions reductions would likely require a combination of significant improvements in energy efficiency, major changes in energy sources, and substantial changes in economic activity and life styles, relative to that projected in most reference-case forecasts. 5 refs., 1 fig., 10 tabs

  4. The importance of addressing methane emissions as part of a comprehensive greenhouse gas management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bylin, Carey [U.S. Environmental Protection Agency (EPA), Washington, DC (United States); Robinson, Donald; Cacho, Mariella; Russo, Ignacio; Stricklin, Eric [ICF International, Fairfax, VA (United States); Rortveit, Geir Johan [Statoil, Stavanger (Norway); Chakraborty, A.B. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India); Pontiff, Mike [Newfield, The Woodlands, TX, (United States); Smith, Reid [British Petroleum (BP), London (United Kingdom)

    2012-07-01

    Given the climate forcing properties of greenhouse gases (GHGs) and the current state of the global economy, it is imperative to mitigate emissions of GHGs cost-effectively. Typically, CO{sub 2} is the main focus of most companies' and governments' GHG emissions reductions strategies. However, when considering near-term goals, it becomes clear that emissions reductions of other GHGs must be pursued. One such GHG is methane, the primary component of natural gas. Reducing GHG emissions and generating profits are not necessarily a mutually exclusive endeavor as illustrated by the United States Environmental Protection Agency's (EPA) Natural Gas STAR Program. The Program is a worldwide voluntary, flexible partnership of oil and gas companies which promotes cost-effective technologies and practices to reduce methane emissions from oil and natural gas operations. In an effort to meet environmental goals without sacrificing profitability, Natural Gas STAR partner companies have identified over 60 cost-effective best practices to reduce their methane emissions, which they report to the EPA. This paper discusses: 1) the importance of reducing methane emissions and its economic impact, 2) a comparison of methane emission reduction projects relative to other greenhouse gas reduction projects in the oil and gas industry, 3) the value of source-specific methane emissions inventories, and 4) methane emission reduction opportunities from hydraulically fractured gas well completions and centrifugal compressor wet seals. From the analyses and examples in this paper, it can be concluded that methane emission reduction projects can be readily identified, profitable, and effective in mitigating global climate change. (author)

  5. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  6. Methane emissions from U.S. natural gas operations

    International Nuclear Information System (INIS)

    Lott, R.A.

    1992-01-01

    The Gas Research Institute and the U.S. Environmental Protection Agency are cofunding and comanaging a program to evaluate methane emissions from U.S. natural gas operations. The purpose of the program is to provide an emissions inventory accurate enough for global climate modeling and for addressing the policy question of ''whether encouraging the increased use of natural gas is a viable strategy for reducing the U.S. contribution to global warming''. The program is comprised of three phases: Scoping, Methods Development, and Implementation. The purpose of Phase I was to define the problem. Phase II of the program concentrated on developing techniques for measuring steady state or fugitive emissions and for calculating the highly variable unsteady emissions from the variety of sources that comprise the gas industry. Because of the large number of sources within each source type, techniques were also developed for extrapolating emissions data to similar sources within the industry. Phase III of the program was started in early 1992 and should be completed in early 1994. The purpose of the current phase of the program is to collect sufficient data to achieve the accuracy goal of determining emissions to within ± 0.5 percent of production. Based on the limited amount of data collected to date, methane emissions from the U.S. gas industry appear to be in the range of 1 percent of production. (au) (19 refs.)

  7. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  8. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  9. NOx emission reduction from gas turbines

    International Nuclear Information System (INIS)

    Groppi, G.; Lietti, L.; Forzatti, P.

    2001-01-01

    NO x emissions from gas turbines are a serious environmental concern. Primary control technologies significantly reduce NO x formation, which however is still too high to match increasingly strict emission laws. Catalytic processes can provide lower NO x emissions both as primary and secondary control methods, but their economics should be carefully addressed [it

  10. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Shires, T.M.; Loughran, C.J. [URS Corporation, Austin, TX (United States)

    2004-02-01

    This document is a compendium of currently recognized methods and provides details for all oil and gas industry segments to enhance consistency in emissions estimation. This Compendium aims to accomplish the following goals: Assemble an expansive collection of relevant emission factors for estimating GHG emissions, based on currently available public documents; Outline detailed procedures for conversions between different measurement unit systems, with particular emphasis on implementation of oil and gas industry standards; Provide descriptions of the multitude of oil and gas industry operations, in its various segments, and the associated emissions sources that should be considered; and Develop emission inventory examples, based on selected facilities from the various segments, to demonstrate the broad applicability of the methodologies. The overall objective of developing this document is to promote the use of consistent, standardized methodologies for estimating GHG emissions from petroleum industry operations. The resulting Compendium documents recognized calculation techniques and emission factors for estimating GHG emissions for oil and gas industry operations. These techniques cover the calculation or estimation of emissions from the full range of industry operations - from exploration and production through refining, to the marketing and distribution of products. The Compendium presents and illustrates the use of preferred and alternative calculation approaches for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions for all common emission sources, including combustion, vented, and fugitive. Decision trees are provided to guide the user in selecting an estimation technique based on considerations of materiality, data availability, and accuracy. API will provide (free of charge) a calculation tool based on the emission estimation methodologies described herein. The tool will be made available at http://ghg.api.org/.

  11. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  12. Multi-sectorial convergence in greenhouse gas emissions.

    Science.gov (United States)

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.

  14. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...... quantities may enhance particle formation under some conditions, but results were not conclusive....

  15. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city

    Science.gov (United States)

    Yau, Y. Y.; Thibodeau, B.; Not, C.

    2018-06-01

    Greenhouse gas emissions embodied in trade is a growing concern for the international community. Multiple studies have highlighted drawbacks in the territorial and production-based accounting of greenhouse gas emissions because it neglects emissions from the consumption of goods in trade. This creates weak carbon leakage and complicates international agreements on emissions regulations. Therefore, we estimated consumption-based emissions using input-output analysis and life cycle assessment to calculate the greenhouse gas emissions hidden in meat and dairy products in Hong Kong, a city predominately reliant on imports. We found that emissions solely from meat and dairy consumption were higher than the city’s total greenhouse gas emissions using conventional production-based calculation. This implies that government reports underestimate more than half of the emissions, as 62% of emissions are embodied in international trade. The discrepancy emphasizes the need of transitioning climate targets and policy to consumption-based accounting. Furthermore, we have shown that dietary change from a meat-heavy diet to a diet in accordance with governmental nutrition guidelines could achieve a 67% reduction in livestock-related emissions, allowing Hong Kong to achieve the Paris Agreement targets for 2030. Consequently, we concluded that consumption-based accounting for greenhouse gas emissions is crucial to target the areas where emissions reduction is realistically achievable, especially for import-reliant cities like Hong Kong.

  16. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    Science.gov (United States)

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  17. Livestock-related greenhouse gas emissions: impacts and options for policy makers

    International Nuclear Information System (INIS)

    Garnett, Tara

    2009-01-01

    Research shows that livestock account for a significant proportion of greenhouse gas (GHG) emissions and global consumption of livestock products is growing rapidly. This paper reviews the life cycle analysis (LCA) approach to quantifying these emissions and argues that, given the dynamic complexity of our food system, it offers a limited understanding of livestock's GHG impacts. It is argued that LCA's conclusions need rather to be considered within a broader conceptual framework that incorporates three key additional perspectives. The first is an understanding of the indirect second order effects of livestock production on land use change and associated CO 2 emissions. The second compares the opportunity cost of using land and resources to rear animals with their use for other food or non-food purposes. The third perspective is need-the paper considers how far people need livestock products at all. These perspectives are used as lenses through which to explore both the impacts of livestock production and the mitigation approaches that are being proposed. The discussion is then broadened to consider whether it is possible to substantially reduce livestock emissions through technological measures alone, or whether reductions in livestock consumption will additionally be required. The paper argues for policy strategies that explicitly combine GHG mitigation with measures to improve food security and concludes with suggestions for further research.

  18. OPIC Greenhouse Gas Emissions Inventory

    Data.gov (United States)

    Overseas Private Investment Corporation — Independent analysis details quantifying the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private Investment Corporation...

  19. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    Science.gov (United States)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom

  20. Methodology for reporting 2011 B.C. public sector greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In order to reduce its greenhouse gas emissions, British Columbia promulgated legislation under which the public sector is expected to become carbon neutral starting in 2010 and provincial public sector organizations (PSOs) must report their emissions annually. The aim of this report is to present the emission factors and methodology for calculating and reporting PSO emissions used in 2011. Emission factors represent the amount of greenhouse gas emitted from a specific activity. This document provides emission factors for all in scope categories: stationary sources, indirect emissions, mobile sources and business travel; it also presents a sample calculation of greenhouse gas emissions. The government of British Columbia developed SMARTTool, a web-based program which calculates and reports emissions from stationary sources, indirect emissions and mobile sources. In addition the SMART Travel Emissions Calculator was created to report business travel greenhouse gas emissions through SMARTTool.

  1. Deep greenhouse gas emission reductions in Europe: Exploring different options

    International Nuclear Information System (INIS)

    Deetman, Sebastiaan; Hof, Andries F.; Pfluger, Benjamin; Vuuren, Detlef P. van; Girod, Bastien; Ruijven, Bas J. van

    2013-01-01

    Most modelling studies that explore emission mitigation scenarios only look into least-cost emission pathways, induced by a carbon tax. This means that European policies targeting specific – sometimes relatively costly – technologies, such as electric cars and advanced insulation measures, are usually not evaluated as part of cost-optimal scenarios. This study explores an emission mitigation scenario for Europe up to 2050, taking as a starting point specific emission reduction options instead of a carbon tax. The purpose is to identify the potential of each of these policies and identify trade-offs between sectoral policies in achieving emission reduction targets. The reduction options evaluated in this paper together lead to a reduction of 65% of 1990 CO 2 -equivalent emissions by 2050. More bottom-up modelling exercises, like the one presented here, provide a promising starting point to evaluate policy options that are currently considered by policy makers. - Highlights: ► We model the effects of 15 climate change mitigation measures in Europe. ► We assess the greenhouse gas emission reduction potential in different sectors. ► The measures could reduce greenhouse gas emissions by 60% below 1990 levels in 2050. ► The approach allows to explore arguably more relevant climate policy scenarios

  2. Improving the technology of purification of gas emissions petrochemical industries

    OpenAIRE

    USMANOVA R.R.; ZAIKOV G.E.

    2014-01-01

    The technology of cleaning of gas emissions flares in the production of synthetic rubber. Developed dynamic scrubber for scrubbing gas emissions. Complex studies served as the basis for the design of an air purification system of industrial premises. Purification of gas emissions before combustion in flares has significantly reduced air pollution by toxic substances.

  3. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    Science.gov (United States)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  4. Accounting For Greenhouse Gas Emissions From Flooded ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  5. Accouting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  6. Urban form and greenhouse gas emissions in Finland

    International Nuclear Information System (INIS)

    Harmaajaervi, Irmeli

    2003-01-01

    Finland's regional form is becoming more concentrated, while urban sprawl is causing growth centres to become fragmented. The effects caused by these changes on greenhouse gas emissions were studied up to the year 2010, when, in accordance with the Kyoto protocol, Finland's greenhouse gas emissions should be reduced to the 1990 level. The urban form affects especially transportation inside regions, the potential to utilise district heating and the need for infrastructure. By preventing urban sprawl and by encouraging teleworking and some lifestyle changes, it would be possible to reduce annual transportation emissions by the year 2010 by 1.1 million tonnes CO 2 eq., i.e. 27%, the emissions from residential and service buildings by 1.1 million tonnes CO 2 eq., i.e. 5%, and the emissions from municipal infrastructure by 0.1 million tonnes CO 2 eq., i.e. 6%. Altogether, it is possible to reduce the greenhouse gas emissions by 2.3 million tonnes, which amounts to 15% of Finland's target for emissions reductions in 2010. If the target-oriented scenario is realised, the subsequent decrease of emissions would accelerate. To stop urban sprawl, measures are required in planning, land use and housing policy as well as in transportation and tax policies. Additionally, more needs to be done in regard to co-operation, interaction and information dissemination. This paper introduces a report which estimates, for the first time, the effects caused by changes in the regional and urban forms on the levels of greenhouse gas emissions in Finland

  7. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  8. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  9. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  10. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    Science.gov (United States)

    Karacan, C.O.; Olea, R.A.; Goodman, G.

    2012-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  11. Stakeholder resource information on greenhouse gas emissions

    International Nuclear Information System (INIS)

    1997-01-01

    Some of the many measures which have already been taken by the petroleum industry to safeguard the air, land and water were described in a background paper produced by the Petroleum Communication Foundation. It is entitled 'Canada's oil and gas industry and our global environment'. This complementary report includes a brief review of greenhouse gases and related issues such as the nature of global warming, Canadian emissions in a global context, the relationship between the economy and the environment, mitigation possibilities and successes achieved by actions such as those undertaken by the Voluntary Challenge and Registry (VCR) program. Also included are notes and quotes from authoritative sources regarding emissions, emissions control and success stories. A sample presentation was also provided that could be used to discuss global warming issues with general audiences and other communication activities. figs

  12. Unpaid ecological costs related to emissions in the air

    International Nuclear Information System (INIS)

    Moreau, Sylvain; Bottin, Anne; Nauroy, Frederic; Boitard, Corinne; Bird, Geoffrey; David, Michel; Greffet, Pierre; Mordant, Guillaume; Moreau, Sylvain; Nirascou, Francoise; Le Moullec, Aurelie; Berthier, Jean-Pierre; Hassan, Marie-Elizabeth; Curri-Lemaitre, Elen; Lagarenne, Christine; Devaux, Jeremy; Nicklaus, Doris; Puydarrieux, Philippe; Vanoli, Andre; Schucht, Simone

    2014-05-01

    This study proposes an analysis of unpaid ecological terms based on the use of new economic indicators related to sustainable development (going beyond the GDP, adjusted accounting aggregates, accounting unpaid ecological costs), an analysis of unpaid ecological costs related to climate change (context, used results and data, definitions of trajectories associated with greenhouse gas emissions, cost to be applied to emissions to get rid of, assessment of unpaid ecological costs), and an analysis of unpaid ecological costs related to air pollution (objectives, standard to be adopted, towards more ambitious emission reduction and re-assessed costs, unpaid ecological costs in 2010)

  13. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  14. Emission reductions through precombustion chamber design in a natural gas, lean burn engine

    International Nuclear Information System (INIS)

    Crane, M.E.; King, S.R.

    1992-01-01

    A study was conducted to evaluate the effects of various precombustion chamber design, operating and control parameters on the exhaust emissions of a natural gas engine. Analysis of the results showed that engine-out total hydrocarbons and oxides of nitrogen (NO x ) can be reduced, relative to conventional methods, through prechamber design. More specifically, a novel staged prechamber yielded significant reductions in NO x and total hydrocarbon emissions by promoting stable prechamber and main chamber ignition under fuel-lean conditions. Precise fuel control was also critical when balancing low emissions and engine efficiency (i.e., fuel economy). The purpose of this paper is to identify and explain positive and deleterious effects of natural gas prechamber design on exhaust emissions

  15. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  16. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    Science.gov (United States)

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  17. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  18. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  19. The possibilities of municipal operations to control greenhouse gas emissions of road traffic

    Energy Technology Data Exchange (ETDEWEB)

    Saeily, S.

    2004-07-01

    Kyoto protocol obligates industrialized countries to decrease their greenhouse gas emissions averagely by 5,2 percent from the 1990 level before 2008-2012. Finland is committed to stabilize its greenhouse gas emissions to the level of year 1990 before 2008-2012. Carbon monoxide, hydrocarbon, nitric oxide, sulphur dioxide, particles and carbon dioxide are regarded as hazardous emissions of road traffic. These gases are generated by impure burning which is generally expected. From these gases carbon dioxide is considered to be the actual greenhouse gas. Nitric oxide, vaporizing hydrocarbons, sulphur dioxide and carbon monoxide are considered to be indirect greenhouse gases. 20 percent of Finland's carbon dioxide emissions comes from road traffic. Actions aimed to decrease greenhouse gas emissions can be executed at various levels. The smaller the size of an actor is, the more specific the possible actions are. The actions of public administration are based on controlling economy, traffic systems and maintenance of order. The actions of private companies and communities are based on economical profitability. Decisions of individual persons are still the most significant factor in decreasing green house gases generated by passenger traffic. In this study an operations model was developed for municipalities to reduce their greenhouse gas emissions. As a case city of the study was the city of Tampere. Tampere is the third largest city in Finland and has over 15,000 employees. A more specific set of measures was introduced to three different operational units, the University Hospital of Tampere, the primary school of Tammela and the amusement park Saerkaenniemi. For each unit suitable measures were searched by studying the unit's traffic-related significance to help to decrease the unit's greenhouse gas emissions. The traffic generated by municipal operations is mainly related to commuting, work-related, customer and maintenance traffic. Measures which are

  20. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  1. Assessing the difference. Greenhouse gas emissions of electricity generation chains

    International Nuclear Information System (INIS)

    Spadaro, J.V.; Langlois, L.; Hamilton, B.

    2000-01-01

    Greenhouse gases have to the potential to influence global climate change by interfering with the natural process of heat exchange between the earth's atmosphere and outer space. Reducing atmospheric GHG concentrations have become an international priority as evidenced by the signing of the Kyoto Protocol, which would reduce emissions from industrialized countries (Annex 1) by about 5% below 1990 levels during the commitment period 2008-12. There are a number of technical options that could be implemented in order to achieve the proposed reduction target. As for emissions related to electricity generation, perhaps the most important factor over the near term is the improvement in efficiency of using energy at all the stages of the fuel cycle, including fuel preparation and transportation, fuel-to-electricity conversion at the power plant and at the point of end-use (which has not been considered here). Strategies for reducing methane releases during fuel mining and during gas transmission are very relevant. Switching to less carbon intensive or low carbon fuels, such as gas, nuclear power and renewables, will play a major role in reducing emissions. These changes are technically feasible using present day knowledge and experience, require minimal changes in consumer lifestyle, and represent reasonable capital turnover (gas and nuclear for baseload generation and renewables in niche markets or for peak load applications). This article has presented information on GHG emission factors for different fuels using a Full Energy Chain approach, which attempts to quantify the environmental emissions from all stages of electricity generation, i.e. 'cradle-to-grave'. Fossil-fueled technologies have the highest emission factors, with coal typically twice as high as natural gas. Considering the large variations in fuel- to-electricity conversion technology, it can be said that GHG emission factors can be an order of magnitude higher than current solar PV systems and up to two

  2. The methane emissions of the Swiss gas industry

    International Nuclear Information System (INIS)

    Xinmin, J.

    2004-01-01

    This article presents a method for the estimation of the methane emissions caused by the Swiss gas industry. Based on new data on the Swiss gas infrastructure, current emission levels are estimated for methane - one of the major greenhouse gases. The methodology and modelling used, which is based on previous studies on this topic, are discussed. Results are presented that show that the estimates provided by the current study are consistent with earlier data. Scenarios are presented that show that a steady decrease in methane emissions emanating from the Swiss gas industry's installations can be expected by the year 2012. The data used in the study and its results are presented in tabular and graphical form and commented on

  3. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  4. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  5. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  6. How to reduce emissions related to consumption: which public policies?

    International Nuclear Information System (INIS)

    Fink, Meike; Gautier, Celia

    2014-05-01

    This report proposes an assessment of greenhouse gas emissions related to consumption in the world. It examines which are currently the world emission flows which come with trade exchanges (intermediate and final goods) between countries. The first part tries to highlight hidden emissions present in our imports and exports. It presents the different methods of greenhouse gas accounting, discusses the emission flows at the planet level, and the challenge of the limitation of 'carbon leaks', and discusses what makes a country a net emission importer or exporter. The second part discusses how France can reduce its consumption-based emissions, how to reach a factor 4 of reduction on these emissions, how to act against leaks and inflows of emissions through measures at the world level (international agreement, reduction of emissions by sea and air transport, reduction of industry emissions) or at the national level (relocation of polluting industries in France or Europe, promotion of short circuits, eco-design, changes in consumption modes, measures on groups of products which import emissions)

  7. Gas emissions from mining voids in Lorraine iron-bearing basin

    International Nuclear Information System (INIS)

    Grabowski, D.; Pokryszka, Z.

    2003-01-01

    A study carried out in the iron basin of Lorraine (France) put the spot on the existence of under-oxygenated and noxious gas emissions (carbon dioxide, radon..) in built-up areas related to former mining works. Site investigations showed that the gas flow was mainly due to natural ventilation mechanisms. A further study is in progress in order to better understand the origin of the atmosphere modification within the old mine workings. (authors)

  8. Emissions of CH4 from natural gas production in the United States using aircraft-based observations (Invited)

    Science.gov (United States)

    Sweeney, C.; Ryerson, T. B.; Karion, A.; Peischl, J.; Petron, G.; Schnell, R. C.; Tsai, T.; Crosson, E.; Rella, C.; Trainer, M.; Frost, G. J.; Hardesty, R. M.; Montzka, S. A.; Dlugokencky, E. J.; Tans, P. P.

    2013-12-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  9. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  10. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    Science.gov (United States)

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  12. Quantifying greenhouse gas emissions from waste treatment facilities

    DEFF Research Database (Denmark)

    Mønster, Jacob

    to be in-stalled in any vehicle and thereby enabling measurements wherever there were roads. The validation of the measurement method was done by releasing a controlled amount of methane and quantifying the emission using the release of tracer gas. The validation test showed that even in areas with large...... treatment plants. The PhD study reviewed and evaluated previously used methane measurement methods and found the tracer dispersion method promising. The method uses release of tracer gas and the use of mobile equipment with high analytical sensitivity, to measure the downwind plumes of methane and tracer...... ranged from 10 to 92 kg per hour and was found to change in even short timescales of a few hours. The periods with large emissions correlated with a drop in methane utilization, indicating that emissions came from the digesters tanks or gas storage/use. The measurements indicated that the main emissions...

  13. Measurement of fugitive emissions from gas processing plants in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Edmonton, AB (Canada)

    2004-07-01

    This paper presents a new gas visualization camera created to detect leaks. An outline of the device's projected entry into the oil and gas industry was provided, and included: a demonstration of Differential Absorption Light Detection and Ranging (DIAL) and leak cameras to measure and reduce fugitive emissions; a comparison of DIAL measured emissions with estimated emissions; and a review of methods to measure particulate emissions. In addition, a background of gas leak visualisation technology was presented along with an an overview of DIAL and its results from sour gas plants. The results of a survey conducted in 2003 were presented, including leaks identified and repaired as well as a follow up leak survey. An analysis of pre and post-repair hydrocarbon emissions from the Deepcut area revealed a 60 per cent reduction with savings of $140,000 as well as additional savings from reduced carbon emissions. A similar survey conducted in another plant measured emissions from condensate tanks before and after cooler installation as well as from surrounding well sites, quantifying an 80 per cent reduction in methane emissions. Tasks identified for future research concerned particulate emissions and the development of Lidar methods which can currently identify particulates, but are not yet able to quantify them. Other tasks included a complete DIAL data workup and reporting; the quantification of both methane and carbon emissions reduction at a sour gas plant; a comparison of measured emissions with methods that estimate fugitives; and a complete review of particulate measurements. tabs, figs.

  14. Norwegian gas sales and the impacts on European CO2 emissions

    International Nuclear Information System (INIS)

    Berg, E.; Boug, P.; Kverndokk, S.

    2001-01-01

    This paper has studied the impacts on Western European CO 2 emissions of a reduction in Norwegian gas sales. Such impacts are due to changes in energy demand, energy supply, and environmental and political regulations. The gas supply model DYNOPOLY was used to analyse the effects on Russian and Algerian gas exports of a reduction in Norwegian gas supply. The effects on the demand side and the effects of committing to CO 2 targets were analysed using the energy demand model SEEM. If Western European countries commit to their announced CO 2 emissions targets, reduced Norwegian gas sales will have no impact on emissions. The consumption of oil and coal will increase slightly, while the total energy consumption will go down. Also, a reduction in Norwegian gas sales will have only minor impacts on the CO 2 emissions from Western Europe when no emissions regulations are considered

  15. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  16. Marine energy consumption, national economic activity, and greenhouse gas emissions from international shipping

    International Nuclear Information System (INIS)

    Chang, Ching-Chih

    2012-01-01

    The causal relationships among marine energy consumption, greenhouse gas emissions from international shipping, and economic growth for Kyoto Protocol Annex I countries for the period of 1990 to 2006 are discussed. The real gross domestic product is used as a proxy for economic activity. The United States is also discussed because it was the main global polluter before 2006. The co-integration methodology and an error-correction model are used to examine the causal relationships. The empirical results show that marine energy consumption and GDP are the main factors of increased GHG emissions in the short-run, and that economic activity significantly increased emissions in the long-run. Emissions from shipping are more closely related to marine energy consumption than to economic activity. Hence, policies for mitigating greenhouse gas emissions from marine shipping need to focus on greater energy efficiency in the design of ship engines and hulls. - Highlights: ► Energy consumption and GDP are the main causes to increased GHG emissions in the shipping industry. ► Emissions from shipping are more closely related to energy consumption than to GDP. ► Policies to mitigate GHG emissions from shipping industry should focus on the engine and hull design.

  17. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  18. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  19. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  20. CO and PAH emissions from engines operating on producer gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2005-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from gas engine based power plants in most EU countries are so ...

  1. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    Science.gov (United States)

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  2. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    Science.gov (United States)

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-03

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.

  3. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  4. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  5. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare

    International Nuclear Information System (INIS)

    Darwin, R.

    2004-01-01

    Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g., 67%) or greater. In addition and as expected, CO2 fertilization causes world crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions. A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial under current economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus

  6. Greenhouse Gas Emissions Trading for the Transport Sector

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Belhaj, Mohammed; Gode, Jenny; Saernholm, Erik; Zetterberg, Lars; Aahman, Markus

    2006-12-01

    In this study we have analysed different options to apply emissions trading for greenhouse gas emissions to the transport sector. The main focus has been on the EU transport sector and the possibility to include it in the current EU ETS in the trading period beginning in 2013. The purpose was to study how different alternatives will affect different actors. Focus has been on three sub-sectors; road transport, aviation and shipping. The railway sector has only been treated on a general level. The study includes the following three parts: 1. An economic analysis of the consequences of greenhouse gas emissions trading for the transport sector including an analysis of how the total cost for reaching an emission target will be affected by an integrated emissions trading system for the transport sector and the industry (currently included sectors) compared to separate systems for the sectors, 2. An analysis of design possibilities for the different sub-sectors. Discussion of positive and negative aspects with different choices of design parameters, such as trading entity, covered greenhouse gases, allocation of emission allowances and monitoring systems, 3. Examination of the acceptance among different actors for different options of using greenhouse gas emissions trading in the transport sector. When setting up an emissions trading scheme there are a number of design parameters that have to be analysed in order to find an appropriate system, with limited administrative and transaction costs and as small distortions as possible to competitiveness

  7. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  8. Revised emission factors for gas engines including start/stop emissions

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Boll Illerup, J.; Birr-Petersen, K.

    2008-06-15

    Liberalisation of the electricity market has led to Danish gas engine plants increasingly converting to the spot and regulating power markets. In order to offer regulating power, plants need to be able to start and stop the engines at the plants quickly. The liberalisation causes a considerable change of operation practice of the engines e.g. less full load operation hours /year. The project provides an inventory determining the scale of the emissions during the start and stop sequence as well as proposals for engine modifications aimed at reducing start/stop emissions. This report includes calculation of emission factors as well as an inventory of total emissions and reduction potentials. (au)

  9. Atmospheric emissions from the upstream oil and gas industry

    International Nuclear Information System (INIS)

    Taylor, B.G.S.

    1994-01-01

    The results are presented of a study set up to determine the nature and levels of atmospheric emissions resulting from United Kingdom oil and gas exploration and production activities. The study was commissioned by the UK Offshore Operators Association. Emissions by the upstream oil and gas industry of common pollutants, such as carbon monoxide, sulphur dioxide and nitrous oxide, and ozone depletion chemicals were shown in each case to be less than 1% of total UK emissions. Greenhouse gas emissions in the industry arise mainly from production operations with a small but significant contribution from onshore activities. Carbon dioxide is the major component followed in descending order by nitrogen oxides, methane and volatile organic compounds. In 1991, these emissions formed 3.2%, 4.6%, 2.9% and 2.8% of the UK totals respectively; overall this represented only about 3% of UK global warming emissions. The evidence of this study illustrates that the industry, which produces 67% of the UK's primary energy, is successfully managing its operations in an environmentally responsible way. (3 figures, 3 tables) (UK)

  10. Predicting emissions from oil and gas operations in the Uinta Basin, Utah.

    Science.gov (United States)

    Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael; Pasqualini, Donatella

    2016-05-01

    In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.

  11. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  12. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  13. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  14. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    International Nuclear Information System (INIS)

    Baur, Albert H.; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-01-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  15. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Albert H., E-mail: Albert.H.Baur@campus.tu-berlin.de; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  16. OPIC Greenhouse Gas Emissions Analysis Details

    Data.gov (United States)

    Overseas Private Investment Corporation — Summary project inventory with independent analysis to quantify the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private...

  17. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  18. Greenhouse gas emission reduction by means of fuel switching in electricity generation: Addressing the potentials

    International Nuclear Information System (INIS)

    Delarue, Erik; D'haeseleer, William

    2008-01-01

    Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%

  19. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  20. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  1. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  2. Potential for the reduction of greenhouse gas emissions through the use of mobility services

    DEFF Research Database (Denmark)

    Grischkat, Sylvie; Hunecke, Marcel; Böhler, Susanne

    2014-01-01

    gas emissions per person and year was found to be 78 kg in an optimistic scenario and 25 kg in a pessimistic scenario. Extrapolated to the German metropolitan population, behaviour-related measures alone could result in a 1.8 million ton (optimistic scenario) or 0.6 million ton (pessimistic scenario......This study evaluates potential for the reduction of greenhouse gas emissions in the passenger transport sector achievable through the use of mobility services. Beside car-sharing and -pooling, six services targeted at improving and encouraging the use of urban public transportation were considered......) reduction of greenhouse gas emissions, respectively. In order to exploit this potential fully, however, target group specific information should be obtained and communication strategies developed, as addressed in this paper. This study further presents the limitation of reduction potential quantification...

  3. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  4. Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong

    International Nuclear Information System (INIS)

    Harris, Paul G.; Chow, Alice S.Y.; Symons, Jonathan

    2012-01-01

    The diversity of greenhouse gas (GHG) accounting methodologies currently utilized by cities around the world make meaningful comparisons of their emissions almost impossible. Consequently, the 2010 United Nations International Standard for Determining Greenhouse Gas Emissions for Cities promotes a “harmonized protocol for quantifying the GHG emissions attributable to cities and local regions.” The UN's common standard has important implications for comparison, benchmarking and policy assessment related to energy policies. This paper uses Hong Kong as a case study to illustrate these implications. Hong Kong's per capita contribution to GHG emissions are among the highest in the world, yet the local government's official statistics indicate emissions that are far below those reported by most affluent economies. This discrepancy arises from a reporting methodology that does not require inclusion of GHG emissions linked to consumption of imported goods or emissions from aviation and shipping. The Hong Kong case reveals that current inventories do not provide sufficient information to guide policymaking related to energy and climate change. They also do not provide adequate information for comparing policies of cities internationally. Alternative emissions-reporting standards that focus more on pollution from consumption will create avenues for more effective climate-related policies. - Highlights: ► Flawed GHG inventory methodologies can lead cities to adopt misguided policies. ► Diverse GHG inventory methodologies make meaningful comparisons among cities difficult. ► A Hong Kong case study highlights that GHG inventories can misrepresent cities' climate impacts. ► City inventories often exclude GHG emissions linked to imports, aviation and shipping. ► The International Standard for Determining GHG Emissions for Cities can assist climate policy.

  5. Estimation of methane emission from California natural gas industry.

    Science.gov (United States)

    Kuo, Jeff; Hicks, Travis C; Drake, Brian; Chan, Tat Fu

    2015-07-01

    Energy generation and consumption are the main contributors to greenhouse gases emissions in California. Natural gas is one of the primary sources of energy in California. A study was recently conducted to develop current, reliable, and California-specific source emission factors (EFs) that could be used to establish a more accurate methane emission inventory for the California natural gas industry. Twenty-five natural gas facilities were surveyed; the surveyed equipment included wellheads (172), separators (131), dehydrators (17), piping segments (145), compressors (66), pneumatic devices (374), metering and regulating (M&R) stations (19), hatches (34), pumps (2), and customer meters (12). In total, 92,157 components were screened, including flanges (10,101), manual valves (10,765), open-ended lines (384), pressure relief valves (358), regulators (930), seals (146), threaded connections (57,061), and welded connections (12,274). Screening values (SVs) were measured using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. For a given SV range, the measured leak rates might span several orders of magnitude. The correlation equations between the leak rates and SVs were derived. All the component leakage rate histograms appeared to have the same trend, with the majority of leakage ratesGas Research Institute (EPA/GRI) study. Twenty-five natural gas facilities in California were surveyed to develop current, reliable, and California-specific source emission factors (EFs) for the natural gas industry. Screening values were measured by using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 EPA/GRI study. The smaller EF values from this study might be partially attributable to the employment of the leak detection and repair program by most, if not all

  6. Indicators for the international comparison of energy consumption and greenhouse-gas emissions

    International Nuclear Information System (INIS)

    Hohmann, R.; Steiner, S.; Koch, P.

    2007-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) examines the energy consumption and greenhouse-gas emissions of various Swiss economical sectors including industry, services, households and traffic. Comparisons are made with the corresponding areas in the European Union and other countries. In spite of the relatively good situation in the Swiss industrial sector, further investigation is recommended. Room for improvement in the services sector is mentioned and average performance as far as energy consumption in households is concerned is noted. It is estimated that a considerable potential for improvement is available in this sector. Motorised traffic is quoted as being the main source of greenhouse-gas emissions, Switzerland being the second worst European country in this respect. Estimates are made concerning the potential for emission reductions in the various areas

  7. A global gas flaring black carbon emission rate dataset from 1994 to 2012

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.

    2016-11-01

    Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.

  8. A guidance manual for estimating greenhouse gas emissions from fuel combustion and process-related sources for primary base metals smelting and refining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This technical guidance manual is a useful resource for helping the metals industry compile inventories of its greenhouse gas (GHG) emissions. The guidance is consistent with Canada's national GHG accounting methodologies. It provides information to smelters and refiners of base metals on how to estimate their GHG emissions from fuel combustion and specific process-related activities. The base metals group in this manual included copper, nickel, lead, zinc, and cobalt. Fuel combustion includes all stationary combustion activities for generating heat or work, and includes waste incineration if the waste heat is used for energy. It also includes mobile fuel combustion activities such as on-site transportation of raw materials from one process to another. Guidance is provided for carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O). Process-related activities include specific industrial processes that contribute to GHG emissions. For base metal smelting, this includes CO{sub 2} emissions from use of carbonate reagents, use of reducing agents, electrode consumption, and hydrofluorocarbons (HFC) emissions from use in refrigeration systems. This document also included sections on quality assurance; aspects of uncertainty assessment; verification; and, reporting of emissions information. refs., tabs., figs.

  9. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    Science.gov (United States)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  10. The EU Greenhouse Gas Emissions Trading Scheme

    NARCIS (Netherlands)

    Woerdman, Edwin; Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn

    2015-01-01

    This chapter explains how greenhouse gas emissions trading works, provides the essentials of the Directive on the European Union Emissions Trading Scheme (EU ETS) and summarizes the main implementation problems of the EU ETS. In addition, a law and economics approach is used to discuss the dilemmas

  11. Australia’s Consumption-based Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Levitt, Clinton J.; Saaby, Morten; Sørensen, Anders

    2017-01-01

    We use data from the World Input-Output Database in a multiregional input–output model to analyse Australian consumption-based greenhouse gas emissions for the years 1995 to 2009. We find that the emission content of Australian macroeconomic activity has changed over the 15-year period. Consumption...

  12. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  13. Wellbeing impacts of city policies for reducing greenhouse gas emissions

    DEFF Research Database (Denmark)

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing...... and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported...

  14. Methane Emissions from Natural Gas in the Urban Region of Boston, Massachusetts

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Zahniser, M. S.; Nehrkorn, T.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2014-12-01

    Methane emissions from the natural gas supply chain must be quantified to assess environmental impacts of natural gas and to develop emission reduction strategies. We report natural gas emission rates for one year in the urban region of Boston, MA, using an atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission rate, 20.6 ± 1.7 (95 % CI) g CH4 m-2 yr-1. Simultaneous observations of atmospheric ethane, compared with the ethane to methane ratio in pipeline gas, demonstrate that natural gas accounted for 58 - 100 % of methane emissions, depending on season. Using government statistics and geospatial data on energy consumption, we estimate the fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end-use, was 2.9 ± 0.3 % in the Boston urban region, compared to 1.1 % inferred by the Massachusetts greenhouse gas inventory.

  15. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  16. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Risonarta, Victor; Pfeifer, Herbert

    2009-01-01

    Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔH Steel /E Total ) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO 2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO 2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO 2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO 2 emissions remain constant or are even decreased.

  17. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  18. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  19. Papers of the Canadian Institute conference: Reduction, management and trading of greenhouse gas emissions

    International Nuclear Information System (INIS)

    2003-01-01

    This conference provided an opportunity for experts from various fields to discuss and exchange views and the latest information on a wide range of topics related to the reduction, management and trading of greenhouse gas emissions. The papers dealt with pertinent issues such as: (1) short and long term impacts of the Kyoto Protocol ratification for industries operating in Quebec, necessary changes and required investment, (2) calculation mechanisms for the allocation of permits, audit systems for the reduction and registration of emissions, (3) Canadian and international emission trading market, opportunities and associated risks, (4) preparation of an emission trading contract, (5) the establishment of a greenhouse gas (GHG) emission reduction and management system within companies, and (6) measures implemented by governments to assist industry in meeting emission reduction targets. Of the sixteen papers presented at the conference, 4 have been processed separately for inclusion in this database. refs., tabs., figs

  20. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    Science.gov (United States)

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  1. CO and PAH Emissions from Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, Torben Kvist; Henriksen, Ulrik Birk

    2003-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from producer gas engine based power plants in most EU countrie...

  2. Possibilities for the reduction of CO2- and CH4-emissions of natural gas

    International Nuclear Information System (INIS)

    Muessig, S.

    1994-01-01

    The use of fossil fuels increases the portion of greenhouse gases, especially CO 2 and CH 4 . In this paper firstly the specific emission rates of these greenhouse gases for the various fuels are compared. Secondly possibilities for the reduction of CO 2 and CH 4 for natural gas which are relatively small anyhow are discussed. Thirdly the use of renewable energy within the gas industry and the ocean and into depleted reservoirs are discussed. It is shown that the efficient use of energy of the fossil fuel natural gas is most successful in all branches of gas consumption to decrease emission. Combined-cycle processes, cogeneration as well as modern domestic heating systems are described. Fuel cells and the application of hydrogen is shortly discussed. (orig.)

  3. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  4. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  5. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  6. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  7. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation.

  8. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 

  9. Power station stack gas emissions

    International Nuclear Information System (INIS)

    Hunwick, Richard J.

    2006-01-01

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  10. Greenhouse gas emissions in the Netherlands 1990-1996: Updated methodology

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Loon MMJ van; LAE

    1997-01-01

    This inventory of greenhouse gas emissions in the Netherlands has been prepared according to the IPCC Guidelines and complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on greenhouse gases not covered under the Montreal

  11. Methane emissions due to oil and natural gas operations in the Netherlands

    International Nuclear Information System (INIS)

    Oonk, J.; Vosbeek, M.E.J.P.

    1995-01-01

    The Netherlands is the 4th largest natural gas producer, with about 4% of the total world natural gas production. Also, significant amounts of oil are extracted. For this reason it can be expected that methane emissions from oil and natural gas operations contribute significantly to total methane emissions. Estimates so far, made by both the Dutch government and the industry vary widely. A renewed estimate is made of methane emissions from oil and natural gas production, based on a detailed engineering study of sources of methane in the system and quantification of source strengths. The estimate is validated by interpretation of atmospheric measurements. 1990 methane emissions from natural gas production were estimated to be 62 to 108 kton. The main cause of methane emissions is the venting of off-gases from processes and passing-valve emissions in the off-shore. Emissions from oil production were estimated to be 14 kton, mainly caused by venting of off-gases from processes. Best feasible options for emission reduction are: identification and replacement of leaking valves, and reuse or re-compression of off-gases from processes. Both options are existing policy in the Netherlands. 23 figs., 38 tabs., 2 appendices, 53 refs

  12. 6.1 Greenhouse gas emissions and climate change

    International Nuclear Information System (INIS)

    2004-01-01

    In Austria, greenhouse gas emissions (GHG) have increased by about 10 % between 1990 and 2001. This means that already in 2001 the emissions reached the level projected with current measures for 2010. Thus Austria is far from complying with the 13 % reduction required under the Kyoto Protocol, meaning that GHG emissions will have to be reduce annually by 1.4 million tons of CO 2 -equivalents to fulfill its protocol obligation. It is shown that 2001 GHG emissions had increased by 9.6 % since the base year 1990, the main reason for this increase is the growing use of fossil fuels and the resulting increase in CO 2 emissions. The highest growth rates can be observed in the transport sector by almost half (+ 49 %). Basically, greenhouse gas emission trends depend on a number of factors, about two thirds of them are caused by energy production, so the most important parameters affecting GHG are the trends of energy consumption, the energy mix and the following factors: population growth, economic growth, outdoor temperature and the resulting heating requirements, improvement of energy efficiency, the proportion of renewable energy sources such as electricity generation in hydroelectric power stations (which influences the need for supplementary power production in thermal power plants), the mix of fossil fuels, for example in caloric power plants (natural gas combustion produces about 40 % less CO 2 per energy unit than coal combustion), the structure and price effects of energy market liberalization, which influence the use of various fuels in electricity production and the import of electricity, world market prices for energy, structural changes in the economy and in the behavior of consumers. Changes in important driving forces and in GHG emissions, sector emissions trends and Austrian, European and global emissions projections are provided. (nevyjel)

  13. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  14. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  15. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    Science.gov (United States)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  16. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  17. Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm

    Directory of Open Access Journals (Sweden)

    Xiong Yan

    2016-01-01

    Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.

  18. Methane emissions from natural gas pipelines - current estimates, technologies and practices

    International Nuclear Information System (INIS)

    Lang, M.C.; Crook, L.

    1997-01-01

    Methane is the major component of natural gas. World-wide methane emissions from gas systems is estimated to be between 50 and 25 tera grams or about 5 percent of the world-wide total of anthropogenic methane emissions. Technologies and practices are described that are currently being used or are planned to be used in the US to both measure and/or reduce methane emissions from natural gas pipelines. One of the technologies that is described includes a high flow sampling instrument. One of the practices that is described is the current voluntary program conducted by the US Environmental Protection Agency called the Natural Gas Star program. This program supports research into best management practices, information sharing and technology transfer to promote methane emissions reductions profitably. (R.P.)

  19. Estimate of methane emissions from the U.S. natural gas industry

    International Nuclear Information System (INIS)

    Kirchgessner, D.A.; Lott, R.A.; Cowgill, R.M.; Harrison, M.R.; Shires, T.M.

    1997-01-01

    Global methane emissions from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a result, the estimate of the contribution these emissions make to the global methane inventory could be inaccurate. For this reason the assertion that global warming could be reduced by replacing coal and oil fuels with natural gas could not be defended. A recently completed, multi year study conducted by the U.S. Environmental Protection Agency's Office of Research and Development and the Gas Research Institute, had the objective of determining methane emissions from the U.S. gas industry with an accuracy of ± 0.5% of production. The study concluded that, in the 1992 base year, methane emissions from the industry were 314 ± 105 Bscf or 6.04 ± 2.01 Tg (all conversions to international units are made at 15.56 o C and 101.325 kPa). (author)

  20. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  1. The Natural Gas Vehicle Challenge 1992: Exhaust emissions testing and results

    Science.gov (United States)

    Rimkus, W. A.; Larsen, R. P.; Zammit, M. G.; Davies, J. G.; Salmon, G. S.; Bruetsch, R. I.

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the U.S. Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  2. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Science.gov (United States)

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  3. Direct greenhouse gas emissions of the game industry in South Africa

    African Journals Online (AJOL)

    Direct greenhouse gas emissions of the game industry in South Africa. ... Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has ... AJOL African Journals Online. HOW TO USE ...

  4. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  5. Reducing greenhouse gas emissions through operations and supply chain management

    International Nuclear Information System (INIS)

    Plambeck, Erica L.

    2012-01-01

    The experiences of the largest corporation in the world and those of a start-up company show how companies can profitably reduce greenhouse gas emissions in their supply chains. The operations management literature suggests additional opportunities to profitably reduce emissions in existing supply chains, and provides guidance for expanding the capacity of new “zero emission” supply chains. The potential for companies to profitably reduce emissions is substantial but (without effective climate policy) likely insufficient to avert dangerous climate change. - Highlights: ► Describes how firms are profitably reducing greenhouse gas emissions in their supply chains ► Highlights academic literature relevant to supply chain emission reduction

  6. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  7. Possibilities of Reducing Greenhouse Gas Emissions in Hotels and Camps Along the Adriatic Coast

    International Nuclear Information System (INIS)

    Kurek, J.

    1998-01-01

    The article presents a possibility of reducing greenhouse gas emissions in hotels and camps along the Adriatic Coast, through equipment modernisation, efficient use of various energy forms (electric energy, oil, gas) including solar energy. An elaborate quantitative analysis the greenhouse gas emissions and possible ways of reducing them have been carried out in 180 hotels with their own boiler rooms and 70 camps with solar hot water system. The representatives of the two specified groups were chosen in order to perform the quantitative analysis. Considering that the reduction of the carbon emission is the basic condition for the prevention of climate changes, the assumptions were made in line with their reducing. The starting point is that the combustion of a litre of fuel causes 2,5 kg CO 2 , while the generation of 1 kWh of electric energy and use of 1 m 3 of water emit 0,5 kg of CO 2 respectively. Thereby it is necessary to bear in mind that the reduction of emissions can be achieved directly in hotel boiler rooms and, in a wider perspective, in plants through the reduction of the electric energy and water consumption, i.e. solar energy consumption The article ends with a review of possible emission reductions which are to be carried out. According to the calculation presented, the share of the reduction of greenhouse gas emission in hotels and camps along the Adriatic Coast principate with 1% in the obligatory 5% emission reduction of the Republic of Croatia till the year 2012 related to the Kyoto Protocol. (author)

  8. Accounting For Greenhouse Gas Emissions From Flooded Lands

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  9. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  10. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  11. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R.; Zijlema, P.J.; Van den Berghe, G.; Baas, K.; Te Biesebeek, J.D.; Brandt, A.T.; Geilenkirchen, G.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I.

    2011-04-01

    The total greenhouse gas emission from the Netherlands in 2009 decreased by approximately 3% compared to the emission in 2008. This decrease is a result of the economic crisis, especially due to the decrease in the industrial production. In 2009, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amount to 198.9Tg CO2 eq. This is nearly 7 % below the emissions in the base year 1990 (213.2 Tg CO2 eq). This report documents the 2011 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  12. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P W.H.G.; Van der Hoek, K W; Te Molder, R; Droege, R [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C W.M.; Zijlema, P J; Van den Berghe, A C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J D; Brandt, A T [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J A; Peek, C J; Vonk, J; Van den Wyngaert, I [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  13. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Van der Hoek, K. W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C. W.M.; Zijlema, P. J.; Van den Berghe, A. C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J. D.; Brandt, A. T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J. A.; Peek, C. J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  14. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  15. Greenhouse gas and livestock emissions and climate change

    DEFF Research Database (Denmark)

    Caro, Dario

    2018-01-01

    The paper summarizes the current knowledge about the impact of livestock sector on climate change. The main sources of greenhouse gas (GHG) emissions from livestock are described and the contribution of livestock sector to the global GHG emissions is presented on the basis of the latest results...... obtained from the scientific research. The most recent mitigation strategies for reducing greenhouse gas emissions from livestock sector are also discussed. The paper aims to provide a general overview of an emergent environmental issue such as the impact of livestock sector on climate change. While...... the paper is easy to understand for non-expert readers, it may also be a relevant reference point for academic researchers and for policy makers aimed at achieving the sustainability of livestock/food sector....

  16. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  17. Reconciling Top-Down and Bottom-Up Estimates of Oil and Gas Methane Emissions in the Barnett Shale

    Science.gov (United States)

    Hamburg, S.

    2015-12-01

    Top-down approaches that use aircraft, tower, or satellite-based measurements of well-mixed air to quantify regional methane emissions have typically estimated higher emissions from the natural gas supply chain when compared to bottom-up inventories. A coordinated research campaign in October 2013 used simultaneous top-down and bottom-up approaches to quantify total and fossil methane emissions in the Barnett Shale region of Texas. Research teams have published individual results including aircraft mass-balance estimates of regional emissions and a bottom-up, 25-county region spatially-resolved inventory. This work synthesizes data from the campaign to directly compare top-down and bottom-up estimates. A new analytical approach uses statistical estimators to integrate facility emission rate distributions from unbiased and targeted high emission site datasets, which more rigorously incorporates the fat-tail of skewed distributions to estimate regional emissions of well pads, compressor stations, and processing plants. The updated spatially-resolved inventory was used to estimate total and fossil methane emissions from spatial domains that match seven individual aircraft mass balance flights. Source apportionment of top-down emissions between fossil and biogenic methane was corroborated with two independent analyses of methane and ethane ratios. Reconciling top-down and bottom-up estimates of fossil methane emissions leads to more accurate assessment of natural gas supply chain emission rates and the relative contribution of high emission sites. These results increase our confidence in our understanding of the climate impacts of natural gas relative to more carbon-intensive fossil fuels and the potential effectiveness of mitigation strategies.

  18. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  19. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  20. The "Escarot" gas seep, French Massif Central: CO2 discharge from a quiescent volcanic system - Characterization and quantification of gas emissions

    Science.gov (United States)

    Gal, F.; Leconte, S.; Gadalia, A.

    2018-03-01

    Natural CO2 emissions from the volcanic rocks of the French Massif Central are poorly constrained. It is of interest better to assess the emission of such non-anthropogenic gases that may significantly contribute to the global carbon budget. We quantified the CO2 emissions to the atmosphere in a small area (0.052 km2) located in the Massif Central close to Lake Pavin, the most recent volcanic edifice in metropolitan France. The specific character of this area, known as the Escarot mofette, was earlier studied for soil-gas concentrations only. In June 2017, we used the accumulation chamber method for measuring CO2 flux and related O2 depletion in the gases emitted at the soil/atmosphere interface, resulting in 176 data acquisitions over four days. In addition, 44 soil-gas concentration measurements were made at selected locations. CO2 emission rates are estimated at 8100 ± 1800 tons/year of deep-seated CO2 and at 660 ± 440 tons/year of biologically produced CO2. The uncertainty on these evaluations comes from the high-frequency variability of CO2 efflux in the more emissive areas and from the occurrence of heavy precipitation events. Though unexpected, these events were used for quantifying the decreases in CO2 efflux, which were as high as 500% over a few hours or even days in some locations. However, repeat acquisitions performed under more favourable weather conditions showed errors of commonly accepted amplitude (±15%). The area showed several degassing centres aligned along a NNW-SSE direction that correlates well with known geological structures, proving the ability of soil-gas methods to map hidden faults. The whole area is characterized by strong CO2 enrichment and related O2 depletion, but it is nonetheless possible to detect areas influenced by the rise of deep-seated gases and a few peripheral areas where biological processes dominate (CO2 up to 10% vol.). This study of gas emissions in a non-urban area also provides complementary information that is

  1. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    Science.gov (United States)

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  2. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  3. Quantifying and reporting greenhouse gas emissions at local level

    Directory of Open Access Journals (Sweden)

    Sόwka Izabela

    2017-01-01

    Full Text Available Cities as global centers of consumption and production often are a significant and growing source of greenhouse gas (GHG emissions. At the same time, local authorities are increasingly taking action on climate change by focusing on reducing GHG emissions and efficiency improvement opportunities. To assess and reduce the overall greenhouse gas emission level from an urban area, it is necessary to identify all the activities and processes which generate these emissions. GHG inventory gives an opportunity to get wider knowledge for city’s community about spatial emission processes and emissions contribution of key sources categories at the local scale. Inventory is being used for decision-making purposes and strategic planning in emission reduction policy. The goal of this paper was to clarify the major methodological challenges of GHG monitoring at the urban level. The paper is based on the discussion of different methods and approaches to assessing GHG emissions at the local level. It is presented sectoral GHGs emission trends in selected urban areas and compared CO2 emission level in different countries and metropolises and variable European cities guidance. The study determines the inventory tools of GHGs emission taking into account the characteristics of main sources at local levels.

  4. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  5. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  6. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  7. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  8. Combining policy instruments to curb greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bahn, O.

    2001-01-01

    The Kyoto Protocol has set greenhouse gas emission reduction targets for selected countries. To comply with these reduction requirements, decision-makers may use market-based instruments on a national or international basis. This paper advocates the combining of national emission taxes with international trade of emission permits. As a numerical application, this paper analyses macro-economic impacts of such a strategy for Switzerland. (Author)

  9. Greenhouse gas emissions in China 2007: Inventory and input-output analysis

    International Nuclear Information System (INIS)

    Chen, G.Q.; Zhang Bo

    2010-01-01

    For greenhouse gas (GHG) emissions by the Chinese economy in 2007 with the most recent statistics availability, a concrete inventory covering CO 2 , CH 4 , and N 2 O is composed and associated with an input-output analysis to reveal the emission embodiment in final consumption and international trade. The estimated total direct GHG emission amounts to 7456.12 Mt CO 2 -eq by the commonly referred IPCC global warming potentials, with 63.39% from energy-related CO 2 , 22.31% from non-energy-related CO 2 , 11.15% from CH 4 and 3.15% from N 2 O. Responsible for 81.32% of the total GHG emissions are the five sectors of the Electric Power/Steam and Hot Water Production and Supply, Smelting and Pressing of Ferrous and Nonferrous Metals, Nonmetal Mineral Products, Agriculture, and Coal Mining and Dressing, with distinctive emission structures. The sector of Construction holds the top GHG emissions embodied in both domestic production and consumption, and the emission embodied in gross capital formation is prominently more than those in other components of the final consumption characterized by extensive investment in contrast to limited household consumption. China is a net exporter of embodied GHG emissions, with emissions embodied in exports of 3060.18 Mt CO 2 -eq, in magnitude up to 41.04% of the total direct emission.

  10. The effects of Norwegian gas export on the global CO2 emission

    International Nuclear Information System (INIS)

    1996-01-01

    This report analyses how a limitation of Norway's gas export might affect the global CO 2 emission. In principle, a reduction of this export can lead to decreased or increased CO 2 emission depending on changes in several conditions that individually have conflicting emission effects. What the total effect will be can only become clear after a thorough empirical analysis of the supply and demand structure. The model calculations presented in the report show that the global emission will probably increase if Norway reduces the gas export. A gas export reduction of 10 million tonne oil equivalents in 2015 will increase the global emission by 1.4 and 7.5 million tonne CO 2 depending on the assumption made for alternative gas supplies to the European market and for market conditions in the importing countries. 4 refs., 32 figs., 44 tabs

  11. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  12. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... Inventory pilot, and whether it will have practical utility; whether our estimate of the public burden of...

  13. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  14. State and Territory Greenhouse Gas Emissions. An overview

    International Nuclear Information System (INIS)

    2005-04-01

    This document is a summary of the latest available estimates of greenhouse gas emissions for the States and Territories. They are taken from the national inventory and show emissions for 2002, the latest year for which national statistics on fuel and electricity consumption are available. The report shows that Australia's total greenhouse gas emissions in 2002 amounted to 541.8 million tonnes. The State and Territory breakdown was: New South Wales: 151.5 million tonnes (Mt); Queensland: 145.1 Mt; Victoria: 117.0 Mt; Western Australia: 70.4 Mt; South Australia: 30.9 Mt; Northern Territory: 17.7 Mt; Tasmania: 7.2 Mt; ACT: 1.3 Mt. The State and Territory inventories are the first of what will be an annual series. The national inventory and State and Territory inventories are all prepared according to the international rules and procedures applicable to Australia's Kyoto 108% emissions target. The national inventory undergoes regular independent international review

  15. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P. J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E. J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A. C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A. T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C. W.M.; Te Biesebeek, J. D.; Van der Hoek, K. W.; Te Molder, R.; Montfoort, J. A.; Peek, C. J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  16. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P.J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E.J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A.C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A.T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C.W.M.; Te Biesebeek, J.D.; Van der Hoek, K.W.; Te Molder, R.; Montfoort, J.A.; Peek, C.J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  17. Simultaneous Photoacoustic and Photopyroelectric Detection of Trace Gas Emissions from Some Plant Parts and Their Related Essential Oils in a Combined Detection Cell

    Science.gov (United States)

    Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.

    The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.

  18. Localization of fugitive methane emission from natural gas distribution network of Titas Gas

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2017-03-01

    Full Text Available The aim of this paper is to localize the fugitive leaks from the above ground facilities of the existing system of Titas Gas (TG after developing mathematical model for fugitive emission. Soap screening techniques and Gasurveyor 500 series instrument were used in this study for detecting potential leaks. Leaked gas was quantified using either Hi-Flow gas sampler or bagging measurements system. The results show that the respective potential gas leaking point of City Gate Station (CGS, commercial Regulating and Metering Station (RMS, industrial RMS, residential RMS and Town Bordering Station (TBS/ District Regulating Station (DRS are scrubber dump valve (average leak rate 217.00 L/min, insulating point (average leak rate 4.04 L/min, tube fitting connector (average leak rate 8.00 L/min, connector (average leak rate 1.55 L/min and pressure relief valve (average leak rate 437.92 L/min. Fugitive methane emission can be reduced by stopping leaks of fittings or components having high KLeak value.

  19. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    Science.gov (United States)

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  20. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  1. Marginal greenhouse gas emissions displacement of wind power in Great Britain

    International Nuclear Information System (INIS)

    Thomson, R. Camilla; Harrison, Gareth P.; Chick, John P.

    2017-01-01

    There is considerable uncertainty over the effect of wind power on the operation of power systems, and the consequent greenhouse gas (GHG) emissions displacement; this is used to project emissions reductions that inform energy policy. Currently, it is approximated as the average emissions of the whole system, despite an acknowledgement that wind will actually displace only the generators operating on the margin. This article presents a methodology to isolate the marginal emissions displacement of wind power from historical empirical data, taking into account the impact on the operating efficiency of coal and CCGT plants. For Great Britain over 2009–2014, it was found that marginal emissions displacement has generally been underestimated with, for example, the emissions displacement factor for wind being 21% higher than that the average emissions factor in 2010. The actual displacement depends upon the relative merit of coal and CCGT, with a greater discrepancy between marginal displacement and average emissions during more normal system operation, suggesting that policies to penalise high-carbon generation can increase the effectiveness of wind at reducing GHG emissions. Furthermore, it was also identified that wind power is almost as technically effective as demand-side reductions at decreasing GHG emissions from power generation. - Highlights: • Marginal emissions displacement was calculated from operational data for 2009–2014. • Existing estimates of emissions displacement are generally low. • Emissions displacement is a function of the relative merit of coal and CCGT plants. • Policies to penalise high-carbon generation should increase emissions displacement. • Wind almost as effective as demand-reduction at reducing emissions.

  2. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    Science.gov (United States)

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p emissions and the esophagus cancer incidence was observed (p emissions was associated with multiple cancer incidences.

  3. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  4. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  5. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    Science.gov (United States)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  6. Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach

    Science.gov (United States)

    Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.

    2017-11-01

    We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27

  7. Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach

    Science.gov (United States)

    Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.

    2017-01-01

    We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The

  8. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    Science.gov (United States)

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  9. Embodied greenhouse gas emission by Macao

    International Nuclear Information System (INIS)

    Li, J.S.; Chen, G.Q.; Lai, T.M.; Ahmad, B.; Chen, Z.M.; Shao, L.; Ji, Xi

    2013-01-01

    Comprehensive inventory of cities' greenhouse gas emissions (GHG) is the basis for cities to make appropriate mitigation plans. However, previous studies on cities' GHG emissions consider emissions occurring within the city boundary (Scope 1) and out of boundary electricity emissions (Scope 2), but neglect indirect emissions associated with commodities consumed by cities (Scope 3), resulting in emission leakage. To cope with this problem, a systematic accounting covering all 3 scopes is presented in a case study of Macao for the years 2005–2009, based on the latest embodied emission intensity databases for China and for the world. The results show that total emissions are dominated by indirect emissions mainly embodied in imports, which is 3–4 times direct emissions during the period concerned. It is verified that accounting under Scopes 1 and 2 cannot capture the full picture of cities' emissions, especially cities like Macao which are dominated by service industry and inevitably sustained by massive materials and services from other regions. Our study suggests that Macao should adjust its current GHG mitigation policies which consider only its emissions occurring within its border, as Macao is a net GHG emissions importer. This work is the first assessment of Macao's embodied GHG emissions. - Highlights: • A systematic accounting procedure is presented to inventory a city's GHG emissions. • A comprehensive review of GHG emissions is performed for Macao. • Indirect GHG emissions dominate Macao's embodied GHG emissions. • Macao induced large amount of GHG emissions in other regions through trade. • The variation in GHG emission structure against socio-economic changes is revealed

  10. Modeling of municipal greenhouse gas emissions. Calculation of greenhouse gas emissions and the reduction possibilities of Dutch municipalities

    NARCIS (Netherlands)

    Vries de, Willem

    2011-01-01

    Summary Municipalities represent an active governmental layer in the Netherlands. They often have ambitions to reduce greenhouse gas emissions. In this way the municipalities take responsibility to reduce the threat of global warming. To implement effect

  11. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  12. Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment

    International Nuclear Information System (INIS)

    Bernier, Etienne; Maréchal, François; Samson, Réjean

    2012-01-01

    The optimal design of an energy-intensive process involves a compromise between costs and greenhouse gas emissions, complicated by the interaction between optimal process emissions and supply chain emissions. We propose a method that combines generic abatement cost estimates and the results of existing (LCA) life cycle assessment studies, so that supply chain emissions are properly handled during optimization. This method is illustrated for a (NGCC) natural gas combined cycle power plant model with the following design and procurement options: procurement of natural gas from low-emissions producers, fuel substitution with (SNG) synthetic natural gas from wood, and variable-rate CO 2 capture and sequestration from both the NGCC and SNG plants. Using multi-objective optimization, we show two Pareto-optimal sets with and without the proposed LCA method. The latter can then be shown to misestimate CO 2 abatement costs by a few percent, penalizing alternate fuels and energy-efficient process configurations and leading to sub-optimal design decisions with potential net losses of the order of $1/MWh. Thus, the proposed LCA method can enhance the economic analysis of emissions abatement technologies and emissions legislation in general. -- Highlights: ► Multi-objective optimization and LCA used for process design considering supply chain. ► Off-site emissions in LCA reveal potential future indirect taxes for energy consumers. ► Generic abatement cost curves provide a mitigation model for off-site emissions. ► Off-site mitigation precedes CO 2 capture or biogas substitution in NGCC plant. ► Profitability estimation of capture or substitution depends on off-site mitigation.

  13. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  14. Canada's nuclear industry, greenhouse gas emissions, and the Kyoto Protocol

    International Nuclear Information System (INIS)

    Pendergast, D.R.; Duffey, R.B.; Tregunno, D.

    1998-01-01

    The Kyoto Protocol of the United Nations Framework Convention on Climate change, dated December 10, 1997 committed Canada to reduce greenhouse gases to 6% below 1990 levels by 2008-2012. Other nations also committed to varying degrees of reduction. The Protocol includes provisions for credit to the 'developed' counties for initiatives which lead to greenhouse gas reduction in the 'developing' countries and for the sharing of credit between 'developed' countries for projects undertaken jointly. The rules and details for implementation of these guidelines remain to be negotiated. We begin our study by establishing the magnitude of greenhouse gas emissions already avoided by the nuclear industry in Canada since the inception of commercial power plants in 1971. We then review projections of energy use in Canada and anticipated increase in electricity use up to the year 2020. These studies have anticipated no (or have 'not permitted') further development of nuclear electricity production in spite of the clear benefit with respect to greenhouse gas emission. The studies also predict a relatively small growth of electricity use. In fact the projections indicate a reversal of a trend toward increased per capita electricity use which is contrary to observations of electricity usage in national economies as they develop. We then provide estimates of the magnitude of greenhouse gas reduction which would result from replacing the projected increase in fossil fuel electricity by nuclear generation through the building of more plants and/or making better use of existing installations. This is followed by an estimate of additional nuclear capacity needed to avoid CO 2 emissions while providing the electricity needed should per capita usage remain constant. Canada's greenhouse gas reduction goal is a small fraction of international commitments. The Kyoto agreement's 'flexibility mechanism' provisions provide some expectation that Canada could obtain some credit for greenhouse gas

  15. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  16. Rough surface mitigates electron and gas emission

    International Nuclear Information System (INIS)

    Molvik, A.

    2004-01-01

    Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of η e (le) 130 and η 0 ∼ 10 4 respectively, with 1 MeV K + incident on stainless steel. Electron emission scales as η e ∝ 1/cos(θ), where θ is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90 o ) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62 o . Gas desorption varies more slowly with θ (Fig. 1(b)) decreasing a factor of ∼2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K + ions backscatter when incident at 88-89 o from normal on a smooth surface. The scattered ions are mostly within ∼10 o of the initial direction but a few scatter by up to 90 o . Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams

  17. Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia

    Directory of Open Access Journals (Sweden)

    Bista Sangita

    2017-01-01

    Full Text Available Western Australia has globally significant onshore gas resources, with over 280 trillion cubic feet of economically recoverable gas located in five shale basins. The Western Australian Government and gas industry have promoted the development of these resources as a “clean energy source” that would “help to reduce global carbon emissions” and provide a “transition fuel” to a low carbon economy. This research examines those claims by reviewing existing literature and published data to estimate the life cycle greenhouse gas (GHG pollution that would result from the development of Western Australia’s onshore gas basins using hydraulic fracking. Estimates of carbon pollution from each stage in gas development, processing, transport and end-use are considered in order to establish total life-cycle emissions in tonnes of carbon-dioxide equivalent (CO2e. The emissions estimates draw from published research on emissions from shale gas development in other jurisdictions as well as industry or government reported emissions from current technology for gas processing and end-use as applicable. The current policy and regulatory environment for carbon pollution and likely resulting GHG mitigation measures has also been considered, as well as the potential for the gas to displace or substitute for other energy sources. In areas where there is uncertainty, conservative emissions estimates have been used. Modelling of GHG emissions has been undertaken for two comparison resource development and utilisation scenarios; Australian domestic and 100% export i.e. no domestic use. Each scenario corresponds to a different proportionate allocation of emissions accounted for domestic emissions in Australia and emissions accounted for in other jurisdictions. Emissions estimates for the two scenarios are 245–502 MTCO2e/year respectively over a resource development timeframe of 20 years. This is roughly the same as Australia’s total GHG emissions in 2014

  18. Electric-power systems planning and greenhouse-gas emission management under uncertainty

    International Nuclear Information System (INIS)

    Li, Y.P.; Huang, G.H.

    2012-01-01

    Highlight: ►A multistage stochastic integer programming model is developed for planning electric-power systems. ►Uncertain and dynamic information can be incorporated within a multilayer scenario tree. ►This can help minimize system cost under random energy demand and greenhouse gas (GHG) abatement goal. ►Results can support decisions of facility expansion, electricity supply and GHG mitigation. - Abstract: In this study, a multistage interval-stochastic integer programming model is formulated for managing greenhouse gas (GHG) emissions and planning electric-power systems under uncertainty. The developed model can reflect dynamic, interactive, and uncertain characteristics of energy systems. Besides, the model can be used for answering questions related to types, times, demands and mitigations of energy systems planning practices, with the objective of minimizing system cost over a long-time planning horizon. The solutions can help generate electricity-generation schemes and capacity-expansion plans under different GHG-mitigation options and electricity-demand levels. Tradeoffs among system cost, energy security, and emission management can also be tackled. A high system cost will increase renewable energy supply and reduce GHG emission, while a desire for a low cost will run into risks of a high energy deficiency and a high GHG emission.

  19. Investigation into the emission of greenhouse effect gases; Onshitsu koka gas no haishutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the situation of greenhouse effect gas emissions of advanced countries based on the reports from them. The advanced countries which concluded the U.N. Framework Convention on Climate Change (OECD member countries, the former U.S.S.R., and East European countries) are to be reported to the office concerned with work for the framework the situation of their greenhouse effect gas emissions according to the obligation of the framework. In and after April 1997, they made the second report. The paper summarized changes in emission amount, the future trend, and the policies/measures mainly taken of nine countries which have already presented the second report (the U.S., the U.K., Germany, Holland, Italy, Norway, Sweden, Finland, and New Zealand) and one country (Russia) which has made only the first report. Moreover, the literature was collected and summed up concerning the mechanism and coefficients of the emission of nitrous oxide and methane. The collected literature was classified into all fields/plural number of fields, energy relation, industrial process relation, relation with the use of organic solvent and other products, agricultural relation, relation with changes in land use and forests, and waste relation. 4 figs., 228 tabs.

  20. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  1. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    International Nuclear Information System (INIS)

    Griswold, Julia B; Madanat, Samer; Horvath, Arpad

    2013-01-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time. (letter)

  2. Greenhouse gas emissions trading: Cogen case studies in the early trading market

    International Nuclear Information System (INIS)

    Buerer, Mary Jean

    2001-01-01

    An increasing number of companies are interested in opportunities to trade their reduction in greenhouse gas emissions from cogeneration on the emerging greenhouse gas emissions market. Only the UK and Denmark currently have emissions trading schemes, but they are under development in other European countries. Two frameworks currently exist for trading. Baseline-and-credit trading is used in Canada where companies can take part in two voluntary schemes (Greenhouse Gas Emission Reduction Trading Pilot or Clean Air Canada Inc). An example project from the CHP unit at DuPont's Maitland chemical production facility is given, with details of the baselines and calculations used. The other option is company-wide emissions trading. The example given here features the CHP units at BP's refinery and chemicals operations in Texas. The potential revenue from emission reduction projects could help to boost the economics of cogeneration projects

  3. Are greenhouse gas emissions from international shipping a type of marine pollution?

    Science.gov (United States)

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study of gas emission from the internal chambers of cryogenic equipment

    International Nuclear Information System (INIS)

    Matyash, Y.I.; Fel'dman, R.G.; Ivakhnenko, Z.N.; Myasnikov, V.M.

    1986-01-01

    One of the methods of improving the efficiency of cryogenic gas equipment (CGE) is adsorption purification of the working medium. The type and quantity of adsorben can be decided after knowing the qualitative and quantitative nature of gas emissions. Gas emissions were studied by the chromatographic method using a heat-conduction detectory. This method made it possible to determine simultaneously the impurities which differ significantly in terms of physicochemical properties. It was established that carbon dioxide and hydrocarbons are continuously emitted in the gaseous medium of the CGE at a constant rate. For the type of machine which was studied, the rates of gas emission were as follows: carbon dioxide and ethane - 0.2 mg/h; ethylene and methane - 0.1 mg/h; propylene, N-butane, and isobutane - 0.2 mg/h

  5. A national inventory of greenhouse gas (GHG), criteria air contaminants (CAC) and hydrogen sulphide (H2S) emissions by the upstream oil and gas industry : volume 1, overview of the GHG emissions inventory : technical report

    International Nuclear Information System (INIS)

    2004-09-01

    A detailed inventory of greenhouse gas (GHG) emissions from the upstream oil and gas sector in Canada was presented along with explanations of the methodologies and data sources used. This report is based on previous work done on methane and volatile organic compound emissions from the upstream oil and gas sector for the period of 1990 to 1995, but it includes key improvements in identifying primary types of emissions sources such as emissions from fuel combustion, flaring, venting, fugitive equipment leaks and accidental releases. It also includes criteria air contaminants and hydrogen sulfide emissions, an analysis of GHG emission intensities and a change in the definition of volatile organic compounds from comprising all non-methane hydrocarbons to comprising all non-methane and non-ethane hydrocarbons. The report covers portions of the upstream oil and gas industry in Canada plus the natural gas transmission and natural gas distribution industries with reference to well drilling, oil production, and natural gas production, processing, transmission and distribution. Accidents and equipment failures are also included. The report reveals the total GHG emissions by source type, sub-sector, facility type and sub-type for the year 2000 at the national level. In 2000, the total carbon dioxide equivalent GHG emissions from the entire oil and gas sector were 101,211 kilo tonnes. For the upstream oil and gas sector alone, total GHG emissions were 84,355 kilo tonnes, representing 12 per cent of Canada's total national emissions of GHGs in 2000. This is an increase of about 25 per cent from 1995 levels. The biggest primary source of these emissions is fuel combustion, which accounts for 40.8 per cent of the total. This report also includes a provincial breakdown of GHG emissions for the natural gas transmission, storage and distribution sub-sectors in Canada for the year 2000. refs., tabs., figs

  6. Spectrum analysis of national greenhouse gas emission: a case study of Germany

    International Nuclear Information System (INIS)

    Su, Meirong; Pauleit, Stephan; Xu, Chao

    2016-01-01

    It is essential to abstract the key information from accounting results of greenhouse gas (GHG) emissions because it can provide a highly generalized and clear picture of GHG emissions, which is especially helpful for the public and policy makers. To clearly display the composition of GHG emissions, the concept of spectrum analysis is introduced and defined in this paper. Next, a multilayer analysis framework for national GHG emissions was proposed, which is represented by a pyramid of three layers: total emissions (first layer), emissions decomposed by gas type or sector (second layer), and emissions decomposed by both gas type and sector (third layer). Based on the analysis results from the first to third layers, the main compositional information of national GHG emissions was gradually summarized and analyzed until a spectrum of GHG emissions was acquired. The spectrum of GHG emissions displays the compositional structure of national GHG emissions in the different layers, which is helpful in identifying priorities for emissions reduction. A case study of Germany's GHG emissions during 1990-2012 was conducted, which indicated that CO_2 and the energy sector were the biggest contributors to the total GHG emissions. Some suggestions for reducing GHG emissions are offered based on the obtained results. And the potential development of spectrum analysis for GHG emissions is also expected from aspects of both research and technology. (orig.)

  7. Spectrum analysis of national greenhouse gas emission: a case study of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Su, Meirong [Dongguan University of Technology, School of Chemistry and Environmental Engineering, Dongguan, Guangdong Province (China); Beijing Normal University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing (China); Technical University of Munich, Strategic Landscape Planning and Management, Freising (Germany); Pauleit, Stephan; Xu, Chao [Technical University of Munich, Strategic Landscape Planning and Management, Freising (Germany)

    2016-10-15

    It is essential to abstract the key information from accounting results of greenhouse gas (GHG) emissions because it can provide a highly generalized and clear picture of GHG emissions, which is especially helpful for the public and policy makers. To clearly display the composition of GHG emissions, the concept of spectrum analysis is introduced and defined in this paper. Next, a multilayer analysis framework for national GHG emissions was proposed, which is represented by a pyramid of three layers: total emissions (first layer), emissions decomposed by gas type or sector (second layer), and emissions decomposed by both gas type and sector (third layer). Based on the analysis results from the first to third layers, the main compositional information of national GHG emissions was gradually summarized and analyzed until a spectrum of GHG emissions was acquired. The spectrum of GHG emissions displays the compositional structure of national GHG emissions in the different layers, which is helpful in identifying priorities for emissions reduction. A case study of Germany's GHG emissions during 1990-2012 was conducted, which indicated that CO{sub 2} and the energy sector were the biggest contributors to the total GHG emissions. Some suggestions for reducing GHG emissions are offered based on the obtained results. And the potential development of spectrum analysis for GHG emissions is also expected from aspects of both research and technology. (orig.)

  8. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  9. ICT and greenhouse gas emissions; IKT og klimagassutslipp

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    ICT can go from being a part of the climate challenge to be an important part of the solution by simplify, rationalize and replace a variety of features and services. ICT's contribute through production and operation for approx. 2.5 % of global greenhouse gas emissions. At the same time estimates show that ICT could help to reduce total greenhouse gas emissions by up to 15 % by 2020 through a series of measures. ICT can, for example. contribute to reduce travel activity through remote collaboration, the transition from material to virtual products and by greater energy efficiency in buildings and vehicles. Through remote collaboration, green tender rounds and change of focus from products to services, can authorities reduce their own emissions. In addition, the authorities go ahead as good examples by illustrating how environment benefits from governmental ICT investments. If we assume that video conferencing can replace 1 of 5 flights among the 140 000 state employees, this can lead to a reducted emission of 14 600 tonnes of CO{sub 2} per year. (AG)

  10. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Jan Krantz

    2015-10-01

    Full Text Available Greenhouse gas (GHG emissions from construction processes are a serious concern globally. Of the several approaches taken to assess emissions, Life Cycle Assessment (LCA based methods do not just take into account the construction phase, but consider all phases of the life cycle of the construction. However, many current LCA approaches make general assumptions regarding location and effects, which do not do justice to the inherent dynamics of normal construction projects. This study presents a model to assess the embodied energy and associated GHG emissions, which is specifically adapted to address the dynamics of infrastructure construction projects. The use of the model is demonstrated on the superstructure of a prefabricated bridge. The findings indicate that Building Information Models/Modeling (BIM and Discrete Event Simulation (DES can be used to efficiently generate project-specific data, which is needed for estimating the embodied energy and associated GHG emissions in construction settings. This study has implications for the advancement of LCA-based methods (as well as project management as a way of assessing embodied energy and associated GHG emissions related to construction.

  11. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  12. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.

    Science.gov (United States)

    Lu, Xi; Salovaara, Jackson; McElroy, Michael B

    2012-03-06

    CO(2) emissions from the US power sector decreased by 8.76% in 2009 relative to 2008 contributing to a decrease over this period of 6.59% in overall US emissions of greenhouse gases. An econometric model, tuned to data reported for regional generation of US electricity, is used to diagnose factors responsible for the 2009 decrease. More than half of the reduction is attributed to a shift from generation of power using coal to gas driven by a recent decrease in gas prices in response to the increase in production from shale. An important result of the model is that, when the cost differential for generation using gas rather than coal falls below 2-3 cents/kWh, less efficient coal fired plants are displaced by more efficient natural gas combined cycle (NGCC) generation alternatives. Costs for generation using NGCC decreased by close to 4 cents/kWh in 2009 relative to 2008 ensuring that generation of electricity using gas was competitive with coal in 2009 in contrast to the situation in 2008 when gas prices were much higher. A modest price on carbon could contribute to additional switching from coal to gas with further savings in CO(2) emissions.

  13. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  14. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland

    Science.gov (United States)

    Batson, Jackie; Noe, Gregory B.; Hupp, Cliff R.; Krauss, Ken W.; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Understanding the controls on floodplain carbon (C) cycling is important for assessing greenhouse gas emissions and the potential for C sequestration in river-floodplain ecosystems. We hypothesized that greater hydrologic connectivity would increase C inputs to floodplains that would not only stimulate soil C gas emissions but also sequester more C in soils. In an urban Piedmont river (151 km2 watershed) with a floodplain that is dry most of the year, we quantified soil CO2, CH4, and N2O net emissions along gradients of floodplain hydrologic connectivity, identified controls on soil aerobic and anaerobic respiration, and developed a floodplain soil C budget. Sites were chosen along a longitudinal river gradient and across lateral floodplain geomorphic units (levee, backswamp, and toe slope). CO2 emissions decreased downstream in backswamps and toe slopes and were high on the levees. CH4 and N2O fluxes were near zero; however, CH4emissions were highest in the backswamp. Annual CO2 emissions correlated negatively with soil water-filled pore space and positively with variables related to drier, coarser soil. Conversely, annual CH4 emissions had the opposite pattern of CO2. Spatial variation in aerobic and anaerobic respiration was thus controlled by oxygen availability but was not related to C inputs from sedimentation or vegetation. The annual mean soil CO2 emission rate was 1091 g C m−2 yr−1, the net sedimentation rate was 111 g C m−2 yr−1, and the vegetation production rate was 240 g C m−2 yr−1, with a soil C balance (loss) of −338 g C m−2 yr−1. This floodplain is losing C likely due to long-term drying from watershed urbanization.

  15. Low-Emission combustion of fuel in aeroderivative gas turbines

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.

    2017-12-01

    The paper is the first of a planned set of papers devoted to the world experience in development of Low Emission combustors (LEC) for industrial Gas Turbines (GT). The purpose of the article is to summarize and analyze the most successful experience of introducing the principles of low-emission combustion of the so-called "poor" (low fuel concentration in air when the excess air ratio is about 1.9-2.1) well mixed fuelair mixtures in the LEC for GTs and ways to reduce the instability of combustion. The consideration examples are the most successful and widely used aero-derivative GT. The GT development meets problems related to the difference in requirements and operation conditions between the aero, industrial, and power production GT. One of the main problems to be solved is the LEC development to mitigate emissions of the harmful products first of all the Nitrogen oxides NOx. The ways to modify or convert the initial combustors to the LEC are shown. This development may follow location of multiburner mixers within the initial axial envelope dimensions or conversion of circular combustor to the can type one. The most interesting are Natural Gas firing GT without water injection into the operating process or Dry Low emission (DLE) combustors. The current GT efficiency requirement may be satisfied at compressor exit pressure above 3 MPa and Turbine Entry temperature (TET) above 1500°C. The paper describes LEC examples based on the concept of preliminary prepared air-fuel mixtures' combustion. Each combustor employs its own fuel supply control concept based on the fuel flow-power output relation. In the case of multiburner combustors, the burners are started subsequently under a specific scheme. The can type combustors have combustion zones gradually ignited following the GT power change. The combustion noise problem experienced in lean mixtures' combustion is also considered, and the problem solutions are described. The GT test results show wide ranges of stable

  16. Description and application of the EAP computer program for calculating life-cycle energy use and greenhouse gas emissions of household consumption items

    NARCIS (Netherlands)

    Benders, R.M.J.; Wilting, H.C.; Kramer, K.J.; Moll, H.C.

    2001-01-01

    Focusing on reduction in energy use and greenhouse gas emissions, a life-cycle-based analysis tool has been developed. The energy analysis program (EAP) is a computer program for determining energy use and greenhouse gas emissions related to household consumption items, using a hybrid calculation

  17. Measuring and controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bourrier, Herve; LAFONT, Bruno; Fischer, Severin; Leonard, Damien; Tutenuit, Claire

    2011-05-01

    As providing a reporting of their greenhouse gas emissions has become mandatory for a large number of French companies, this publication proposes a methodology to perform an assessment or measurement, and a control of such emissions. In its first part, it explains why measurements are required: indication of concerned gases, international consensus to limit temperature rise, definition and chronology of the main steps adopted at the international level and which must be considered in the approach adopted by enterprises in this respect. It outlines the benefits of such a measurement for the enterprise in terms of competitiveness, personnel commitment, new markets and products, image, compliance with the law, operational and financial aspects, and so on. It identifies the various stakeholders to be informed: civil society, financial community, public authorities, clients and consumers, personnel, suppliers. It outlines the diversity and evolution of legal frameworks at the international level as well as at national levels. While evoking many examples of French companies (SNCF, EDF, Seche Environnement, RTE, Michelin, Arcelormittal, AREVA, Air France, EADS-Airbus, AXA, Veolia, and so on), the next part addresses how to measure emissions. It outlines the complexity of the methodological landscape with its various criteria, evokes the various existing standards, outlines the distinction between organisation-based, product-based and project-based approaches, and the distinction between direct and indirect emissions in relationship with the notion of scope. It comments the existence of sector-based methodologies and guidelines, and discusses some difficulties and methodological decisions. The third part proposes some lessons learned from the experience which could lead to a harmonisation of methodologies, proposes a synthesis of reporting approaches, outlines risks and opportunities related to communication

  18. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    International Nuclear Information System (INIS)

    Zhang, Hao; Xuan, Jin; Wang, Huizhi; Leung, Dennis Y C; Xu, Hong; Zhang, Li

    2017-01-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µ l min −1 . Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design. (paper)

  19. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  20. FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXY–QUASAR PAIR

    Energy Technology Data Exchange (ETDEWEB)

    Neeleman, Marcel; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zwaan, Martin A.; Kampen, Eelco van; Møller, Palle [European Southern Observatory, Karl-Schwarzschild-strasse 2, D-85748 Garching bei München (Germany); Kanekar, Nissim [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411007 (India); Christensen, Lise; Fynbo, Johan P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dessauges-Zavadsky, Miroslava [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny (Switzerland); Zafar, Tayyaba, E-mail: marcel@ucsc.edu [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1−0) emission from the z = 0.101 galaxy toward quasar PKS 0439–433 is coincident with its stellar disk and yields a molecular gas mass of M{sub mol} ≈ 4.2 × 10{sup 9} M{sub ⊙} (for a Galactic CO-to-H{sub 2} conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s{sup −1} and a resultant dynamical mass of ≥4 × 10{sup 10} M{sub ⊙}. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  1. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  2. The relative magnitude of the impacts and effects of GHG-related emission reductions

    International Nuclear Information System (INIS)

    Chiotti, Q.; Urquizo, N.

    2000-01-01

    A preliminary assessment of the current knowledge related to the co-benefits associated with climate change mitigation was provided in this document. One of the benefits of the reduction of greenhouse gas emissions is the reduction of other pollutants like sulphur dioxide, nitrogen oxides, carbon monoxide, volatile organic compounds, particulate matter, ground-level ozone, heavy metals and other toxic pollutants. Since these pollutants have an effect on acid deposition, ozone depletion and air quality, the environment, social welfare and human health, this paper provided an initial outline of the complex processes, interactions and uncertainties associated with this issue. Fossil fuels represent the major source of greenhouse gas (GHG) emissions in Canada. The reduction of emissions of GHG could have an impact on the Long Range Transport of air toxic substances, would help increase oxygen concentrations in the Northern Hemisphere, and lead to less carbon monoxide being released in the atmosphere, among others effects. Reductions of GHG emissions would also have an impact on ecosystems by reducing ground-level ozone concentrations. There would be less acid deposition and more dissolved organic carbon, allowing less ultraviolet-B penetration in aquatic ecosystems. In the case of human health, improved air quality impacts on the avoidance of premature mortality and reduced morbidity. Numerous other co-benefits were listed and discussed in this document. The first section stated the purpose and objectives. In section 2, that authors described the science and policy context and discussed building an analytical framework in section 3. The impact of GHG emission reductions on atmospheric pollution and ecosystems was dealt with in section 4 and section 5 was devoted to providing an assessment of the relative magnitude of effects. In section 6, the significance of scope was reviewed, and the authors concluded with section 7 in which they discussed the next steps: phase II

  3. Greenhouse gas emissions from South Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-05-01

    Full Text Available of CO2. These gases included 350 Tg CO2 (65.6% of the effect), 183 Tg CH4 (34.2%) and 1.2 Tg N2O (0.2%). The mining and burning of coal contributed more than 80% of the greenhouse gas emissions from South African territory....

  4. Detecting gas leaks by ultrasonic emission

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo; Henriksen, Eigil

    1997-01-01

    The emission of noise in the frequency range 10 kHz to 25.6 kHz from an experimental gas leak in a flanged joint has been experimentally investigated. The overall conclusion is that the emitted noise is almost frequency independent in level within the considered frequency range.A small PC program...

  5. Reducing the Green House Gas Emissions from the Transportation Sector

    Directory of Open Access Journals (Sweden)

    Oyewande Akinnikawe

    2010-02-01

    Full Text Available In the United States, two thirds of the carbon monoxide and about one third of carbon dioxide emissions come from the transportation sector. Ways to reduce these emissions in the future include replacing gasoline and diesel by biofuels, or by blend of biofuels with conventional gasoline and diesel, or by compressed natural gas (CNG, or by replacing internal combustion engines by electric motors powered by hydrogen fuel cells or battery-powered electric vehicles recharged from the electric grid. This presentation will review these technologies the fuel production pathways, when they are likely to be available, and by what fraction transportation sector green house gas emissions could be reduced by each. A well-to-wheels (WTW analysis is performed on each vehicle/ fuel technology using the GREET model and the total energy use, the CO 2 emissions, NO x emissions, SO x emissions for the life cycle of the vehicle technologies are calculated. Prospects for reducing foreign oil dependence as well as mitigating green house gases emission from the transportation sector will be considered in the analysis.

  6. MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.

    Science.gov (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro

    2014-05-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and

  7. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    Science.gov (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  8. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  9. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  10. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  11. Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California

    Energy Technology Data Exchange (ETDEWEB)

    Penev, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chen, Yuche [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants and biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).

  12. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  13. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    Science.gov (United States)

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  14. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  15. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices

    International Nuclear Information System (INIS)

    Hoolohan, C.; Berners-Lee, M.; McKinstry-West, J.; Hewitt, C.N.

    2013-01-01

    The greenhouse gas (GHG) emissions embodied in 66 different food categories together with self-reported dietary information are used to show how consumer choices surrounding food might lead to reductions in food-related GHG emissions. The current UK-average diet is found to embody 8.8 kg CO 2 e person −1 day −1 . This figure includes both food eaten and food wasted (post-purchase). By far the largest potential reduction in GHG emissions is achieved by eliminating meat from the diet (35% reduction), followed by changing from carbon-intensive lamb and beef to less carbon-intensive pork and chicken (18% reduction). Cutting out all avoidable waste delivers an emissions saving of 12%. Not eating foods grown in hot-houses or air-freighted to the UK offers a 5% reduction in emissions. We show how combinations of consumer actions can easily lead to reductions of 25% in food related GHG emissions. If such changes were adopted by the entire UK population this would be equivalent to a 71% reduction in the exhaust pipe emissions of CO 2 from the entire UK passenger car fleet (which totalled 71 Mt CO 2 e year −1 in 2009). - Highlights: • UK-average diet embodies 8.8 kg CO 2 e person −1 day −1 (including avoidable waste). • Eliminating meat from the diet reduces food-related GHG emissions by 35%. • Changing from GHG-intensive meats to less intensive meats reduces emissions by 18%. • Cutting out all avoidable food waste reduces emissions by 12%. • Avoiding hot-housed food or food air-freighted to the UK reduces emissions by 5%

  16. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  17. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  18. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  20. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  1. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  2. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    Science.gov (United States)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  3. Application of microturbines to control emissions from associated gas

    Science.gov (United States)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  4. Greenhouse gas emissions from industrial activities

    International Nuclear Information System (INIS)

    Kinyanjui, L.N.

    1998-01-01

    This study considers greenhouse gas emissions stemming from industrial activities such as cement production; limestone use and lime production. The Intergovernmental Panel on Climate Change (IPCC) (1995a) methodology for industrial sector was applied for the three components selected. Limitations hindering the handling of other industrial process are listed as budgetary and time. Data sources and recommendations are listed

  5. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  6. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  7. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  8. Australia's Greenhouse Challenge is a positive step towards abatement of gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Australian industry has responded favourably to the Federal Government's Greenhouse Clallenge Program (GCP) which has focused on curbing greenhouse gas emission from the manufacturing, mining and energy sector. It is a carefully shaped program which prompts companies and groups to thoroughly review their individual operations and identify areas where credible new or addition emission control can be employed. There are now 42 companies and associations that have signed agreements in GCP. Together they account for some 15 % of Australia's total greenhouse gas emissions. It is expected that by 2000 the emission increase will be cut to 7 % and the total emissions cut by 16 million tonnes for the 42 companies concerned

  9. Uncertainty in estimating and mitigating industrial related GHG emissions

    International Nuclear Information System (INIS)

    El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.

    2001-01-01

    Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)

  10. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  11. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    Science.gov (United States)

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  12. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.

    Science.gov (United States)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-03-01

    Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Greenhouse gas emissions of hydropower in the Mekong River Basin

    Science.gov (United States)

    Räsänen, Timo A.; Varis, Olli; Scherer, Laura; Kummu, Matti

    2018-03-01

    The Mekong River Basin in Southeast Asia is undergoing extensive hydropower development, but the magnitudes of related greenhouse gas emissions (GHG) are not well known. We provide the first screening of GHG emissions of 141 existing and planned reservoirs in the basin, with a focus on atmospheric gross emissions through the reservoir water surface. The emissions were estimated using statistical models that are based on global emission measurements. The hydropower reservoirs (119) were found to have an emission range of 0.2-1994 kg CO2e MWh-1 over a 100 year lifetime with a median of 26 kg CO2e MWh-1. Hydropower reservoirs facilitating irrigation (22) had generally higher emissions reaching over 22 000 kg CO2e MWh-1. The emission fluxes for all reservoirs (141) had a range of 26-1813 000 t CO2e yr-1 over a 100 year lifetime with a median of 28 000 t CO2e yr-1. Altogether, 82% of hydropower reservoirs (119) and 45% of reservoirs also facilitating irrigation (22) have emissions comparable to other renewable energy sources (equalling even the emission from fossil fuel power plants (>380 kg CO2e MWh-1). These results are tentative and they suggest that hydropower in the Mekong Region cannot be considered categorically as low-emission energy. Instead, the GHG emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.

  14. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    Science.gov (United States)

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  15. Reducing greenhouse gas emissions for climate stabilization: framing regional options

    Energy Technology Data Exchange (ETDEWEB)

    Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

  16. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    International Nuclear Information System (INIS)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-01-01

    Highlights: ► Significant GHG reductions are possible by efficient WtE technologies. ► CHP and high power-to-heat ratio provide significant GHG savings. ► N 2 O and coal mine type are important in LCA GHG emissions of FBC co-combustion. ► Substituting coal and fuel oil by waste is beneficial in electricity and heat production. ► Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO 2 -eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  17. Reduction of greenhouse gas in power industry by emission trading system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Myung; Lee, Kee Hoon [Korea Energy Economics Institute, Euiwang (Korea)

    1999-04-01

    The rules governing their implementation and operation for implementing the Kyoto Protocol including emissions permit trading, project-based credit trading and the Clean Development Mechanism are to be decided at future talks. How these policies are eventually designed will determine the effectiveness of the Protocol. However, it has been passive and insufficient to deal with the Kyoto Protocol since there is no obligation on reduction of greenhouse gas emissions. Therefore, the issues on emissions permit trading are analyzed and the strategies for utilizing the Kyoto mechanism effectively are presented through reviewing the existing negotiation strategies. Moreover, how to use emissions permit trading in the power industry, the largest greenhouse gas emissions industry, is examined by dividing into two sections, domestic and abroad. (author). 62 refs., 2 figs., 42 tabs.

  18. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    Science.gov (United States)

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  19. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  20. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  1. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rosemary Hiscock

    2014-11-01

    Full Text Available To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  2. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  3. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  4. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  5. Gas Phase Emission Ratios From In-Use Diesel and CNG Curbside Passenger Buses in New York City

    Science.gov (United States)

    Herndon, S. C.; Shorter, J.; Canagaratna, M.; Jayne, J.; Nelson, D. D.; Wormhoudt, J. C.; Williams, P.; Silva, P. J.; Shi, Q.; Ghertner, A.; Zahniser, M.; Worsnop, D.; Kolb, C.; Lanni, T.; Drewnick, F.; Demerjian, K. L.

    2002-12-01

    The Aerodyne Mobile Laboratory simultaneously measured gas phase and particulate emissions from in use vehicles during two campaigns in New York City. The campaigns took place during two weeks in October, 2000 and four weeks in July-August, 2001. Passenger curbside buses were the primary focus of the study, but school buses and several other heavy duty diesel vehicles were also characterized. This paper describes the methodologies used to measure individual in use vehicles and presents the results of the gas phase measurements. Emission ratios for NO, NO2, SO2, N2O, CO, CH4 and H2CO relative to CO2 have been determined across several classes of buses. The gas phase concentrations were measured each second, using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). Some of the categories of buses into which the data has been sorted are; diesel (both 6V92 and Series 50) with and without the Continuous Regenerative Technology (CRT) retrofit, compressed natural gas powered(CNG) and hybrid diesel-electric buses. The New York Metropolitan Transit Authority (MTA) cooperated with this work, providing details about each of their buses followed. In addition to MTA buses, other New York City passenger bus operators were also measured. In September 2000, MTA began to switch to 30 ppm sulfur diesel fuel while it is believed the non MTA operators did not. The measured emission ratios show that low sulfur fuel greatly reduces the amount of SO2 per CO2. Roughly one third of the MTA fleet of diesel buses have been equipped with the CRT retrofit. The gas phase results of interest in this category show increased direct emission of NO2 and companion work (also submitted to the 12th CRC) show the impact the CRT refit has on particulate emissions. CNG buses show increased H2CO and CH4 emission ratios relative to diesel powered motors.

  6. Implementation of NOx emissions standard in the Gas Transmission Company in the Netherlands

    International Nuclear Information System (INIS)

    Veenstra, T.; Coors, P.; Rosmalen, R.J.

    1992-01-01

    In 1987 and 1990 new NO x emission standards came in force for firing installations (boilers, gas turbines and engines). Gasunie (the gas transportation company in The Netherlands) owns 55 gas turbines and 10 gas engines for the gastransport system, with a total capacity of about 570 MW, installed in 8 compressor stations. Having the most stringent emission levels of Europe (together with Germany) Gasunie reduced the total NO x amount from 3600 tons of NO x in 1987 to 630 tons of NO x in 1990. This reduction was mostly based on our own development of a new precombustion chamber for the lean burn gas engines. Besides that studies and research were carried out for NO x reduction on the gas turbine to meet the current legislation (115 ppm NO x ) and a strategy is made to meet future emission standards. This is necessary because the expected future NO x standards for stand alone gas turbines will be about half of the present standards

  7. Bayesian Learning and the Regulation of Greenhouse Gas Emissions

    OpenAIRE

    Karp, Larry; Zhang, Jiangfeng

    2001-01-01

    We study the importance of anticipated learning - about both environmental damages and abatement costs - in determining the level and the method of controlling greenhouse gas emissions. We also compare active learning, passive learning, and parameter uncertainty without learning. Current beliefs about damages and abatement costs have an important effect on the optimal level of emissions, However, the optimal level of emissions is not sensitive either to the possibility of learning about damag...

  8. Agriculture and the greenhouse gas emissions: A literature review

    International Nuclear Information System (INIS)

    Kulmala, A.; Esala, M.

    2000-01-01

    Agriculture contributes to the greenhouse effect by increasing carbon dioxide, nitrous oxide and methane emissions. This literature review examines agricultural sources and sinks of greenhouse gases as well as factors affecting emissions. Options for mitigating emissions are presented as well the results of greenhouse gas emission measurements on Finnish agricultural soils. In addition, some basic information is given about Finnish agriculture, and the estimation of emissions using the IPCC Guidelines is described. Carbon dioxide sources include decomposition of soil organic matter, combustion and liming. The agricultural sector can mitigate CO 2 emissions by increasing carbon stocks in soils and vegetation, reducing fossil fuel consumption, and increasing the production of bioenergy. There is little opportunity to decrease the amount of liming in Finland. The main nitrous oxide sources are nitrification and denitrification. N 2 O emissions can be reduced by enhancing plants' ability to compete for soil nitrogen and by keeping the rate of emission processes as low and the duration of emissions as short as possible. Special attention should be paid to manure management because manure contains abundant nitrogen that can be lost as N 2 O. Improvements in the protein feeding of livestock could also reduce potential N 2 O emissions from manure. Methane is emitted, for example, in the course of enteric fermentation and the anaerobic decomposition of organic matter in manure. The emission of CH 4 from soils depends on the relative amounts of methane production and consumption. Cattle with high productivity emit less methane per unit of milk or meat than do animals with low productivity. The number of breeding animals could be reduced by improving animal reproduction efficiency. Methane emitted from manure should be utilized as an energy source, or the formation of it should be prevented by keeping manure under aerobic conditions

  9. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  10. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  11. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    Science.gov (United States)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to

  12. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  13. Reduction of NOx emissions when burning low heating value gas

    International Nuclear Information System (INIS)

    Gustafsson, R.; Oskarsson, J.; Waldheim, L.

    1993-09-01

    On the gasification of nitrogen-rich fuel the nitrogen from the fuel goes into the gas phase in the form of ammonia and hydrogen cyanide and also nitrogen containing tars. When the gas is combusted the nitrogen compounds are oxidized to a great extent to NO x and, therefore, high NO x emissions can be found on the combustion of low heating value gas produced from energy forest wood chips as is also the case with direct combustion of nitrogen rich fuels. An experimental study has been carried out where the important parameters for designing a combustion chamber for low heating value gases have been studied in order to obtain maximum reduction of NO x emissions. The effect of tar cracking using dolomite on these emissions and the effect of parameters such as the addition of steam has also been tested. The tests were carried out with energy forest wood chips with 0.3% nitrogen. The gasification was carried out in a pyrolysis reactor, operated to yield a low heating value gas, and which was coupled to a simplified gas turbine combustion chamber at atmospheric pressure. The results show that the main part of the nitrogen in the fuel is found as ammonia in the low heating value gas. With this type of gasification the conversion of fuel nitrogen to ammonia in the gas is equivalent to 500-600 mg/MJ, calculated as NO 2 . Only very low amounts of hydrogen cyanide have been noted and no nitrogen containing tar components have been found. No apparent effect of steam additions has been noted. On the other hand the distribution of air in the combustion chamber and residence time during the under stoichiometric conditions are of great importance for the NO x reduction. Depending on the air distribution the emissions of NO 2 varied between 100 and 250 mg/MJ, calculated as NO 2 . 23 refs, 11 figs, 2 tabs

  14. Assessment of Methane Emissions – Impact of Using Natural Gas Engines in Unconventional Resource Development

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew [West Virginia Univ., Morgantown, WV (United States); Johnson, Derek [West Virginia Univ., Morgantown, WV (United States); Heltzel, Robert [West Virginia Univ., Morgantown, WV (United States); Oliver, Dakota [West Virginia Univ., Morgantown, WV (United States)

    2018-04-08

    Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findings from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.

  15. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options

    International Nuclear Information System (INIS)

    Pongthanaisawan, Jakapong; Sorapipatana, Chumnong

    2013-01-01

    Rapid growth of population and economy during the past two decades has resulted in continuing growth of transport’s oil demand and greenhouse gas (GHG) emissions. The objectives of this study are to examine pattern and growth in energy demand as well as related GHG emissions from the transport sector and to analyze potential pathways of energy demand and GHG emissions reduction from this sector of the measures being set by the Thai Government. A set of econometric models has been developed to estimate the historical trend of energy demand and GHG emissions in the transport sector during 1989–2007 and to forecast future trends to 2030. Two mitigation option scenarios of fuel switching and energy efficiency options have been designed to analyze pathways of energy consumption and GHG emissions reduction potential in Thailand’s transport sector compared with the baseline business-as-usual (BAU) scenario, which assumed to do nothing influences the long-term trends of transport energy demand. It has been found that these two mitigation options can reduce the GHG emissions differently. The fuel-switching option could significantly reduce the amount of GHG emissions in a relatively short time frame, albeit it will be limited by its supply resources, whereas the energy efficiency option is more effective for GHG emissions mitigation in the long term. Therefore, both measures should be implemented simultaneously for both short and long term mitigation effects in order to more effectively achieve GHG emissions reduction target.

  16. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  17. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.

    1994-01-01

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  18. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  19. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    Caponi, F.R.; Wheless, E.; Frediani, D.

    1998-01-01

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  20. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  1. Possibilities of using ISO 1406X standards in the management of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Fabian, G.; Priesol, J.

    2009-01-01

    Aim of this paper is to define and describe using of ISO 1406X standards for organization, which production of greenhouse gas emissions represents an important environmental aspect especially in terms of financial benefits accruing from trading with saved / reduced emissions. Following the main aim of this paper, we have set the following sub-objectives and tasks: - Define and describe the algorithm of implementation of program on greenhouse gas emissions according to the requirements and guidelines of the ISO 1406X in the organization; - Create a model of comprehensive management of greenhouse gas emissions standards as described.

  2. Towards a Novel Integrated Approach for Estimating Greenhouse Gas Emissions in Support of International Agreements

    Science.gov (United States)

    Reimann, S.; Vollmer, M. K.; Henne, S.; Brunner, D.; Emmenegger, L.; Manning, A.; Fraser, P. J.; Krummel, P. B.; Dunse, B. L.; DeCola, P.; Tarasova, O. A.

    2016-12-01

    In the recently adopted Paris Agreement the community of signatory states has agreed to limit the future global temperature increase between +1.5 °C and +2.0 °C, compared to pre-industrial times. To achieve this goal, emission reduction targets have been submitted by individual nations (called Intended Nationally Determined Contributions, INDCs). Inventories will be used for checking progress towards these envisaged goals. These inventories are calculated by combining information on specific activities (e.g. passenger cars, agriculture) with activity-related, typically IPCC-sanctioned, emission factors - the so-called bottom-up method. These calculated emissions are reported on an annual basis and are checked by external bodies by using the same method. A second independent method estimates emissions by translating greenhouse gas measurements made at regionally representative stations into regional/global emissions using meteorologically-based transport models. In recent years this so-called top-down approach has been substantially advanced into a powerful tool and emission estimates at the national/regional level have become possible. This method is already used in Switzerland, in the United Kingdom and in Australia to estimate greenhouse gas emissions and independently support the national bottom-up emission inventories within the UNFCCC framework. Examples of the comparison of the two independent methods will be presented and the added-value will be discussed. The World Meteorological Organization (WMO) and partner organizations are currently developing a plan to expand this top-down approach and to expand the globally representative GAW network of ground-based stations and remote-sensing platforms and integrate their information with atmospheric transport models. This Integrated Global Greenhouse Gas Information System (IG3IS) initiative will help nations to improve the accuracy of their country-based emissions inventories and their ability to evaluate the

  3. Report on a survey in fiscal 1999. Survey on the status of activities by European and American business enterprises related to greenhouse gas emissions trading; 1999 nendo onshitsu koka gas haishutsu ken torihiki ni kansuru Obei minkan kigyo no katsudo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Emissions trading of greenhouse gases is going to be introduced to give flexibility to the method of achieving reduction of the greenhouse gas emission established in the Kyoto Protocol. The emissions trading is an institution intended to achieve the environmental targets by using the 'market mechanism' in the environmental policies, which is expected to accomplish the effect of reducing greenhouse gas emission. The U.S.A. has adopted since 1990 the policy utilizing the emissions trading on SO2 and NOx, creating cases of successfully achieving the initial regulation targets in a short time. The history of this SO2 emissions trading showed that the emissions trading that makes the market mechanism to function can function as a policy even in the environmental policy. The representative of business enterprises working actively on this issue is BP Amco. BP Amco has started January 2000 full-fledged greenhouse gas right-to-emit institution inside the company. Among electric power companies, Ontario Power of Canada has executed about ten greenhouse gas emissions tradings yearly. Enron International has structured a system in order to participate positively in the greenhouse gas trading. (NEDO)

  4. Report on a survey in fiscal 1999. Survey on the status of activities by European and American business enterprises related to greenhouse gas emissions trading; 1999 nendo onshitsu koka gas haishutsu ken torihiki ni kansuru Obei minkan kigyo no katsudo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Emissions trading of greenhouse gases is going to be introduced to give flexibility to the method of achieving reduction of the greenhouse gas emission established in the Kyoto Protocol. The emissions trading is an institution intended to achieve the environmental targets by using the 'market mechanism' in the environmental policies, which is expected to accomplish the effect of reducing greenhouse gas emission. The U.S.A. has adopted since 1990 the policy utilizing the emissions trading on SO2 and NOx, creating cases of successfully achieving the initial regulation targets in a short time. The history of this SO2 emissions trading showed that the emissions trading that makes the market mechanism to function can function as a policy even in the environmental policy. The representative of business enterprises working actively on this issue is BP Amco. BP Amco has started January 2000 full-fledged greenhouse gas right-to-emit institution inside the company. Among electric power companies, Ontario Power of Canada has executed about ten greenhouse gas emissions tradings yearly. Enron International has structured a system in order to participate positively in the greenhouse gas trading. (NEDO)

  5. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    Science.gov (United States)

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  6. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    Science.gov (United States)

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  7. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  8. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reductions?

    International Nuclear Information System (INIS)

    Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J.; Gyldenkaerne, S.; Hermansen, J.E.

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: → GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. → Effects of measures to further reduce GHG emissions are listed. → Land use scenarios for a substantially reduced GHG emission by 2050 are presented. → A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. → Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO 2 reductions for Danish agriculture by 2050, sustaining current food production.

  9. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake.

    Science.gov (United States)

    Attermeyer, K; Flury, S; Jayakumar, R; Fiener, P; Steger, K; Arya, V; Wilken, F; van Geldern, R; Premke, K

    2016-02-05

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km(2)) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  10. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    Science.gov (United States)

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-02-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  11. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    Science.gov (United States)

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  12. Greenhouse Gas Emissions in the Netherlands 1990-2007. National Inventory Report 2009

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Brandes, L.J.; Baas, K.; Van den Born, G.J.; Geilenkirchen, G.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Van Schijndel, M.W.; Van der Sluis, S.M.; Coenen, P.W.H.G; Zijlema, P.J.; Van den Berghe, G.; Guis, B.

    2009-04-01

    This report documents the 2009 Netherlands annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data

  13. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  14. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  15. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China.

    Science.gov (United States)

    Dong, Kangyin; Sun, Renjin; Dong, Xiucheng

    2018-05-31

    This study aims to test the environmental Kuznets curve (EKC) for carbon dioxide (CO 2 ) emissions in China by developing a new framework based on the suggestion of Narayan and Narayan (2010). The dynamic effect of natural gas and renewable energy consumption on CO 2 emissions is also analyzed. Considering the structural break observed in the sample, a series of econometric techniques allowing for structural breaks is utilized for the period 1965-2016. The empirical results confirm the existence of the EKC for CO 2 emissions in China. Furthermore, in both the long-run and the short-run, the beneficial effects of natural gas and renewables on CO 2 emission reduction are observable. In addition, the mitigation effect of natural gas on CO 2 emissions will be weakened over time, while renewables will become progressively more important. Finally, policy suggestions are highlighted not only for mitigating CO 2 emissions, but also for promoting growth in the natural gas and renewable energy industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  17. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  18. Estimating Greenhouse Gas Emissions Level of A Natural Gas Pipeline – Case Study from A to B Point in West Java-Indonesia

    Directory of Open Access Journals (Sweden)

    Dianita Cindy

    2016-01-01

    Full Text Available Indonesia is one of the highest greenhouse emitters in the world. As a response of this problem, Indonesia declared the national action plan to focus on national greenhouse gas (GHG reduction by 26 % by 2020. To achieve this target, Government puts energy sector as one of the top priorities since it is the second strongest contributor to national GHG emissions. The main purpose of this paper is to apply the method of fugitive emissions calculation to the existing natural gas pipeline in Indonesia. Fugitive emissions are the major component of GHG emissions from natural gas systems and methane (CH4, the primary component of natural gas pipeline, is a potent GHG. Tiered approaches from Interstate Natural Gas Association of America (INGAA are implemented in this paper as the estimation guidelines. A case study of a natural gas pipeline system in Indonesia is analyzed to compare the GHG emissions level resulted from Tier 1 and Tier 2 methods. In these methods, the input data are pipeline length, the number of compressor stations, and the number of meter and pressure regulation stations. In this case, the GHG emissions level of Tier 2 is significantly different from Tier 1. The variation of pipeline length shows that for the length under 479.2 miles, Tier 1 gives lower amount of CO2 equivalent than Tier 2. The differences of these estimation methods and results can be furtherly developed to provide relevant information and recommendation for the Companies and Government to record the emissions level from natural gas transmission pipeline according to their needs and purposes.

  19. Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon.

    Science.gov (United States)

    Ngwabie, N Martin; Wirlen, Yvette L; Yinda, Godwin S; VanderZaag, Andrew C

    2018-03-02

    Open dumpsites that receive municipal solid waste are potentially significant sources of greenhouse gas (GHG) emissions into the atmosphere. There is little data available on emissions from these sources, especially in the unique climate and management of central Africa. This research aimed at quantifying CH 4 , N 2 O and CO 2 emissions from two open dumpsites in Cameroon, located in Mussaka-Buea, regional headquarters of the South West Region and in Mbellewa-Bamenda, regional headquarters of the North West Region. Emissions were measured during the wet season (May 2015 and August 2016) at the Mussaka and Mbellewa dumpsites respectively. Dumpsite surfaces were partitioned into several zones for emission measurements, based on the current activity and the age of the waste. Static flux chambers were used to quantify gas emission rates thrice a day (mornings, afternoons and evenings). Average emissions were 96.80 ± 144 mg CH 4 m -2  min -1 , 0.20 ± 0.43 mg N 2 O m -2  min -1 and 224.78 ± 312 mg CO 2 m -2  min -1 in the Mussaka dumpsite, and 213.44 ± 419 mg CH 4 m -2  min -1 , 0.15 ± 0.15 mg N 2 O m -2  min -1 and 1103.82 ± 1194 mg CO 2 m -2  min -1 at the Mbellewa dumpsite. Emissions as high as 1784 mg CH 4 m -2  min -1 , 2.3 mg N 2 O m -2  min -1 and 5448 mg CO 2 m -2  min -1 were measured from both dumpsites. Huge variations observed in emissions between the different zones on the waste surface were likely a result of the heterogeneous nature of the waste, different stages in waste decomposition and different environmental conditions within the waste. Management activities that disturb waste, such as spreading and compressing potentially increase gas emissions, while covering waste with a layer of soil potentially mitigate gas emissions. Recommendations were for dumpsites to be upgraded to sanitary landfills, and biogas production from such landfills should be exploited to reduce CH 4 emissions

  20. Life cycle greenhouse gas emissions of anesthetic drugs.

    Science.gov (United States)

    Sherman, Jodi; Le, Cathy; Lamers, Vanessa; Eckelman, Matthew

    2012-05-01

    Anesthesiologists must consider the entire life cycle of drugs in order to include environmental impacts into clinical decisions. In the present study we used life cycle assessment to examine the climate change impacts of 5 anesthetic drugs: sevoflurane, desflurane, isoflurane, nitrous oxide, and propofol. A full cradle-to-grave approach was used, encompassing resource extraction, drug manufacturing, transport to health care facilities, drug delivery to the patient, and disposal or emission to the environment. At each stage of the life cycle, energy, material inputs, and emissions were considered, as well as use-specific impacts of each drug. The 4 inhalation anesthetics are greenhouse gases (GHGs), and so life cycle GHG emissions include waste anesthetic gases vented to the atmosphere and emissions (largely carbon dioxide) that arise from other life cycle stages. Desflurane accounts for the largest life cycle GHG impact among the anesthetic drugs considered here: 15 times that of isoflurane and 20 times that of sevoflurane on a per MAC-hour basis when administered in an O(2)/air admixture. GHG emissions increase significantly for all drugs when administered in an N(2)O/O(2) admixture. For all of the inhalation anesthetics, GHG impacts are dominated by uncontrolled emissions of waste anesthetic gases. GHG impacts of propofol are comparatively quite small, nearly 4 orders of magnitude lower than those of desflurane or nitrous oxide. Unlike the inhaled drugs, the GHG impacts of propofol primarily stem from the electricity required for the syringe pump and not from drug production or direct release to the environment. Our results reiterate previous published data on the GHG effects of these inhaled drugs, while providing a life cycle context. There are several practical environmental impact mitigation strategies. Desflurane and nitrous oxide should be restricted to cases where they may reduce morbidity and mortality over alternative drugs. Clinicians should avoid

  1. Decarbonising meat : Exploring greenhouse gas emissions in the meat sector

    NARCIS (Netherlands)

    Aan Den Toorn, S. I.; Van Den Broek, M. A.; Worrell, E.

    Consumption of meat is an important source of global greenhouse gas (GHG) emission and deep decarbonisation of the whole meat production chain is required to be able to meet global climate change (CC) mitigation goals. Emissions happen in different stages of meat production ranging from agricultural

  2. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  3. Government review of the countdown companies' 1991 acid gas emissions audits

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    An acid gas emissions verification program was implemented in Ontario in 1990 as part of a program for regulating emissions that are precursors to acid rain. The verification program applied to four companies, three in the metals industry and one electric utility. These emitters were required to limit annual SO[sub 2] and nitrogen oxides emissions to specified levels in stages according to a set schedule. The four companies were required to prepare and submit sulfur mass balance procedures manuals, determine the overall uncertainty of their respective annual emissions, and engage an independent auditor to develop an audit protocol manual and conduct audits of the reported emissions. For Ontario Hydro, the auditor was also required to evaluate the continuous flue gas monitoring systems at the utility's fossil-fuel power plants. The auditors confirmed that the metallurgical companies' reported emissions were within the required limits. For Ontario Hydro, the audit also confirmed that both SO[sub 2] and nitrogen oxide emissions were within the limits specified for 1991. The auditor also indicated that there were no major discrepancies with the procedures manuals that affected the calculated SO[sub 2] and nitrogen oxides emissions. 6 refs., 2 tabs.

  4. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    Science.gov (United States)

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  5. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  6. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  7. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  8. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  9. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Science.gov (United States)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  10. Mobil emission reduction credits for natural gas vehicle programs

    International Nuclear Information System (INIS)

    Baker, G.F.

    1993-01-01

    Since the passage of the Clean Air Act Amendments in 1990, there has been increasing interest among regulators and business interests alike in innovative, market-based strategies to air quality control. In particular, larger metropolitan areas have begun to examine marketable emission reduction credit (ERC) programs. These programs limit the total allowable emissions in a non-attainment area, allocate these emission open-quotes creditsclose quotes among sources in the region, and allow the sources to redistribute their allowances through trading. This approach provides for the most cost-effective distribution of control burdens among affected sources, taking advantage of the differences in marginal control costs. Some control measures applied to mobile sources may be significantly less expensive than those applied to stationary sources, making mobile sources an excellent candidate for inclusion in an ERC program. However, there are several potential problems involving quantification, enforcement, and credit trading issues that hinder the development of mobile source ERC programs. This paper will evaluate those obstacles and discuss how they are being addressed in a Natural Gas Vehicle (NGV) program currently under development for the Houston ozone non-attainment area. Specifically, the study will outline the credit validation (i.e., quantification) procedure, including baseline emission determination and emission testing for each NGV in the program. In addition, the study will describe the vehicle/fuel consumption tracking system, and discuss issues related to credit trading with stationary sources. Finally, observations are made concerning the applicability of mobile ERC programs for other emission control measures such as old vehicle scrappage and vehicle Inspection and Maintenance programs

  11. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  12. Relative impact of short-term emissions controls on gas and particle-phase oxidative potential during the 2015 China Victory Day Parade in Beijing, China

    Science.gov (United States)

    Huang, Wei; Fang, Dongqing; Shang, Jing; Li, Zhengqiang; Zhang, Yang; Huo, Peng; Liu, Zhaoying; Schauer, James J.; Zhang, Yuanxun

    2018-06-01

    A field observation focusing on reactive oxygen species (ROS) was conducted before, during, and after the 2015 China Victory Day Parade to understand the influence of short-term emissions controls on atmospheric oxidative activity. The hourly average concentrations of PM2.5, SO2, NO, NO2, CO, O3, as well as gas and particle-phase ROS, were measured using a series of online instruments. PM2.5 concentrations during control days were significantly lower than non-control days, which directly lead to the "Parade Blue", yet reductions of most gaseous pollutants except SO2 were not so obvious as PM. Similarly, the control measures also led to a great loss of particle-phase ROS throughout the control period, while the reduction of ROS in gas phase was not obvious until the more stringent measures implemented since September 1. Furthermore, only weak positive correlations were observed among ROS and some other measured species, indicating ROS concentrations were affected by a number of comprehensive factors that single marker could not capture. Meanwhile, meteorological condition and regional transportation were also shown to be the minor factors affecting atmospheric oxidizing capacity. The results of this observation mainly revealed the control measures were conducive to reducing particle-related ROS. However, the reduction of gas-phase ROS activity was less effective given the menu of controls employed for the 2015 China Victory Day Parade. Therefore, short-term emissions controls only aimed to PM reduction and visibility improvement will produce the blue sky but will not equivalently reduce the gas-phase ROS. Supplemental control measures will be needed to further reduce gas-phase ROS concentrations.

  13. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  14. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N.

    2012-01-01

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 , or 2.7 t CO 2 e person −1 y −1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt=10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y −1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 . ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO 2 e y −1 .

  15. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.

    Science.gov (United States)

    Liebetrau, J; Reinelt, T; Clemens, J; Hafermann, C; Friehe, J; Weiland, P

    2013-01-01

    With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.

  16. Panorama 2009 - greenhouse gas emissions and the transport sector

    International Nuclear Information System (INIS)

    2008-01-01

    The fact that the transport sector is growing quickly brings advantages, such as quick access to any geographical location on earth, but also disadvantages: noise, congestion and polluting emissions such as carbon dioxide (CO 2 ), the greenhouse gas (GHG) primarily responsible for global warming. In the effort to bring GHG emissions under control, improving results in the transport sector is a prime long-term objective. What proportion of CO 2 emissions generated at global and national level are due to the road, air, maritime and rail transport sectors, respectively? What mechanisms can be used to reduce GHG emissions in the transport sector at large?

  17. Pressure dependence of emission intensity of rare-gas excimer light produced by silent discharge; Teikiatsu ryoiki ni okeru musei hoden reiki ki gas excimer hikari shutsuryoku no atsuryoku izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Y.; Tanaka, M.; Yukimura, K. [Doshisha University, Kyoto (Japan)

    1996-09-20

    To establish the pressure dependence of silent discharge excited rare gas excimer light emission, a vacua ultraviolet light was subjected to spectroscopic analysis at a pressure lower than 20kPa. Researches are under way to apply the discharge excited rare gas excimer lamp as a vacuum ultraviolet light source for the development of new materials and for the conservation of environments. When the pressure is as low as 1.8kPa or 4.4kPa, the emission has peaks at wavelengths centering on 147nm and 149nm, both of which are the resonance lines of the xenon atom. Excimer generation becomes prominent as the pressure increases, with the second continuum of light growing dominant at 35kPa to weaken relatively the resonance lines and the first continuum of light. In the first continuum, emission increases only at a suppressed rate, as compared with emission in the second continuum, due for instance to a collision caused relaxation process in which excimers are lost. In the case of xenon in the vicinity of 10-11kPa, the first continuum of light and the second continuum of light are approximately equal in emission intensity, producing a vacuum ultraviolet light source with a bandwidth relatively large for a single gas spectrum. 14 refs., 11 figs.

  18. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  19. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    Science.gov (United States)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  20. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  1. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  2. Community system updating and extension concerning greenhouse gas emissions duties trading

    International Nuclear Information System (INIS)

    Arrieta-Langarika, I.

    2010-01-01

    Approving 29/2009/CE Directive, that amends Directive 2003/87/EC, relating to a trading system for allowances of greenhouse gas emissions in the Community, the European Union wants to improve this system, and, in that way, providing an appropriate tool for achieving the emissions reduction targets, set for 2020: in particular, reducing the emissions of carbon dioxide (CO 2 ) in a 20% compared to 1990 levels. Recognizing the virtues of this system as an innovative tool for reducing emissions, it should be harmonized through the use of common standards that ensure equal conditions of the facilities affected and their update, among others, increasing their scope and establishing a system of re-allocation to reduce emissions. At the same time, the regulation adopted by the EU should not address possible competition difficulties, that may arise for the industries affected by this emission trading system, more specifically, the problem of carbon leakage: the phenomenon refers to the risk that European industries must move outside the EU for not being able to cope with competition from other countries with less stringent limitations on this matter. In any case, the regime established by Directive 29/2009/CE is subject to possible changes in function of international countries might conclude. (Author) 8 refs.

  3. Talisman Energy Inc. progress on reducing greenhouse gas emissions. Revised ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Talisman Energy Inc., as the largest independent Canadian oil and gas producer, is committed to supporting the Voluntary Challenge and Registry (VCR) Program. To this effect, voluntary measures have been implemented for achieving energy efficiency and greenhouse gas emissions reductions. Some of those measures include a yearly electrical audit in each field, the establishment of facility design and equipment procurement practices, gas well deliverability testing, gas conservation and flare reduction, a new energy data management system, senior management monitoring of greenhouse gas emissions reductions, and several others. Each of these measures was briefly described, and the base year quantification was included along with projections and target setting. Section 6 of the document introduced the measures to achieve targets, followed by section 7 containing results achieved. In section 8, the topic of education, training and awareness was discussed. A brief acknowledgements section was included at the end of the document. 10 tabs., 6 figs

  4. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO{sub 2} reductions?

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, T., E-mail: tommy.dalgaard@agrsci.dk [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Gyldenkaerne, S. [Aarhus University, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Hermansen, J.E. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark)

    2011-11-15

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: > GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. > Effects of measures to further reduce GHG emissions are listed. > Land use scenarios for a substantially reduced GHG emission by 2050 are presented. > A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. > Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO{sub 2} reductions for Danish agriculture by 2050, sustaining current food production.

  5. Identification of urban gas leaks and evaluation of methane emission inventories using mobile measurements

    Science.gov (United States)

    Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Butler, Dominique; Lanoisellé, Mathias; Nisbet, Euan G.

    2017-04-01

    Leakages from the natural gas distribution network, power plants and refineries account for the 10% of national methane emissions in the UK (http://naei.defra.gov.uk/), and are identified as a major source of methane in big conurbations (e.g. Townsend-Small et al., 2012; Phillips et al., 2013). The National Atmospheric Emission Inventories (NAEI) website provides a list of gas installations, but emissions from gas leakage, which in the inventories are estimated on the basis of the population distribution, are difficult to predict, which makes their estimation highly uncertain. Surveys with a mobile measurement system (Zazzeri et al., 2015) were carried out in the London region for detection of fugitive natural gas and in other sites in the UK (i.e. Bacton, Southampton, North Yorkshire) to identify emissions from various gas installations. The methane isotopic analysis of air samples collected during the surveys, using the methodology in Zazzeri et al. (2015), allows the calculation of the δ13C signature characterising natural gas in the UK. The isotopic value of the natural gas supply to SE London has changed a little in recent years, being close to -34 ‰ over 1998-99 period (Lowry et al., 2001) and close to -36 ‰ since at least 2002. Emissions from gas installations, such as pumping stations in NE England (-41 ± 2 ‰ ) were detected, but some of them were not listed in the inventories. Furthermore, the spatial distribution of the gas leaks identified during the surveys in the London region does not coincide with the distribution suggested by the inventories. By locating both small gas leaks and emissions from large gas installations, we can verify how these methane sources are targeted by national emission inventories. Lowry, D., Holmes, C.W., Rata, N.D., O'Brien, P., and Nisbet, E.G., 2001, London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories: Journal of Geophysical Research

  6. Experimental Study of Natural Gas Temperature Effects on the Flame Luminosity and No Emission

    Directory of Open Access Journals (Sweden)

    S. M. Javadi

    2012-06-01

    Full Text Available The flame radiation enhancement in gas-fired furnaces significantly improves the thermal efficiency without significantly affecting the NOx emissions. In this paper, the effects of inlet natural gas preheating on the flame luminosity, overall boiler efficiency, and NO emission in a 120 kW boiler have been investigated experimentally. Flame radiation is measured by use of laboratory pyranometer with photovoltaic sensor. A Testo350XL gas analyzer is also used for measuring the temperature and combustion species. The fuel is preheated from the room temperature to 350°C. The experimental measurements show that the preheating of natural gas up to about 240°C has no considerable effect on the flame luminosity. The results show that increasing the inlet gas temperature from 240°C, abruptly increases the flame luminosity. This luminosity increase enhances the boiler efficiency and also causes significant reduction in flame temperature and NO emission. The results show that increasing the inlet gas temperature from 240°C to 300°C increases the flame luminous radiation by 60% and boiler efficiency by 20%; while the maximum flame temperature and the boiler NO emission show a 10% and 8% decrease respectively.

  7. Greenhouse gas emissions from agricultural soils in Austria

    International Nuclear Information System (INIS)

    Strebl, F.; Gebetsroither, E.; Orthofer, R.

    2002-07-01

    This report documents the calculations of anthropogenic greenhouse gas emissions in Austria of the IPCC-sector 'Agricultural Soils' for the period 1980 to 2001. According to available information, CH 4 emissions from agricultural soils are very small and thus irrelevant. N 2 O emissions were calculated according to the IPCC method; emission sources considered include direct emissions from nitrogen inputs to soils (mineral and organic fertilizers, crop residues, sewage sludge application, biological fixation) as well as indirect emissions (from atmospheric nitrogen deposition and nitrogen leaching) plus emissions from nitrogen input through grazing animal excreta. NH 3 and NO x emissions were calculated according to the CORINAIR method; sources considered were nitrogen inputs through fertilization as well as emissions from unfertilized cultures. In the year 1990 total emissions were 5.680 t N 2 O-N, 24.628 t NH 3 -N and 1.376 t NO x N. In the period 1980-2001 there were considerable fluctuations of emissions, caused by an inter annual variability of crop production and fertilizer consumption data. However, there are no significant emission trends in the past 20 years. Uncertainties were determined through a Monte-Carlo-based simulation; the standard deviation of a normal uncertainty distribution is 24 % for N 2 O, 13 % for NH 3 , and 18 % for NO x . (author)

  8. The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production

    NARCIS (Netherlands)

    Mostert, P.F.; Bokkers, E.A.M.; Middelaar, van C.E.; Boer, de I.J.M.

    2016-01-01

    This study aimed to estimate the impact of subclinical ketosis (SCK) and related diseases in dairy cows on greenhouse gas (GHG) emissions of milk production. A dynamic stochastic Monte Carlo simulation model was developed and combined with life cycle assessment (LCA) to quantify the impact of SCK

  9. International markets for greenhouse gas emission reduction policies - possibilities for integrating developing countries

    DEFF Research Database (Denmark)

    Halsnæs, K.; Olhoff, A.

    2005-01-01

    Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit princ...... principles that can be applied to the assessment of global markets for GHG emission reduction options and evaluates the scope for and the potential economic gains of such markets.......Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit...

  10. The γ-ray emissivity of the local interstellar medium from correlations with gas at intermediate latitudes

    International Nuclear Information System (INIS)

    Strong, A.W.; Wolfendale, A.W.

    1981-01-01

    A survey of recent studies of the correlation between γ-rays from latitudes b > 10 0 and gas tracers is presented. Results for the ranges 35-100 MeV and above 100 MeV from the SAS-2 satellite, and for energies between 70 and 5000 MeV from the COS-B satellite, are used to obtain an estimate of the γ-ray emissivity spectrum for all forms of gas. Good agreement between the two experiments is found. A comparison is made between this spectrum (which is an average for a region some few hundred parsecs around the Sun) and that expected for recent estimates of the low energy electron spectrum in the local interstellar medium. If the pion-decay component is as expected for the demodulated interplanetary proton spectrum, then the electron spectrum must have a steep slope (differential index 2.8) below 1 GeV. If the pion contribution is smaller than expected, however, a flatter electron spectrum is allowable. The presence of a component of γ-ray emission related to gas in molecular form is evident in both the SAS-2 and COS-B data. The correlation of the SAS-2 data with both components is discussed and it is shown that the emissivities of each component can be independently determined. The longitude dependence of the emission is also discussed. Finally, an examination of the γ-ray fluxes from specific dense clouds of molecular gas is made. (author)

  11. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    Science.gov (United States)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  12. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.

    Science.gov (United States)

    Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus

    2014-01-01

    Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.

  13. Reduction of greenhouse gas emission on a medium-pressure boiler using hydrogen-rich fuel control

    International Nuclear Information System (INIS)

    Hsieh, S.-C.; Jou, Chih-Ju G.

    2007-01-01

    The increasing emission of greenhouse gases from the combustion of fossil fuel is believed to be responsible for global warming. A study was carried out to probe the influence of replacing fuel gas with hydrogen-rich refinery gas (R.G.) on the reduction of gas emission (CO 2 and NO x ) and energy saving. Test results show that the emission of CO 2 can be reduced by 16.4% annually (or 21,500 tons per year). The NO x emission can be 8.2% lower, or 75 tons less per year. Furthermore, the use of refinery gas leads to a saving of NT$57 million (approximately US$1.73 million) on fuel costs each year. There are no CO 2 , CO, SO x , unburned hydrocarbon, or particles generated from the combustion of added hydrogen. The hydrogen content in R.G. employed in this study was between 50 and 80 mol%, so the C/H ratio of the feeding fuel was reduced. Therefore, the use of hydrogen-rich fuel has practical benefits for both energy saving and the reduction of greenhouse gas emission

  14. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  15. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  16. Emissions of Monoxide of Carbon and Methane in an atmospheric burner of natural gas

    International Nuclear Information System (INIS)

    Amell A, A.A.; Gil B, E.; Cadavid S, F.J.

    1999-01-01

    In Colombia, the development of gas equipment industry has been characterized by a copy of foreign systems, without going further on the basic principles of operation and design of gas appliances. In order to guarantee an efficient and safe use of this energetic during the present plan of massive use of gas in the country, is necessary to know and dominate all the main phenomena influencing the design and operation of gas appliances, among them is the rate of primary aeration. In this study we analyze the production of CO and CH4 emissions in a premixed atmospheric burner when we modify pressure supply, tip size, injector size, mixer length and diameter of the throat. Results show that mixer geometry has a great influence on CO and CH4 emissions. When aeration rate was less or equal than 0.5 for power greater than 2.3 kw, CO emissions were beyond critic boundary. In the other hand, when we increased gas pressure supply, we observed those CH4 emissions decreased

  17. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  18. Emissions and efficiency of a domestic gas stove burning natural gases with various compositions

    International Nuclear Information System (INIS)

    Yungchang Ko; Tahui Lin

    2003-01-01

    The heating value of a fuel, which depends on its composition, strongly affects burner performance. Using the same gas stove to burn natural gas with various heating values is inappropriate and hazardous due to the possible occurrence of incomplete combustion (i.e. a great increase of CO emissions and/or soot formation), liftoff, flashback and inadequate heat input. In this study, we aim to assess the effects of changes in gas composition on burner performance and propose suitable design or operational factors of domestic gas stoves burning natural gas with various heating values. A single gas burner, originally designed for burning natural gas with low heating value, is adopted to investigate the effects of variations in gas composition on the burner performance. The influence of five significant parameters, including gas composition, primary aeration, gas flow rate (heat input), gas supply pressure, and loading height, on the thermal efficiency and CO emissions were reported and discussed. Using natural gas with high heating value instead of natural gas with low heating value results in a decrease in thermal efficiency (due to higher thermal input) and an increase in CO emission (caused by incomplete combustion). These problems can be significantly improved by decreasing the gas pressure to a suitable value, by enlarging the primary aeration to a favorable level, by selecting a proper thermal input, or by adjusting the optimized heating height. (Author)

  19. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units...... in international guidelines. This study showed that measured CH4 and N2O emission rates from wastewater treatment plants were plant-specific and that emission rates estimated using models in current guidelines, mainly meant for reporting emissions on the country scale, were unsuitable for Scandinavian plant...

  20. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia

    Science.gov (United States)

    Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.

    2016-11-01

    The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from

  1. Benchmarking energy use and greenhouse gas emissions in Singapore's hotel industry

    International Nuclear Information System (INIS)

    Wu Xuchao; Priyadarsini, Rajagopalan; Eang, Lee Siew

    2010-01-01

    Hotel buildings are reported in many countries as one of the most energy intensive building sectors. Besides the pressure posed on energy supply, they also have adverse impact on the environment through greenhouse gas emissions, wastewater discharge and so on. This study was intended to shed some light on the energy and environment related issues in hotel industry. Energy consumption data and relevant information collected from hotels were subjected to rigorous statistical analysis. A regression-based benchmarking model was established, which takes into account, the difference in functional and operational features when hotels are compared with regard to their energy performance. In addition, CO 2 emissions from the surveyed hotels were estimated based on a standard procedure for corporate GHG emission accounting. It was found that a hotel's carbon intensity ranking is rather sensitive to the normalizing denominator chosen. Therefore, carbon intensity estimated for the hotels must not be interpreted arbitrarily, and industry specific normalizing denominator should be sought in future studies.

  2. Greenhouse gas emission accounting for EU member states from 1991 to 2012

    International Nuclear Information System (INIS)

    Su, Meirong; Pauleit, Stephan; Yin, Xuemei; Zheng, Ying; Chen, Shaoqing; Xu, Chao

    2016-01-01

    Highlights: • GHG emissions for the EU28 during 1991–2012 are accounted. • The EU28 are classified into four groups based on GHG emission structure. • It can facilitate classified management of GHG emissions. • The EU case shows the common but differentiated principle in emission reduction. - Abstract: Collectively, the EU is among the world’s largest greenhouse gas (GHG) emitters, though remarkable decreases in GHG emissions have been observed in recent years. In this work the GHG emissions for the 28 EU member states between 1991 and 2012 are accounted for and compared according to the inventory method of the Intergovernmental Panel on Climate Change (IPCC). The structure of GHG emissions at a national level, their distribution between countries, and trends across the period are then analyzed. National emission sources and sinks are decomposed for each country to elucidate the contribution of each sector (energy, industrial processes, solvents and other product use, agriculture, land use/land-use change and forestry, and waste) to the national totals. Germany was the largest emitter, with net emissions totaling 939 Tg CO_2 equivalent in 2012, 60% more than the UK and 89% more than France, the second and third biggest emitters, respectively. The energy sector and agriculture were found to be the largest sources of emissions in most countries. Four quadrants were established to compare countries’ performance in emission intensity, carbon removal rate, and net reduction rate of GHG emissions. Slovenia, Portugal, Sweden, and Finland were located in Quadrant II as they displayed relatively low emission intensities and high carbon removal rates. Conversely, Hungary, Greece, Cyprus, the Czech Republic, and Poland were located in Quadrant IV because of their relatively high emission intensities and low carbon removal rates. Some suggestions for integrating the annual results and the trends both within and among countries into national and regional emissions

  3. Modeling of greenhouse gas emission from livestock

    Directory of Open Access Journals (Sweden)

    Sanjo eJose

    2016-04-01

    Full Text Available The effects of climate change on humans and other living ecosystems is an area of on-going research. The ruminant livestock sector is considered to be one of the most significant contributors to the existing greenhouse gas (GHG pool. However the there are opportunities to combat climate change by reducing the emission of GHGs from ruminants. Methane (CH4 and nitrous oxide (N2O are emitted by ruminants via anaerobic digestion of organic matter in the rumen and manure, and by denitrification and nitrification processes which occur in manure. The quantification of these emissions by experimental methods is difficult and takes considerable time for analysis of the implications of the outputs from empirical studies, and for adaptation and mitigation strategies to be developed. To overcome these problems computer simulation models offer substantial scope for predicting GHG emissions. These models often include all farm activities while accurately predicting the GHG emissions including both direct as well as indirect sources. The models are fast and efficient in predicting emissions and provide valuable information on implementing the appropriate GHG mitigation strategies on farms. Further, these models help in testing the efficacy of various mitigation strategies that are employed to reduce GHG emissions. These models can be used to determine future adaptation and mitigation strategies, to reduce GHG emissions thereby combating livestock induced climate change.

  4. Measurements and modeling to quantify emissions of methane and VOCs from shale gas operations: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Presto, Albert A [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-30

    The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PA and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.

  5. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.

    Science.gov (United States)

    Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A

    2017-04-01

    Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal

  6. How human-made greenhouse gas emissions can (really) be reduced

    International Nuclear Information System (INIS)

    2008-01-01

    To be efficient, any action undertaken in view of mitigating Greenhouse Gas Emissions requires that the reduction of CO 2 emissions not be confused with energy savings. Indeed, there is strict correlation between the two only if the energy savings achieved lead to fossil fuel savings. If a drastic reduction of greenhouse gas emissions were not mandatory, the conversion of our energy production and use would be less pressing, the known fossil fuel reserves being sufficient to supply humanity for at least one and a half centuries. Keeping these consideration in mind, under the control of its Scientific Council and with the help of partner organizations, STC has elaborated a set of proposals to reduce the economic activity's carbon content without affecting in any fundamental way the life style of the populations concerned while leaving room for economic growth in developing countries. In this sense, the ''Negatep'' scenario put forward by STC is fundamentally different from the ''Negawatt'' type scenarios. The options we recommend are ranked according to their economic efficiency. The index that is conventionally used to compare conceivable solutions is known as the ''cost of carbon avoided'' for a given action. It consists in estimating the additional cost of the action considered in relation to the amount of carbon whose release to the atmosphere is avoided thanks to the action. The index is measured in Euros per metric ton of carbon avoided. Summary of the actions and recommendations put forward by ''Save the Climate'' for energy production and energy efficiency are argued in further detail in this document. (A.L.B.)

  7. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  8. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  9. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  10. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  11. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  12. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  13. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    Science.gov (United States)

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  14. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  15. The factor 4 in France: dividing by 4 greenhouse gas emissions by 2050 - Final report

    International Nuclear Information System (INIS)

    Brunetiere, Jean-Rene; Alexandre, Sylvie; D'Aubreby, Marc; Debiesse, Georges; Guerin, Andre-Jean; Perret, Bernard; Schwartz, Dominique

    2013-02-01

    After a methodological presentation (reason for a sector-based approach, implemented method, global economic approaches and models), this voluminous report discusses the French commitments in terms of greenhouse gas emission and the monitoring system: commitment status and predictions, measurement sources and methods, emission levels and evolution trajectories, prospective approach. Then, the author address the different sectors: transports (current status of emissions, prospective studies, sub-sector issues), industry (current status of emissions and prospective, economic tools), agriculture, land uses and their changes and forest (emissions, prospective studies and emission evolution trajectories, specific issues), building (current status and objectives, issues related to housing and office building) and energy (prospective and choices for the future). A last chapter addresses inter-sector issues: biomass and CO 2 , land and urban planning, innovation or energy 2.0, evolution of behaviour (building use, mobility)

  16. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  17. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  18. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  19. Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis

    International Nuclear Information System (INIS)

    Liu, Zhe; Geng, Yong; Adams, Michelle; Dong, Liang; Sun, Lina; Zhao, Jingjing; Dong, Huijuan; Wu, Jiao; Tian, Xu

    2016-01-01

    Highlights: • Energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of LCA. • CAI experienced a rapid growth of energy-related GHG emissions from 2004 to 2013. • Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI. • Construction and transportation-related activities account for more than 40% of the total embodied emissions. • Policy implications such as developing secondary aluminum industry, improving energy mix etc, are raised. - Abstract: With the rapid growth of aluminum production, reducing greenhouse gas (GHG) emissions in China’s aluminum industry (CAI) is posing a significant challenge. In this study, the energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of life cycle analysis (LCA) from 2004 to 2013. Results indicate that CAI experienced a rapid growth of energy-related GHG emissions with an average annual growth of 28.5 million tons CO_2e from 2004 to 2013. Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI, while emission-factor effect of secondary aluminum production plays a marginal effect. Construction and transportation-related activities account for the bulk of the embodied emissions, accounting for more than 40% of the total embodied emissions from CAI. Policy implications for GHG mitigation within the CAI, such as developing secondary aluminum industry, improving energy mix and optimizing resource efficiency of production, are raised.

  20. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    Science.gov (United States)

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.

  1. Simulating the Impact of Carbon Taxes on Greenhouse Gas Emission and Nutrition in the UK

    Directory of Open Access Journals (Sweden)

    Cesar Revoredo-Giha

    2018-01-01

    Full Text Available Greenhouse gas (GHG emissions associated with food consumption have become particularly pertinent issues given recent warnings that the planet recently has experienced its hottest year. One way proposed to reduce those emissions is through a carbon consumption taxes. This study uses consumption, nutrient and GHG emission data to estimate the impact of two ad-valorem taxes: one applied by food category and another by the carbon emission of the products. The results suggest that the carbon consumption tax scenarios would reduce GHG emissions by a greater quantity relative to the ad-valorem tax scenario; however, the intake of important nutrients will also decrease in these scenarios. Therefore, creating an environmentally sustainable and nutritious diet through taxation is challenging and requires compromise between the nutrition and environmental sustainability.

  2. Greenhouse gas emissions from beef cattle pen surfaces in North Dakota.

    Science.gov (United States)

    Rahman, Shafiqur; Borhan, Md Saidul; Swanson, Kendall

    2013-01-01

    There is a global interest to quantify and mitigate greenhouse gas (GHG) (e.g. methane-CH4, nitrous oxide-N2O and carbon dioxide-CO2) emissions in animal feeding operations. The goal of this study was to quantify GHG emissions from the feedlot pen surface under North Dakota climatic conditions. In this study gaseous flux from the pen surfaces was generated using a custom-made wind tunnel at different times of the year (summer, fall, winter and spring). Gaseous fluxes (air samples) were drawn in the Tedlar bags using a vacuum chamber and gas concentrations were measured using a gas chromatograph within 24 h of sampling. The CH4 concentrations and flux rates (FRs) or flux among the months were not significantly different. Overall CH4, CO2 and N2O concentrations over a 7-month period were 2.66, 452 and 0.67 ppm, respectively. Estimated overall CH4, CO and N2O FRs were 1.32, 602 and 0.90 g m(-2) d(-1), respectively. Estimated emission rates using the wind tunnel were 38 g hd(-1) d(-1), 17 kg hd(-1) d(-1) and 26 g hd(-1) d(-1) for CH4, CO2 and N2O, respectively. The emission factors for GHG estimated in the research for North Dakota climate were the first of its kind, and these emission estimates can be used as a basis for planning and implementing management practices to minimize GHG emissions.

  3. Emissions from oil and gas operations in the United States and their air quality implications.

    Science.gov (United States)

    Allen, David T

    2016-06-01

    The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both

  4. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    International Nuclear Information System (INIS)

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-01-01

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO 2 e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO 2 e, fertilizer application accounted for 754, 3251, and 4761 tCO 2 e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO 2 e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO 2 e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO 2 e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO 2 e per million cigarettes produced in 2009, 0.675 tCO 2 e per million cigarettes in 2010 and 0.59 tCO 2 e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of

  5. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Majid, E-mail: majid_qau86@yahoo.com [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620 (Pakistan); Zaidi, Syed Mujtaba Hasnian [Leaf Agronomy Manager, Pakistan Tobacco Company, Akora Khattak Factory, P.O. and District Nowshera, Khyber Pakhtunkhwa (Pakistan); Malik, Riffat Naseem, E-mail: r_n_malik2000@yahoo.co.uk [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Sharma, Benktesh Dash [University of California, Berkeley, California 94720 (United States)

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  6. Greenhouse-gas emissions from soils increased by earthworms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, van J.W.

    2013-01-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon

  7. Use of landfill gas will save money and reduce emissions

    International Nuclear Information System (INIS)

    Espinosa, G.G.

    1991-01-01

    The City of Glendale, California has commenced on a project to transport landfill gas (LFG) from the Scholl Canyon Landfill to the Grayson Power Plant. At the plant the LFG will be used to produce electricity in existing steam electric generating units and combustion turbines. The LFG will reduce the natural gas consumed at the plant resulting in a substantial cost savings for the City. This project also offers significant environmental improvements. First, the elimination of flaring at the landfill will reduce emissions. Second, the LFG will reduce NO x emissions from the power plant. This paper will describe the existing collection system at the landfill as well as the design of the compression and piping system to transport the LFG to the power plant. It will also outline the in-plant modifications to the fuel delivery system and examine some of the emission implications of how the fuel is utilized

  8. Abatement of ammonia emissions from digested manure using gas-permeable membranes

    Science.gov (United States)

    A new strategy to avoid ammonia emissions from anaerobically digested swine manure was tested using the gas-permeable membrane process. Evaluation of the efficiency of ammonia recovery from digestate as well as mitigation of ammonia emissions to the atmosphere were carried out. Digestate was colle...

  9. Greenhouse gas emissions - a global challenge

    International Nuclear Information System (INIS)

    Aarebrot, Eivind; Langvik, Sveinung

    2000-01-01

    The article describes some greenhouse gas emission challenges in the Norwegian petroleum industry. Some of the conclusions are that the national taxation policies are insufficient and that international co-operation is essential in order to obtain significant pollution abatement. The mechanisms for this are not yet in place. Some possible measures are mentioned. The main solution to the problems internationally seems to be international co-operation projects generally with quota trade in order to meet the Kyoto agreement obligations

  10. UK emissions of the greenhouse gas nitrous oxide

    Science.gov (United States)

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  11. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    Science.gov (United States)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.

  12. Analysis and control design of sustainable policies for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Chu, Bing; Duncan, Stephen; Papachristodoulou, Antonis; Hepburn, Cameron

    2013-01-01

    Reducing greenhouse gas emissions is now an urgent priority. Systems control theory, and in particular feedback control, can be helpful in designing policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, we describe preliminary results for an approach where model predictive control (MPC) is applied to a model of the UK economy (UK 4see model) as a test bed to design sustainable policies for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the actual emissions, rather than on the predicted level of emissions. The basic structure and principle of the UK 4see model is described and its implementation in Simulink is presented. A linearized state space model is obtained and model predictive control is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method. The preliminary results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies

  13. Projections of multi-gas emissions and carbon sinks, and marginal abatement cost functions modelling for land-use related sources

    NARCIS (Netherlands)

    Graveland C; Bouwman AF; Vries B de; Eickhout B; Strengers BJ; MNV

    2003-01-01

    This report presents estimates of the costs of abatement of greenhouse gas emissions associated with landfills as a source of methane (CH4), sewage as a source of methane and nitrous oxide (CH4 and N2O, respectively) and carbon (C) sequestration in forest plantations. This is done in the form of

  14. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  15. Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases

    Science.gov (United States)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.

    2009-12-01

    Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.

  16. How best management practices affect emissions in gas turbine power plants - an important factor to consider when strengthening emission standards.

    Science.gov (United States)

    Zeng, Jinghai; Xing, Min; Hou, Min; England, Glenn C; Yan, Jing

    2018-04-27

    The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of twelve (12) existing combined-cycle gas turbine power plants and the design of two (2) new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California, United States. The study found that Best Management Practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly-average NOx emission level of 5-10 parts per million (ppm, ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However it is to be noted that with the continuous

  17. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  18. Organic Rankine cycle saves energy and reduces gas emissions for cement production

    International Nuclear Information System (INIS)

    Wang, Huarong; Xu, Jinliang; Yang, Xufei; Miao, Zheng; Yu, Chao

    2015-01-01

    We investigated ORCs (organic Rankine cycles) integrated with typical China cement production line. The dry air at the kiln cooler outlet with the temperature of 220 °C was the waste heat. The fluids of hexane, isohexane, R601, R123 and R245fa were selected for ORCs based on the critical temperature criterion. The developed ORC verified the thermodynamics analysis. The NPV (net present value) and PBP (payback period) methods were applied to evaluate the economic performance. The LCA (life cycle assessment) was applied to evaluate the environment impacts. ORCs could generate 67,85,540–81,21,650 kWh electricity per year, equivalent to save 2035–2436 tons standard coal and reduce 7743–9268 tons CO 2 emission, for a 4000 t/d cement production line. ORCs reduced gas emissions of CO 2 by 0.62–0.74%, SO 2 by 3.83–4.59% and NO x by 1.36–1.63%. The PBP (payback period) was 2.74–3.42 years. The ORCs had the reduction ratios of EIL (environment impact load) by 1.49–1.83%, GWP (global warming potential) by 0.74–0.92%, AP (acidification potential) by 2.34–2.84%, EP (eutrophication potential) by 0.96–1.22% and HTP (human toxicity potential) by 2.38–2.89%. The ORC with R601 as the fluid had the best economic performance and significant gas emission reductions. ORCs had good economic performance and reduce the gas emissions. - Highlights: • Organic Rankine Cycles were integrated with the cement production line. • Five organic fluids were used as the working fluids for ORCs. • Thermal, economic and gas emission performances were analyzed. • R601 was the best fluid for ORC with the heat source temperature of 220 °C. • ORCs had good economic and gas emission reduction performances

  19. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    Science.gov (United States)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  20. A Worldwide Assessment of Greenhouse Gas Emissions from Drained Organic Soils

    Directory of Open Access Journals (Sweden)

    Francesco Nicola Tubiello

    2016-04-01

    Full Text Available Despite the importance of organic soils, including peatlands, in the global carbon cycle, detailed information on regional and global emissions is scarce. This is due to the difficulty to map, measure, and assess the complex dynamics of land, soil, and water interactions needed to assess the human-driven degradation of organic soils. We produced a new methodology for the comprehensive assessment of drained organic soils in agriculture and the estimation of the associated greenhouse gas emissions. Results indicated that over 25 million hectares of organic soils were drained worldwide for agriculture use, of which about 60% were in boreal and temperate cool areas, 34% in tropical areas, and 5% in warm temperate areas. Total emissions from the drainage were globally significant, totaling nearly one billion tonnes CO2eq annually. Of this, the CO2 component, about 780 million tonnes, represented more than one-fourth of total net CO2 emissions from agriculture, forestry, and land use. The bulk of these emissions came from a few tropical countries in Southeast Asia, and was linked to land clearing and drainage for crop cultivation. Geospatial data relative to this work were disseminated via the FAO geospatial server GeoNetwork, while the national aggregated statistics were disseminated via the FAOSTAT database.

  1. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mahoney, K.J., Min Cheng [CSIRO Manufacturing and Infrastructure Technology, Victoria (Australia)

    2004-07-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO'a Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally 'low-emission'. The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically {approx}6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nigroen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure of slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heates changed little after continous operation for up to 2 months. (au)

  2. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  3. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    Science.gov (United States)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  4. Greenhouse effect gas emission: an assessment without measuring; Emissions de gaz a effet de serre: une mesure sans capteur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    The European directive 2003/87/CE creates a market for greenhouse effect gases (GEG) emission quotas. The setting of this market implies for each enterprise to make an inventory of its own GEG emissions. The gases involved in this assessment are those concerned in international agreements, namely CO{sub 2}, CH{sub 4}, N{sub 2}O, C{sub n}H{sub m}F{sub p}, C{sub n}F{sub 2n+2} and SF{sub 6}. The French agency for the environment and the management of energy (ADEME) proposes a method to make a consistent inventory that is based on equivalencies that are listed, for instance the production of a ton of steel generates 870 kg of carbon emission equivalent, this value falls to 300 kg in the case of steel made from recycled materials, another example: the extraction and the transport to the refinery of one ton of crude oil represents 61 kg of carbon emission equivalent. 3 levels of completion are considered: the first level takes into account only the gas emissions that follow directly from the enterprise's activities. The second level adds to the first level the gas emissions due to the transport of energy, goods and people involved in the enterprise's activities. The third level integrates to the second level the gas emissions issued from the production of the energy and goods necessary to the enterprise's activities. The lack of accuracy of this method is assessed to be less than 20% in the best cases. (A.C.)

  5. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  6. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  7. Numerical Signal Analysis of Thermo-Cyclically Operated MOG Gas Sensor Arrays for Early Identification of Emissions from Overloaded Electric Cables

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2015-10-01

    Full Text Available A thermo-cyclically operated multi metal oxide gas sensor (MOG array is introduced together with a novel signal analysis approach (SimSens for identifying the emissions from overheated isolation cable materials thereby detecting the fires originated in electrical cabinets at early stages. The MOG array can yield specific conductance signatures appropriate to specifically identify gases. The obtained results bear good capability for detection and identification of pyrolysis gas emissions at relatively low sample heating temperatures even before a visible color-change of the polyvinyl chloride (PVC-isolation material. The dynamic conductance signals were evaluated using SimSens, a numerical analysis tool designed for simultaneous evaluation of conductance profiles. The results show promising pyrolysis gas identification and concentration determination capabilities in relation to the conductance profile shapes of model gases like carbon monoxide (CO and propene.

  8. Emission of Gas and Al2O3 Smoke in Gas-Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

    Science.gov (United States)

    Ranc-Darbord, Isabelle; Baudin, Gérard; Genetier, Marc; Ramel, David; Vasseur, Pierre; Legrand, Julien; Pina, Vincent

    2018-03-01

    Emission of gas and Al2O3 smoke within the deflagration of H2{-}O2-{N2{-}CO2}-Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 μ m, 0.850 μ m, 1.083 μ m, 1.260 μ m, 1.481 μ m) and a grating spectrometer in the range (4.10 μ m to 4.30 μ m). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of Al2O3 smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 μ m CO2 emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

  9. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Science.gov (United States)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  10. Trace gas emissions from a sun and shade grown ornamental crop

    Science.gov (United States)

    Previous work has begun to establish baseline approximations for greenhouse gas (GHG) (CO2, CH4, and N2O) emissions of several horticultural crops, though much work is still needed to expand contingencies for multiple best management practices. In this study, GHG emissions from one shade-grown speci...

  11. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 1: EXECUTIVE SUMMARY

    Science.gov (United States)

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  12. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    International Nuclear Information System (INIS)

    Bhargava, A.; Timilsina, G.

    2004-01-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs

  13. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A.; Timilsina, G. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2004-07-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs.

  14. Analysis of greenhouse gas emissions in the European Union member states with the use of an agglomeration algorithm

    Directory of Open Access Journals (Sweden)

    Anna Kijewska

    2016-01-01

    Full Text Available The use of fossil fuels as sources of energy is related to the emission of pollutants into the atmosphere. The implementation of international commitments on reducing emissions requires their continuous monitoring. The main energy resources for electricity production in the world include fossil fuels, i.e. oil, coal and natural gas, and according to projections their dominant role in the market of energy resources will persist for at least the next two decades. The aim of this article is to analyse the level of differentiation of European Union member states in terms of emissions of four greenhouse gases and to identify groups of similar countries based on these criteria. Such studies will provide information that will enrich our knowledge about the contribution of each European Union country to the emissions of greenhouse gases. This article uses a taxonomic method - cluster analysis, namely the agglomerative algorithm, which enables the extraction of objects that are similar to each other from the data and then to merge them into groups. In this way, a number of homogeneous subsets can be obtained from one heterogeneous set of objects. European Union countries make up the objects of segmentation. Each of them are described by their level of greenhouse gas emissions, such as carbon dioxide, methane, nitrogen oxides and nitrous oxides. Groups of homogeneous countries are distinguished due to total emissions and due to the level of their emissions per capita. Analysis is based on annual Eurostat reports concerning greenhouse gas emissions.

  15. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  16. Greenhouse gas emission impacts of carsharing in North America

    Science.gov (United States)

    2010-06-01

    This report presents the results of a study evaluating the greenhouse gas (GHG) emission changes that result from individuals participating in a carsharing organization. In this study, the authors conducted a survey of carsharing members across the c...

  17. The FAOSTAT database of greenhouse gas emissions from agriculture

    International Nuclear Information System (INIS)

    Tubiello, Francesco N; Salvatore, Mirella; Rossi, Simone; Ferrara, Alessandro; Fitton, Nuala; Smith, Pete

    2013-01-01

    Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961–2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961–2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO 2 yr −1 in 2010 (up to 5.4–5.8 Gt CO 2 yr −1 with emissions from biomass burning and organic soils included). Over the same decade

  18. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  19. Life cycle greenhouse gas emissions estimation for small hydropower schemes in India

    International Nuclear Information System (INIS)

    Varun; Prakash, Ravi; Bhat, I.K.

    2012-01-01

    This paper presents for the first time correlations for greenhouse gas (GHG) emissions from small hydropower schemes in India. In this paper an attempt has been made to develop life cycle GHG emissions correlations for three different types of small hydropower schemes (run-of river, canal based and dam-toe) in India. It has been found out that GHG emissions depend on the head and capacity of the small hydropower project. The results obtained from correlations show good agreement with the estimated results using EIO-LCA (Economic Input–Output-Life Cycle Assessment) technique. These correlations may be useful for the development of new small hydropower (SHP) schemes, as they can be used to predict life cycle GHG emissions based on capacity, head and type of SHP schemes. -- Highlights: ► A study has been carried out for the Life Cycle Greenhouse gas emissions estimation for SHP schemes in India. ► Around 145 SHP schemes have been studied and their GHG emissions have been estimated. ► Based upon these results correlations have been developed for three different types of SHP schemes.

  20. SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015

    Science.gov (United States)

    de Azevedo, Tasso Rezende; Costa Junior, Ciniro; Brandão Junior, Amintas; Cremer, Marcelo dos Santos; Piatto, Marina; Tsai, David Shiling; Barreto, Paulo; Martins, Heron; Sales, Márcio; Galuchi, Tharic; Rodrigues, Alessandro; Morgado, Renato; Ferreira, André Luis; Barcellos e Silva, Felipe; Viscondi, Gabriel de Freitas; dos Santos, Karoline Costal; Cunha, Kamyla Borges da; Manetti, Andrea; Coluna, Iris Moura Esteves; Albuquerque, Igor Reis de; Junior, Shigueo Watanabe; Leite, Clauber; Kishinami, Roberto

    2018-01-01

    This work presents the SEEG platform, a 46-year long dataset of greenhouse gas emissions (GHG) in Brazil (1970–2015) providing more than 2 million data records for the Agriculture, Energy, Industry, Waste and Land Use Change Sectors at national and subnational levels. The SEEG dataset was developed by the Climate Observatory, a Brazilian civil society initiative, based on the IPCC guidelines and Brazilian National Inventories embedded with country specific emission factors and processes, raw data from multiple official and non-official sources, and organized together with social and economic indicators. Once completed, the SEEG dataset was converted into a spreadsheet format and shared via web-platform that, by means of simple queries, allows users to search data by emission sources and country and state activities. Because of its effectiveness in producing and making available data on a consistent and accessible basis, SEEG may significantly increase the capacity of civil society, scientists and stakeholders to understand and anticipate trends related to GHG emissions as well as its implications to public policies in Brazil. PMID:29809176

  1. SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015.

    Science.gov (United States)

    de Azevedo, Tasso Rezende; Costa Junior, Ciniro; Brandão Junior, Amintas; Cremer, Marcelo Dos Santos; Piatto, Marina; Tsai, David Shiling; Barreto, Paulo; Martins, Heron; Sales, Márcio; Galuchi, Tharic; Rodrigues, Alessandro; Morgado, Renato; Ferreira, André Luis; Barcellos E Silva, Felipe; Viscondi, Gabriel de Freitas; Dos Santos, Karoline Costal; Cunha, Kamyla Borges da; Manetti, Andrea; Coluna, Iris Moura Esteves; Albuquerque, Igor Reis de; Junior, Shigueo Watanabe; Leite, Clauber; Kishinami, Roberto

    2018-05-29

    This work presents the SEEG platform, a 46-year long dataset of greenhouse gas emissions (GHG) in Brazil (1970-2015) providing more than 2 million data records for the Agriculture, Energy, Industry, Waste and Land Use Change Sectors at national and subnational levels. The SEEG dataset was developed by the Climate Observatory, a Brazilian civil society initiative, based on the IPCC guidelines and Brazilian National Inventories embedded with country specific emission factors and processes, raw data from multiple official and non-official sources, and organized together with social and economic indicators. Once completed, the SEEG dataset was converted into a spreadsheet format and shared via web-platform that, by means of simple queries, allows users to search data by emission sources and country and state activities. Because of its effectiveness in producing and making available data on a consistent and accessible basis, SEEG may significantly increase the capacity of civil society, scientists and stakeholders to understand and anticipate trends related to GHG emissions as well as its implications to public policies in Brazil.

  2. Fuel use and greenhouse gas emissions of world fisheries

    Science.gov (United States)

    Parker, Robert W. R.; Blanchard, Julia L.; Gardner, Caleb; Green, Bridget S.; Hartmann, Klaas; Tyedmers, Peter H.; Watson, Reg A.

    2018-04-01

    Food production is responsible for a quarter of anthropogenic greenhouse gas (GHG) emissions globally. Marine fisheries are typically excluded from global assessments of GHGs or are generalized based on a limited number of case studies. Here we quantify fuel inputs and GHG emissions for the global fishing fleet from 1990-2011 and compare emissions from fisheries to those from agriculture and livestock production. We estimate that fisheries consumed 40 billion litres of fuel in 2011 and generated a total of 179 million tonnes of CO2-equivalent GHGs (4% of global food production). Emissions from the global fishing industry grew by 28% between 1990 and 2011, with little coinciding increase in production (average emissions per tonne landed grew by 21%). Growth in emissions was driven primarily by increased harvests from fuel-intensive crustacean fisheries. The environmental benefit of low-carbon fisheries could be further realized if a greater proportion of landings were directed to human consumption rather than industrial uses.

  3. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  4. From prototype to product. The development of low emission natural gas- and biogas buses

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, M. [Strateco Development AB, Haninge (Sweden)

    1998-01-01

    The objective of this report is to show the development of natural gas and bio gas buses and trucks since the termination of the `Co-Nordic GasBus Project`, to which KFB was a major contributor and one of the initiators. Sweden have some 325 heavy duty methane vehicles of which almost 100 are bio gas operated. Scania and Volvo have produced, or have orders for, 500 gas buses to 6 different countries since 1990. The Project objectives were obtained and the significantly reduced emission levels aimed for, were shown. The international bus manufacturing industry followed, and have since shown the same low levels of emissions from gas bus engines. Sweden has taken the lead in the use of bio gas, by operating nearly 100 buses and trucks. Bio gas is still an underestimated fuel when it comes to supply, as it can provide fuel for 50% of the domestic use of diesel oil. Future development need to include control systems for more stable emissions, lower weight cylinders, less costly compressors, cleaning equipment and storage cylinders as well as more fuel efficient engines that can reduce mainly the discharge of CO2, NOx and CH4 further. Societal costs, regardless of who pays, for methane operated buses is still somewhat higher compared with best use of diesel + CRT technology. As commercialization develops, it is expected that the price of the vehicle will be reduced and emissions improved. It is therefore expected that the stake holders costs will be lower then that of diesel technology in the future

  5. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.

    Science.gov (United States)

    Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C

    2014-12-23

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.

  6. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  7. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

    International Nuclear Information System (INIS)

    Jeong, Kyonghwa; Kim, Suyi

    2013-01-01

    In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO 2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO 2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001. - Highlights: • We decomposed greenhouse gas emissions of Korea's manufacturing industry using LMDI. • The structure effect and intensity effect play a role in reducing GHG emissions. • The role of structure effect was bigger than intensity effect. • The energy-mix effect increased and the emission-factor effect decreased GHG emissions. • The GHG emission pattern has been changed before and after IMF regime in Korea

  8. Pyrolysis gas chromatographic atomic emission detection for sediments, coals and other petrochemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, J.A.; Zeng, Y.D.; Uden, P.C.; Eglinton, T.I.; Ericson, I. (Massachusetts University, Amherst, MA (USA). Dept. of Chemistry)

    1992-09-01

    On-line flash pyrolysis coupled to a capillary gas chromatograph for the characterization of marine sediments, coals and other heterogeneous solid samples is described. A helium microwave-induced plasma is used for chromatographic detection by atomic emission spectrometry. Simultaneous multi-element detection is achieved with a photodiode array detector. The optical path of the gas chromatographic atomic emission detector is purged with helium, allowing simultaneous, sensitive detection of atomic emission from sulfur 181 nm, phosphorous 186 nm, arsenic 189 nm, selenium 196 nm and carbon 193 nm. Several sediment and coal samples have been analysed for their carbon, nitrogen, sulfur, oxygen, phosphorous, arsenic and selenium content. Qualitative information indicating the occurrence and distribution of these elements in the samples can be used to gauge the relative stage of diagenetic evolution of the samples and provide information on their depositional environment. In some instances the chromatographic behaviour of the compounds produced upon pyrolysis is improved through on-line alkylation. This on-line derivatization is achieved by adding liquid reagents to the pyrolysis probe or by adding liquid reagents to the pyrolysis probe or by adding solid reagents either to the solid sample or by packing the reagent in the injection port of the chromatograph.

  9. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  10. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  11. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  12. Reductions in greenhouse gas emissions and cost by shipping at lower speeds

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Asbjornslett, Bjorn E.; Stromman, Anders H.

    2011-01-01

    CO 2 emissions from maritime transport represent a significant part of total global greenhouse gas (GHG) emissions. According to the International Maritime Organization (), maritime transport emitted 1046 million tons (all tons are metric) of CO 2 in 2007, representing 3.3% of the world's total CO 2 emissions. The International Maritime Organization (IMO) is currently debating both technical and market-based measures for reducing greenhouse gas emissions from shipping. This paper presents investigations on the effects of speed reductions on the direct emissions and costs of maritime transport, for which the selection of ship classes was made to facilitate an aggregated representation of the world fleet. The results show that there is a substantial potential for reducing CO 2 emissions in shipping. Emissions can be reduced by 19% with a negative abatement cost (cost minimization) and by 28% at a zero abatement cost. Since these emission reductions are based purely on lower speeds, they can in part be performed now. - Highlights: → We investigates the effects of speed reductions for maritime transport. → The selection of ship classes represent the words fleet. → The transport volumes are kept constant. → The model includes both cost and emissions as a function of speed. → The results show that there is a substantial potential for reducing CO 2 emissions from shipping.

  13. Resonant x-ray emission from gas-phase TiCl4

    International Nuclear Information System (INIS)

    Hague, C.F.; Tronc, M.; De Groot, F.

    1997-01-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, ±2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d →2p emission spectrum of TiCl 4 over the 450 to 470 eV region

  14. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia

    Directory of Open Access Journals (Sweden)

    M. Bristow

    2016-11-01

    Full Text Available The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs; however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha−1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to

  15. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  16. Methodology for inventorying greenhouse gas emissions from global cities

    International Nuclear Information System (INIS)

    Kennedy, Christopher; Steinberger, Julia; Gasson, Barrie; Hansen, Yvonne; Hillman, Timothy; Havranek, Miroslav; Pataki, Diane; Phdungsilp, Aumnad; Ramaswami, Anu; Mendez, Gara Villalba

    2010-01-01

    This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste. Gasoline consumption is estimated using three approaches: from local fuel sales; by scaling from regional fuel sales; and from counts of vehicle kilometres travelled. A simplified version of an intergovernmental panel on climate change (IPCC) method for estimating the GHG emissions from landfill waste is applied. Three measures of overall emissions are suggested: (i) actual emissions within the boundary of the city; (ii) single process emissions (from a life-cycle perspective) associated with the city's metabolism; and (iii) life-cycle emissions associated with the city's metabolism. The results and analysis of the study will be published in a second paper.

  17. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  18. Long-term greenhouse gas emission reductions-what's possible, what's necessary?

    International Nuclear Information System (INIS)

    Bode, Sven

    2006-01-01

    Climate is changing (WMO, Press release No. 695, 2003) and there is increasing evidence that this is due to human activity (IPCC, Climate Change 2001-The Scientific Basis, Cambridge University Press, Cambridge, 2001). One way to react is to reduce greenhouse gas emissions into the atmosphere. Although this approach generally does not cause much objection, disagreements do occur when concrete emission targets are to be set. Against this background, the following article provides an arithmetic approach for the determination of long-term emission targets where the US and the EU are studied as examples

  19. Liability rules for international trading of greenhouse gas emissions quotas

    DEFF Research Database (Denmark)

    Haites, E.; Missfeldt, F.

    2001-01-01

    To reduce the costs of mitigating greenhouse gas emissions in accordance with the Kyoto protocol, international trades of emissions quotas are allowed. The revenue from the sale of quotas may exceed the sanctions for non-compliance if these penalties are weak or poorly enforced. Under...... these circumstances emissions trading enables a country to benefit financially through non-compliance. To counter non-compliance due to trading a range of liability proposals have been suggested. Using a simple global model, we analyze the economic and environmental performance of these proposals for the first...

  20. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  1. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  2. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  3. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  4. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  5. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  6. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands.

    Science.gov (United States)

    Mander, Ülo; Maddison, Martin; Soosaar, Kaido; Teemusk, Alar; Kanal, Arno; Uri, Veiko; Truu, Jaak

    2015-02-01

    Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH4 emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 μg C m(-2) h(-1)) and decreases both CO2 (average: OA-Dry 138, OA-Manip 80 mg C m(-2) h(-1)) and N2O emissions (average: OA-Dry 23.1, OA-Manip 11.8 μg N m(-2) h(-1)) in OA sites. There was no significant difference in CO2 and CH4 emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N2O emission was significantly higher than at the YA sites. The relative CO2 and CH4 emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day(-1), respectively). The soil N stock-related N2O emission was very low achieving 0.000019 % N day(-1) in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH4 is oxidized. In terms of CO2 and N2O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance

  7. Greenhouse Gas Emissions in the Netherlands 1990-2006. National Inventory Report 2008

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Ruyssenaars, P.G.; Van den Born, G.J.; Brandes, L.J.; Hoen, A.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Coenen, P.W.H.G.; Vreuls, H.H.J.; Van den Berghe, G.; Baas, K.; Guis, B.

    2008-01-01

    This report represents the 2008 Netherlands' annual inventory submission under the Kyoto Protocol and the United Nations Framework Convention on Climate Change (UNFCCC), as well as the European Union's Greenhouse Gas Monitoring Mechanism. It has been prepared following the relevant guidelines, which also refer to Revised 1996 IPCC Guidelines and IPCC Good Practice guidance and Uncertainty Management reports, provide a format for the definition of source categories and for calculation, documentation and reporting of emissions. The guidelines aim at facilitating verification, technical assessment and expert review of the inventory information by independent Expert Review Teams of the UNFCCC. Therefore, the inventories should be transparent, consistent, comparable, complete and accurate as elaborated in the UNFCCC Guidelines for reporting and be prepared using good practice as described in the IPCC Good Practice Guidance. This National Inventory Report (NIR) 2008 therefore provides explanations of the trends in greenhouse gas emissions, activity data and (implied) emission factors for the period 1990-2006. It also summarises descriptions of methods and data sources of Tier 1 assessments of the uncertainty in annual emissions and in emission trends; it presents an assessment of key sources following the Tier 1 and Tier 2 approaches of the IPCC Good Practice Guidance; and describes Quality Assurance and Quality Control activities. This report provides no specific information on the effectiveness of government policies for reducing greenhouse gas emissions. This information can be found in the annual Environmental Balance (in Dutch: 'Milieubalans') prepared by the Netherlands' Environmental Assessment Agency (MNP) and the 4th National Communication (NC4) prepared by the government of the Netherlands. So-called Common Reporting Format (CRF) spreadsheet files, containing data on emissions, activity data and implied emission factors, accompany this report. The complete set

  8. Canada`s greenhouse gas emissions inventory

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A. [Environment Canada, Ottawa, ON (Canada)

    1998-09-01

    In 1994, Canada was the seventh largest global emitter of CO{sub 2}. The Kyoto Protocol has made it necessary to continue to improve methods for developing emissions inventories. An emissions inventory was defined as `a comprehensive account of air pollutant emissions and associated data from sources within the inventory area over a specified time frame that can be used to determine the effect of emissions on the environment`. The general approach is to compile large-scale emission estimates under averaged conditions for collective sources and sectors, using data that is available on a sectoral, provincial and national basis. Ideally, continuous emission monitors should be used to develop emissions inventories. Other needed improvements include additional research on emissions data, and increased support for international negotiations on reporting policies and related methodologies, verification procedures and adjustments. 1 ref., 5 figs.

  9. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  10. Importance of Sulfate Aerosol in Evaluating the Relative Contributions of Regional Emissions to the Historical Global Temperature Change

    International Nuclear Information System (INIS)

    Andronova, N.; Schlesinger, M.

    2004-01-01

    During the negotiations of the Kyoto Protocol the delegation of Brazil presented an approach for distributing the burden of emissions reductions among the Parties based on the effect of their cumulative historical emissions on the global-average near-surface temperature. The Letter to the Parties does not limit the emissions to be considered to be only greenhouse gas (GHG) emissions. Thus, in this paper we explore the importance of anthropogenic SOx emissions that are converted to sulfate aerosol in the atmosphere, together with the cumulative greenhouse gas emissions, in attributing historical temperature change. We use historical emissions and our simple climate model to estimate the relative contributions to global warming of the regional emissions by four Parties: OECD90, Africa and Latin America, Asia, and Eastern Europe and the Former Soviet Union. Our results show that for most Parties the large warming contributed by their GHG emissions is largely offset by the correspondingly large cooling by their SOx emissions. Thus, OECD90 has become the dominant contributor to recent global warming following its large reduction in SOx emissions after 1980

  11. Evaluation of calcium superphosphate as an additive to reduce gas emissions from rabbit manure

    Directory of Open Access Journals (Sweden)

    Fernando Estellés Barber

    2014-12-01

    Full Text Available Techniques to reduce the emission of air pollutants from livestock production are demanded. In this study, the effect of an additive (calcium superphosphate on gas emissions from rabbit manure was investigated and compared with a control where no additive was used. Calcium superphosphate was applied at a rate of 100 g/m2 per week in a manure pit during 2 cycles of growing rabbits. Manure samples were collected weekly and then chemically and microbiologically analysed. Gas emissions (ammonia, carbon dioxide, methane and nitrous oxide were determined in 2 open flux chambers. No differences were observed in gas emissions between the treated and control samples except for ammonia emissions, which were reduced by 33% when the additive was applied (P<0.05. No statistical differences were obtained in the microbial content between control and treatment, as results showed a high variability. Dry matter content and pH were the most influential parameters on the emission of gases from manure. According to these results, the application of calcium superphosphate may be considered as an effective technique to reduce ammonia emission from rabbit manure. The additive may also be potentially effective in other species, but additional research is necessary to investigate its performance.

  12. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  13. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    Science.gov (United States)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  14. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.

    2017-06-01

    Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.

  15. Measuring Trace Gas Emission from Multi-Distributed Sources Using Vertical Radial Plume Mapping (VRPM and Backward Lagrangian Stochastic (bLS Techniques

    Directory of Open Access Journals (Sweden)

    Thomas K. Flesch

    2011-09-01

    Full Text Available Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The vertical radial plume mapping (VRPM and the backward Lagrangian stochastic (bLS techniques with an open-path optical spectroscopic sensor were evaluated for relative accuracy for multiple emission-source and sensor configurations. The relative accuracy was calculated by dividing the measured emission rate by the actual emission rate; thus, a relative accuracy of 1.0 represents a perfect measure. For a single area emission source, the VRPM technique yielded a somewhat high relative accuracy of 1.38 ± 0.28. The bLS technique resulted in a relative accuracy close to unity, 0.98 ± 0.24. Relative accuracies for dual source emissions for the VRPM and bLS techniques were somewhat similar to single source emissions, 1.23 ± 0.17 and 0.94 ± 0.24, respectively. When the bLS technique was used with vertical point concentrations, the relative accuracy was unacceptably low,

  16. Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power

    Science.gov (United States)

    Kharecha, Pushker A.; Hansen, James E.

    2013-01-01

    In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.

  17. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  18. The Use of Satellite Data to Relate Waterbody Surface Area and Temperature to Greenhouse Gas Emissions Across a Subarctic Landscape

    Science.gov (United States)

    Herrick, C.; Palace, M. W.; Wik, M.; Burke, S. A.; Varner, R. K.

    2017-12-01

    High latitude lakes and ponds are significant sources of methane (CH4) and carbon dioxide (CO2) emission. Increased near-surface air temperature has linked these water bodies to large increases in methane emissions due to longer ice-free seasons, impacting climate change and further changing air temperature as a feedback mechanism. The impacts of changes in lake surface temperatures cannot be assessed until we know more about the baseline mechanistic biogeochemical controls that influence these emissions. Using a combination of image-based atmospheric corrections and image fusion models, thermal data from Landsat and MODIS satellites were used to characterize the temperature regimes of artic lakes in northern Sweden. This analysis provides insight into the temporal attributes of individual lakes in regard to temperature shifts and variability, as well as provides a rich temporal dataset where in situ temperature data is unavailable. Field-based measurements of temperature and associated methane release were used for calibration and correlation. This enabled the creation of emissions estimates over the broader pan-arctic landscape, including inter-seasonal and inter-annual variabilities. The result is a multi-year snapshot of temperature and emissions, allowing for future estimates of greenhouse gas emissions.

  19. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  20. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of an innovative uav-mounted screening tool for landfill gas emissions

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Thomasen, T. B.; Valbjørn, I. L.

    2015-01-01

    Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera was investiga......Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera...

  2. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  3. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    DeFries, Ruth; Achard, Frederic; Brown, Sandra; Herold, Martin; Murdiyarso, Daniel; Schlamadinger, Bernhard; Souza, Carlos de

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  4. Identification studies about take measures for mitigate of gas emissions greenhouse effect in energy Sector

    International Nuclear Information System (INIS)

    1999-11-01

    In the Unit Nations Convention about Climatic change has get stability of greenhouse effects in atmosphere concentrations. In the framework to Uruguay Project URU/95/631 have been defined the need to identify, measures, practices, process and technologies for reduce some emissions furthermore in Energy sector. Emission impact, cost-benefit, direct or iundirect, national programs, factibility such as social, politics and Institutional agreements was considered in the present work. It was given emissions proyected for 15 years period 1999-2013 of the following atmospheric pollutants: carbon dioxide,carbon monoxide, nitrogen oxides, sulfur oxides and methane.Eight stages was applied the emission evaluation: natural gas; without natural gas; transport; industrial; Montevidean bus- car demand; natural gas uses in bus-taxi; nitrogen oxides control in thermic centrals; catalytic converters in gasoline cars

  5. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  6. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  7. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  8. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  9. Interpretation of Series National Standards of China on “Greenhouse Gas Emissions Accounting and Reporting for Enterprises”

    Science.gov (United States)

    Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei

    2018-05-01

    Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including > and the requirements of the greenhouse gas emissions accounting and reporting in 10 sectors including power generation, power grid, iron and steel, chemical engineering, electrolytic aluminum, magnesium smelting, plate glass, cement, ceramics and civil aviation, which proposes unified requirements of “what to calculate and how to calculate” the greenhouse gas emission for enterprises. This paper focuses on the detailed interpretation of the main contents of the first 11 national standards, so as to provide technical supports for users of the standards and to comprehensively promote the emission reduction of greenhouse gas at the enterprise level.

  10. Greenhouse gas emissions of realistic dietary choices in Denmark

    DEFF Research Database (Denmark)

    Werner, Louise Bruun; Flysjö, Anna; Tholstrup, Tine

    2014-01-01

    to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. RESULTS: The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher...... selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e......BACKGROUND: Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider...

  11. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  12. GHG emissions due to deforestation

    International Nuclear Information System (INIS)

    Croezen, H.; Van Valkengoed, M.

    2009-05-01

    An assessment was made for the magnitude of greenhouse gas emissions resulting from deforestation and forest degradation in tropical forests in Malaysia and Indonesia related to Dutch economic activities. Greenhouse gas emissions (GHG) are calculated in relation to (1) the emissions related to vegetation removal sec; and (2) the emissions related to removal and more long term effects related to assimilation of CO2 in forest regrowth and changes in organic material in soils. Emissions related to vegetation removal and aggregated emissions for both vegetation removal and long term effects are reported separately. Soil organic carbon stock changes are considered by Greenpeace as more uncertain, so the emphasis will be on the direct emissions. Changes in carbon stocks and N2O emissions and actually also changes in vegetation all are events that occur gradually, rather than immediately. Only removal of existing vegetation and possible burning of this vegetation and associated emissions related to both activities are immediate by nature. Carbon stocks and N2O emissions change to a new level within several decades after deforestation or forest degradation. Removed vegetation can grow back or be replaced eventually by other vegetation, thereby changing the net greenhouse gas (GHG) emissions related to deforestation or forest degradation. Vegetation extracted for commercial purposes such as timber or pulp will also take years or decades to become waste and be converted into CO2. In IPCC and LCA's all these emissions are taken into account - or at least all emissions occurring within a period of 20 years, as required by IPCC. Soil organic carbon stock changes are also considered by Greenpeace as more uncertain, so the emphasis will be on the direct emmissions.

  13. Report of study group 8.1 ''methane emissions caused by the gas industry world-wide''; Rapport du groupe d'etude 8.1 ''emissions de methane causees par l'industrie du gaz sur le plan international''

    Energy Technology Data Exchange (ETDEWEB)

    Altfeld, K.

    2000-07-01

    This report details the work undertaken by the WOC 8 Study Group 8.1 (methane emissions) in the triennium 1997 to 2000. The objective is to identify the major methane emission sources within the natural gas chain and to estimate from that the global methane emissions caused by the natural gas industry with a reasonable accuracy. Against the background of substantial uncertainties and insufficient data, a conservative approach has been adopted. The results presented in this report are based on a commonly agreed method using reasonable emission factors, on data provided by the operators inside the natural gas industry and on reliable data from literature. The total methane emissions caused by the gas industry world-wide were some 20,000 kt in 1995. This figure neither includes the methane emissions connected with the production of crude oil nor the methane emissions connected with associated gas which occurs during oil production and is not fed into a gas grid. More than half of the methane emissions can be attributed to three countries: USA, Canada and Russia, producing more than 50 % of the world natural gas. Related to the world's natural gas net production of approx. 79,000 PJ (net calorific value) the specific methane emission is approx. 0.26 kt/PJ (0.92 g/kWh). (Assuming - as a 'worst case' scenario - that natural gas is purely methane, a specific emission factor of 0.92 g/kWh corresponds to a leakage rate of 1.3 %). (author)

  14. Natural Gas and CO2 Price Variation: Impact on the Relative Cost-Efficiency of LNG and Pipelines

    OpenAIRE

    Øverland, Indra; Ulvestad, Marte

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carri...

  15. Greenhouse gas emission controls : differentiated vs. flat rate targets : impacts and concerts

    International Nuclear Information System (INIS)

    Heydanek, D.

    1997-01-01

    Continuing the discussion on differentiation in greenhouse gas emission targets and timetables for all nations, the different implications of differentiation vs. flat rate controls were examined. A scenario of how different targets for different countries based on national circumstances might be implemented, was presented. Implications of differentiation for the Dow Chemical Company were also reviewed. For more than 20 years, Dow has practiced leading edge energy efficiency in environmental management systems and has committed to a series of environmental, health and safety goals. The company believes that at the international level, fully differentiated targets and timetables need to be negotiated, party by party, by the 150 nations who agreed to stabilize greenhouse gas emissions at 1990 levels by year 2000. It was suggested that a strong disincentive exists to delivering energy efficiency beyond compliance. It was predicted that despite efficiency, the energy intensive assets in place today in Annex I countries will be disadvantaged and prematurely retired as the costs of greenhouse gas emission controls grow and exert pressure to move productive capacity offshore

  16. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  17. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    Science.gov (United States)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  18. Investigating animal health effects of sour gas acid forming emissions

    International Nuclear Information System (INIS)

    Edwards, W.C.

    1992-01-01

    The effects of sour gas well blowout emissions on livestock are reviewed. Guidelines for safe drilling operations in hydrogen sulfide environments, general hazards and characteristics of hydrogen sulfide, and guidelines for field investigation into the effects of sour gas and acid emissions on livestock are discussed. A case history involving the Ross No. 2 gas well blowout of July 1985 in Rankin County, Mississippi is presented. The blowout lasted for 72 days, and at peak discharge the 500 ppM radius was ca 3.5 miles. A cattle embryo transplant operation located one half mile from the well was affected by the blowout. Examination by a local veterinarian of the cattle demonstrated eye irritation, epiphora, nasal discharge and coughing. After one and a half months of exposure, most animals showed clinical signs of a severe dry hacking cough, epiphora, dry rales over the thoracic inlet, and a bronchial popping sound over the lateral thorax. All animals had eye irritation. Of 55 animals showing signs of respiratory distress and eye irritations, 15 were still clinically ill in May of 1986. 7 refs., 1 tab

  19. Climate change science : high quality greenhouse gas emissions data are a cornerstone of programs to address climate change

    Science.gov (United States)

    2009-02-24

    This testimony focuses on (1) the importance of quality data on emissions in the context of a program intended to limit greenhouse gas emissions, and (2) key considerations in developing reliable data on greenhouse gas emissions. This testimony is ba...

  20. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22