WorldWideScience

Sample records for gas diffusion electrode

  1. Statistical model of a gas diffusion electrode. III. Photomicrograph study

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A W

    1965-12-01

    A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.

  2. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  3. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and an immobilized electrolyte allow for reversible operation as electrolysis cell or fuel...... cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...... to determine the cell characteristics. The thickness of the electrolyte matrix was only 200 µm, thereby achieving a serial resistance and area specific resistance of 60 mΩ cm2 and 150 mΩ cm2, respectively, at 200 °C and 20 bar. A new production method was developed to increase the cell size from lab scale (1...

  4. Statistical models of a gas diffusion electrode: II. Current resistent

    Energy Technology Data Exchange (ETDEWEB)

    Proksch, D B; Winsel, O W

    1965-07-01

    The authors describe an apparatus for measuring the flow resistance of gas diffusion electrodes which is a mechanical analog of the Wheatstone bridge for measuring electric resistance. The flow resistance of a circular DSK electrode sheet, consisting of two covering layers and a working layer between them, was measured as a function of the gas pressure. While the pressure first was increased and then decreased, a hysteresis occurred, which is discussed and explained by a statistical model of a porous electrode.

  5. Sputter deposition on gas diffusion electrodes of Pt-Au nanoclusters for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, L.; Giorgi, R.; Gagliardi, S.; Serra, E. [ENEA Casaccia Research Center, Rome (Italy). Physics Technologies and New Materials; Alvisi, M.; Signore, M.A. [ENEA Brindisi Research Center, Brindisi (Italy). Physics Technologies and New Materials

    2008-07-01

    Polymer electrolyte fuel cells (PEFCs) are suited for use in commercial electrical vehicle and electric power applications. The gas diffusion electrodes of PEFCs are catalyzed by the deposition of platinum (Pt) nanoparticles on carbon powder. The particles must be localized on the electrode surface in order to achieve high electrocatalyst utilization. This study discussed a method of preparing PEFC electrodes using sputter deposition of a Pt-gold (Au) alloy nanoparticles on carbon powders. The method was designed to improve electrode performance and catalyst utilization. The nano-sized alloy clusters were deposited on a gas diffusion electrode at room temperature. The deposits were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) in order to examine the effect of the deposition technique on the nano-morphology and electrocatalytic performance of the electrode. Results of the study showed that the technique can be used in the large-scale manufacture of fuel cell electrodes. 3 refs., 1 fig.

  6. CAD/CAM–designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    International Nuclear Information System (INIS)

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-01-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal–air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal–air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal–air cell: one face freely exposed to gases, the other wetted by electrolyte. (paper)

  7. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    Science.gov (United States)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  8. Preparation of gas diffusion electrodes for high temperature PEM-type fuel cells

    Czech Academy of Sciences Publication Activity Database

    Mazur, P.; Mališ, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2010-01-01

    Roč. 14, 1-3 (2010), s. 101-105 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas diffusion electrode * polymer electrolyte * ionic liquid Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.752, year: 2010

  9. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  10. Development of silver-gas diffusion electrodes for the oxygen reduction reaction by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, Sónia; Rego, Rosa; Oliveira, M. Cristina, E-mail: mcris@utad.pt

    2013-12-16

    Silver-gas diffusion electrodes (Ag-GDE) were prepared by direct deposition of the catalyst onto a carbon paper support by electrodeposition. This deposition technique, under potentiostatic and galvanostatic mode, allows the production of well dispersed ultra-low Ag loading levels. The catalytic activity of the prepared materials towards the oxygen reduction reaction (ORR) was investigated in the alkaline solution and its tolerance to methanol was evaluated. Based on an Ag-ink prepared from the electrodeposit material and RDE experiments, it was concluded that the ORR occurs via a four-electron pathway on the Ag electrodeposit. The combination of reasonably high catalytic activity, efficiency, low price, facile and green synthesis makes the electrodeposited Ag-GDE attractive for the ORR in alkaline fuel cells. - Highlights: • A facile and simple way to successfully prepare catalyzed gas diffusion electrodes. • Ultra-low loadings of Ag-GDEs can be achieved. • Good tolerance to methanol and a high mass activity (3.14 mA{sub Ag} mg{sup −1}). • ORR occurs via a four-electron pathway.

  11. Report on the joint research on the technology development of energy use reduction gas diffusion electrode salt electrolysis; Kyodo kenkyu energy shiyo gorika gas kakusan denkyoku shokuen denkai gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of energy conservation in the 'soda industry' which is an energy multi-consumption industry, study was made of the commercialization applying 'gas diffusion electrode' which is used for fuel cells, and the FY 2000 results were summed up. As to the development of production technology of gas diffusion electrode, conditional studies were conducted of the material production process, grinding process, mixing machine, filling, coating process, hot press process, etc. Concerning the evaluation of durability of the gas diffusion electrode, analysis of long-term operation electrode was conducted, and a lot of information on the degradation mechanism was obtained. In the degraded electrode, wetting of gas diffusion layer is going on, which is thought to directly cause the degradation. It is supposed that between the stable electrode and the degraded electrode, there are no changes in diameter of carbon powder and there is no carbon consumption. As to the verification test using the practical scale electrolytic cell, a trial operation started in February 2001. About the electrolytic performance, the electrolytic voltage is appropriately 2.2V, keeping the stable numerical value. The comparatively favorable performance is being maintained. (NEDO)

  12. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  13. Killing of Escherichia coli using the gas diffusion electrode system.

    Science.gov (United States)

    Xu, W Y; Li, P; Dong, B

    2010-01-01

    To be best of our knowledge, this study is one of the first investigations to be performed into the potential benefits of gas diffusion electrode (GDE) system in controlling inactivation of E. coli. This study mainly focused on the dual electrodes disinfection with gas diffusion cathode, using Escherichia coli as the indicator microorganisms. The effects of Pt load W(Pt) and the pore-forming agent content W(NH(4)HCO(3)) in GDE, operating conditions such as pH value, oxygen flow rate Q(O(2)), salt content and current density on the disinfection were investigated, respectively. The experimental results showed that the disinfection improved with increasing Pt load W(Pt), but its efficiency at Pt load of 3 per thousand was equivalent to that at Pt load of 4 per thousand. Addition of the pore-forming agent in the appropriate amount improved the disinfection while drop of pH value resulted in the rapid rise of the germicidal efficacy and the disinfection shortened with increasing oxygen flow rate Q(O(2)). The system is more suitable for highly salt water. The germicidal efficacy increased with current density. However, the accelerating rate was different: it first increased with the current density, then decreased, and reached a maximum at current density of 6.7-8.3 mA/cm(2). The germicidal efficacy in the cathode compartment was about the same as in the anode compartment indicating the contribution of direct oxidation and indirect treatment of E. coli by the hydroxyl radical was similar to the oxidative indirect effect of the generated H(2)O(2). This technology is expensive in operating cost, further research is required to advance the understanding and reduce the operating cost of this technology.

  14. Gas diffusion electrodes for PEM-fuel cells via in situ-electrodeposition; Gasdiffusionselektroden fuer PEM-Brennstoffzellen durch in situ-Elektrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Vivien

    2009-03-16

    Commercial available membrane electrode assemblies are still very expensive, since a high noble metal catalyst loading has to be on the gas diffusion electrodes. The reason is particularly the fact that a high amount of the catalyst particles is not located in the so called three phase zone between ion conducting, electron conducting and reactant phase. In the present work the electrochemical synthesis of catalyst layers with a higher catalyst utilization, i. e. with a higher amount of particles located in the three phase zone has succeeded. Thus gas diffusion electrodes comparable in performance with commercial materials but coated with a lower catalyst loading were obtained. A second objective in this work was the development of an electrocombinatoric setup in which both the combinatoric electrosynthesis as well as the combinatoric analysis of platinum and platinum alloys can be performed. Furthermore different alloys were electrodeposited and electrocombinatorically analyzed with respect to their catalytic activity in the electroreduction of oxygen and the electrooxidation of hydrogen, methanol and ethanol. (orig.)

  15. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  16. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Science.gov (United States)

    Gyenge, E. L.

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.

  17. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC (Canada V6T 1Z4)

    2005-12-01

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (author)

  18. Electro-scrubbing volatile organic carbons in the air stream with a gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Kaichen; Jia Jinping; Cao Limei [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    It is demonstrated that exposing the VOC air streams to the electro-scrubbing reactor with a gas diffusion electrode leads to an efficient removal of organics. The importance order of the influence factors on the electro-scrubbing reactor performance is: conductivity, voltage and air stream flow-rate. The effective conductivity and high voltages generally are beneficial to the removal process and the air flow-rate is not a significant factor compared with the other two, indicating that the reactor might have a consistently satisfying performance within a wide range of gas volumetric load. The mass transfer of both organics and oxygen in the reactor is estimated by mathematical model, and the calculation determines the concentration boundary conditions for the 2-ethoxyethyl acetate removal: if the 2-ethoxyethyl acetate concentration in the inflow air stream holds C{sub G,i} {<=} 0.7198 % , the removal in the electro-scrubbing reactor is electrochemical reaction controlled; if C{sub G,i} > 0.7198 % , the controlling step will be the oxygen mass transfer from the air to the liquid in the electro-scrubbing reactor. The Apparent Current Efficiency of the electro-scrubbing reactor was also determined using COD data, which is significantly higher than some commercial metal oxide electrodes, showing that the reactor is energy efficient and has the promise for the future scale-up.

  19. Amperometric Determination of Sulfite by Gas Diffusion- Sequential Injection with Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Orawon Chailapakul

    2008-03-01

    Full Text Available A gas diffusion sequential injection system with amperometric detection using aboron-doped diamond electrode was developed for the determination of sulfite. A gasdiffusion unit (GDU was used to prevent interference from sample matrices for theelectrochemical measurement. The sample was mixed with an acid solution to generategaseous sulfur dioxide prior to its passage through the donor channel of the GDU. Thesulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1 M phosphate buffer (pH 8/0.1% sodium dodecyl sulfate in the acceptor channel of theGDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell anddetected directly by amperometry using the boron-doped diamond electrode at 0.95 V(versus Ag/AgCl. Sodium dodecyl sulfate was added to the carrier solution to preventelectrode fouling. This method was applicable in the concentration range of 0.2-20 mgSO32−/L and a detection limit (S/N = 3 of 0.05 mg SO32−/L was achieved. This method wassuccessfully applied to the determination of sulfite in wines and the analytical resultsagreed well with those obtained by iodimetric titration. The relative standard deviations forthe analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was65 h−1.

  20. Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface: steady-state polarization of fuel-cell electrodes

    International Nuclear Information System (INIS)

    Murygin, I.V.; Chebotin, V.N.

    1979-01-01

    The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface

  1. Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Hezarjaribi, M.; Jahanshahi, M., E-mail: mjahan@nit.ac.ir; Rahimpour, A.; Yaldagard, M.

    2014-03-01

    A novel hybrid system has been investigated based on polyaniline/carbon nanofiber (Pani/CNF) electrospun nanofibers for modification of gas diffusion electrode (GDE) in proton exchange membrane fuel cells (PEMFC). Pani/CNF hybrid nanofibers were synthesized directly on carbon paper by electrospinning method. For preparation of catalyst ink, 20 wt.% Pt/C electrocatalyst with a platinum loading of 0.4 mg cm{sup −2} was prepared by polyol technique. SEM studies applied for morphological study of the modified GDE with hybrid nanofibers. This technique indicated that the electrospun nanofibers had a diameter of roughly 100 nm. XRD patterns also showed that the average size of Pt nanoparticles was about 2 nm. Subsequently, comparison of the hybrid electrode electrochemical behavior and 20 wt.% Pt/C commercial one was studied by cyclic voltammetry experiment. The electrochemical data indicated that the hybrid electrode exhibited higher current density (about 15 mA cm{sup −2}) and ESA (160 m{sup 2} gr{sup −1}) than commercial Pt/C with amount of about 10 mA cm{sup −2} and 114 m{sup 2} gr{sup −1}, respectively. The results herein demonstrate that Pani/CNF nanofibers can be used as a good alternative electrode material for PEMFCs.

  2. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  3. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  4. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  5. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  6. Characteristics and applications of diffuse discharge of water electrode in air

    Science.gov (United States)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  7. Design of carbon nanotube-based gas-diffusion cathode for O{sub 2} reduction by multicopper oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Carolin; Adkins, Emily R.; Atanassov, Plamen [University of New Mexico, Center for Emerging Energy Technologies, Albuquerque, NM (United States); Ramasamy, Ramaraja P. [Microbiology and Applied Biochemistry, Airbase Sciences, Air Force Research Laboratory, Tyndall Air Force Base, FL (United States); Nano-Electrochemistry Laboratory, Faculty of Engineering, University of Georgia, Athens, GA (United States); Luckarift, Heather R.; Johnson, Glenn R. [Microbiology and Applied Biochemistry, Airbase Sciences, Air Force Research Laboratory, Tyndall Air Force Base, FL (United States)

    2012-01-15

    Multicopper oxidases, such as laccase or bilirubin oxidase, are known to reduce molecular oxygen at very high redox potentials, which makes them attractive biocatalysts for enzymatic cathodes in biological fuel cells. By designing an enzymatic gas-diffusion electrode, molecular oxygen can be supplied through the gaseous phase, avoiding solubility and diffusion limitations typically associated with liquid electrolytes. In doing so, the current density of enzymatic cathodes can theoretically be enhanced. This publication presents a material study of carbon/Teflon composites that aim to optimize the functionality of the gas-diffusion and catalytic layers for application in enzymatic systems. The modification of the catalytic layer with multiwalled carbon nanotubes, for example, creates the basis for stronger {pi}-{pi} stacking interactions through tethered enzymatic linkers, such as pyrenes or perylene derivates. Cyclic voltammograms show the effective direct electron contact of laccase with carbon nanotube-modified electrodes via tethered crosslinking molecules as a model system. The polarization behavior of laccase-modified gas-diffusion electrodes reveals open-circuit potentials of +550 mV (versus Ag/AgCl) and current densities approaching 0.5 mA cm{sup 2} (at zero potential) in air-breathing mode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  9. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    Science.gov (United States)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  10. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  11. A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol

    International Nuclear Information System (INIS)

    Deng, Huichao; Zhang, Yufeng; Zheng, Xue; Li, Yang; Zhang, Xuelin; Liu, Xiaowei

    2015-01-01

    A novel MEA (membrane electrode assembly) structure of passive μ-DMFC (micro-direct methanol fuel cell) controls water management and decreases methanol crossover. The CNT (carbon nanotube) paper replacing CP (carbon paper) as GDL (gas diffusion paper) enhances water back diffusion which passively prevents flooding in the cathode and promotes low methanol crossover. Moreover, the unique structure of CNT paper can also enhance efficiency of oxygen mass transport and catalyst utilization. The passive μ-DMFC with CNT-MEA exhibits significantly higher performance than passive μ-DMFC with CP-MEA and can operate in high methanol concentration, showing the peak power density of 23.2 mW cm −2 . The energy efficiency and fuel utilization efficiency are obviously improved from 11.54% to 22.7% and 36.61%–49.34%, respectively, and the water transport coefficient is 0.47 which is lower than previously reported passive μ-DMFC with CP. - Highlights: • This novel GDL (gas diffusion layer) solves water management and methanol crossover. • This GDL creates a hydraulic pressure in the cathode increasing water back diffusion. • This GDL improves the electrical conductivity and activity of catalyst

  12. New process of the preparation of catalyzed gas diffusion electrode for PEM fuel cells based on ultrasonic direct solution spray reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, K.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    This paper reported on a newly developed process for in-situ catalyst deposition on gas diffusion electrodes (GDE) for polymer electrolyte fuel cells. This process has the potential to reduce the number of steps for catalyzed GDE fabrication. In addition, the process offers economic advantages for the fuel cell commercialization. In this study, a home-made catalyst maker with ultrasonic spray method was used to prepare a solution of the carbon supported platinum catalyst on the GDL. The sprayed catalyst powder consisted of carbon support. The catalyst particles did not prevent gas flow channels on the GDL. The catalyst layer was shown to be located only on the top surface of the GDL and was not packed into its flow channel. Results of Cross-section SEM image, crystallization, micro structure and electro-catalytic activity for the oxygen reduction reaction were also discussed. 1 ref., 1 fig.

  13. Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation

    International Nuclear Information System (INIS)

    Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2013-01-01

    Graphical abstract: - Highlights: • Diffuse double layers overlap with each other in the micropore. • The overlapping of the diffuse double layer affects the double layer capacitance. • The electric field becomes weak in the micropore. • The electroneutrality is unsatisfactory in the micropore. - Abstract: The structure of the diffuse double layer around a nm-sized micropore on porous electrodes has been studied by numerical simulation using the Poisson–Boltzmann equation. The double layer capacitance of the microporous electrode strongly depends on the electrode potential, the electrolyte concentration, and the size of the micropore. The potential and the electrolyte concentration dependence of the capacitance is different from that of the planner electrode based on the Gouy's theory. The overlapping of the diffuse double layer becomes conspicuous in the micropore. The overlapped diffuse double layer provides the mild electric field. The intensified electric field exists at the rim of the orifice of the micropore because of the expansion of the diffuse double layers. The characteristic features of microporous electrodes are caused by the heterogeneity of the electric field around the micropores

  14. Studies of matrix diffusion in gas phase

    International Nuclear Information System (INIS)

    Hartikainen, K.; Timonen, J.; Vaeaetaeinen, K.; Pietarila, H.

    1994-03-01

    The diffusion of solutes from fractures into rock matrix is an important factor in the safety analysis of disposal of radioactive waste. Laboratory measurements are needed to complement field investigations for a reliable determination of the necessary transport parameters. Measurements of diffusion coefficients in tight rock samples are usually time consuming because the diffusion processes are slow. On the other hand it is well known that diffusion coefficients in the gas phase are roughly four orders of magnitude larger than those in the liquid phase. Therefore, for samples whose structures do not change much upon drying, it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements. In the measurements nitrogen was used as the carrier gas and helium as the tracer gas, and standard techniques have been used for helium detection. Techniques have been developed for both channel flow and through-diffusion measurements. The breakthrough curves have been measured in every experiment and all measurements have been modelled by using appropriate analytical models. As a result matrix porosities and effective diffusion coefficients in the gas phase have been determined. (12 refs., 21 figs., 6 tabs.)

  15. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tao; Guo, Zhansheng

    2014-01-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected. (paper)

  16. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Song Yicheng; Zhang Junqian; Shao Xianjun; Guo Zhansheng

    2013-01-01

    This work investigates the stress-assisted diffusion of lithium ions in layered electrodes of Li-ion batteries. Decoupled diffusion governing equations are obtained. Material properties, which are characterized by a single dimensionless parameter, and mechanical constraint between a current collector and an active layer, which is characterized by the elastic modulus ratio and thickness ratio between the layers, are identified as key factors that govern the stress-assisted diffusion. For a symmetric plate electrode, stress is induced by the Li-ion concentration gradient, and stress-assisted diffusion therefore depends only on the material properties. For an asymmetric bilayer electrode, mechanical constraint plays a very important role in the diffusion via generation of bending stress. Diffusion may be facilitated, or inversely impeded, according to the constraint. By summarizing the coupling factors of common active materials and investigating the concentration variation induced by stress-assisted diffusion in various electrodes, this work provides insights on stress-assisted diffusion in a layered electrode, as well as suggestions for relevant modelling works on whether the stress-assisted diffusion should be taken into account according to the selection of material and structure. (paper)

  17. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  18. Use of Electrochemical Impedance Spectroscopy for the Evaluation of Performance of PEM Fuel Cells Based on Carbon Cloth Gas Diffusion Electrodes

    Directory of Open Access Journals (Sweden)

    Saverio Latorrata

    2018-01-01

    Full Text Available Polymer electrolyte membrane fuel cells (PEMFCs have attracted great attention in the last two decades as valuable alternative energy generators because of their high efficiencies and low or null pollutant emissions. In the present work, two gas diffusion electrodes (GDEs for PEMFCs were prepared by using an ink containing carbon-supported platinum in the catalytic phase which was sprayed onto a carbon cloth substrate. Two aerograph nozzles, with different sizes, were used. The prepared GDEs were assembled into a fuel cell lab prototype with commercial electrolyte and bipolar plates and tested alternately as anode and cathode. Polarization measurements and electrochemical impedance spectroscopy (EIS were performed on the running hydrogen-fed PEMFC from open circuit voltage to high current density. Experimental impedance spectra were fitted with an equivalent circuit model by using ZView software which allowed to get crucial parameters for the evaluation of fuel cell performance, such as ohmic resistance, charge transfer, and mass transfer resistance, whose trends have been studied as a function of the applied current density.

  19. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  20. Bulk diffusion in a kinetically constrained lattice gas

    Science.gov (United States)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  1. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT

    International Nuclear Information System (INIS)

    Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun

    2012-01-01

    Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.

  2. Electrocatalytic cermet gas detector/sensor

    Science.gov (United States)

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  3. Fabrication of gas diffusion layer based on x-y robotic spraying technique for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.

    2009-01-01

    The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .

  4. On the effective diffusivity of gases in PEM fuel cell electrodes

    International Nuclear Information System (INIS)

    Karan, K.; Pharoah, J.G.

    2004-01-01

    'Full text:' Gas diffusion layer of polymer electrolyte membrane fuel cells (PEMFCs) play a critically important and multiple role as reactant gas distributor, medium for electron and water transport. The most commonly used GDL material is either carbon cloth or carbon paper. Scanning electron microscopic analysis reveals that the GDL microstructure resembles the structure of randomly laid out fibres. Almost all publications on PEMFC models have treated diffusive transport of chemical species through the porous gas diffusion layer (GDL) using correlations originally derived for isotropic granular porous media. Unfortunately, the GDL microstructure does not resemble such a structure. This paper questions the validity of effective diffusivity models used in PEMFC literature and shows that the choice of diffusivity model has significant impact on the prediction of local species fluxes and composition, and consequently on local current densities. (author)

  5. On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes

    Directory of Open Access Journals (Sweden)

    Odile Capron

    2018-01-01

    Full Text Available This paper examines the impact of the characterisation technique considered for the determination of the L i + solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC electrodes. As major characterisation techniques, Cyclic Voltammetry (CV, Galvanostatic Intermittent Titration Technique (GITT and Electrochemical Impedance Spectroscopy (EIS were systematically investigated. L i + diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3 . 48 × 10 - 10 cm 2 ·s - 1 and 1 . 56 × 10 - 10 cm 2 ·s - 1 , respectively. The dependency of the L i + diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1 . 76 × 10 - 15 cm 2 ·s - 1 and 4 . 06 × 10 - 12 cm 2 ·s - 1 , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.

  6. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)

    2015-05-22

    Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate

  7. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  8. Determination of gas diffusion coefficients in undisturbed Boom clay

    International Nuclear Information System (INIS)

    Jacops, E.; Volckaert, G.; Maes, N.; Govaerts, J.; Weetjens, E.

    2012-01-01

    Document available in extended abstract form only. The Belgian agency for radioactive waste and enriched fissile materials Ondraf/Niras presently considers Boom Clay as a potential host formation for the disposal of high-level and long-lived radioactive waste. The production of gas is unavoidable within a geological repository. Gas is produced by different mechanisms: anaerobic corrosion of metals in waste and packaging, radiolysis of water and organic materials in the waste and engineered barriers and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository will dissolve in the pore water and is transported away from the repository by diffusion as dissolved species. If the gas generation rate is larger than the diffusive flux, the pore water will become over-saturated and a free gas phase will form. Initially, isolated gas bubbles will accumulate until a continuous gas phase is formed. As gas pressure continues to increase, discrete gas pathways may be formed by tensile fractures within the rock fabric. Consequently, this entire process may locally and at least temporarily alter the hydraulic and mechanical properties of the engineered barriers and the clay and, perhaps, their performance. Therefore it is important to assess whether or not gas production rates might exceed the diffusive gas flux. The currently available gas diffusion parameters (D eff : effective diffusion coefficient) for hydrogen in Boom Clay, obtained from the MEGAS project, and re-evaluated after lead to an estimated D eff between 1.9 10 -12 and 1.5 10 -10 m 2 /s. Sensitivity calculations showed that this uncertainty on the diffusion coefficient, combined with that on the gas source term, made it impossible to exclude the formation of a free gas phase. To reduce the uncertainty, an experimental method was developed to determine

  9. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  10. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.

    1999-01-01

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  11. Ionization current in N2 gas. Part 7. ; Diffusion and reflection of metastable particles. N2 gas chu ni okeru denri denryu. 7. ; Jun antei reiki ryushi no kakusan to hansha

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.; Ito, H.; Sekizawa, H. (Chiba Inst. of Technology, Chiba (Japan)); Ikuta, N. (Tokushima Univ., Tokushima (Japan))

    1993-06-20

    The energy loss process in quenching of excited particles by collision to other ones and solid surfaces was investigated with metastable excited particles formed in weakly ionized gases. The measured lifetime of N2 metastable particles in N2, N2/CO, N2/CH3 gases during Townsent discharge did not agree with the Molnar's theoretical value which was obtained by solving diffusion equations using the boundary condition that assumes the density of excited particles to be zero at electrodes and tube walls. Strange behavior was observed too, that is, coefficients of diffusion and reaction rate determined by the theoretical lifetime change systematically with the distance between electrodes. Then, the novel boundary condition that takes reflection coefficient into account was applied to solve diffusion equations. The results obtained could account for experimental results without any discrepancy. The analysis of results clarified the dependence of various parameters of metastable excited particles on the reflection coefficient. The increase of reflection coefficient decreases the surface quenching of excited particles at electrodes and elongs effectively excited lifetime and increases the number of collisional quenching in gas phases. 16 refs., 8 figs.

  12. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  13. Tracer gas diffusion sampling test plan

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1993-01-01

    Efforts are under way to employ active and passive vapor extraction to remove carbon tetrachloride from the soil in the 200 West Area an the Hanford Site as part of the 200 West Area Carbon Tetrachloride Expedited Response Action. In the active approach, a vacuum is applied to a well, which causes soil gas surrounding the well to be drawn up to the surface. The contaminated air is cleaned by passage through a granular activated carbon bed. There are questions concerning the radius of influence associated with application of the vacuum system and related uncertainties about the soil-gas diffusion rates with and without the vacuum system present. To address these questions, a series of tracer gas diffusion sampling tests is proposed in which an inert, nontoxic tracer gas, sulfur hexafluoride (SF 6 ), will be injected into a well, and the rates of SF 6 diffusion through the surrounding soil horizon will be measured by sampling in nearby wells. Tracer gas tests will be conducted at sites very near the active vacuum extraction system and also at sites beyond the radius of influence of the active vacuum system. In the passive vapor extraction approach, barometric pressure fluctuations cause soil gas to be drawn to the surface through the well. At the passive sites, the effects of barometric ''pumping'' due to changes in atmospheric pressure will be investigated. Application of tracer gas testing to both the active and passive vapor extraction methods is described in the wellfield enhancement work plan (Rohay and Cameron 1993)

  14. Hydrogen diffusion in La1.5Nd0.5MgNi9 alloy electrodes of the Ni/MH battery

    International Nuclear Information System (INIS)

    Volodin, A.A.; Denys, R.V.; Tsirlina, G.A.; Tarasov, B.P.; Fichtner, M.; Yartys, V.A.

    2015-01-01

    Highlights: • Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D H demonstrates a maximum (2 × 10 −11 cm 2 /s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D H changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10 −11 cm 2 /s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH x

  15. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Shusheng Gao

    2017-03-01

    Full Text Available A prerequisite to effective shale gas development is a complicated fracture network generated by extensive and massive fracturing, which is called SRV (stimulated reservoir volume section. Accurate description of gas flow behaviors in such section is fundamental for productivity evaluation and production performance prediction of shale gas wells. The SRV section is composed of bedrocks with varying sizes and fracture networks, which exhibit different flow behaviors – gas diffusion in bedrocks and gas seepage in fractures. According to the porosity and permeability and the adsorption, diffusion and seepage features of bedrocks and fractures in a shale gas reservoir, the material balance equations were built for bedrocks and fractures respectively and the continuity equations of gas diffusion and seepage in the SRV section were derived. For easy calculation, the post-frac bedrock cube was simplified to be a sphere in line with the principle of volume consistency. Under the assumption of quasi-steady flow behavior at the cross section of the sphere, the gas channeling equation was derived based on the Fick's laws of diffusion and the density function of gas in bedrocks and fractures. The continuity equation was coupled with the channeling equation to effectively characterize the complicated gas flow behavior in the SRV section. The study results show that the gas diffusivity in bedrocks and the volume of bedrocks formed by volume fracturing (or the scale of fracturing jointly determines the productivity and stable production period of a shale gas well. As per the actual calculation for the well field A in the Changning–Weiyuan Block in the Sichuan Basin, the matrix has low gas diffusivity – about 10−5 cm2/s and a large volume with an equivalent sphere radius of 6.2 m, hindering the gas channeling from bedrocks to fractures and thereby reducing the productivity of the shale gas well. It is concluded that larger scale of volume fracturing

  16. Novel electrode structure for DMFC operated with liquid methanol

    International Nuclear Information System (INIS)

    Shao, Z.-G.; Lin, W.; Christensen, P.A.; Zhu, F.; Slowinski, G.; Amini, M.K.; Scott, K.

    2004-01-01

    'Full text:' Up to now, the electrodes for direct methanol fuel cell (DMFC) were developed mostly on the basis of the gas diffusion electrodes employed in proton exchange membrane fuel cells. Typically, the structure of such electrodes comprises a catalyst layer and a diffusion layer, the latter being carbon cloth or carbon paper. However, unlike other fuel cells, the liquid feed DMFC suffers from mass transport limitations predominantly at the anode due to the low diffusion coefficient of methanol in water. In addition, carbon paper is fragile and expensive and carbon cloth is soft compared with metal material, such materials are not as versatile as metals. In our present work, new structures of the anode and cathode have been developed. The preparation procedures and the main characteristics of the anodes and cathodes have been studied and will be reported. (author)

  17. Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Wu, Hong; Liu, Youwen; Wen, Pihua

    2015-01-01

    Highlights: • Diffusion induced stress is established. • Yield stress is dependent upon concentration. • Plastic deformation induced stress lowers tensile stress. • Plastic deformation suppresses crack nucleation. • Plastic deformation occurs not only at lithiated phase but also at electrode interior. - Abstract: This paper is theoretically suggested to describe diffusion induced stress in the elastoplastic hollow spherical silicon electrode for plastic deformation using both analytical model and molecular simulation. Based on the plastic deformation and the yield criterion, we develop this model accounting for the lithium-ion diffusion effect in hollow electrode, focusing on the concentration and stress distributions undergoing lithium-ion insertion. The results show that the two ways, applied compressive stress to inner surface or limited inner surface with higher concentration using biological membranes maintaining concentration difference, lead to the compressive stress induced by the lithium-ion diffusion effect. Hollow spherical electrode reduces effectively diffusion induced stress through controlling and tuning electrode parameters to obtain the reasonably low yield strength. According to MD simulations, plastic deformation phenomenon not only occurs at interface layer of lithiated phase, but also penetrates at electrode interior owning to confinement imposed by lithiated phase. These criteria that radial and hoop stresses reduce dramatically when plastic deformation occurs near the end faces of hollow electrode, may help guide development of new materials for lithium-ion batteries with enhanced mechanical durability, by means of reasonable designing yield strength to maintain mechanical stress below fracture strength, thereby increasing battery life.

  18. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  19. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    Science.gov (United States)

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  1. Natural gas diffusion model and diffusion computation in well Cai25 Bashan Group oil and gas reservoir

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Natural gas diffusion through the cap rock is mainly by means ofdissolving in water, so its concentration can be replaced by solubility, which varies with temperature, pressure and salinity in strata. Under certain geological conditions the maximal solubility is definite, so the diffusion com-putation can be handled approximately by stable state equation. Furthermore, on the basis of the restoration of the paleo-buried history, the diffusion is calculated with the dynamic method, and the result is very close to the real diffusion value in the geological history.

  2. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  3. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  4. A preliminary assessment of gas diffusion and migration

    Energy Technology Data Exchange (ETDEWEB)

    Tanai, Kenji; Sato, Haruo [Waste Isolation Research Division, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Murakami, Tomohiro [Toyo Engineering Corp., Tokyo (Japan); Inoue, Masahiro [Kyushu Univ., Fukuoka (Japan)

    1999-11-01

    In the anaerobic environment in the deep underground water, carbon-steel overpack corrodes and generates molecular hydrogen. It is conceivable that this hydrogen either dissolves into the porewater of the buffer and migrates through the buffer. If the rate of aqueous diffusion of hydrogen is too low compared to the rate of hydrogen generation, the concentration of hydrogen at the overpack surface will increase until a solubility limit is attained and a free hydrogen gas phase forms. It is possible that the pressure in this accumulating gas phase will increase, affecting the stability of the buffer or the surrounding rock mass. There is also a concern of possible effects on nuclide migration, as it is also conceivable that the flow of gas could push out radionuclide-bearing porewater in the buffer when it floes through the buffer. As such, experimental and analytical study must be carried out on such phenomenon to evaluate such potential phenomena. (1) Diffusion experiment of dissolved hydrogen. (2) Gas permeability. (3) Evaluation of diffusion of dissolved hydrogen and hydrogen gas migration. (J.P.N.)

  5. Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Kamitaka, Y.; Kano, K. [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto (Japan)

    2007-12-15

    Bioelectrocatalytic reduction of O{sub 2} into water was archived at diffusion-controlled rate by using enzymes (laccase from Trametes sp. and bilirubin oxidase from Myrothecium verrucaria, which belong to the family of multi-copper oxidase) adsorbed on mesoporous carbon aerogel particle without a mediator. The current density was predominantly controlled by the diffusion of dissolved O{sub 2} in rotating-disk electrode experiments, and reached a value as large as 10 mA cm{sup -2} at 1 atm O{sub 2}, 25 C, and 8,000 rpm on the laccase-adsorbed electrode. The overpotential of the bioelectrocatalytic reduction of O{sub 2} was 0.4-0.55 V smaller than that observed on a Pt disk electrode. Without any optimization, the laccase-adsorbed biocathode showed stable current intensity of the O{sub 2} reduction in an air-saturated buffer at least for 10 days under continuous flow system. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  7. On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion® Electrode

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Yang

    2003-08-01

    Full Text Available The electrochemical oxidation of nitric oxide (NO gas at the Pt/Nafion® electrode has been studied at a concentration of 500 ppm. The electrooxidation of NO taking place over a wide potential range can be described by a transcendental equation, from which the half-wave potential of the reaction can be determined. For NO oxidation with appreciable overpotentials but negligible mass-transfer effects, the Tafel kinetics applies. The obtained charge transfer coefficient (a and the exchange current density (io are 0.77 and 14 mA/cm2, respectively. An amperometric NO gas sensor based on the Pt/Nafion® electrode has been fabricated and tested over the NO concentration range from 0 to 500 ppm. The Pt/Nafion® electrode was used as an anode at a fixed potential, preferably 1.15 V (vs. Ag/AgCl/sat. KCl, which assures current limitation by diffusion only. The sensitivity of the electrochemical sensor was found to be 1.86 mA/ppm/cm2. The potential interference by other gases, such as nitrogen dioxide (NO2 and carbon monoxide (CO, was also studied in the range 0-500 ppm. Both sensitivity for NO and selectivity of NO over NO2/CO show significant enhancement upon using a cyclic voltammetric (CV activation, or cleaning procedure.

  8. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  9. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  10. The contribution of diffusion to methane transport in deep underground gas deposits; Der Beitrag der Diffusion zum Methantransport in tiefliegenden Gas-Lagerstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, W. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1998-12-31

    Optimisation of gas production necessitates accurate knowledge of gas transport mechanisms. In view of the extreme temperatures, pressures, and permeability conditions of underground gas deposits, linear transfer of existing knowledge will be inappropriate. The author therefore uses a simple capillary bundle model with exemplary pressures, temperatures and permeabilities in order to assess the contribution of transport by diffusion. The diffusion coefficients, which are required for this and so far could not be measured under pressure, were determined by a new experimental method whose results will permit a better interpretation of the concentration dependence of the diffusion coefficient. The velocity of methane inflow and outflow in the water-filled pore space may provide knowledge on problems of gas storage in the pore space. (orig.) [Deutsch] Fuer den Foerderprozess und insbesondere seine Optimierung ist eine genaue Kenntnis der Transportmechanismen wesentlich. Unter den drastischen Bedingungen fuer Temperatur, Druck und Permeabilitaet tiefliegender Gas-Lagerstaetten mag die Uebertragung der bisherigen Vorstellungen ueber den Transport in der Lagerstaette zu einer unvollstaendigen Beschreibung fuehren. Unter Anwendung eines einfachen Kapillarbuendelmodells wird mit Beispielen fuer Druck, Temperatur und Permeabilitaet der moegliche Beitrag des Transports durch Diffusion abgeschaetzt. Zur Bestimmung der hierfuer notwendigen und bisher unter Druckbeaufschlagung nicht gemessenen Diffusionskoeffizienten wurde eine neue experimentelle Methode angewandt, deren Ergebnisse eine weiterfuehrende Interpretation der Konzentrationsabhaengigkeit des Diffusionskoeffizienten ermoeglichen. Auch fuer Fragestellungen der Speicherung von Gas im Porenraum kann die Geschwindigkeit der Ein- und Ausloesung von Methan im wasserhaltigen Porenraum von Interesse sein. (orig.)

  11. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  12. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  13. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu

    2007-01-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  14. Fabricating method of gas diffusion electrode for fuel cell. Nenryo denchiyo gas kakusan denkyoku no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H [Yokohama (Japan)

    1994-01-28

    When the cation exchange film of the solid high polymer electrolyte fuel cell which uses the cation exchange film as the electrolyte (PEMFC) is bonded with the electrode catalyst layers for the anode and cathode, the hot-press conditions are severe and satisfactory bonding is hard to be achieved because the softening temperature of polytetrafluoroethylene used as the binder for the bonding is higher than that of the cation exchange film. This invention is concerned with a means of obtaining PEMFC which can generate high cell voltage, wherein perfluorosulfonic acid system copolymer solution or dispersed solution similar to that used for the cation exchange film is used as the binder when bonding carbon cloth or carbon paper coated with electrode catalyst layers for anode and cathode to the cation exchange film, setting of hot-pressing conditions is made easier, and the adhesion and bonding of the cation exchange film surface and the electrode catalyst layers are improved. 1 fig.

  15. Diffusion probe for gas sampling in undisturbed soil

    DEFF Research Database (Denmark)

    Petersen, Søren O

    2014-01-01

    Soil-atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help to understand emission...... controls. This note describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programs. It can be deployed with minimum disturbance of in-situ conditions, also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth...... on peat soils used for grazing showed soil gas concentrations of CH4 and N2O as influenced by topography, site conditions, and season. The applicability of the diffusion probe for trace gas monitoring is discussed....

  16. Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell

    Science.gov (United States)

    Zhu, Yingli; Zhang, Xiaojian; Li, Jianyu; Qi, Gary

    2018-05-01

    The gas diffusion layer (GDL), as an important structure of the membrane electrode assembly (MEA) of the direct methanol fuel cell (DMFC), provides a support layer for the catalyst and the fuel and the product channel. Traditionally, the material of GDL is generally carbon paper (CP). In this paper, a new material, namely three-dimensional graphene (3DG) is used as GDL for micro DMFC. The experimental results reveal that the performance of the DMFC has been improved significantly by application of 3DG. The peak powers increase from 25 mW to 31.2 mW and 32 mW by using 3DG as the anode and cathode GDL instead of CP, respectively. The reason may be the decrease of charge and mass transfer resistance of the cell. This means that the unique 3D porous architecture of the 3DG can provide lower contact resistance and sufficient fuel diffusion paths. The output performance of the cell will be further improved when porous metal current collectors is used.

  17. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  18. Behaviour of and mass transfer at gas-evolving electrodes

    NARCIS (Netherlands)

    Janssen, L.J.J.

    1989-01-01

    A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into

  19. Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu

    2014-06-01

    A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.

  20. Thermodynamics and kinetics of phase transformation in intercalation battery electrodes - phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)

    2010-12-15

    Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

  1. Hydrogen diffusion in La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrodes of the Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, A.A. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Denys, R.V. [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway); Tsirlina, G.A. [Department of Electrochemistry, Moscow State University, Moscow (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics of RAS, Chernogolovka (Russian Federation); Fichtner, M. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO2027 (Norway)

    2015-10-05

    Highlights: • Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D{sub H} demonstrates a maximum (2 × 10{sup −11} cm{sup 2}/s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La{sub 1.5}Nd{sub 0.5}MgNi{sub 9} battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D{sub H} changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10{sup −11} cm{sup 2}/s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH{sub x}.

  2. Development of gas ionization chambers with coplanar electrodes for alpha-ray spectrometry

    International Nuclear Information System (INIS)

    Iwasaki, Kenta; Tanaka, Naomichi; Murakami, Kohei; Hasebe, Nobuyuki; Kusano, Hiroki; Shibamura, Eido; Miyajima, Mitsuhiro

    2016-01-01

    A large-area alpha-ray spectrometer is required to measure the low level alpha emitters in environmental samples, which may be distributed in the vicinity of nuclear power plants. A gas ionization chamber with a coplanar electrode has attractive features such as with mechanical ruggedness, easy handling, easy fabrication of large electrode, and relatively well-known performance. We have investigated the performance of a gas ionization chamber with a coplanar electrode for alpha-ray spectrometry, particularly in the energy resolution. The present experiment shows that the energy resolution in the full width at half maximum (FWHM) is 129 keV (= 2.7%) for alpha-rays from Np with an energy of 4.78 MeV, 120 keV (= 2.2%) for those with 5.49 MeV from Am, and 109 keV (= 1.9%) for those with 5.81 MeV from Cm. It is found that the energy resolution obtained at the present experiment is dominated in the electronic noise caused by the large capacitance existed between the collecting anode (CA) and non-collecting anode (NCA) in the coplanar electrode. (author)

  3. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  4. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  5. Development of more efficient and cheaper MEA's for PEM fuel cells; Membrane-electrode-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yde Andersen, S. (IRD Fuel Cell A/S, Svendborg (Denmark)); Nilsson, M.S. (Danish Power System Aps, Charlottenlund (Denmark)); Siu, A.; Plackett, D. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Dansk Polymer Center, Roskilde (Denmark)); Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark))

    2008-06-15

    The project covered 5 main areas: 1) polymer and membranes; 2) electrocatalysts; 3) gas diffusion electrodes; 4) MEAs; and 5) evaluation techniques. For the polymers, by purification of monomers and optimizing parameters, high molecular weight polybenzimidazoles have been synthesized in batches of 50 g with good reproducibility. Based on the polymer, two types of new membranes have been prepared. One is the cross-linked (covalently and acid-base) PBI blend membranes. The blend membranes were systematically characterized and show excellent properties such as very high acid doping levels, conductivity, mechanical strength and durability. The other type is composite membranes based on PBI and nanoclay. Using the modified nanoclay, good dispersion and transparent composite membranes have been achieved. For catalyst preparation, the carbon supports have been modified with thermal treatment. Improved corrosion resistance was achieved with little sacrificing of the catalytic activity. High Pt loading catalysts were prepared, based on which high performance gas diffusion electrodes were fabricated. The performance target of both cathode and anode was achieved, as evaluated by the PTFE half cell tests. New gas diffusion layer (GDL) materials have been developed and tested in different MEA configurations. Significant performance improvement has been achieved with also potential to reduce the cost. Techniques for applying micro porous layers and catalyst layers have been optimized, including tape casting, spraying, and catalyst-coated membrane (CCM). Using the developed membranes and gas diffusion electrodes, membrane-electrode assemblies (MEAs) were fabricated for both single cell and stack tests. Selection of sealing materials and design of integrated gaskets have been made for both low and high temperature MEAs. Parameters for hot-pressing such as temperature, pressure and duration were systematically studied. 44 MEAs with an active area of 256 cm{sup 2} have been prepared

  6. Electrode phenomena, tensor conductivity and electrode heating in seeded argon

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Z.; de Montardy, A.

    1963-04-15

    Contact potential drops along the electrodes often prevent measurements of ionized gas conductivity. In order to avoid such potential drops, a measurement cell using double probe technique was realized. By adding a third probe, it is also possible to measure the conductivity tensor components. Formulas commonly used are shown to be incorrect. In order to evaluate non- equilibrium conductivity, the excitation temperature of the seed is to be considered, rather than electron temperature, especially in small scale experiments, where charged particle losses by ambipolar diffusion are to be expected. (auth)

  7. A method for the determination of gas diffusion coefficients in undisturbed Boom Clay

    International Nuclear Information System (INIS)

    Jacops, E.; Volckaert, G.; Maes, N.; Weetjens, E.; Maes, T.; Vandervoort, F.

    2010-01-01

    Document available in extended abstract form only. The main mechanisms by which gas will be generated in deep geological repositories are: anaerobic corrosion of metals in wastes and packaging; radiolysis of water and organic materials in the packages, and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository in clay will dissolve in the ground water and be transported away from the repository by diffusion as dissolved species. However if the gas generation rate is larger than the diffusive flux, the pore water will get over-saturated and a free gas phase will be formed. This will lead to a gas pressure build-up and finally to an advective gas flux. The latter might influence the performance of the repository. Therefore it is important to assess whether or not gas production rates can exceed the capacity of the near field to store and dissipate these gases by dissolution and diffusion only. The current available gas diffusion parameters for hydrogen in Boom Clay, obtained from the MEGAS project, suffer from an uncertainty of 1 to 2 orders of magnitude. Sensitivity calculations performed by Weetjens et al. (2006) for the disposal of vitrified high-level waste showed that with this uncertainty on the diffusion coefficient, the formation of a free gas phase cannot be excluded. Furthermore, recent re-evaluations of the MEGAS experiments by Krooss (2008) and Aertsens (2008) showed that the applied technique does not allow precise determination of the diffusion coefficient. Therefore a new method was developed to determine more precisely the gas diffusion coefficient for dissolved gases (especially dissolved hydrogen) in Boom Clay. This should allow for a more realistic assessment of the gas flux evolution of a repository as function of the estimated gas generation rates. The basic idea is to perform a

  8. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Golamreza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-04-15

    A major challenge in the application of proton exchange membrane fuel cells (PEMFCs) is water management, with the flooding of electrodes as the main issue. The Lattice-Boltzmann method (LBM) is a relatively new technique that is superior in modeling the dynamic interface of multiphase fluid flow in complex microstructures such as non-homogeneous and anisotropic porous media of PEMFC electrodes. In this study, the dynamic behavior of a water droplet during removal from gas diffusion layer (GDL) of a PEMFC electrode with interdigitated flow field is simulated using LBM. The effects of GDL wettability and its spanwise and transverse gradients on the removal process are investigated. The results demonstrate great influence of wettability and its spanwise and transverse gradients on the dynamic behavior of droplets during the removal process. Although increasing the hydrophobicity of GDL results in better droplet removal, its increase beyond a critical value does not show a significant effect.

  9. Characterization and improvement gas diffusion layer of low temperature fuel cell; Caracterizacao e aprimoramento da camada difusora de celulas a combustivel de funcionamento a baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C.Z.; Dantas, R.; Oliveira, I.S. de; Azevedo, C.M.N.; Pires, M. [Pontificia Univ. Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Quimica; Canalli, V. [Pontificia Univ. Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Engenharia

    2006-07-01

    In low temperature fuel cells the main part is the membrane electrode assembly (MEA). The gas diffusion layer is a component of the MEA, being a composite material constituted by carbon powder and polytetrafluoroethylene, used to increases hydrofobicity, fundamental characteristic in water transport into system. In this work methods were adapted with the aim to a better characterization of the diffusion layer by the measuring the following parameter: contact angle and hysteresis; morphology, thickness and porosity. From these characterization results optimized MEAS will be produced to better fuel cell performance. (author)

  10. Gas-induced friction and diffusion of rigid rotors

    Science.gov (United States)

    Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.

    2018-05-01

    We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.

  11. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  12. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    Science.gov (United States)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  13. Ethanol Dehydration by Evaporation and Diffusion in an Inert Gas Layer

    Energy Technology Data Exchange (ETDEWEB)

    In-Sick, Chung; Kyu-Min, Song [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of); Won-Hi, Hong; Ho-Nam, Chang [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of)

    1994-08-01

    Ethanol dehydration of azeotropic mixture was performed by using diffusion distillation apparatus consisting of a wetted-wall column with two concentric tubes. Ethanol-water mixtures evaporated below the boiling point was separated during the diffusion through the gap filled with an inert gas. As the temperature difference between evaporation part and condensation part was increased, the total flux increased but the selectivity decreased. The effect of the annular width on the selectivity was not significant but the total flux was decreased with decreases in the annular width. Inert gas has an effect on the diffusivity of evaporated gas components. The total flux in case of helium as inert gas was larger than that in case of air but the selectivity in case of using helium was lower. (author). 14 refs. 1 tab. 12 figs.

  14. MIS gas sensors based on porous silicon with Pd and WO{sub 3}/Pd electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Solntsev, V.S. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Gorbanyuk, T.I., E-mail: tatyanagor@mail.r [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Litovchenko, V.G.; Evtukh, A.A. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine)

    2009-09-30

    Pd and WO{sub 3}/Pd gate metal-oxide-semiconductor (MIS) gas sensitive structures based on porous silicon layers are studied by the high frequency C(V) method. The chemical compositions of composite WO{sub 3}/Pd electrodes are characterized by secondary-ion mass spectrometry (SIMS). The atomic force microscopy (AFM) was used for morphologic studies of WO{sub 3}/Pd films. As shown in the experiments, WO{sub 3}/Pd structures are more sensitive and selective to the adsorption of hydrogen sulphide compared to Pd gate. The analyses of kinetic characteristics allow us to determine the response and characteristic times for these structures. The response time of MIS-structures with thin composite WO{sub 3}/Pd electrodes (the thickness of Pd is about 50 nm with WO{sub 3} clusters on its surface) is slower compared to the structures with Pd electrodes. Slower sensor responses of WO{sub 3}-based gas sensors may be associated with different mechanism of gas sensitivity of given structures. The enhanced sensitivity and selectivity to H{sub 2}S action of WO{sub 3}/Pd MIS-structures can also be explained by the chemical reaction that occurs at the catalytic active surface of gate electrodes. The possible mechanisms of enhanced sensitivity and selectivity to H{sub 2}S adsorption of MIS gas sensors with WO{sub 3}/Pd composite gate electrodes compared to pure Pd have been analyzed.

  15. Gas Diffusivity-Based Design and Characterization of Greenhouse Growth Substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Møldrup, Per; Tuller, Markus

    2013-01-01

    combinations thereof, are commonly used as growth media, detailed and comparable physical characterization is key to identify the best performing media. In this study, five potential growth media and two mixtures thereof were characterized based on soil gas diffusivity (Dp/Do, where Dp and Do are gas diffusion...... coefficients in soil air and free air, respectively) and an operationally defined critical window of diffusivity (CWD) representing the interval of air-filled porosity between critical air filled porosity where Dp/Do ≈ 0.02 and interaggregate porosity. The Dp measurements were conducted with 100-cm3 samples...

  16. A critical comparison of constant and pulsed flow systems exploiting gas diffusion.

    Science.gov (United States)

    Silva, Claudineia Rodrigues; Henriquez, Camelia; Frizzarin, Rejane Mara; Zagatto, Elias Ayres Guidetti; Cerda, Victor

    2016-02-01

    Considering the beneficial aspects arising from the implementation of pulsed flows in flow analysis, and the relevance of in-line gas diffusion as an analyte separation/concentration step, influence of flow pattern in flow systems with in-line gas diffusion was critically investigated. To this end, constant or pulsed flows delivered by syringe or solenoid pumps were exploited. For each flow pattern, two variants involving different interaction times of the donor with the acceptor streams were studied. In the first one, both the acceptor and donor streams were continuously flowing, whereas in the second one, the acceptor was stopped during the gas diffusion step. Four different volatile species (ammonia, ethanol, carbon dioxide and hydrogen sulfide) were selected as models. For the flow patterns and variants studied, the efficiencies of mass transport in the gas diffusion process were compared, and sensitivity, repeatability, sampling frequency and recorded peak shape were evaluated. Analysis of the results revealed that sensitivity is strongly dependent on the implemented variant, and that flow pattern is an important feature in flow systems with in-line gas diffusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  18. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  19. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  20. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  1. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  2. A dirty window diffuse and translucent molecular gas in the interstellar medium

    CERN Document Server

    Magnani, Loris

    2017-01-01

    This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds...

  3. Diffusion limit of Lévy-Lorentz gas is Brownian motion

    Science.gov (United States)

    Magdziarz, Marcin; Szczotka, Wladyslaw

    2018-07-01

    In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.

  4. Soil-gas diffusivity fingerprints of the dual porosity system in fractured limestone

    DEFF Research Database (Denmark)

    Claes, Niels; Chamindu, D.T.K.K.; Jensen, Jacob Birk

    2010-01-01

    processes are mostly limited to hydrogeological (water and solute) transport studies with very poor attention to the gaseous phase transport studies (Kristensen et al. 2010). This study characterizes fractured limestone soils for gas diffusion based on three different gas diffusivity fingerprints. The first...... fingerprint is a two-parameter exponential model, which mainly describes the gas diffusivity in the limestone matrix while taking both fracture connectivity and matrix pore connectivity into account. With the second fingerprint, we make a close observation of the tortuous matrix pore network by means...... of a modified Buckingham (1904) pore connectivity factor (X*). The third fingerprint of the fracture network involves the average angle of diffusion α (Moldrup et al. 2010), a parameter which characterizes the average angle at which the fractures are penetrating the sample....

  5. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  6. The GBT Diffuse Ionized Gas Survey (GDIGS)

    Science.gov (United States)

    Luisi, Matteo; Anderson, Loren Dean; Liu, Bin; Bania, Thomas; Balser, Dana; Wenger, Trey; Haffner, Lawrence Matthew

    2018-01-01

    Diffuse ionized gas in the Galactic mid-plane known as the "Warm Ionized Medium" (WIM) makes up ~20% of the gas mass of the Milky Way and >90% of its ionized gas. It is the last major component of the interstellar medium (ISM) that has not yet been studied at high spatial and spectral resolution, and therefore many of its fundamental properties remain unclear. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) is a new large survey of the Milky Way disk at C-band (4-8 GHz). The main goals of GDIGS are to investigate the properties of the WIM and to determine the connection between the WIM and high-mass star formation over the Galactic longitude and latitude range of 32 deg > l > -5 deg, |b| resolution of 0.5 km/s and rms sensitivities of ~3 mJy per beam. GDIGS observations are currently underway and are expected to be completed by late 2018. These data will allow us to: 1) Study for the first time the inner-Galaxy WIM unaffected by confusion from discrete HII regions, 2) determine the distribution of the inner Galaxy WIM, 3) investigate the ionization state of the WIM, 4) explore the connection between the WIM and HII regions, and 5) analyze the effect of leaked photons from HII regions on ISM dust temperatures.

  7. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases In liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process Is followed by means of the gas pressure decrease which is recorded by means of a

  8. Diffusivity Measurements in Some Organic Solvents by a Gas-Liquid Diaphragm Cell

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases in liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process is followed by means of the gas pressure decrease which is recorded by means of a

  9. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  10. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    International Nuclear Information System (INIS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-01-01

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 μm. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 μm can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  11. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  12. Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil

    DEFF Research Database (Denmark)

    Mamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2012-01-01

    -s,D-l). Different percolation threshold terms adopted from recent studies for gas (D-s,D-g) and solute (D-s,D-l) diffusion were applied. For gas diffusion, epsilon(th) was a function of bulk density (total porosity), while for solute diffusion theta(th) was best described by volumetric content of finer soil...... particles (clay and organic matter), FINESvol. The resulting LIquid and GAs diffusivity and tortuosity (LIGA) models were tested against D-s,D-g and D-s,D-l data for differently-textured soils and performed well against the measured data across soil types. A sensitivity analysis using the new Maxwell's Law...... based LIGA models implied that the liquid phase but not the gaseous-phase tortuosity was controlled by soil type. The analyses also suggested very different pathways and fluid-phase connectivity for gas and solute diffusion in unsaturated soil...

  13. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  14. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  15. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Directory of Open Access Journals (Sweden)

    Wojciech Szmyt

    2017-01-01

    Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  16. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    -diffusion barrier sandwiched between the YSZ electrolyte and an LSCF:CGO oxygen electrode. Impedance Spectroscopy was used during the tests to diagnose the change in electrochemical response of the different components of the SOECs. The results showed a significantly lower degradation rate for the cell with an LSCF......Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  17. Limiting diffusion current at rotating disk electrode with dense particle layer.

    Science.gov (United States)

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  18. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  19. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    Science.gov (United States)

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  20. Fabricating method of gas diffusion electrode for fuel cell. Nenryo denchiyo gas kakusan denkyoku no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H [Yokohama (Japan)

    1994-01-28

    Cation exchange film is pressure bonded by hot-pressing on an aluminium foil for the solid high polymer electrolyte fuel cell which uses the cation exchange film as the electrolyte (PEMFC), but the conditions for the hot-pressing are severe because the softening temperature of polytetrafluoroethylene used as the binder for the bonding is higher than that of the cation exchange film. This invention is concerned with a method of improving adhesion and binding between the cation exchange film surface and the electrode catalyst layer, wherein K or Na type perfluorosulfonic acid system copolymer of the same material as that used for the cation exchange film is used as the binder in preparing the electrode catalyst layer of PEMFC, and the softening temperature of the cation exchange film itself is increased to enable high temperature hot-pressing. It is desirable to use the cation exchange film with the dry film thickness from 50 to 150[mu] and ion exchange capacity from 0.83 to 1.43 milli-equivalent/g (dry resin). 1 fig.

  1. Evaluation Of Gas Diffusion Through Plastic Materials Used In Experimental And Sampling Equipment

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    . Calculations show that diffusion of oxygen through plastic tubing and reactors into anoxic water can be a serious problem for a series of plastic materials. Comparison of the method for turbulent and laminar flow in tubings shows that the difference is insignificant for most cases. Calculations show also......Plastic materials are often used in experimental and sampling equipment. Plastics are not gas tight, since gases are able to diffuse through the walls of tubing and containers made of plastic. Methods for calculating the significance of gas diffusion through the walls of containers and the walls...... of tubings for both turbulent and laminar flow conditions is presented. A more complex model for diffusion under laminar flow conditions is developed. A comprehensive review on gas diffusion coefficients for the main gases (O2, N2, CO2, CH4 etc.) and for a long range of plastic materials is also presented...

  2. The photoionization of the diffuse galactic gas

    Science.gov (United States)

    Mathis, J. S.

    1986-01-01

    In a study of the diffuse ionized gas (DIG) component of the interstellar medium, it is attempted to see if the general properties of dilute gas ionized by O stars are similar to observations and to what extent the observations of the DIG can be used to determine the nature of the ionizing radiation field at great distances above the plane of the Galaxy. It has been suggested by Reynolds (1985) that either shocks or photoionization might be responsible for the DIG. The photoionization model seems required by the observations.

  3. Radiation energy devaluation in diffusion combusting flows of natural gas

    International Nuclear Information System (INIS)

    Makhanlall, Deodat; Munda, Josiah L.; Jiang, Peixue

    2013-01-01

    Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame

  4. Role of the Material Electrodes on Resistive Behaviour of Carbon Nanotube-Based Gas Sensors for H2S Detection

    Directory of Open Access Journals (Sweden)

    M. Lucci

    2012-01-01

    Full Text Available Miniaturized gas-sensing devices that use single-walled carbon nanotubes as active material have been fabricated using two different electrode materials, namely, Au/Cr and NbN. The resistive sensors have been assembled aligning by dielectrophoresis the nanotube bundles between 40 μm spaced Au/Cr or NbN multifinger electrodes. The sensing devices have been tested for detection of the H2S gas, in the concentration range 10–100 ppm, using N2 as carrier gas. No resistance changes were detected using sensor fabricated with NbN electrodes, whereas the response of the sensor fabricated with Au/Cr electrodes was characterized by an increase of the resistance upon gas exposure. The main performances of this sensor are a detection limit for H2S of 10 ppm and a recovery time of few minutes. The present study suggests that the mechanism involved in H2S gas detection is not a direct charge transfer between molecules and nanotubes. The hypothesis is that detection occurs through passivation of the Au surfaces by H2S molecules and modification of the contact resistance at the Au/nanotube interface.

  5. Anomalous diffusion in a lattice-gas wind-tree model

    International Nuclear Information System (INIS)

    Kong, X.P.; Cohen, E.G.D.

    1989-01-01

    Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed

  6. One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)

    2012-10-15

    A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  8. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  9. High performance electrodes for low pressure H{sub 2}-air PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Besse, S; Bronoel, G; Fauvarque, J F [Laboratoires SORAPEC (France)

    1998-12-31

    Proton exchange membrane fuel cells (PEMFCs) were first developed for space applications in the 1960s. Currently, they are being manufactured for terrestrial portable power applications. One of the challenges is to develop a low pressure H{sub 2}/Air PEMFC in order to minimize the cathodic mass transport overpotentials. The hydrogen oxidation reaction is considered to be sufficiently rapid. Hydrogen transport limitations are very low even at high current densities. The different applications considered for hydrogen/air PEMFC need to work at atmospheric pressure. An optimization of the structure of the oxygen electrode and the membrane electrode assembly (MEA) are essential in order to decrease mass transport limitations and to obtain good water management even at low pressures. Efforts have been made to produce electrodes and MEA for PEMFC with low platinum loading. The electrode structure was developed to ensure a good diffusion of reactants and an effective charge collection. It has also been optimized for low pressure restrictions. It was concluded that high performances can be achieved even at low pressures by improving the electrode gas diffusion layer (PTFE content) and by improving the catalyst. 12 refs., 7 figs.

  10. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  11. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  12. The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis

    International Nuclear Information System (INIS)

    Duch-Brown, Néstor; Costa-Campi, María Teresa

    2015-01-01

    Relevant advances in the mitigation of environmental impact could be obtained by the appropriate diffusion of existing environmental technologies. In this paper, we look at the diffusion of knowledge related to environmental technologies developed within the oil and gas industry. To assess knowledge spillovers from oil and gas inventions as a measure of technology diffusion, we rely on forward patent citations methodology. Results show that there is a strong likelihood that the citing patent will be eventually linked to environmental technologies if the original oil and gas invention has already environmental uses. Moreover, both intra and intersectoral spillovers produce a “turnabout” effect, meaning that citing patents show the opposite quality level of the cited patent. Our results support the idea that more sector-specific environmental policies, with an emphasis on diffusion, would significantly improve the use of environmental technologies developed within the oil and gas industry. -- Highlights: •Knowledge spillovers from oil and gas inventions are of an intrasectoral nature. •Environmental uses in original patents diffuse to patents with environmental uses. •The “turnabout” effect converts low quality patents into high quality citing patents. •Diffusion of oil and gas inventions need more ad hoc instruments

  13. On the Mass and Heat Transfer in the Porous Electrode of a Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Revuelta Bayod, A.

    2004-07-01

    In the first part of this report a reduced model of the mass transport in the PEMFC cathode gas diffusion layer is formulated ro an interrogated flow field design of the cathode bipolar plate. The non-dimensional formulation of the problem allows to identify the leading parameters which determines the fundamental species distribution and flow field structure. The effect of the forced convection of the gases into the porous electrode, caused by the interrogated flow field, is quantified through the Peclet numbers of the active species, and the non-dimensional polarization curves are obtained. In the second part, the diffusion-thermal instability is analyzed in a porous gas diffusion layer (GDL) of a fuel cell. The investigation presented provides an initial guideline to future theoretical and experimental investigations on one aspect of the fuel cell performance not previously considered, with impact on the fuel cell life-time. Starting from the simples possible 1D-model of the flow into the porous electrode, the steady solution of the model is presented an analyzed depending on a minimum number of non-dimensional parameters. From this steady solution, a linear stability analysis is formulated, taking into account the temporal-spatial perturbations transversal to the gas flow direction, and the marginal stability regions are determined from the corresponding dispersion relation. (Author) 33 refs.

  14. The Water-Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions

    DEFF Research Database (Denmark)

    Chamindu, T. K. K. Deepagoda; de Jonge, Lis Wollesen; Kawamoto, Ken

    2015-01-01

    . Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...

  15. Pressure recovery in a diffuser for gas centrifuge

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Takashima, Yoichi; Mikami, Hisashi

    1977-01-01

    The pressure recovery of supersonic flow at very low density was studied in a vane-island type diffuser for gas centrifuge. A tester of diffuser with a rapidly rotating cylinder was used in experiments. Wall static pressures were measured at many points in the diffuser to observe the static pressure distribution. The change of pressure distribution with back pressure and the effect of flow rate were investigated. Pressure distribution showed that the pressure recovery occurred in the converging section. The pressure ratio increased linearly with the back pressure in this experimental range and the effect of flow rate was not observed. A numerical analysis of the pressure recovery in the channel section of the diffuser was made by applying the finite difference method to the slender-channel equations. The pressure distribution obtained in experiments could be explained as a result of supersonic compression with reverse flow. (auth.)

  16. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Fleige, Michael; Arenz, Matthias

    2015-01-01

    temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow...

  17. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  18. Composite Sr- and V-doped LaCrO3/YSZ sensor electrode operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing electroch....... The relatively low response time at 700º C at an oxygen partial pressure of around 5x10-6 bar and an inlet gas flow rate of 8 L h-1 makes the LSCV/YSZ electrode suitable for use as an potentiometric oxygen sensor electrodes.......A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing...... and 400 nm. At oxygen partial pressures around 0.2 bar at 700º C, the oxygen reaction is dominated by solid-state diffusion of oxide ions and surface reaction kinetics. At oxygen partial pressures around 10-5 bar above 800º C, gas phase mass transport processes dominate the impedance spectra...

  19. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  20. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.

    1980-01-01

    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  1. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    Science.gov (United States)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  2. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    Energy Technology Data Exchange (ETDEWEB)

    Reach, William T. [Universities Space Research Association, MS 232-11, Moffett Field, CA 94035 (United States); Heiles, Carl [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu [Université de Toulouse, Institut de Recherche en Astrophysique et Planétologie, F-31028 Toulouse cedex 4 (France)

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that there is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.

  3. Diffuse charge and Faradaic reactions in porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Yu, F.; Bazant, M.Z.

    2011-01-01

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The

  4. Brazing and diffusion bonding processes as available repair techniques for gas turbine blades and nozzles

    International Nuclear Information System (INIS)

    Mazur, Z.

    1997-01-01

    The conventionally welding methods are not useful for repair of heavily damaged gas turbine blades and nozzles. It includes thermal fatigue and craze cracks, corrosion, erosion and foreign object damage, which extend to the large areas. Because of required extensive heat input and couponing, it can cause severe distortion of the parts and cracks in the heat affected zone, and can made the repair costs high. For these cases, the available repair methods of gas turbine blades and nozzles, include brazing and diffusion bonding techniques are presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which have influence to get sound joint is carried out. Depend of kind of blades and nozzle damage or deterioration registered a different methods of brazing and diffusion bonding applicability is presented. (Author) 65 refs

  5. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  6. Development of a primary diffusion source of organic vapors for gas analyzer calibration

    Science.gov (United States)

    Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.

    2018-03-01

    The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.

  7. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    Science.gov (United States)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent

  8. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  9. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    International Nuclear Information System (INIS)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-01-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated

  10. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  11. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  12. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    Science.gov (United States)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  13. Delays due to gas diffusion in flash boiling nucleation

    International Nuclear Information System (INIS)

    Hanbury, W.T.; McCartney, W.S.

    1976-01-01

    A theoretical model to account for the time delay between decompression and nucleation in flash boiling is presented and analyzed. It shows that gas diffusion can be responsible for delayed nucleation when the critical radius for nucleation and the suspended particle size are of the same order of magnitude

  14. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  15. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  16. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  17. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... cores and firn need to be corrected for this diffusive fractionation artifact. We present a novel, semi-empirical method to accurately estimate the magnitude of the diffusive fractionation in the ice core record. Our method (1) consists of a relatively simple analytical calculation; (2) requires only...... commonly available ice core data; (3) is not subject to the uncertainties inherent to estimating the accumulation rate, temperature, close-off depth and depth-diffusivity relationship back in time; (4) does not require knowledge of the true atmospheric variations, but uses the smoothed records obtained...

  18. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  19. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  20. Significance of the molecular diffusion for chemical and isotopic separation during the formation and degradation of natural gas reservoirs

    International Nuclear Information System (INIS)

    Hermichen, W.D.; Schuetze, H.

    1987-01-01

    Investigations at natural gas fields as well as modelling experiments have pointed out that changes of the chemical and isotopic composition occur in the course of migration, accumulation and dispersion of natural gas. Dissolution and sorption processes as well as in particular the diffusion process are considered to be the elementary separation processes. The influences on dissolved and freely flowing gases and on stationary gas accumulation are described by differential equations. The simulation of the following phenomena is shown: (1) immigration of gas into the pore space which is hydrodynamically passive, (2) diffusive migration of gas into the environment of the accumulation, and (3) diffusive 'decompression' into the roof and the floor of a gas bed and a gas containing subsoil water stratum, respectively. (author)

  1. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

    International Nuclear Information System (INIS)

    Yonemura, S.; Yokozawa, M.; Kawashima, S.; Tsuruta, H.

    2000-01-01

    CO and H 2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H 2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H 2 may be attributable to differences in CO and H 2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H 2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer

  2. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  3. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  4. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode

    International Nuclear Information System (INIS)

    Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-01-01

    Self-organized luminous pattern formation is observed in the liquid surface of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. The factors affecting pattern formation are the gap length, discharge current, helium mass flow rate and polarity. The pattern shape depends on the conductivity and temperature of the liquid electrode. A variety of patterns were observed by changing the conductivity and temperature of the liquid. We clarified that the self-organized pattern formation depends on the amount of electronegative gas, such as oxygen, in the gas in the electrode gap. When an oxygen gas flow was fed to the liquid surface from the outside in an obliquely downward direction, namely, the amount of oxygen gas on the liquid surface was increased locally, self-organized pattern formation was observed in the region with the increased amount of oxygen gas. When the amount of oxygen in the gas in the gap was changed by using a sheath flow system, the appearance of the pattern changed. The presence of oxygen gas strongly affected the self-organized pattern formation of the atmospheric dc discharge using a liquid anode. (paper)

  5. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  6. Comparison of The Performance of Proton Exchange Membrane Fuel Cell (PEMFC Electrodes with Different Carbon Powder Content and Methods of Manufacture

    Directory of Open Access Journals (Sweden)

    Dedi Rohendi

    2016-11-01

    Full Text Available Carbon powder in the gas diffusion layer (GDL contained in the membrane electrode assembly (MEA has an important role in the flow of electrons and reactant gas. Meanwhile, the method of making the electrode is one of the many studies conducted to determine the most appropriate method to use. Comparative study of the performance of proton exchange membrane fuel cell (PEMFC electrodes with different carbon powder content (vulcan XC-72 in the GDL and methods of manufacture of the electrode between casting and spraying method has been carried out. The spraying method consists of one layer and three layer of catalyst layer (CL. The content of carbon powder in the GDL as much as 3 mg cm-2 has a better performance compared to 1.5 mg cm-2 with an increase of 177.78% current density at 0.6 V. Meanwhile, the manufacture of CL with three-layer spraying method has better performance compared with one-layer spraying and casting method.

  7. Diffusion-controlled regime of surface-wave-produced plasmas in helium gas

    International Nuclear Information System (INIS)

    Berndt, J; Makasheva, K; Schlueter, H; Shivarova, A

    2002-01-01

    The study presents a numerical fluid-plasma model of diffusion-controlled surface-wave-sustained discharges in helium gas. The self-consistent behaviour of the discharge based on the interrelation between plasma density and Θ, the power absorbed on average by one electron, is described. The nonlinear process of step ionization in the charged particle balance equation is the main factor, which ensures the self-consistency. However, it is shown that in helium discharges, the ionization frequencies enter the dependence of Θ on the plasma density also through the ambipolar-diffusion coefficient. Results at two different values of the gas pressure and of the wave frequency are discussed. The lower value of the gas pressure is chosen according to the condition to have a pure diffusion-controlled regime without interference with a transition to the free-fall regime. The boundary condition for the ion flux at the wall sheath is used for determination of the value of μ, the quantity denoting the degree of the radial plasma-density inhomogeneity which, together with the electron-neutral elastic collision frequency, influences the wave propagation characteristics. The two values of the wave frequency chosen provide descriptions of high-frequency and microwave discharges. The model results in the self-consistent structure of the discharge: interrelated variations along the discharge length of wavenumber, space damping rate, Θ, plasma density and electron temperature. The power necessary for sustaining discharges of a given length is also calculated. Comparisons with argon discharges are shown

  8. Application of safeguards techniques to the Eurodif gas diffusion plant

    International Nuclear Information System (INIS)

    Coates, J.H.; Goens, J.R.

    1979-01-01

    The characteristic features of gas diffusion plants are such that safeguards procedures specifically suited for this technique can be proposed. The first of these features is the fact that appreciably altering the enrichment level of the plant product is not possible without making easily detectable changes either in the plant structure itself or in the movement of incoming and outgoing materials. Furthermore, because of the size of gas diffusion plants large stocks of uranium are present in them. Although inventory differences may be small in relative terms, they are large in abosolute terms and exceed the quantities of low-enriched uranium considered significant from the standpoint of safeguards. Lastly, the impossibility for economic reasons for taking a physical inventory of the plant after it has been emptied prevents a comparison of the physical inventory with the book inventory. It would therefore seem that the safeguarding of a gas diffusion plant should be focused on the movement of nuclear material between the plant and the outside world. The verification of inputs and outputs can be considered satisfactory from the safeguards standpoint as long as it is possible to make sure of the containment of the plant and of the surveillance for the purpose of preventing clandestine alterations of structure. The description of the Eurodif plant and the movement of materials planned there at present indicate that the application of such a safeguards technique to the plant should be acceptable to the competent authorities. For this purpose a monitoring area has been set aside in which the inspectors will be able to keep track of all movements between the outside world and the enrichment plant

  9. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  10. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  11. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  12. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    The solid oxide fuel cell (SOFC) converts hydrogen, carbon monoxide and hydrocarbon fuels (directly) into electricity with very high efficiencies and has demonstrated almost comparable performance when operated in reverse mode as a solid oxide electrolysis cell (SOEC). In this case electrical (and...... thermal) energy is stored as chemical energy of reaction products. To this end, the cells are fed with steam (H2O electrolysis), carbon dioxide (CO2 electrolysis) or a mixture of both (H2O/CO2 co-electrolysis) and of course electrical (ΔG) and thermal (TΔS) energies for the splitting of reactant compounds...... of the solid oxide cell (SOC) and independent of polarization mode (fuel cell mode or electrolysis mode), the current flowing through the cell is limited by processes such as adsorption and desorption of reactants or products, diffusion through the porous electrodes, activation or charge transfer...

  13. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  14. Numerical analyses on the effect of capillary condensation on gas diffusivities in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-11-01

    We investigate the effect of capillary condensation on gas diffusivities in porous media composed of randomly packed spheres with moderate wettability. Lattice density functional theory simulations successfully reproduce realistic adsorption/desorption isotherms and provide fluid density distributions inside the porous media. We find that capillary condensations lead to the occlusion of narrow pores because they preferentially occur at confined spaces surrounded by the solid walls. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Most importantly, we find that the porosity-to-tortuosity ratio, which is a crucial parameter that determines the effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  15. Preparation of gas diffusion layers for PEMFC fuel cells using carbon fibers; Elaboracao de uma camada de difusao de gas a partir de fibras de carbono para aplicacao em celulas combustiveis do tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.N.; Kunsti, S.R.; Malfatti, C.F. [Universidade Federal do Rio Grande do Sul - Departamento de Metalurgia (PPGEM) - Laboratorio de Pesquisa em Corrosao (LAPEC), Porto Alegre, RS (Brazil); Vargas, J.V.C. [Universidade Federal do Parana - Departamento de Engenharia Mecanica, PR (Brazil); Amico, S.C. [Universidade Federal do Rio Grande do Sul - Departamento de Materiais, RS (Brazil)

    2010-07-01

    The electrode/membrane system, called MEA, is the fundamental unit of a PEMFC (proton exchange membrane fuel cell). Within the MEA, the gas diffusion layer (GDL) is the bridge between the flow field and the catalyst layer. One of the important elements in a GDL is the substrate, typically a carbon cloth or paper, that has to be an excellent electrical conductor and show mechanical strength along with thermal and chemical stability. In this work, GDLs were produced from a suspension containing short carbon fibers in water-based polyurethane and poly(vinyl alcohol) (PVA) resins with appropriate characteristics to be used in low temperature fuel cells. The obtained GDL was characterized regarding its wettability, electrical conductivity and morphological aspects, evaluated by SEM. (author)

  16. Hydrogen diffusion in the anode of Ni/MH secondary batteries

    Science.gov (United States)

    Feng, F.; Northwood, D. O.

    Hydrogen diffusion coefficients ( D) were evaluated in a LaNi 4.7Al 0.3 metal hydride electrode as a function of depth of discharge (DoD) using a newly developed electrochemical method which describes more precisely the practical diffusion behavior. It was found that the hydrogen diffusion coefficient in this electrode increases with increasing DoD at ambient temperature, and for this electrode at 50% DoD, the hydrogen diffusion coefficient increases with increase in temperature, and the activation energy for hydrogen diffusion is 37.3 kJ mol -1.

  17. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode.

    Science.gov (United States)

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu; Zhang, Lijun; Du, Mao-Hua

    2018-02-01

    Solar cells based on methylammonium lead triiodide (MAPbI 3 ) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3 -based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3 . In addition to Au, many other metals have been used as electrodes in MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.

  18. Cobalt and molybdenum activated electrodes in foam based alkaline electrolysis cells at 150-250 °C and 40 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures of 150 C, 200 C and 250 C at a pressure of 40 bar. Two cells have been characterized during the 270 h long test...

  19. Diffusion in flowing gas

    International Nuclear Information System (INIS)

    Reus, K.W.

    1979-01-01

    This thesis is concerned with the back-diffusion method of calculating the mutual diffusion coefficient of two gases. The applicability of this method for measuring diffusion coefficients at temperatures up to 1300 K is considered. A further aim of the work was to make a contribution to the description of the interatomic potential energy of noble gases at higher energies as a function of the internuclear distance. This was achieved with the measured diffusion coefficients, especially with those for high temperatures. (Auth.)

  20. A microfabricated electroosmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia

    International Nuclear Information System (INIS)

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong; Almeida, M. Inês G. S.; Kolev, Spas D.; Pu, Qiaosheng

    2015-01-01

    We have microfabricated two functional components toward developing a microchip flow injection analysis (FIA) system, i.e., an open-channel electroosmotic pump and a gas-diffusion chip, consisting of two microfabricated glass wafers and a porous polytetrafluoroethylene membrane. This is the first application of gas-diffusion separation in a microchip FIA system. To demonstrate the feasibility of using these two components for performing gas-diffusion FIA, we have incorporated them together with a regular FIA injection valve and a capillary electrophoresis absorbance detector in a flow injection system for determination of ammonia in environmental water samples. This system has a limit of detection of 0.10 mg L −1 NH 3 , with a good repeatability (relative standard deviation of less than 5 % for 4.0 mg L −1 NH 3 ). Parameters affecting its performance are also discussed. (author)

  1. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    Science.gov (United States)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  2. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  3. Design and fabrication of capacitive interdigitated electrodes for smart gas sensors

    KAUST Repository

    Omran, Hesham

    2016-09-05

    In this paper, we study the design parameters of capacitive interdigitated electrodes (IDEs) and the effect of these parameters on the sensitivity of the IDEs when employed as a capacitive gas sensor. Finite element simulations using COMSOL Multiphysics were carried out to evaluate the sensitivity of the capacitive sensor. Simulations show that for permittivity-based sensing, the optimum thickness of the sensing film is slightly more than half the wavelength of the IDEs structure. On the other hand, sensing films that are thinner than half wavelength should be used if the required sensing mechanism is based on structural swelling. Increasing the IDEs metal thickness can increase the sensitivity by increasing the sidewall electric field, but this is only true if the sensing film is thick enough to completely fill the spacing between the electrodes. A simple and reliable IDEs structure and fabrication process are proposed. Physical dry etching provides good yield and fine resolution compared to liftoff technique. Fabricated and packaged prototype sensors are presented. © 2015 IEEE.

  4. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne

    2011-01-01

    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  5. Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model

    International Nuclear Information System (INIS)

    Gutierrez, R.; Nafidi, A.; Gutierrez Sanchez, R.

    2005-01-01

    The principal objective of the present study is to examine the possibilities of using a Gompertz-type innovation diffusion process as a stochastic growth model of natural-gas consumption in Spain, and to compare our results with those obtained, on the one hand, by stochastic logistic innovation modelling and, on the other, by using a stochastic lognormal growth model based on a non-innovation diffusion process. Such a comparison is carried out taking into account the macroeconomic characteristics and natural-gas consumption patterns in Spain, both of which reflect the current expansive situation characterizing the Spanish economy. From the technical standpoint a contribution is also made to the theory of the stochastic Gompertz Innovation diffusion process (SGIDP), as applied to the case in question. (author)

  6. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    Science.gov (United States)

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  7. Perovskite electrodes and method of making the same

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  8. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  9. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    International Nuclear Information System (INIS)

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  10. Modified gas diffusion layer for fuel cells synthesized by pulsed laser ablation

    International Nuclear Information System (INIS)

    Ebrasu, Daniela; Stefanescu, Ioan; Dorcioman, Gabriela; Serban, Nicolae; Axente, Emil; Sima, Felix; Ristoscu, Carmen; Mihailescu, Ioan N.; Enculescu, Ionut

    2010-01-01

    Full text; In this paper there are presented the first results regarding the development of a modified gas diffusion layer for fuel cells consisting of a simple or teflonized carbon cloth deposited by pulsed laser with metal oxide nanostructures. These are designed to operate both as co-catalyst, and oxidic support for other electrochemically active catalysts. We selected TiO 2 , ZnO and Al 2 O 3 doped (2 wt.%) ZnO which were uniformly distributed over the surface of gas diffusion layers in order to improve the catalytic activity, stability and lifetime, and reduce the production costs of proton exchange membrane fuel cells. We evidenced by scanning electron microscopy and energy dispersive spectroscopy that our depositions consisted of TiO 2 nanoparticles while in the case of ZnO and Al 2 O 3 doped (2 wt.%) ZnO transparent quasicontinuous films were synthesized. (authors)

  11. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  12. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  13. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  14. Verification of the integrity of barriers using gas diffusion

    International Nuclear Information System (INIS)

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days

  15. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  16. Methodology for using prompt gamma activation analysis to measure the binary diffusion coefficient of a gas in a porous medium

    International Nuclear Information System (INIS)

    Rios Perez, Carlos A.; Biegalski, Steve R.; Deinert, Mark R.

    2012-01-01

    Highlights: ► Prompt gamma activation analysis is used to study gas diffusion in a porous system. ► Diffusion coefficients are determined using prompt gamma activation analysis. ► Predictions concentrations fit experimental measurements with an R 2 of 0.98. - Abstract: Diffusion plays a critical role in determining the rate at which gases migrate through porous systems. Accurate estimates of diffusion coefficients are essential if gas transport is to be accurately modeled and better techniques are needed that can be used to measure these coefficients non-invasively. Here we present a novel method for using prompt gamma activation analysis to determine the binary diffusion coefficients of a gas in a porous system. Argon diffusion experiments were conducted in a 1 m long, 10 cm diameter, horizontal column packed with a SiO 2 sand. The temporal variation of argon concentration within the system was measured using prompt gamma activation analysis. The binary diffusion coefficient was obtained by comparing the experimental data with the predictions from a numerical model in which the diffusion coefficient was varied until the sum of square errors between experiment and model data was minimized. Predictions of argon concentration using the optimal diffusivity fit experimental measurements with an R 2 of 0.983.

  17. [Study on plasma parameters in diffuse discharge with semispherical electrod by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Shen, Zhong-Kai; Liu, Liang; Ji, Ya-Fei; Zhao, Huan-Huan

    2012-06-01

    The diffuse discharge plasma in air was observed in a dielectric barrier discharge with two semispherical water electrodes. The variations of vibration temperature, rotation temperature, and average electron energy as the function of the applied voltage were studied by emission spectroscopy. The vibration temperature and the rotation temperature were calculated through the second positive band system (C3Pi(u)-->B3Pi(g)) of N2+ and the first negative band system (B2 Sigma(u+)-->Chi2Sigma(g+)) of N(2+) respectively. The average electron energy was studied by intensity ratio of 391.4 and 337.1 nm. It was found that the rotation temperature increases with the applied voltage increasing, while the vibration temperature and the electron energy decrease.

  18. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  19. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  20. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  1. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel

    International Nuclear Information System (INIS)

    Kwon, Ohyung; Whang, Ki-Woong; Bae, Hyun Sook

    2009-01-01

    The discharge characteristics of He-Ne-Xe gas mixture in the plasma display panel were investigated using a two-dimensional numerical simulation to understand the effects of adding He and varying the Xe contents in the gas mixture, and also varying sustain electrode gap. With 5% Xe content and 60 μm sustain electrode gap, decreased ionization led to the improvement of the vacuum ultraviolet (vuv) efficacy at increasing He mixing ratios. However, at 20% Xe content and 60 μm sustain electrode gap, increased electron heating improved the vuv efficacy until the He mixing ratio reached 0.7, but the efficacy decreased beyond the ratio of 0.7 due to the increased ionization of Xe atoms. At 5% Xe content and 200 μm sustain electrode gap, the vuv efficacy increased as a result of increased electron heating at the gap space at increasing He mixing ratios.

  2. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise.

    OpenAIRE

    Sridhar, M K; Carter, R; Moran, F; Banham, S W

    1993-01-01

    BACKGROUND--Accurate and reliable measurement of gas exchange during exercise has traditionally involved arterial cannulation. Non-invasive devices to estimate arterial oxygen (O2) and carbon dioxide (CO2) tensions are now available. A method has been devised and evaluated for measuring gas exchange during exercise with a combined transcutaneous O2 and CO2 electrode. METHODS--Symptom limited exercise tests were carried out in 24 patients reporting effort intolerance and breathlessness. Exerci...

  3. Numerical simulation study of fracturing wells for shale gas with gas–water two-phase flow system under desorption and diffusion conditions

    Directory of Open Access Journals (Sweden)

    Jinzhou Zhao

    2016-06-01

    Full Text Available Hydraulic fracturing is an essential technology in developing shale gas reservoirs, not to mention, accurate prediction of productivity in fractured shale gas wells is the foundation of an efficient development in shale gas reservoirs. This paper establishes a gas–water two-phase flow percolation mathematical model by a determined numerical simulation and calculation method under desorption and diffusion conditions. By means of simulating for a post-frac performance of the shale gas reservoir, this paper devotes to a quantitative analysis the impact of fracture parameters, physical parameters, and desorption–diffusion parameters. The outcome of this research indicates that hydraulic fracturing can improve single well production and it's an effective measure in the development of shale gas. The conductivity of hydraulic fractures and the permeability of natural fractures are the main influences on shale gas production. The higher these factors are, the higher the gas and water productions are. In comparison, the matrix permeability and diffusion coefficients have minimal influences on production.

  4. Influence of zirconium doping in ceria lattice as an active electrode in amperometric electrochemical ammonia gas sensor using oxygen pumping current

    International Nuclear Information System (INIS)

    Sharan, R.; Dutta, Atanu; Roy, Mainak

    2016-01-01

    An amperometric electrochemical sensor using Ce-Zr system as ammonia gas detecting electrode is reported. Using lanthanum gallate based electrolyte La_0_._8Sr_0_._2Ga_0_._8Mg_0_._1Ni_0_._1O_3 (LSGMN) and lanthanum strontium cobaltite La_0_._5Sr_0_._5CoO_3 (LSC) as oxygen reduction electrode, the sensor was found to be highly sensitive to NH_3 gas down to few ppm level, when operated in the temperature range 300-450°C. Keeping LSC electrodecomposition same, when sensing properties were studied with the variation of Zr concentration in ceria for active electrode, sensor with 30 mol % Zr doped ceria showed highest sensitivity of 28μA/ decade at 400°C. For all active electrodecompositions Ce_1_-_xZr_xO_2 (x = 0 to 0.7) highest sensitivity was observed at 400°C. All the sensors performed reproducibly with time response and recovery time 40 and 120 seconds respectively. (author)

  5. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF 6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF 6 -handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF 6 -handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF 6 . These reagents include ClF 3 , F 2 , and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  6. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NARCIS (Netherlands)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-01-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the

  7. Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells by a Potential Decay Method

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1995-01-01

    The reduction of gaseous oxygen on carbon supported platinum electrodes has been studied at 150 degrees C with polarization and potential decay measurements. The electrolyte was either 100 weight percent phosphoric acid or that acid with a fluorinated additive, potassium perfluorohexanesulfonate ......6F13SO3K). The pseudo-Tafel curves of the overpotential vs. log (ii(L)/(i(L) - i)) show a two-slope behavior, probably due to different adsorption mechanisms. The potential relaxations as functions of log (t + tau) and log (-d eta/dt) have been plotted. The variations of these slopes...

  8. The electron drift velocity and longitudinal diffusion coefficient of an electron swarm in hydrogen at elevated swarm energies

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1976-01-01

    A study of the photons produced at electron-molecule excitation collisions has been used to obtain information on the behaviour of an electron swarm moving through a neutral gas under the influence of a uniform electric field. Specifically, values have been obtained for the electron drift velocity and the longitudinal diffusion coefficients under equilibrium swarm conditions, i.e. remote from any electrode. (author)

  9. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    Science.gov (United States)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents ( δ13C ethane (C2) gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  10. Structure of electron collection electrode in dye-sensitized nanocrystalline TiO2

    International Nuclear Information System (INIS)

    Yanagida, Masatoshi; Numata, Youhei; Yoshimatsu, Keiichi; Ochiai, Masayuki; Naito, Hiroyoshi; Han, Liyuan

    2013-01-01

    As part of the effort to control electron transport in the TiO 2 films of dye-sensitized solar cells (DSCs), the structure of the electron collection electrode on the films has been investigated. Here, we report the comparison between a sandwich-type dye-sensitized solar cell (SW-DSC), in which the TiO 2 film is sandwiched between a TCO glass front electron collection electrode and a sputtered Ti back charge collection electrode, and a normal DSC (N-DSC), which has no back electrode. In N-DSCs, electrons in TiO 2 that are far from the front electrode have to diffuse for a long distance (ca. 10 μm), and therefore, the photocurrent cannot rapidly respond to light with a modulation frequency >100 Hz. In SW-DSCs, the photocurrent response was enhanced at frequencies between 10 and 500 Hz because electrons in TiO 2 can be extracted by both front and back electrodes, which can be also explained by an electron diffusion model. Calculations based on the electron diffusion model suggested that a high short-circuit photocurrent could be maintained in SW-DSCs even when the electron diffusion length in the TiO 2 film was shortened.

  11. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  12. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Wencai Zhou

    2015-06-01

    Full Text Available The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs, is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM, the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1, whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  13. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Science.gov (United States)

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  14. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  15. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  16. Diffuse charge dynamics in ionic thermoelectrochemical systems.

    Science.gov (United States)

    Stout, Robert F; Khair, Aditya S

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ^{2}, where D is the Brownian diffusion coefficient of both ion species, and κ^{-1} is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L^{2}/D, where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion

  17. Diffuse charge dynamics in ionic thermoelectrochemical systems

    Science.gov (United States)

    Stout, Robert F.; Khair, Aditya S.

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion

  18. A Search for Hot, Diffuse Gas in Superclusters

    Science.gov (United States)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  19. Modelling of the concentration-time relationship based on global diffusion-charge transfer parameters in a flow-by reactor with a 3D electrode

    International Nuclear Information System (INIS)

    Nava, J.L.; Sosa, E.; Carreno, G.; Ponce-de-Leon, C.; Oropeza, M.T.

    2006-01-01

    A concentration versus time relationship model based on the isothermal diffusion-charge transfer mechanism was developed for a flow-by reactor with a three-dimensional (3D) reticulated vitreous carbon (RVC) electrode. The relationship was based on the effectiveness factor (η) which lead to the simulation of the concentration decay at different electrode polarisation conditions, i.e. -0.1, -0.3 and -0.59 V versus SCE; the charge transfer process was used for the former and mix and a mass transport control was used for the latter. Charge transfer and mass transport parameters were estimated from experimental data using Electrochemical Impedance Spectroscopy (EIS) and Linear Voltammetry (LV) techniques, respectively

  20. Modelling of the concentration-time relationship based on global diffusion-charge transfer parameters in a flow-by reactor with a 3D electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nava, J.L. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, C.P. 09340, Mexico D.F. (Mexico); Sosa, E. [Instituto Mexicano del Petroleo, Programa de Investigacion en Ingenieria Molecular, Eje Central 152, C.P. 07730, Mexico D.F. (Mexico); Carreno, G. [Universidad de Guanajuato, Facultad de Ingenieria en Geomatica e Hidraulica, Av. Juarez 77, C.P. 36000, Guanajuato, Gto. (Mexico); Ponce-de-Leon, C. [Electrochemical Engineering Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)]. E-mail: capla@soton.ac.uk; Oropeza, M.T. [Centro de Graduados e Investigacion del Instituto Tecnologico de Tijuana, Blvd. Industrial, s/n, C.P. 22500, Tijuana B.C. (Mexico)

    2006-05-25

    A concentration versus time relationship model based on the isothermal diffusion-charge transfer mechanism was developed for a flow-by reactor with a three-dimensional (3D) reticulated vitreous carbon (RVC) electrode. The relationship was based on the effectiveness factor ({eta}) which lead to the simulation of the concentration decay at different electrode polarisation conditions, i.e. -0.1, -0.3 and -0.59 V versus SCE; the charge transfer process was used for the former and mix and a mass transport control was used for the latter. Charge transfer and mass transport parameters were estimated from experimental data using Electrochemical Impedance Spectroscopy (EIS) and Linear Voltammetry (LV) techniques, respectively.

  1. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  2. Investigation of the diffusion of a massive particle in a one-dimensional ideal gas

    International Nuclear Information System (INIS)

    Khazin, M.L.

    1987-01-01

    Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level

  3. FAST Mapping of Diffuse HI Gas in the Local Universe

    Science.gov (United States)

    Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.

    2016-02-01

    We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.

  4. Modelling porous active layer electrodes of proton exchange membrane fuel cells; Modelisation des couches actives d'electrodes volumiques de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Yann

    1997-07-01

    This work focusses on the modeling of mass, charge and heat transfer in the active layers of the volume electrodes of proton exchange membrane fuel cells (PEMFC). A first part describes the structure of fuel cells and the physico-chemical processes taking place at the electrodes. An analysis of the classical models encountered in the literature shows that they all assume that the electro-catalysts is uniformly distributed in a plane or in volume. In a second part, the modeling of mass and charge transport phenomena has been carried out with a numerical calculation software which uses the finite-elements method and which allows to take into consideration the discrete distribution of the catalyst in nano-particulates. The simulations show the limitations of the catalyst use because of the diffusion and ionic ohmic drop both at the electrolyte and particulates scale. In order to improve the modeling of PEMFC fuel cells, the classical models have been modified to consider these local contributions. They require only simple numerical methods, like the finite-differences one. When applied to the oxygen reduction at the cathode or to the hydrogen oxidation at the anode, these models allow to determine the kinetics parameters (exchange current densities and slopes of the Tafel lines) after correction of the active layer diffusion. A modeling of the heat transfers at the active layers scale is proposed. The model takes into account the convective heat transfers between the solid phases and the gas, the electro-osmosis water transfer, and the generation of heat by joule effect and by the electrochemical reactions. Finally, the last chapter presents a study of the reaction mechanisms in the case of porous electrodes using the impedances method. Numerical and analytical models have been developed to calculate the electrode impedances and are applied to the study of oxygen reduction and hydrogen oxidation. (J.S.)

  5. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  6. Submersed sensing electrode used in fuel-cell type hydrogen detector

    Science.gov (United States)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  7. A 2d model for the effect of gas diffusion on mobility of foam for EOR

    NARCIS (Netherlands)

    Nonnekes, L.E.; Cox, S.J.; Rossen, W.R.

    2012-01-01

    Transport of gas across liquid films between bubbles is cited as one reason why CO2 foams for enhanced oil recovery (EOR) are usually weaker than N2 foams and why steam foams are weaker than foams of steam mixed with N2. We examine here the effect of inter-bubble gas diffusion on flowing bubbles in

  8. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  9. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  10. Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline

    International Nuclear Information System (INIS)

    Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting

    2015-01-01

    An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.

  11. Determination of Diffusion Coefficients and Activation Energy of Selected Organic Liquids using Reversed-Flow Gas Chromatographic Technique

    International Nuclear Information System (INIS)

    Khalisanni Khalid; Rashid Atta Khan; Sharifuddin Mohd Zain

    2012-01-01

    Evaporation of vaporize organic liquid has ecological consequences when the compounds are introduced into both freshwater and marine environments through industrial effluents, or introduced directly into the air from industrial unit processes such as bioreactors and cooling towers. In such cases, a rapid and simple method are needed to measure physicochemical properties of the organic liquids. The Reversed-Flow Gas Chromatography (RF-GC) sampling technique is an easy, fast and accurate procedure. It was used to measure the diffusion coefficients of vapors from liquid into a carrier gas and at the same time to determine the rate coefficients for the evaporation of the respective liquid. The mathematical expression describing the elution curves of the samples peaks was derived and used to calculate the respective parameters for the selected liquid pollutants selected such as methanol, ethanol, 1-propanol, 1-butanol, n-pentane, n-hexane, n-heptane and n-hexadecane, evaporating into the carrier gas of nitrogen. The values of diffusion coefficients found were compared with those calculated theoretically or reported in the literature. The values of evaporation rate were used to determine the activation energy of respective samples using Arrhenius equation. An interesting finding of this work is by using an alternative mathematical analysis based on equilibrium at the liquid-gas interphase, the comparison leads to profound agreement between theoretical values of diffusion coefficients and experimental evidence. (author)

  12. Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge with reticulated vitreous carbon electrodes

    International Nuclear Information System (INIS)

    Kirkpatrick, M.J.; Finney, W.C.; Locke, B. R.

    2002-01-01

    Trichloroethylene (TCE) and vinyl chloride removal by pulsed corona discharge was investigated with attention to energy efficiency and byproduct identification. Approximately, 50 to 95 percent removal of TCE and vinyl chloride was observed depending on the energy density applied to the gas. Water vapor had no significant effect on TCE removal. Evidence was found for post-corona reactions leading to removal of vinyl chloride downstream of the plasma discharge. Energy efficiencies of 100-900 g/kw-hr in the case of 1000 ppm feed of TCE and efficiencies of 2-24 g/kw-hr for a 100 ppm feed of vinyl chloride were found. In TCE experiments, the formation of dichloroacetyl chloride was observed, while chloro-ethane formation was found for vinyl chloride. In both cases, Cl- was measured downstream of the pulsed corona reactor in a water trap using an ion-selective electrode, although measured amounts varied widely due to condensation in the gas lines between the reactor and the water trap. The addition of a platinum-rhodium coated electrode was found only to reduce the downstream removal of vinyl chloride at low energy density. (author)

  13. Positive dielectrophoresis used for selective trapping of nanoparticles from flue gas in a gradient field electrodes device

    Energy Technology Data Exchange (ETDEWEB)

    Lungu, Mihail, E-mail: lmihai@physics.uvt.ro; Neculae, Adrian; Lungu, Antoanetta [West University of Timisoara, Faculty of Physics (Romania)

    2015-12-15

    This paper investigates the possibility to use positive dielectrophoresis (pDEP) for selective trapping of nanoparticle dispersed in flue gas in a vertical pDEP-based microfluidic system. The experimental gradient field electrodes device contains as main part a vertical deposition plate with parallel planar electrodes in single connection on an insulating substrate, parallel to the reference electrode—a dielectric plate with a metalized side. The performances of the device were described and analyzed by numerical simulations and experimental tests in terms of two new specific parameters, called Retention rate and Filtration, related to the trapping of nanoparticles in suspension inside the device and the consequent purification of flue gas. It is outlined, both numerically and experimentally, that the concentration of particles trapped inside the device decreases as they are moving away from the inlet zone. The experimental results also highlight the nanoparticle size distribution of the particles collected from the deposition plate, using a nanoparticle tracking analysis method, and their selective capture on the deposition plate, depending on the amplitude and shape of the applied voltage, in a good agreement with the numerical simulations results.

  14. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.; Pontius, R.B.

    1976-01-01

    The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane

  15. A current induced diffusion model of gas sputtering

    International Nuclear Information System (INIS)

    Hotston, E.S.

    1980-01-01

    A model is proposed to explain the experimental results on deuteron trapping in stainless steel targets at low temperatures carried out at Garching and Culham. The model proposes that the ions are trapped in two kinds of sites: Deep sites with high activation energy and shallow sites of low activation energy. Trapped deuterons reach the surface of the target by being expelled from shallow sites by the action of the ion beam and migrate to nearby sites in a random way, thus moving by a bombardment induced diffusion. Ions diffusing to the target surface and being released are said to be sputtered from the target. It has been necessary to assume numerical values for sizes of some of the processes which occur. With a suitable choice of values the model successfully predicts the numbers of deuterons trapped per unit area of the target, the obserbed density profile of the trapped ions and the threshold at which sputtering starts. The model also successfully describes the replacement of the trapped deuterons by protons, when the deuteron beam is replaced by a proton beam. The collision cross-section for beam ions and ions trapped in shallow sites is too large, 4 x 10 -13 cm 2 , for a binary collision and it is tentatively suggested that the ions in the shallow sites may be in small voids in the target which may be connected with blister formation. Comparison of the present model with one being developed to describe the trapping of deuterons in carbon suggests that it may be possible to describe all gas sputtering experiments in terms of diffusion processes. (orig.)

  16. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    Science.gov (United States)

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO 3 ) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO 3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO 3 and LiFeBO 3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  17. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  18. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    International Nuclear Information System (INIS)

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-01-01

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.

  19. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids.

    Science.gov (United States)

    Lee, Junqiao; Hussain, Ghulam; Banks, Craig E; Silvester, Debbie S

    2017-11-26

    Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O₂) in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs). Six common RTILs are initially employed for O₂ detection using cyclic voltammetry (CV), and two RTILs ([C₂mim][NTf₂] and [C₄mim][PF₆]) chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA) was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs-for CV in the 10-100% vol. range, and for LTCA in the 0.1-20% vol. range-on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O₂, particularly in [C₄mim][PF₆].

  20. Temperature dependent electron transport and rate coefficient studies for e-beam-sustained diffuse gas discharge switching

    International Nuclear Information System (INIS)

    Carter, J.G.; Hunter, S.R.; Christophorou, L.G.

    1987-01-01

    Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation

  1. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  2. Gas processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1991-01-01

    State of electric discharge is detected based on a gas pressure in a sealed container and a discharging current flowing between both of electrodes. When electric arc discharges occur, introduction of gases to be processed is stopped and a voltage applied to both of the electrodes is interrupted. Then, when the gas pressure in the sealed container is lowered to a predetermined value, a power source voltage is applied again to both of the electrodes to recover glow discharges, and the introduction of the gas to be processed is started. With such steps, even if electric arc discharges occur, they are eliminated automatically and, accordingly, normal glow discharges can be recovered, to prevent failures of the device due to electric arc discharges. The glow discharges are recovered automatically without stopping the operation of the gas processing device, and gas injection and solidification processing can be conducted continuously and stably. (T.M.)

  3. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  4. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  5. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    Science.gov (United States)

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  6. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Department of Engineering and Applied Physics, Glyndŵr University, Mold Road, Wrexham LL11 2AW (United Kingdom)

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations. -- Highlights: ► A thermodynamic structure is presented for a new continuum flow model in multicomponent gas mixtures. ► A derivation method to obtain constitutive equations is presented. ► A configuration of a rotating gas is used to illustrate the role of new contributions in the structure of the entropy equation.

  7. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    Science.gov (United States)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  8. Collision and diffusion in microwave breakdown of nitrogen gas in and around microgaps

    International Nuclear Information System (INIS)

    Campbell, J. D.; Lenters, G. T.; Bowman, A.; Remillard, S. K.

    2014-01-01

    The microwave induced breakdown of N 2 gas in microgaps was modeled using the collision frequency between electrons and neutral molecules and the effective electric field concept. Low pressure breakdown at the threshold electric field occurs outside the gap, but at high pressures it is found to occur inside the microgap with a large threshold breakdown electric field corresponding to a very large electron oscillation amplitude. Three distinct pressure regimes are apparent in the microgap breakdown: a low pressure multipactor branch, a mid-pressure Paschen branch, both of which occur in the space outside the microgap, and a high pressure diffusion-drift branch, which occurs inside the microgap. The Paschen and diffusion-drift branches are divided by a sharp transition and each separately fits the collision frequency model. There is evidence that considerable electron loss to the microgap faces accompanies the diffusion-drift branch in microgaps

  9. Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery

    Science.gov (United States)

    Zhong, Yaotian; Liu, Yulan; Wang, B.

    2017-07-01

    In recent years, the composition-gradient electrode material has been verified to be one of the most promising materials in lithium-ion battery. To investigate diffusion-induced stresses (DIS) generated in a cylindrical composition-gradient electrode, the finite deformation theory and the stress-induced diffusion hypothesis are adopted to establish the constitutive equations. Compared with stress distributions in a homogeneous electrode, the increasing forms of Young's modulus E(R) and partial molar volume Ω(R) from the electrode center to the surface along the radial direction drastically increase the maximal magnitudes of hoop and axial stresses, while both of the decreasing forms are able to make the stress fields smaller and flatter. Also, it is found that the slope of -1 for E(R) with that of -0.5 for Ω(R) is a preferable strategy to prevent the inhomogeneous electrode from cracking, while for the sake of protecting the electrode from compression failure, the optimal slope for inhomogeneous E(R) and the preferential one for Ω(R) are both -0.5. The results provide a theoretical guidance for the design of composition-gradient electrode materials.

  10. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  11. Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators

    Science.gov (United States)

    S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2018-01-01

    This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.

  12. Hygroscopical behaviour of basic electrodes in a tropical humid climate

    International Nuclear Information System (INIS)

    Valencia, E.; Galeano, N.J.

    1993-01-01

    The study of the wetting kynetics of basic electrodes in a tropical humid climate is very important since the water contained in them is the main source for the atomic hydrogen absorbed by the fused metal during electric arc welding. It is also the origin of multiple defects in the added metal. A calculating method is established for evaluating the kynetics of wetness incorporation to the coating of basic electrodes exposed to a humid tropical climate. The method is based on the Fick's diffusion equation for both adequate system geometry and boundary conditions, which allows the evaluation of the effective diffusion coefficient and critical times of exposure to the different environments, along with the packing and storage conditions of electrodes. (Author)

  13. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  14. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2017-11-01

    Full Text Available Screen-printed graphite electrodes (SPGEs have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs. Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O2 in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs. Six common RTILs are initially employed for O2 detection using cyclic voltammetry (CV, and two RTILs ([C2mim][NTf2] and [C4mim][PF6] chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs—for CV in the 10–100% vol. range, and for LTCA in the 0.1–20% vol. range—on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O2, particularly in [C4mim][PF6].

  15. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  16. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  17. Strain enhanced lithium adsorption and diffusion on silicene.

    Science.gov (United States)

    Wang, Xiao; Luo, Youhua; Yan, Ting; Cao, Wei; Zhang, Meng

    2017-03-01

    The performance of Li-ion batteries relies heavily on the capacity and stability of constituent electrodes. Recently synthesized 2D silicene has demonstrated excellent Li-ion capacity with high charging rates. To explore the external influences for battery performance, in this work, first-principles calculations are employed to investigate the effect of external strain on the adsorption and diffusion of Li on silicene monolayers. It was found that tensile strain could enhance Li binding on silicene. The diffusion barrier is also calculated and the results show that Li diffusion through silicene is facilitated by tensile strain, whereas the strain has a limited effect on the energy barrier of diffusion parallel to the plane of pristine silicene. Our results suggest that silicene could be a promising electrode material for lithium ion batteries.

  18. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    NARCIS (Netherlands)

    Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers

  19. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Fu, Y.; Bazant, M.Z.

    2012-01-01

    We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of

  20. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  1. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen

    2012-01-01

    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  2. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Stevens, P [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1993-12-31

    A new method of preparation of Electrode/Membrane/Electrode (EME) assemblies for Proton Exchange Membrane Fuel Cells (PEMFC) has been developed. The electrodes are deposited directly onto a Nafion electrolyte membrane from a mixture of platinized carbon, Nafion solution, and PTFE by using a spray technique. By this technique, porous electrodes are obtained with an optimized gas/electrolyte/catalyst interface, and electrode/membrane interface.

  3. Physically-based impedance modeling of the negative electrode in All-Vanadium Redox Flow Batteries: insight into mass transport issues

    International Nuclear Information System (INIS)

    Zago, M.; Casalegno, A.

    2017-01-01

    Highlights: •Performance losses induced by migration though the porous electrode are negligible. •Convection at carbon fiber results in a linear branch at low frequency in Nyquist plot. •When the reaction is concentrated, diffusion losses though the electrode diminishes. •Diffusion process in the pores becomes more limiting at high current. •Charge transfer resistance decreases with increasing current. -- Abstract: Mass transport of the electrolyte over the porous electrode is one of the most critical issues hindering Vanadium Redox Flow Battery commercialization, leading to increased overpotential at high current and limiting system power density. In this work, a 1D physically based impedance model of Vanadium Redox Flow Battery negative electrode is developed, taking into account electrochemical reactions, convection at carbon fiber, diffusion in the pores and migration and diffusion through electrode thickness. The model is validated with respect to experimental data measured in a symmetric cell hardware, which allows to keep the State of Charge constant during the measurement. The physically based approach permits to elucidate the origin of different impedance features and quantify the corresponding losses. Charge transfer resistance decreases with increasing current and is generally lower compared to the ones related to mass transport phenomena. Migration losses through the porous electrode are negligible, while convection at carbon fiber is relevant and in Nyquist plot results in a linear branch at low frequency. In presence of significant convection losses the reaction tends to concentrate close to the channel: this leads to a reduction of diffusion losses through the electrode, while diffusion process in the pores becomes more limiting.

  4. Low cost fuel cell diffusion layer configured for optimized anode water management

    Science.gov (United States)

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  5. Safeguards considerations for uranium enrichment facilities, as applied to gas centrifuge and gaseous diffusion facilities

    International Nuclear Information System (INIS)

    1979-03-01

    The goals and objectives of IAEA safeguards as they are understood by the authors based on published documents are reviewed. These goals are then used to derive safeguards concerns, diversion strategies, and potential safeguards measures for four base cases, the production of highly enriched uranium (HEU) at a diffusion plant, the diversion of low enriched uranium (LEU) at a diffusion plant, the diversion of HEU at a gas centrifuge plant, and the diversion of LEU at a gas centrifuge plant. Tables of estimated capabilities are given for each case, under the assumption that the inspector would have access: to the cascade perimeter at or after the start of operations, to the cascade perimeter throughout construction and operation, to the cascade perimeter during operation plus a one-time access to the cascade itself, to the cascade during construction but only its perimeter during operation, or to the cascade itself during construction and operation

  6. Milestone report: The simulation of radiation driven gas diffusion in UO2 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  7. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  8. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  9. Using quasi-elastic neutron diffraction to study positive electrode for lithium and sodium-ion batteries

    International Nuclear Information System (INIS)

    Pramudita, James C.; Sharma, Neeraj

    2015-01-01

    Sodium-ion batteries has recently been proposed as the alternative for lithium-ion batteries to be the low cost energy storage system. However, challenges still remains for the development of sodium-ion batteries. Optimization of electrode materials and electrolyte capable of insertion/extraction of sodium-ion in a safe and economic way under high current density is needed in order to produce commercially viable sodium-ion batteries. While possible positive electrode material is more prevalent than negative electrode material, many of these material still need further understanding. Quasi-elastic Neutron Scatteringis a technique that utilize the inelastic Neutron Scatteringthat can be used to study solid-state diffusion in materials. This technique can be used to study the diffusion of sodium-ion under electric field through the electrolyte and positive electrode materials in order to further understand the mechanism of sodium insertion/extraction in a working battery. This technique can also be used to study available positive electrode material for lithium-ion batteries to further understand the mechanism of lithium-ion diffusion in current working lithiumion batteries.

  10. Gas shielded metal arc welding with fusible electrode wire. First returns on experience and opportunities in nuclear maintenance and fabrication

    International Nuclear Information System (INIS)

    Huguet, Fr.; Joly, P.; Leconte, F.; Baritaux, S.; Prin, C.

    2013-06-01

    In a brief text and a Power Point Presentation, the authors report a return on experience for the implementation of two applications using gas shielded metal arc welding process (GMAW): the on-site welding of the final joint of steam generators, and the coating of a tubing flare. In the first case, the authors analyze not only the compliance with specified technical requirements, but also outline the need to support the process with new verification methods in real time, associated development and validation efforts, and organisational and decisional measures to guarantee a good implementation of the process on site. In the second case, they analyze the process ability to meet technical specifications requiring dilution control, a perfect reproducibility, as well a good control of the welding bath. The authors outline that these two applications which are both using the same term (gas shielded metal arc welding with fusible electrode wire), implement two different transfer regimes and processes. They also discuss operational constraints, and technical opportunities and constraints of fusible electrode wire

  11. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition

    International Nuclear Information System (INIS)

    Saha, Madhu Sudan; Gulla, Andrea F.; Allen, Robert J.; Mukerjee, Sanjeev

    2006-01-01

    Ultra-low pure Pt-based electrodes (0.04-0.12 mg Pt /cm 2 ) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 A, these are compared with a control, a conventional Pt/C (1.0 mg Pt(MEA) /cm 2 , E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 A). Mass specific power density of 0.297 g Pt /kW is reported with 250 A IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mg Pt(MEA) /cm 2 where mass specific power density obtained was 1.18 g Pt /kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm 2 (for 250-750 A IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm 2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized

  12. Cold-electrode voltage fall for impulse arcs in argon between copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, O; Cooray, V, E-mail: oscar.diaz@angstrom.uu.se [Lightning Research Group, Division for Electricity, Uppsala University Angstroemlaboratoriet Box 5234, 751 20, Uppsala (Sweden)

    2011-06-23

    The full electric arc discharge in gases for short gaps in homogeneous electric field and pressure{center_dot}distance (pd) below 150 Torr{center_dot}cm, can be described as a transition between different discharge mechanisms such as: Townsend, glow, and arc. Once the arc is achieved the measured voltage drops to some volts and the current density increases several orders of magnitude. Depending upon the type of gas used, the electrode surface characteristics and type of electrical excitation, the cathode and anode voltage fall might change. The present work is directed to study the electrode fall (sum of anode and cathode falls) during a current impulse arc discharge between copper electrodes in ceramic tubes filled with argon between 0.01 and 6.5 Torr{center_dot}cm. The copper electrodes were cleaned, degassed and hydrogen reduced. The arc voltages were measured with fast/slow rise times and short/long duration current impulses produced by a RLC circuit. An increasing variation of the electrode fall was found at the pressure{center_dot}distance range analyzed.

  13. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3......Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and a small volume change during operation. Yet, challenges relating to severe air- and moisture-induced degradation necessitate the application of a protective...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...

  14. Characterization of the Ionic Liquid/Electrode Interfacial Relaxation Processes Under Potential Polarization for Ionic Liquid Amperometric Gas Sensor Method Development.

    Science.gov (United States)

    Lin, Lu; Zhao, Peng; Mason, Andrew J; Zeng, Xiangqun

    2018-06-04

    Electrochemical amperometric sensors require a constant or varying potential at the working electrode that drives redox reactions of the analyte for detection. The interfacial redox reaction(s) can result in the formation of new chemical products that could change the initial condition of the electrode/electrolyte interface. If the products are not inert and/or cannot be removed from the system such that the initial condition of the electrode/electrolyte interface cannot be restored, the sensor signal baseline would consequently drift, which is problematic for the continuous and real-time sensors. By setting the electrode potential with the periodical ON-OFF mode, electrolysis can be forestalled during the off mode which can minimize the sensor signal baseline drift and reduce the power consumption of the sensor. However, it is known that the relaxation of the structure in the electrical double layer at the ionic liquid/electrode interface to the steps of the electrode potential is slow. This work characterized the electrode/electrolyte interfacial relaxation process of an ionic liquid based electrochemical gas (IL-EG) sensor by performing multiple potential step experiments in which the potential is stepped from an open circuit potential (OCP) to the amperometric sensing potential at various frequencies with different time periods. Our results showed that by shortening the sensing period as well as extending the idle period (i.e., enlarge the ratio of idle period versus sensing period) of the potential step experiments, the electrode/electrolyte interface is prone to relax to its original state, and thus reduces the baseline drift. Additionally, the high viscosity of the ionic liquids is beneficial for electrochemical regeneration via the implementation of a conditioning step at zero volts at the electrode/electrolyte. By setting the working electrode at zero volts instead of OCP, our results showed that it could further minimize the baseline drift, enhance the

  15. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mombrú, Dominique [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Romero, Mariano, E-mail: mromero@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Castiglioni, Jorge [Laboratorio de Fisicoquímica de Superficies – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay)

    2017-06-15

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.

  16. Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, J Ross, E-mail: macd@email.unc.ed [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States)

    2010-12-15

    Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.

  17. Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects

    International Nuclear Information System (INIS)

    Macdonald, J Ross

    2010-01-01

    Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.

  18. Gas Composition Sensor for Natural Gas and Biogas

    NARCIS (Netherlands)

    Boersma, A.; Sweelsen, J.; Blokland, H.

    2016-01-01

    The calorific value of energetic gasses is an important parameter in the quality assessment of gas steams, and can be calculated from the chemical composition of the gas. An array of capacitive sensor electrodes was developed, each functionalized with a gas responsive coating to measure the

  19. Abnormal Gas Diffusing Capacity and Portosystemic Shunt in Patients With Chronic Liver Disease

    OpenAIRE

    Park, Moon-Seung; Lee, Min-Ho; Park, Yoo-Sin; Kim, Shin-Hee; Kwak, Min-Jung; Kang, Ju-Seop

    2012-01-01

    Background Pulmonary dysfunctions including the hepatopulmonary syndrome and portosystemic shunt are important complications of hepatic cirrhosis. To investigate the severity and nature of abnormal gas diffusing capacity and its correlation to portosystemic shunt in patients with chronic liver disease. Methods Forty-four patients with chronic liver disease (15 chronic active hepatitis (CAH), 16 Child-Pugh class A, and 13 Child-Pugh class B) without other diseases history were enrolled in the ...

  20. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  1. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles

    Science.gov (United States)

    Merino-Garcia, I.; Albo, J.; Irabien, A.

    2018-01-01

    Copper-based surfaces appear as the most active catalysts for CO2 electroreduction to hydrocarbons, even though formation rates and efficiencies still need to be improved. The aim of the present work is to evaluate the continuous gas-phase CO2 electroreduction to hydrocarbons (i.e. ethylene and methane) at copper nanoparticulated-based surfaces, paying attention to particle size influence (ranging from 25-80 nm) on reaction productivity, selectivity, and Faraday efficiency (FE) for CO2 conversion. The effect of the current density and the presence of a microporous layer within the working electrode are then evaluated. Copper-based gas diffusion electrodes are prepared by airbrushing the catalytic ink onto carbon supports, which are then coupled to a cation exchange membrane (Nafion) in a membrane electrode assembly. The results show that the use of smaller copper nanoparticles (25 nm) leads to a higher ethylene production (1148 μmol m-2 s-1) with a remarkable high FE (92.8%), at the same time, diminishing the competitive hydrogen evolution reaction in terms of FE. This work demonstrates the importance of nanoparticle size on reaction selectivity, which may be of help to design enhanced electrocatalytic materials for CO2 valorization to hydrocarbons.

  2. Lattice Boltzmann method for multi-component, non-continuum mass diffusion

    International Nuclear Information System (INIS)

    Joshi, Abhijit S; Peracchio, Aldo A; Grew, Kyle N; Chiu, Wilson K S

    2007-01-01

    Recently, there has been a great deal of interest in extending the lattice Boltzmann method (LBM) to model transport phenomena in the non-continuum regime. Most of these studies have focused on single-component flows through simple geometries. This work examines an ad hoc extension of a recently developed LBM model for multi-component mass diffusion (Joshi et al 2007 J. Phys. D: Appl. Phys. 40 2961) to model mass diffusion in the non-continuum regime. In order to validate the method, LBM results for ternary diffusion in a two-dimensional channel are compared with predictions of the dusty gas model (DGM) over a range of Knudsen numbers. A calibration factor based on the DGM is used in the LBM to correlate Knudsen diffusivity to pore size. Results indicate that the LBM can be a useful tool for predicting non-continuum mass diffusion (Kn > 0.001), but additional research is needed to extend the range of applicability of the algorithm for a larger parameter space. Guidelines are given on using the methodology described in this work to model non-continuum mass transport in more complex geometries where the DGM is not easily applicable. In addition, the non-continuum LBM methodology can be extended to three-dimensions. An envisioned application of this technique is to model non-continuum mass transport in porous solid oxide fuel cell electrodes

  3. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  4. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  5. Method and system for purification of gas streams for solid oxide cells

    DEFF Research Database (Denmark)

    2011-01-01

    of: - providing at least one scrubber in the gas stream at the inlet side of the first electrode of the solid oxide cell; and/or providing at least one scrubber in the gas stream at the inlet side of the second electrode of the solid oxide cell; and - purifying the gas streams towards the first...... and second electrode; wherein the at least one scrubber in the gas stream at the inlet side of the first electrode and/or the at least one scrubber in the gas stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material and a material suitable as an electrode...... material, and wherein the material suitable as an electrolyte material and a material suitable as an electrode material form triple phase boundaries similar to or identical to the triple phase boundaries of the electrode for which the gas stream is purified with the at least one scrubber....

  6. Contribution to the study of fluoride dosing by using a membrane selective electrode

    International Nuclear Information System (INIS)

    Rivas, Jean de

    1972-01-01

    As the method of dosing fluoride ions by precipitation with lead fluorochloride is not very satisfying, the author reports the study of a new process for the dosing of the fluorine ion by using a selective electrode. After some generalities on selective electrodes (principle, types, operation principle) and some recalls and definitions (Galvani and Volta potential, stability constants of complexes, principles of diffusion in solids), the author reports the study of the diffusion potential in glass membranes, the study of the membrane potential, and the study of the ion exchange equilibrium. He presents methods of calculation of selectivity coefficients of membrane electrodes, and the reports experiments performed in laboratory

  7. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    International Nuclear Information System (INIS)

    Le, Duy Dam; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Thi My Dung; Dang, Mau Chien

    2016-01-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO 2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection. (paper)

  8. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  9. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  10. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    Science.gov (United States)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  11. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  12. Spectroscopic Analysis of Ion Concentration Profile at Electrode/Electrolyte Interface by Interferometry

    Science.gov (United States)

    Moore, David; Saraf, Ravi

    2014-03-01

    Owing to the difference in Fermi levels at an electrode/electrolyte interface, ions form an electrical double layer (EDL) with ion concentrations well over 10-fold compared to bulk. The concentration profile of the EDL intrinsically affects the electrochemical reaction rates at the electrode, which is of great significance in many applications, such as batteries and biosensors. Conventionally, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the electrical properties of the EDL are represented as ``equivalent circuits'' consisting of the resistance to charge transfer (Rct), the double layer capacitance (Cdl) and a ``Warburg (constant phase) diffusion element'' that represents the long range diffusion of ions to the electrode. The translation to the well-understood physical structure can be lost as complicated effects are often lumped together. For example, the effect of subtle modification of the electrode surface by say, redox compounds, enzymes, or polymers is not directly measured, and must be inferred by capacitance changes. An interferometer method will be described to directly measure changes in concentration at the interface during redox process. This method in concert with CV or EIS performed concomitantly will lead to more information to model the diffuse layer for improved understanding of the kinetics of the reaction at different distances from the electrode. Applications to DNA and polymer adsorption binding will be discussed.

  13. A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Bin Hu

    2017-07-01

    Full Text Available Electrode is a key component to remain durability and safety of lithium-ion (Li-ion batteries. Li-ion insertion/removal and thermal expansion mismatch may induce high stress in electrode during charging and discharging processes. In this paper, we present a continuum model based on COMSOL Multiphysics software, which involves thermal, chemical and mechanical behaviors of electrodes. The results show that, because of diffusion-induced stress and thermal mismatch, the electrode geometry plays an important role in diffusion kinetics of Li-ions. A higher local compressive stress results in a lower Li-ion concentration and thus a lower capacity when a particle is embedded another, which is in agreement with experimental observations. Keywords: Lithium-ion battery, Diffusion-induced stress, COMSOL, Chemo-mechanical, Electrode

  14. Kinetic Studies on Ni-YSZ Composite Electrodes

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Hjelm, Johan; Graves, Christopher R.

    2015-01-01

    transfer at the reaction sites gas conversion at the flow fields, and ohmic drop across the electrolyte. Since these processes occur in both electrodes and some of them with overlapping characteristic frequencies, it is particularly challenging to isolate and characterize a particular mechanism...... compositions using the same instrument. The tests are carried out in a single gas atmosphere with maximum flow rate of 6 L/h. Results and Discussion Current density vs working electrode overpotential curves recorded in the temperature range 800 – 650°C in a 50/50 H2/H2O fuel mixture are displayed in figure 1(a...

  15. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  16. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  17. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition

    International Nuclear Information System (INIS)

    Park, Heesung

    2014-01-01

    Highlights: • GDM played significant role in the PEFC performance under dry condition. • Hydrophobicity of GDM affect the water condensation at the surface. • Optimum water saturation in the porous layer was between 0.1 and 0.3. - Abstract: Water is a significant component of polymer electrolyte fuel cells, affecting the proton conductivity in the membrane electrolyte. Therefore, polymer electrolyte fuel cells are generally operated with a humidifier to maintain a high relative humidity of the supplied gases; however, the humidifier contributes additional weight and cost. Although many studies have attempted to develop polymer electrolyte fuel cells without a humidifier, the studies have been mainly focused on the self-humidified membrane electrolyte and catalyst layer. In this paper, the author investigates the effect of polytetrafluoroethylene coated gas diffusion medium on the water content in the membrane electrolyte. The water condensation on the surfaces of the gas diffusion medium is visualised when the polymer electrolyte fuel cell is operated under non-humidification conditions. Numerical simulation suggests that the optimum water saturation is between 0.1 and 0.3 at the gas diffusion medium to hydrate the membrane electrolyte sufficiently without significantly blocking the diffused species under non-humidification conditions

  18. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode

    Science.gov (United States)

    Takeuchi, Nozomi; Ishibashi, Naoto

    2018-04-01

    The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.

  19. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    Science.gov (United States)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  20. Na-Li-[V3O8] insertion electrodes: Structures and diffusion pathways

    International Nuclear Information System (INIS)

    Schindler, Michael; Hawthorne, Frank C.; Alexander, Malcolm A.; Kutluoglu, Rory A.; Mandaliev, Petre; Halden, Norman M.; Mitchell, Roger H.

    2006-01-01

    The potential insertion-electrode compounds Na 1.2 [V 3 O 8 ] (NaV) and Na 0.7 Li 0.7 [V 3 O 8 ] (NaLiV) were synthesized from mixtures of Na 2 CO 3 , Li 2 CO 3 and V 2 O 5 , which were melted at 750 o and subsequently cooled to room temperature. The structures of NaV and LiV contain sheets of polymerized (VO n ) polyhedra, which are topologically identical to the sheet of polymerized polyhedra in Li 1.2 [V 3 O 8 ] (LiV). Vanadium occurs in three different coordination environments: [2+3] V(1), [2+2+2] V(2) and [1+4+1] V(3). Calculated bond-valence sums indicate that V 4+ occurs preferentially at the V(3) site, which agrees with the general observation that [6]-coordinated V 4+ prefers [1+4+1]-rather than [2+2+2]-coordination. The M-cations Na and Li occur at three distinct sites, M(1), M(2) and M(3) between the vanadate sheets. The M(1)-site is fully occupied and has octahedral coordination. The M(2) sites are partly occupied in NaV and NaLiV, in which they occur in [4]- and [6]-coordination, respectively. Li partly occupies the M(3) site in NaLiV, in which it occurs in [3]-coordination. The M(2) and M(3) sites in NaLiV occur closer to the vanadate sheets than the M(2) sites in NaV and LiV. The shift in these cation positions is a result of the larger distance between the vanadate sheets in NaLiV than in LiV, which forces interstitial Li to move toward one of the vanadate sheets to satisfy its coordination requirements. Bond-valence maps for the interstitial cations Na and Li are presented for NaV, NaLiV and LiV. These maps are used to determine other potential cation positions in the interlayer and to map the regions of the structure where the Na and Li have their bond-valence requirements satisfied. These regions are potential pathways for Na and Li diffusion in these structures, and are used to explain chemical diffusion properties of Na and Li in the Na-Li-[V 3 O 8 ] compounds. - Graphical abstract: Bond-valence map for Li in Na 0.7 Li 0.7 [V 3 O 8 ]. Contour

  1. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  2. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  3. Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste

    International Nuclear Information System (INIS)

    De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine

    2014-01-01

    Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the

  4. Study of effective transport properties of fresh and aged gas diffusion layers

    Science.gov (United States)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  5. A Consistent Derivation of the Impedance of a Lithium-Ion Battery Electrode and its Dependency on the State-of-Charge

    International Nuclear Information System (INIS)

    Schönleber, M.; Uhlmann, C.; Braun, P.; Weber, A.; Ivers-Tiffée, E.

    2017-01-01

    Highlights: •A derivation of the impedance model of a Lithium-Ion battery electrode is given. •The dependency of all partial impedances on the State-of-Charge is revealed. •The lasting disagreement in how to model solid-state diffusion is settled. •A solid starting point to derive models of any complexity is provided. •The connection between differential capacity and solid-state diffusion is revealed. -- Abstract: A derivation of the fundamental impedance of a Lithium-Ion battery electrode is given, exemplarily conducted for a solid thin-film electrode. The focus of this derivation is not on developing a model which is able to reproduce the exact behaviour of a given electrode, but rather on deriving its fundamental characteristics from few and intuitive assumptions in a simple and transparent way. It is thus shown, that the fundamental impedance of a solid thin-film electrode consists of an RC-element for charge-transfer, a Finite-Length Warburg element for diffusion in the electrolyte and a Finite-Space Warburg element for diffusion in the solid-state. The use of a Finite-Length Warburg element with a serially connected capacitor for modelling diffusion in the solid-state is thus indicated to be physically questionable. In addition, the theoretically expected behaviour of charge-transfer and solid-state diffusion on the degree of lithiation (State-of-Charge) is derived and discussed.

  6. Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mukherjee, Partha P., E-mail: pmukherjee@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Deng, Biwei; Cheng, Gary J. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Deng, Huiqiu [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-06-07

    Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.

  7. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  8. INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES

    Directory of Open Access Journals (Sweden)

    M.D.Levi

    2002-01-01

    Full Text Available In this paper we compare two different approaches for the calculation of the enhancement factor Wi, based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the "dilute solution" or "lattice gas" models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new "enhancement factor" for the ion transport has been defined and its relations to the intercalation capacitance and the intercalation isotherm have been established. A correlation between the dependences of the differential capacitance and the partial ion conductivity on the potential has been observed. It is considered as a prove that the intercalation process is controlled by the availability of sites for Li-ion insertion rather than by the concurrent insertion of the counter-balancing electronic species.

  9. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  10. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  11. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  12. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  13. The rate of diffusion into advanced gas cooled reactor moderator bricks: an equivalent cylinder model

    International Nuclear Information System (INIS)

    Kyte, W.S.

    1980-01-01

    The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions

  14. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Mathwig, Klaus; Kang, Shuo; Lemay, Serge Joseph Guy

    2013-01-01

    Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized

  15. Application of impulsive methods to the study of diffusion in solid state alloys

    International Nuclear Information System (INIS)

    Belaidouni, Said

    1979-01-01

    This research thesis deals with the field of high temperature melt environments, and more particularly with the determination of the contribution of different steps of the electrochemical reaction (charge transfer, transport of electro-active species, variation of the electrode surface condition). The use of metal electrodes highlighted the importance of phenomena of diffusion in the metal. This leaded to the use of impulsive methods to determine solid-state transport properties. After a presentation of the theoretical processing of impulsive methods (cell potential, transport equations, double-layer charge), and a discussion of the diffusion in metal alloys (diffusion flow, diffusion coefficients, grain boundary diffusion), the author reports an experimental investigation (installation and measurement equipment) and discusses the obtained results (alloy thermodynamics, diffusion studied by the deposition method, impulsive methods with potentiostatic or galvano-static pulses) [fr

  16. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    Science.gov (United States)

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  17. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    Science.gov (United States)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k

  18. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    Science.gov (United States)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  19. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    Science.gov (United States)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  20. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Seki, Eiji; Kobayashi, Yoshihiro.

    1989-01-01

    The present invention concerns a device of ionizing radioactive gases to be processed in gaseous nuclear fission products in nuclear fuel reprocessing plants, etc., and injecting them into metal substrates for storage. The device comprises a vessel for a tightly closed type outer electrode in which gases to be processed are introduced, an electrode disposed to the inside of the vessel and the target material, a high DC voltage power source for applying high voltage to the electrodes, etc. There are disposed a first electric discharging portion for preparting discharge plasma for ion injection of different electrode distance and a second electric discharging portion for causing stable discharge between the vessel and the electrode. The first electric discharging portion for the ion injection provides an electrode distance suitable to acceleration sputtering and the second electric discharging portion is used for stable discharge. Accordingly, if the gas pressure in the radioactive gas storage device is reduced by the external disturbance, etc., since the second electric discharging portion satisfies the electric discharging conditions, the device can continue electric discharge. (K.M.)

  1. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.

    2013-01-01

    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  2. A method and an electrode for excitation of a plasma

    International Nuclear Information System (INIS)

    Glejboel, K.

    1998-01-01

    The method for excitation of a plasma comprises the step of subjecting a gas to an electric field generated by an electrode system. Each of 3 to 30 electrodes are connected to one of three specified AC voltages. The frequency is preferably between 50 and 60 Hz. The invention also concerns an electrode system for carrying out the method. 3 figs

  3. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    International Nuclear Information System (INIS)

    Morrison, Kyle A.; Paul, Stephen F.; Davidson, Ronald C.

    2003-01-01

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion

  4. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  5. Gas diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Berisso, Feto Esimo

    2013-01-01

    Soil productivity and other soil functions are dependent on processes in the untilled subsoil. Undisturbed soil cores were collected at the 0.3- to 0.4-m depth from a heavy clay soil in Finland subjected to a single heavy traffic event by agricultural machinery three decades before sampling....... Untrafficked control plots were used as a reference. Computed tomography (CT) scanning was performed on soil cores at a field-sampled field capacity water content. Gas diffusion and air permeability were measured when the soil cores were drained to −1000 hPa matric potential (air permeability also at −100...... and −300 hPa). The air-filled pore space was measured with an air pycnometer and also calculated from mass balance and CT data. Gas diffusion and air permeability were also measured on a straight model tube and on autoclaved aerated concrete. The compaction treatment had not influenced soil total porosity...

  6. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    Science.gov (United States)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  7. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  8. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Dyer, R.H.; Fowler, A.H.; Vanstrum, P.R.

    1977-01-01

    The invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas inventory of an electrically powered gaseous diffusion cascade in order to accommodate scheduled changes in the electrical power available for cascade operation. In the preferred form of the invention, the cascade is readied for a decrease in electrical input by simultaneously withdrawing substreams of the cascade B stream into respective process-gas-freezing and storage zones while decreasing the datum-pressure inputs to the positioning systems for the cascade control valves in proportion to the weight of process gas so removed. Consequently, the control valve positions are substantially unchanged by the reduction in invention, and there is minimal disturbance of the cascade isotopic gradient. The cascade is readied for restoration of the power cut by simultaneously evaporating the solids in the freezing zones to regenerate the process gas substreams and introducing them to the cascade A stream while increasing the aforementioned datum pressure inputs in proportion to the weight of process gas so returned. In the preferred form of the system for accomplishing these operations, heat exchangers are provided for freezing, storing, and evaporating the various substreams. Preferably, the heat exchangers are connected to use existing cascade auxiliary systems as a heat sink. A common control is employed to adjust and coordinate the necessary process gas transfers and datum pressure adjustments

  9. Evaluation of the performance of thermal diffusion column separating binary gas mixtures with continuous draw-off

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Takashima, Yoichi

    1977-01-01

    Advanced transport relations involving three column constants, H sup(σ), K sub(c)sup(σ) and K sub(d)sup(σ), are developed to describe the separation performance of a thermal diffusion column with continuous draw-off. These constants were related to some integral functions of velocity profile, temperature distribution, density of gas mixture and characteristic values of transport coefficients. The separation of binary gas mixture by this technique was so effective that three reasonable factors had to be introduced into the column constants in the theory. They are a circulation constant of natural convection, a definition of characteristic mean temperature and a definition of mean composition over the column. The separation performance and the column constants also varied with the distortion of velocity profile due to continuous draw-off from the top or the bottom of column. However, its effect was not large, compared with the other factors mentioned above. The theory presented here makes possible to estimate the separation performance of hot-wire type thermal diffusion column with high accuracy. (auth.)

  10. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  11. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  12. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode

    International Nuclear Information System (INIS)

    Chung, Yong-Ho; Lee, Taek; Choi, Jeong-Woo; Park, Hyung Ju; Yun, Wan Soo; Min, Junhong

    2013-01-01

    We fabricate a nanoscale biomemory device composed of recombinant azurin on nanogap electrodes. For this, size-controllable nanogap electrodes are fabricated by photolithography, electron beam lithography, and surface catalyzed chemical deposition. Moreover, we investigate the effect of gap distance to optimize the size of electrodes for a biomemory device and explore the mechanism of electron transfer from immobilized protein to a nanogap counter-electrode. As the distance of the nanogap electrode is decreased in the nanoscale, the absolute current intensity decreases according to the distance decrement between the electrodes due to direct electron transfer, in contrast with the diffusion phenomenon of a micro-electrode. The biomemory function is achieved on the optimized nanogap electrode. These results demonstrate that the fabricated nanodevice composed of a nanogap electrode and biomaterials provides various advantages such as quantitative control of signals and exclusion of environmental effects such as noise. The proposed bioelectronics device, which could be mass-produced easily, could be applied to construct a nanoscale bioelectronics system composed of a single biomolecule. (paper)

  13. Review of enhanced vapor diffusion in porous media

    International Nuclear Information System (INIS)

    Webb, S.W.; Ho, C.K.

    1998-01-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper

  14. Simultaneous removal of Ni(II and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode

    Directory of Open Access Journals (Sweden)

    Shinian Liu

    2017-09-01

    Full Text Available Large amounts of anions and heavy metals coexist in flue gas desulfurization (FGD wastewater originating from coal-fired power plants, which cause serious environmental pollution. Electrocoagulation (EC with Fe/C/Al hybrid electrodes was investigated for the separation of fluoride and nickel ions from a FGD wastewater. The study mainly focused on the technology parameters including anode electrode type, time, inter-electrode distance (5–40 mm, current density (1.88–6.25 mA/cm2 and initial pH (4–10. The results showed that favorable nickel and fluoride removal were obtained by increasing the time and current density, but this led to an increase in energy consumption. Eighty-six percent of fluoride and 98% of Ni(II were removed by conducting the Fe/C/Al EC with a current density of 5.00 mA/cm2 and inter-electrode distance of 5 mm at pH 4 for 25 min and energy consumption was 1.33 kWh/m3. Concomitant pollutants also achieved excellent treatment efficiency. The Hg, Mn, Pb, Cd, Cu, SS and chemical oxygen demand were reduced by 90%, 89%, 92%, 88%, 98%, 99.9% and 89%, respectively, which met stringent environmental regulations.

  15. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models

    International Nuclear Information System (INIS)

    Mieussens, Luc

    2013-01-01

    The unified gas kinetic scheme (UGKS) of K. Xu et al. (2010) [37], originally developed for multiscale gas dynamics problems, is applied in this paper to a linear kinetic model of radiative transfer theory. While such problems exhibit purely diffusive behavior in the optically thick (or small Knudsen) regime, we prove that UGKS is still asymptotic preserving (AP) in this regime, but for the free transport regime as well. Moreover, this scheme is modified to include a time implicit discretization of the limit diffusion equation, and to correctly capture the solution in case of boundary layers. Contrary to many AP schemes, this method is based on a standard finite volume approach, it does neither use any decomposition of the solution, nor staggered grids. Several numerical tests demonstrate the properties of the scheme

  16. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  17. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    International Nuclear Information System (INIS)

    Liu Yuwen; Zhang Qianfan; Chen Shengli

    2010-01-01

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  18. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuwen; Zhang Qianfan [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Chen Shengli, E-mail: slchen@whu.edu.c [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-11-30

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  19. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  20. Nickel-hydrogen battery with oxygen and electrolyte management features

    Science.gov (United States)

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  1. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  2. Searching for electrolytes and electrodes for CO2 reduction below 300 °C

    DEFF Research Database (Denmark)

    Vico, Federica

    Electrochemical CO2 reduction research is driven by the desire to reduce reliance on fossil fuels and lower greenhouse gas emissions. The conversion of CO2 into fuels and chemicals using energy derived from a renewable source, such as wind or solar, could replace the use of fossil fuels...... practical application for carbon dioxide reduction at high pressure. K-doped BaZr1-xYxO3-δ was successfully synthesized by hydrothermal technique, but the conductivity recorded in high pH2O and at 240 °C was too low (3 · 10-5 S/cm) to be considered as a suitable electrolyte. A literature survey showed...... and temperatures. A foam based CO2 conversion cell with gas diffusion electrodes and a ceramic porous structure in which the liquid electrolyte is immobilized by capillary forces was developed and tested up to 20 bar and to a maximum temperature of 50 °C. Potassium carbonate was selected as aqueous electrolyte...

  3. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  4. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  5. Micro-CAT with redundant electrodes (CATER)

    International Nuclear Information System (INIS)

    Berg, F.D. van den; Eijk, C.W.E. van; Hollander, R.W.; Sarro, P.M.

    2000-01-01

    High-rate X-ray or neutron counting introduces the problem of hit multiplicity when 2D position reconstruction is demanded. Implementation of a third readout electrode having a different angle than the anode or cathode allows to eliminate multiplicity problems. We present experimental results of a new type of gas-filled micro-patterned radiation detector, called 'Compteur a Trous a Electrodes Redondantes (CATER)', that disposes of such an extra readout channel in the form of a ring-shaped electrode that is positioned between the anode and the cathode. The ionic signal is shared between the ring-electrode and the cathode strip in a way that can be controlled by their potential difference. We observe a strong signal dependence on the drift field, which can be understood by the reduced transparency for the primary charge at high drift fields

  6. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2016-02-15

    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  7. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  8. A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes

    International Nuclear Information System (INIS)

    Zhu Feng; Yan Jiawei; Lu Miao; Zhou Yongliang; Yang Yang; Mao Bingwei

    2011-01-01

    Highlights: → A novel strategy based on a combination of interferent depleting and redox cycling is proposed for the plane-recessed microdisk array electrodes. → The strategy break up the restriction of selectively detecting a species that exhibits reversible reaction in a mixture with one that exhibits an irreversible reaction. → The electrodes enhance the current signal by redox cycling. → The electrodes can work regardless of the reversibility of interfering species. - Abstract: The fabrication, characterization and application of the plane-recessed microdisk array electrodes for selective detection are demonstrated. The electrodes, fabricated by lithographic microfabrication technology, are composed of a planar film electrode and a 32 x 32 recessed microdisk array electrode. Different from commonly used redox cycling operating mode for array configurations such as interdigitated array electrodes, a novel strategy based on a combination of interferent depleting and redox cycling is proposed for the electrodes with an appropriate configuration. The planar film electrode (the plane electrode) is used to deplete the interferent in the diffusion layer. The recessed microdisk array electrode (the microdisk array), locating within the diffusion layer of the plane electrode, works for detecting the target analyte in the interferent-depleted diffusion layer. In addition, the microdisk array overcomes the disadvantage of low current signal for a single microelectrode. Moreover, the current signal of the target analyte that undergoes reversible electron transfer can be enhanced due to the redox cycling between the plane electrode and the microdisk array. Based on the above working principle, the plane-recessed microdisk array electrodes break up the restriction of selectively detecting a species that exhibits reversible reaction in a mixture with one that exhibits an irreversible reaction, which is a limitation of single redox cycling operating mode. The

  9. Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs

    OpenAIRE

    Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-01-01

    We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm 2 ?V ? 1 ?s ? 1 a turn-on voltage of ?0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of C...

  10. Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames

    NARCIS (Netherlands)

    Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction

  11. Diagnostics for the Biased Electrode Experiment on NSTX

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Zweben, S.J.; Bush, C.E.; Kaita, R.; Marsalsa, R.J.; Maqueda, R.J.

    2009-01-01

    A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer (SOL) by creating a strong local poloidal electric field. The set of electrodes were separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the RF antenna and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to ± 100 volts. Present power supplies limit the current on two electrodes to 30 amps the other two to 10 amps each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic (GPI) located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed

  12. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  13. Measurement of turbulent diffusivity of both gas and liquid phases in quasi-2D two-phase flow

    International Nuclear Information System (INIS)

    Sato, Yoshifusa; Sadatomi, Michio; Kawahara, Akimaro

    1993-01-01

    The turbulent diffusion process has been studied experimentally by observing a tracer plume emitted continuously from a line source in a uniform, quasi-2D two-phase flow. The test section was a vertical, relatively narrow, concentric annular channel consisting of two large pipes. Air and water were used as the working fluids, and methane and acid organge II were used as tracers for the respective phases. Measurements of local, time-averaged tracer concentrations were made by means of a sampling method and image processing for bubbly flows and churn flows, and the turbulent diffusivity, the coefficient of turbulent diffusion, was determined from the concentration distributions measured. The diffusivities for the gas and liquid phases, ε DG and ε DL respectively, are presented and compared with each other in this paper. When a flow is bubbly, ε DG is close to or slightly smaller than ε DL . In a churn flow, on the contrary, ε DG is much greater than ε DL . Regarding bubbly flow, a plausible model on turbulent diffusivity of the liquid phase is presented and examined by the present data. (orig.)

  14. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-03-15

    A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.

  15. Discharge Characteristics of the Nickel Hydroxide Electrode in 30% KOH

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1989-01-01

    The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH at 25 .deg. C. Two voltage plateaus are displayed on the discharge curve of C/20. It is shown that the impedance of the nickel hydroxide electrode increases with decrease of the discharge potential. The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH indicating the reduction of the β-NiOOH to the β-Ni(OH) 2 by proton diffusion process and hence the electronic conductivity change of the nickel hydroxide electrode. Furthermore, the γ-NiOOH, produced by prolonged oxidation of the β-NiOOH in 30% KOH, discharges at a slightly lower potential than the β-Ni(OH) 2 that could result in the life-limiting factor of several alkaline electrolyte storage batteries using the nickel hydroxide electrode as the positive plate

  16. The effect of diffusivity on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated pressures

    NARCIS (Netherlands)

    Versteeg, G.F.; Blauwhoff, P.M.M.; Swaaij, W.P.M. van

    1987-01-01

    Mass transfer has been studied in gas-liquid stirred vessels with horizontal interfaces which appeared to the eye to be completely smooth. Special attention has been paid to the influence of the coefficient of molecular diffusion. The results are compared with those published before. The simplifying

  17. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  18. Long-term deconditioning of gas-filled surge arresters

    Science.gov (United States)

    Stanković, Koviljka; Brajović, Dragan; Alimpijević, Mališa; Lončar, Boris

    2016-07-01

    The aim of this paper is to identify parameters that influence the long-term deconditioning effect of gas-filled surge arrester (GFSA) and to provide practical recommendations for mitigating this effect. Namely, after some period of time, on order of hours or days, during which there is no activation due to overvoltage, the deconditioning of GFSA occurs. This effect was observed experimentally within the paper. The observed parameters that could influence the long-term deconditioning effect were the following: shape of voltage load, gas type, gas pressure, interelectrode distance, electrode material, electrode surface topography as well as GFSA design such as two- or three-electrode configuration. According to the results obtained, it has been shown that the occurrence of long-term deconditioning in an insulating system, insulated by a noble gas at a subpressure and with small interelectrode distances, is a phenomenon that always occurs when the insulating system is at rest for about an hour. It has been found that the type of noble gas does not influence the long-term deconditioning. Analysis of such insulating systems' parameters, with a prospect of being used as GFSAs, has demonstrated that this phenomenon is less pronounced at higher pressures (for the same value of the pressure (p) and interelectrode distance (d) product) and for electrodes with microscopically embossed surfaces. According to the results that were obtained by noble gases and their mixtures, as well as the results that were obtained by mixtures of SF6 gas with noble gasses, it can be claimed with confidence that the effect of the long-term deconditioning is an electrode effect. It has also been established that the deconditioning effect does not depend on the electrode material except in the case of electrodes made out of noble metals, which reduce the effect. Based on these results, it can be recommended that the working point of GFSAs be set (according to the DC breakdown voltage value) at a

  19. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  20. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  1. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  2. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  3. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yeh-Hung; Li, Yongqiang [Electrochemical Energy Research Lab, GM R and D, Honeoye Falls, NY 14472 (United States); Rock, Jeffrey A. [GM Powertrain, Honeoye Falls, NY 14472 (United States)

    2010-05-15

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 {mu}m, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm x 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray trademark TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells. (author)

  4. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Science.gov (United States)

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  5. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  6. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  7. Electrochemical lithiation of silicon electrodes. Neutron reflectometry and secondary ion mass spectrometry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jerliu, Bujar; Doerrer, Lars; Hueger, Erwin [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Seidlhofer, Beatrix-Kamelia; Steitz, Roland [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Borchardt, Guenter; Schmidt, Harald [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Clausthaler Zentrum fuer Materialtechnik (CZM), Clausthal-Zellerfeld (Germany)

    2017-11-15

    In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10{sup -15} m{sup 2} s{sup -1}) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.

  8. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  9. Detector module for gas monitor

    International Nuclear Information System (INIS)

    1980-01-01

    The invention relates to radioactive source detector module for use in a gas monitor. It is adapted to contain the source and other detector components to allow sealed coupling of those components with other portions of the gas monitor. It is particularly concerned with the use of radioactive materials used as electron sources in gas monitors. The module is used to detect changes in electron flow caused by partial absorption of the electron capture gas flowing between two electrodes. The assembly includes a gas flow source, a gas receiver and an electronic assembly for receiving a signal from the detector. The radioactive source and electrodes are housed so that they are connected to the gas flow source so as to prevent accidental or undesired disconnection. It is designed so that the detector module may be removed or replaced into the gas monitor assemblies by untrained personnel so as to prevent exposure to the radioactive material. Full details are given. (U.K.)

  10. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    International Nuclear Information System (INIS)

    Weiss, Martin; Dittmar, Lars; Junginger, Martin; Patel, Martin K.; Blok, Kornelis

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO 2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO 2 . We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.

  11. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae

    2014-03-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  12. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae; Hatzell, Marta C.; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  13. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  14. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  15. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Aouina, Nizar; Cachet, Hubert; Debiemme-chouvy, Catherine; Tran, Thi Tuyet Mai

    2010-01-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10 -3 , 10 -2 and 10 -1 M. For a nitrate concentration of 10 -2 M, D was found to be 1.31 x 10 -5 cm 2 s -1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  16. A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries

    Science.gov (United States)

    Zhang, Tao; Kamlah, Marc

    2018-01-01

    A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.

  17. Swirl and blade wakes in the interaction between gas turbines and exhaust diffusers investigated by endoscopic particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Opilat, Victor

    2011-10-21

    Exhaust diffusers studied in this thesis are installed behind the last turbine stage of gas turbines, including those used in combined cycle power plants. Extensive research made in recent years proved that effects caused by an upstream turbine need to be taken into account when designing efficient diffusers. Under certain conditions these effects can stabilize the boundary layer in diffusers and prevent separation. In this research the impact of multiple parameters, such as tip leakage flow, swirl, and rotating blade wakes, on the performance of a diffuser is studied. Experiments were conducted using a diffuser test rig with a rotating bladed wheel as a turbine effect generator and with an additional tip leakage flow insert. The major advantages of this test rig are modularity and easy variation of the main parameters. To capture the complexity and understand the physics of diffuser flow, and to clarify the phenomenon of the flow stabilisation, the 2D endoscopic laser optical measurement technique Partide Image Velocimetry (PIV) was adopted to the closed ''rotating'' diffuser test rig. Intensity and distribution of vortices in the blade tip area are decisive for diffuser performance. Large vortices in the annular diffuser inlet behind the blade tips interact with the boundary layer in diffusers. At design point these vortices are very early suppressed by the main flow. For the operating point with a low value of the flow coefficient (negative swirl), vortices are ab out two tim es stronger than for design point and the boundary layer is destabilized. V mtices develop in the direction contrary to swirl in the main flow and just cause flow destabilization. Coherent back flow zones are induced and reduction of diffuser performance occurs. For the operating point with positive swirl (for a high flow coefficient value), these vortices are also strong but do not counteract the main flow because they develop in the same direction with the swirl in the

  18. Design Method for Channel Diffusers of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mykola Kalinkevych

    2013-01-01

    Full Text Available The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical simulation of the diffusers was implemented by means of CFD software. Obtained gas dynamic characteristics of the designed diffuser were compared to the base vaned diffuser of the compressor stage.

  19. Modelling of gas diffusion limitations in Ni/YSZ electrode material in CO2 and co-electrolysis

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig

    2016-01-01

    Carbon formation during CO2 and co-electrolysis (combined electrolysis of H2O and CO2)has been observed in recent studies, under operating conditions where carbon formation,based on the bulk gas composition, should be thermodynamically unfavorable. The carboncan principally be formed by the Boudo...

  20. Co-axial electrodes gun characteristics

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.

    1981-01-01

    A coaxial electrodes gun is constructed with inner electrode diameter of 3.2 cm; outer electrode diameter of 6.6 cm and length of 25 cm it is connected to a condenser bank which delivers 4 K joule stored energy. The maximum power of the discharge is equal to 4.5x10 4 K watt; for 5 KV charging voltage. The inductance showed two main peak values of 0.257μH and 0.27μH. Theoretical calculations using one-dimension-single fluid model is μ sed, which shows that the maximum acceleration is at 0.5 sec, and the gas breakdown takes place at the gun breech; at the start of the discharge, will leave the gun after 1.625μ sec, also the drift velocity, the force and the magnetic field are given. The measured results show quite reasonable agreement with the calculations for most of the results, and the position of the plasma sheath inside the gun slightly deviated from the theoretical calculations due to viscosity and wall interaction, as well as other parameters which did not be take into consideration. The plasma current density of the sheath has its maximum value at Z=18 cm, the plasma will leave the coaxial source after 1.5μ sec, from the start of the discharge, which conferms with the theoretical model. Resistance of the gas between the electrodes, changes with time according to the particle injected from this source, and the maximum efficiency of the installation for charging voltage 5kV and pressure 80μ Hg is at approx.=10μ sec and 20.5μ sec

  1. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

    Directory of Open Access Journals (Sweden)

    Tzia Ming Onn

    2018-03-01

    Full Text Available Atomic layer deposition (ALD offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

  2. Diffusion of helium and estimated diffusion coefficients of hydrogen dissolved in water-saturated, compacted Ca-montmorillonite

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Sato, Seichi; Ohashi, Hiroshi; Otsuka, Teppei

    2001-01-01

    The diffusion coefficients of hydrogen gas dissolved in water-saturated, compacted montmorillonite are required to estimate the performance of bentonite buffer materials for geological disposal of nuclear waste. As part of the effort to determine the diffusion coefficients, the diffusion coefficients of helium in water-saturated, compacted calcium montmorillonite (Ca-montmorillonite) were determined as a function of dry density, 0.78 to 1.37x10 3 kg m -3 , by a transient diffusion method. The diffusion coefficients were from 8.3x10 -10 m 2 s -1 at 0.78x10 3 kgm -3 to 2.8x10 -10 m 2 s -1 at 1.37x10 3 kgm -3 . The data obtained by this diffusion experiment of helium were highly reproducible. The diffusion coefficients of helium in Ca-montmorillonite were somewhat larger than those previously obtained for helium in sodium montmorillonite (Na-montmorillonite). The diffusion coefficients of hydrogen gas in the montmorillonites were roughly estimated using the diffusion coefficients of helium. These estimates were based on assumptions that both helium and hydrogen molecules are non-adsorptive and that the geometric factors in the compacted montmorillonites are approximately the same for diffusion of helium and diffusion of hydrogen. (author)

  3. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  4. Electrochemical removal of nickel ions from industrial wastewater

    NARCIS (Netherlands)

    Njau, K.N.; Woude, van der M.E.; Visser, G.J.; Janssen, L.J.J.

    2000-01-01

    The electrochemical reduction of nickel ions in dilute industrial wastewater from a galvanic nickel plating plant was carried out on a three-dimensional electrode in a gas diffusion electrode packed bed electrode cell (GBC) and also on a rotating disc electrode. To explain the experimental results,

  5. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  6. Thickness shear mode quartz crystal resonators with optimized elliptical electrodes

    International Nuclear Information System (INIS)

    Ma Ting-Feng; Feng Guan-Ping; Zhang Chao; Jiang Xiao-Ning

    2011-01-01

    Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  8. Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

    DEFF Research Database (Denmark)

    2013-01-01

    at least one scrubber in the gas/liquid stream at the inlet side of the first electrode of the fuel cell or electrolysis cell; and/or providing at least one scrubber in the gas/liquid stream at the inlet side of the second electrode of the fuel cell or electrolysis cell; and - purifying the gas....../liquid streams towards the first and second electrode; wherein the at least one scrubber in the gas/liquid stream at the inlet side of the first electrode and/or the at least one scrubber in the gas/liquid stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material...... with the at least one scrubber, with the proviso that the fuel cell or electrolysis cell is not a solid oxide cell....

  9. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  10. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  11. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  12. Mathematical model of the methane replacement by carbon dioxide in the gas hydrate reservoir taking into account the diffusion kinetics

    Science.gov (United States)

    Musakaev, N. G.; Khasanov, M. K.; Rafikova, G. R.

    2018-03-01

    The problem of the replacement of methane in its hydrate by carbon dioxide in a porous medium is considered. The gas-exchange kinetics scheme is proposed in which the intensity of the process is limited by the diffusion of CO2 through the hydrate layer formed between the gas mixture flow and the CH4 hydrate. Dynamics of the main parameters of the process is numerically investigated. The main characteristic stages of the process are determined.

  13. Influences of argon gas shielding on diffusion bonding of Ti-6Al-4V alloy to aluminum

    International Nuclear Information System (INIS)

    Akcaa, A.; Gursela, A.

    2017-01-01

    This study presents a diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy. Prepared samples were exposed to temperature of 560, 600 and 640 °C for the bonding time of 30, 45 and 60 min at the atmosphere of argon gas and non-argon. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. The processed samples were also metallographically prepared, optically examined followed by Vickers microhardness test in order to determine joint strength. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used in this work to investigate the compositional changes in order to observe the influence of atmosphere shielding in the transition zone. The result of tests and analyses were tried to be compared with the effect of argon shielding. The significant influences have been observed in the argon shielding during diffusion bonding process. [es

  14. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    An, Yonghao; Jiang, Hanqing

    2013-01-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)

  15. Fabrication of low temperature cofired ceramic (LTCC) chip couplers for high frequencies : I. Effect of binder burnout process on the formation of electrode line

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N.T.; Shim, K.B.; Lee, S.W. [Hanyang University, Seoul (Korea); Koo, K.D. [K-Cera Inc., Yongin (Korea)

    1999-06-01

    In the fabrication of ceramic chip couplers for high frequency applications such as the mobile communication equipment, the formation of electrode lines and Ag diffusion were investigated with heat treatment conditions for removing organic binders. The deformation and densification of the electrode line greatly depended on the binder burnout process due to the overlapped temperature zone near 400{sup o} C of the binder dissociation and the solid phase sintering of the silver electrode. Ag ions were diffused into the glass ceramic substrate. The Ag diffusion was led by the glassy phase containing Pb ions rather than by the crystalline phase containing Ca ions. The fact suggests that the Ag diffusion could be controlled by managing the composition of the glass ceramic substrate. 9 refs., 10 figs., 1 tab.

  16. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  17. ETEM Studies of Electrodes and Electro-catalysts

    DEFF Research Database (Denmark)

    Jooss, Christian; Mildner, Stephanie; Beleggia, Marco

    2016-01-01

    Environmental TEM is an excellent tool for gaining insight into the atomic and electronic structure of electro-catalysts under operating conditions. Several electrochemical reactions such as oxidation/reduction processes of electrodes, heterogeneous gas phase catalysis of water splitting...

  18. Multi-scale structural analysis of gas diffusion layers

    Science.gov (United States)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  19. Electrode erosion in arc discharges at atmospheric pressure

    Science.gov (United States)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  20. Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs.

    Science.gov (United States)

    Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-07-27

    We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm 2 ·V - 1 ·s - 1 a turn-on voltage of -0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises.

  1. Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Min Soo

    2016-01-01

    Highlights: • The performance of self-humidified PEMFCs can be improved with double GDBL. • The effect of double GDBL on water retention capability and membrane hydration was investigated. • In addition to HFR and EIS measurements, numerical analysis was conducted. • Optimized design of double GDBL for self-humidified PEMFC was investigated. • This study provides an inspiration on how to design the double GDBL. - Abstract: In order to simplify the system configuration and downsize the volume, a proton exchange membrane fuel cell (PEMFC) needs to be operated in a self-humidified mode without any external humidifiers. However, in self-humidified PEMFCs, relatively low cell performance is a problem to be solved. In our previous study, a gas diffusion layer (GDL) containing double gas diffusion backing layer (GDBL) coated by single micro porous layer (MPL) was introduced and its effect on the cell performance was evaluated. In the present study, the effect of the double GDBL was investigated by measuring high frequency resistance (HFR) and electrochemical impedance spectroscopy (EIS). In the experiments, the HFR value was remarkably reduced, while the diameter of semicircle of EIS was increased. It means that the membrane hydration was improved due to enhanced water retention capability of the GDL despite of interrupted gas diffusion. The result of numerical analysis also showed that the water retention capability of GDL can be improved with proper structure design of double GDBL. Based on the result, optimized design of double GDBL for water retention was obtained numerically. The result of this study provides useful information on the structural design of GDBL for self-humidified PEMFCs.

  2. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  3. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  4. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  5. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  6. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Bermejo, M.R.; Barrado, A.I.; Pardo, R.; Barrado, E.; Martinez, A.M.

    2005-01-01

    The electrochemical behaviour of DyCl 3 was studied in the eutectic LiCl-KCl at different temperatures. The cathodic reaction can be written:Dy(III)+3e-bar Dy(0)which can be divided in two very close cathodic steps:Dy(III)+1e-bar Dy(II)andDy(II)+2e-bar Dy(0)Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used in order to study the reaction mechanism and the transport parameters of electroactive species at a tungsten electrode. The results showed that in the eutectic LiCl-KCl, electrocrystallization of dysprosium seems to be the controlling electrochemical step. Chronoamperometric studies indicated instantaneous nucleation of dysprosium with three dimensional growth of the nuclei whatever the applied overpotential.Mass transport towards the electrode is a simple diffusion process, and the diffusion coefficient of the electroactive species, i.e. Dy(III), has been calculated. The validity of the Arrhenius law was also verified by plotting the variation of the logarithm of the diffusion coefficient versus 1/T.In addition, the electrode reactions of the LiCl-KCl-DyCl 3 solutions at an Al wire were also investigated by cyclic voltammetry and open circuit chronopotentiometry. The redox potential of the Dy(III)/Dy couple at the Al electrode was observed at more positive potentials values than those at the inert electrode. This potential shift was thermodynamically analyzed by a lowering of activity of Dy in the metal phase due to the formation of intermetallic compounds

  7. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  8. Density functional theory study of the mechanism of Li diffusion in rutile RuO2

    International Nuclear Information System (INIS)

    Jung, Jongboo; Cho, Maenghyo; Zhou, Min

    2014-01-01

    First-principle calculations are carried out to study the diffusion of Li ions in rutile structure RuO 2 , a material for positive electrodes in rechargeable Li ion batteries. The calculations focus on migration pathways and energy barriers for diffusion in Li-poor and Li-rich phases using the Nudged Elastic Band Method. Diffusion coefficients estimated based on calculated energy barriers are in good agreement with experimental values reported in the literature. The results confirm the anisotropic nature of diffusion of Li ions in one-dimensional c channels along the [001] crystalline direction of rutile RuO 2 and show that Li diffusion in the Li-poor phase is faster than in the Li-rich phase. The findings of fast Li diffusion and feasible Li insertion at low temperatures in the host rutile RuO 2 suggest this material is a good ionic conductor for Li transport. The finding also suggests possible means for enhancing the performance of RuO 2 -based electrode materials

  9. Insights into the Surface Reactivity of Cermet and Perovskite Electrodes in Oxidizing, Reducing, and Humid Environments.

    Science.gov (United States)

    Paloukis, Fotios; Papazisi, Kalliopi M; Dintzer, Thierry; Papaefthimiou, Vasiliki; Saveleva, Viktoriia A; Balomenou, Stella P; Tsiplakides, Dimitrios; Bournel, Fabrice; Gallet, Jean-Jacques; Zafeiratos, Spyridon

    2017-08-02

    Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes. It is shown that the surface of both electrode types readjusts fast to the reactive gas atmosphere and their surface composition is notably modified. In the case of Ni/YSZ, this is followed by evident changes in the oxidation state of nickel, while for La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , a fine adjustment of the Cr valence and strong Sr segregation is observed. An important difference between the two electrodes is their capacity to maintain adsorbed hydroxyl groups on their surface, which is expected to be critical for the electrocatalytic properties of the materials. The insight gained from the surface analysis may serve as a paradigm for understanding the effect of the gas environment on the electrochemical performance and the electrical conductivity of the electrodes.

  10. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  11. Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    Capillary pressure vs. saturation (P C(S L)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). P C(S L) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie-Baxter equation. For a given Gaussian contact angle distribution with mean (θ Mean) and standard deviation (σ), a realistic P C(S L) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed P C(S L) curves show that θ Mean sets the overall hydrophilic (θ Mean 90°) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the P C(S L) curve. The capillary bundle model also can be used with (θ Mean, σ) as unknown parameters that are best-fit to experimentally acquired P C(S L) and pore size distribution data to find (θ Mean, σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (θ Mean = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (θ Mean = 52° and σ = 8°). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.

  12. Modeling the Lithium Ion/Electrode Battery Interface Using Fick’s Second Law of Diffusion, the Laplace Transform, Charge Transfer Functions, and a [4, 4] Padé Approximant

    Directory of Open Access Journals (Sweden)

    John H. Summerfield

    2015-01-01

    Full Text Available This work investigates a one-dimensional model for the solid-state diffusion in a LiC6/LiMnO2 rechargeable cell. This cell is used in hybrid electric vehicles. In this environment the cell experiences low frequency electrical pulses that degrade the electrodes. The model’s starting point is Fick’s second law of diffusion. The Laplace transform is used to move from time as the independent variable to frequency as the independent variable. To better understand the effect of frequency changes on the cell, a transfer function is constructed. The transfer function is a transcendental function so a Padé approximant is found to better describe the model at the origin. Consider ∂c(r,t/∂t=D∂2c(r/∂2r+(2/r(∂c(r/∂r.

  13. Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs

    International Nuclear Information System (INIS)

    Tao, Y.; Nishino, H.; Ashidate, S.; Kokubo, H.; Watanabe, M.; Uchida, H.

    2009-01-01

    We have developed double layer-type (catalyst layer/current collecting layer) oxygen electrodes (DLE) for reversible SOFCs. As the catalyst layer (cathode for SOFC and anode for steam electrolysis) interfaced with a samaria-doped ceria [(CeO 2 ) 0.8 (SmO 1.5 ) 0.2 , SDC] interlayer/YSZ solid electrolyte, mixed conducting La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 (LSCF) and SDC particles were employed. The current collecting porous LSCF layer was formed on the catalyst layer. By controlling the SDC content, as well as the thickness and porosity of the catalyst layer, the gas diffusion rate and the conduction networks for electrons and oxide ions were optimized, resulting in a marked reduction of the overpotential. The LSCF + SDC/LSCF DLE exhibited higher performance than single-layer electrodes of LSCF + SDC or LSCF; the IR-free anode potential vs. an air reference electrode was 0.12 V (corresponding to an overpotential of 0.08 V) at 0.5 A cm -2 and 900 deg. C under an atmosphere of O 2 (1 atm)

  14. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  15. A Study on the Characteristics of Design Variables for IRSS Diffuser

    Science.gov (United States)

    Cho, Yong-Jin; Ko, Dae-Eun

    2017-11-01

    In modern naval ships, infrared signature suppression systems (IRSS) are installed to decrease the temperature of waste gas generated in propulsion engine and the metallic surface temperature of heated exhaust pipes. Generally, IRSS is composed of eductor, mixing tube, and diffuser. Diffuser serves to reduce the temperature by creating an air film using the pressure difference between internal gas and external air. In this study, design variables were selected by analyzing the diffuser and the characteristics of design variables that affect the performance of diffuser were examined using Taguchi experiment method. For the diffuser performance analysis, a heat flow analysis technique established in previous research was used. The IRSS performance evaluation was carried out based on the average area value of the metal surface temperature and the temperature of the exhaust gas at the outlet of the diffuser, which are variables directly related to the intensity of infrared signature in naval ships. It was verified that the exhaust gas temperature is greatly affected by changes in the diameter of the diffuser outlet, and the metal surface temperature of diffuser is greatly affected by changes in the number of diffuser rings.

  16. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aouina, Nizar; Cachet, Hubert [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Debiemme-chouvy, Catherine, E-mail: catherine.debiemme-chouvy@upmc.f [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Tran, Thi Tuyet Mai [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France)

    2010-10-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10{sup -3}, 10{sup -2} and 10{sup -1} M. For a nitrate concentration of 10{sup -2} M, D was found to be 1.31 x 10{sup -5} cm{sup 2} s{sup -1} allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  17. Design and implementation of a novel conical electrode for fast anodic bonding

    International Nuclear Information System (INIS)

    Yang, Chii-Rong; Chang, Long-Yin; Wu, Jim-Wei

    2014-01-01

    Anodic bonding is a frequently used nonintermediate wafer-bonding technique for use in MEMS. However, it has a minimum bonding time for a 4 in silicon/glass wafer that is generally limited to the order of several minutes because of the gas-trapping problem that occurs in the bonded interface when a conventional bonding electrode is used. Therefore, the purpose of this study was to develop a novel conical bonding electrode, which shortens the bonding time and solves the gas-trapping problem of the bonded interface. The 4 in silicon/glass wafers fitted with the proposed electrode exhibited a bonding ratio of 99.89% and an average bonding strength of around 15 MPa, which was attained within 15 s, at a bonding voltage of 900 V and a bonding temperature of 400 °C. A comprehensive series of experiments was performed to validate the excellent bonding performance of the proposed conical electrode. (paper)

  18. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  19. On correction factor in scaling law for low pressure DC gas breakdown

    International Nuclear Information System (INIS)

    Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Ronchi, G; Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Machida, M

    2014-01-01

    The low pressure gas breakdown described by Paschen's law in Townsend theory, i.e. the breakdown voltage as a function of gas pressure p and the electrode distance d, provides an accurate description of breakdown in DC discharges when the ratio between inter-electrode gap distance d and electrode radii R tends to zero. On increasing of the ratio d/R, the Paschen's curves are shifted to the region of higher breakdown voltage and higher pd values. A modified Paschen's law recently proposed is well satisfied in our measurements. However, the value of constant b changes not only due to gas type but also according to electrode gap distance; furthermore, gas breakdown voltages are considerably modified by plasma-wall interactions due to glass tube proximity in the discharge.

  20. Nox diffusion-simulation in an urban area in using the vertical diffusion diagram including a surface roughness parameter

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Hitoshi; Fujimoto, Akira; Nakano, Hiroshi

    1988-03-31

    In recent years, in order to attain a total quantity regulation of air pollution and to prepare a local air-control program, a diffusion simulation is often made using a Gaussian plume model. NOx diffusion simulation of the urban area was carried out using a vertical diffusion width by taking a parameter of ground-surface roughness using Smith's correction to the Gaussian model. For the diffusion of car exhaust gas, comparison was made for the estimate and the measurement by jointly using the values of ground-surface roughness and the initial diffusion width. As a result, change in the diffusion width of the car exhaust gas due to the urban buildings was expressed at a necessary practical level by giving the height of the point of calculation, 1 - 3 m in the central part and 30 cm at the peripheral part, and giving the initial diffusion width of roughly half to equal size of initial diffusion width to the average height of the buildings. (2 figs, 8 tabs, 20 refs)

  1. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation.

    Science.gov (United States)

    Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando

    2016-06-07

    Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.

  2. Analysis of the dynamic behavior of porous nickel electrodes in alkaline solutions

    International Nuclear Information System (INIS)

    Real, Silvia G; Visintin, Arnaldo; Castro, Elida B

    2004-01-01

    The nickel electrode is important for its electrocatalytic properties, when it is used in water electrolysis, and for use as a positive terminal in alkaline nickel-cadmium, nickel-iron, nickel-zinc, nickel-hydrogen and nickel-metal hydride batteries. Since there are many factors related to the functioning of these batteries that have still not been clarified, such as the memory effect associated with the change in structure of the nickel hydroxide and the phenomenon of 'battery sudden death', that produce serious problems mostly in spaces uses, this work discusses the dynamic behavior of the porous nickel hydroxide electrode. This electrode possesses outstanding properties such as high power density, good cyclability and elevated specific energy, which make it unique for the above-mentioned applications. The electrochemical storage of energy in this electrode is based on the reversible characteristics of nickel hydroxide/oxhydroxide redox coupling. The reversibility of the process is an important factor in battery materials. In the case of the Ni oxide, during the electrode discharge H + is inserted and this process inverts during the charging. This work presents the results obtained with the use of impedance spectroscopy for different discharge states of the electrode material in order to correlate its electrochemical properties according to the development of physical chemical models. These models include the charging and discharging processes, the process of proton diffusion in the solid and the porous nature of the material. Knowledge about the functioning of the electrode material is obtained by adjusting the experimental data according to the model and the parametric identification to determine values associated with such variables as area of active material, diffusion coefficient of the H + , conductivity of the solid as a function of the discharge state and kinetic constants of the charge transfer process (CW)

  3. A compact three-electrode discharge system for long-pulse KrCl excimer lasers

    NARCIS (Netherlands)

    Casper, L.C.; Bastiaens, Hubertus M.J.; Peters, P.J.M.; Boller, Klaus J.; Hofstra, R.M.

    2008-01-01

    Spatially very homogeneous gas discharges with long-pulse duration have been realized in HCl-based rare-gas halide gas mixtures at over-atmospheric pressures. A low inductive three-electrode prepulse–mainpulse configuration with two discharge volumes has been used as excitation circuit. The energy

  4. An atmospheric electrical method to determine the eddy diffusion ...

    Indian Academy of Sciences (India)

    Keywords. Atmospheric electrical profiles; electrode layer; ion–aerosol balance equations. ... eddy diffusion theory (K-theory) in our model equations. K-theory is appropriate for near neutral ...... limit of strong turbulent mixing; J. Geophys. Res.

  5. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  6. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  7. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  8. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  9. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  10. Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes

    International Nuclear Information System (INIS)

    Mueller, Christian; Kremer, Hans; Brink, Anders; Kilpinen, Pia; Hupa, Mikko

    1999-01-01

    The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)

  11. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  12. Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source

    OpenAIRE

    Granieri, D.; Carapezza, M. L.; Avino, R.; Caliro, S.; Cardellini, C.; Chiodini, G.; Donnini, M.; Minopoli, C.; Ranaldi, M.; Ricci, T.; Tarchini, L.

    2013-01-01

    An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1) to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2) to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this surve...

  13. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes

    DEFF Research Database (Denmark)

    Gäfvert, T.; Pagels, J.; Holm, E.

    2003-01-01

    from AC welding showed significant higher exposure levels, probably due to maladjustment of the TIG welding power source. Samples of the respirable fraction of Th-232 from grinding thoriated electrodes were also collected showing exposure levels of 5 mBq m(-3) or lower. A dose estimate has been made....... The contribution from grinding electrodes was lower, 10 muSv or lower in the realistic case and 63 muSv or lower based on conservative assumptions. The study does not exclude occurrence of higher exposure levels under welding conditions different from those prevailing in this study....

  14. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  15. The use of diffusive samplers for collecting organic gaseous constituents in waste gases. Diffusionssammler zur Probenahme von organischen gas- und dampffoermigen Substanzen in Abgasen

    Energy Technology Data Exchange (ETDEWEB)

    Canela, A.; Gruntz, U.; Muehleisen, H.; Tanner, S. (Sandoz AG, Basel (Switzerland). Umweltschutzlaboratorien)

    1990-01-01

    A relatively simple procedure for sample collection of multicomponent organic emissions is presented. A representative part of the waste gas is taken by means of a sampling probe and flows to the coupled sampling device. The gaseous constituents are collected in several diffusive samplers at the bottom of the device. Influencing parameters such as pressure, temperature, gas velocity etc., which may affect the collection rate and therefore the measured values, were investigated in the laboratory. Depending on the analytical detection limit, the sampling time and the diffusion parameters, the method can be applied for the determination of integrated emission concentrations between 0.1 mg/m{sup 3} and 1 g/m{sup 3}. (orig.).

  16. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  17. A two-dimensional, transient, compressible isothermal and two-phase model for the air-side electrode of PEM fuel cells

    International Nuclear Information System (INIS)

    Khakbaz Baboli, M.; Kermani, M.J.

    2008-01-01

    A two-dimensional, transient, compressible, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) are numerically studied in the present paper. The mixture is composed of four species: oxygen, nitrogen, liquid water and water vapor. The governing PDE's are conservation of the water vapor and oxygen species, momentum equation of the mixture (gas+liquid), mass conservation of the liquid phase, and mass conservation of the mixture. In this study, a separate PDE for the mass conservation of the liquid water is solved to calculate the saturation levels. The capillary pressure was used to determine the slip velocity between the phases. A full compressible form of the momentum equation was used, with the ∇.V preserved in the equation. The Maxwell-Stefan equation was used to model the diffusive fluxes of the multi-component gas mixture. The strongly coupled equations are solved based on a recently developed finite volume SIMPLER scheme of S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., McGraw-Hill Book Company, 1984. The computational domain consists of two regions; an open area (gas delivery channel) linked to a porous gas diffusion layer (GDL). A single (unified) set of the PDE's are used for the whole domain with the corresponding properties of each sub-domain. A polarization curve for the whole spectrum of the dry and wet regions were obtained. The results were compared with the experiments of E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209, and good agreements were achieved

  18. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    Science.gov (United States)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  19. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  20. The effect of hydrogen on the morphology of n-type silicon electrodes under electrochemical conditions

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Caruana, D.

    2001-01-01

    the changes in the shape of the total reflection feature. We assume that the change in the morphology of the surface is due to the diffusion of hydrogen in the silicon electrode. This assumption allow us to model the changes in the reflected intensity at two different angles and find the diffusion exponent...

  1. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  2. Development of Hydrogen Electrodes for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín

    , production of electricity via fuel cells, fuel for internal combustion engines or gas turbines, or as a raw material for the production of synthetic fuels via Sabatier or Fischer - Tropsch process. In some situations it may be suitable to simply inject hydrogen into the existing natural gas based...... will be needed. Producing hydrogen via water electrolysis using surplus, low cost, power from renewables offers the possibility of increased production capacity and load management with no greenhouse emissions. Hydrogen is a valuable energy carrier, which is able to contribute to various forms of energy, such as...... infrastructure. Alkaline water electrolysis (AWE) is the current standard (stat of the art) for industrial large-scale water electrolysis systems. One of the main criteria for industrial AWE is efficient and durable electrodes. The aim of the present PhD study was to develop electrode materials for hydrogen...

  3. Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study

    NARCIS (Netherlands)

    Verkerk, M.J.; Burggraaf, A.J.

    1983-01-01

    An equivalent electrical circuit that describes the electrode processes on different electrolytes, using porous Pt electrodes,is given. Diffusional processes are important and have to be presented by Warburg components in the circuit. Theoverall electrode process is rate limited by diffusion of

  4. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  5. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  6. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  7. Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source

    OpenAIRE

    Domenico Granieri; Maria Luisa Carapezza; Rosario Avino; Stefano Caliro; Carlo Cardellini; Giovanni Chiodini; Marco Donnini; Carmine Minopoli; Massimo Ranaldi; Tullio Ricci; Luca Tarchini

    2013-01-01

    An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1) to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2) to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this survey were compared wi...

  8. "Imaging" LEIS of micro-patterned solid oxide fuel cell electrodes

    Science.gov (United States)

    Druce, John; Simrick, Neil; Ishihara, Tatsumi; Kilner, John

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  9. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Starostin, S A; Premkumar, P Antony; Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M; De Vries, H; Paffen, R M J

    2009-01-01

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N 2 /O 2 /hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm -2 ) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  10. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    Energy Technology Data Exchange (ETDEWEB)

    Starostin, S A; Premkumar, P Antony [Materials Innovation Institute (M2i), Mekelweg 2, 2600 GA Delft, The Netherland (Netherlands); Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); De Vries, H; Paffen, R M J [FUJIFILM Manufacturing Europe B.V, PO Box 90156, Tilburg (Netherlands)

    2009-11-15

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N{sub 2}/O{sub 2}/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density ({approx}0.7 A cm{sup -2}) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  11. Electrocatalytic behavior of thin Co-Te-O films in oxygen evolution and reduction reactions

    International Nuclear Information System (INIS)

    Rashkova, V.; Kitova, S.; Vitanov, T.

    2007-01-01

    Co-Te-O catalytic films, obtain by vacuum co-evaporation of Co and TeO 2 are investigated as electrocatalysts for oxygen reactions in alkaline media. Bifunctional gas-diffusion oxygen electrodes (gde) are prepared by direct deposition of catalyst films on gas-diffusion membranes (gdm) consisting of hydrophobized carbon blacks or hydrophobized 'Ebonex' (suboxides of titanium dioxide). Thus obtained electrodes with different atomic ratio R Co/Te of the catalyst, treated at different temperatures were electrochemically tested by means of cyclic voltammetry and steady-state voltammetry. It is shown that the electrodes exhibit high catalytic activity toward oxygen evolution and reduction reaction despite very low catalyst loading of about 0.05-0.5 mg cm -2

  12. Radioactive gas solidification treatment device

    International Nuclear Information System (INIS)

    Igarashi, Ryokichi; Watanabe, Yu; Seki, Eiji.

    1992-01-01

    In a radioactive gas solidification treatment device by using sputtering, spiral pipelines are disposed with a gap therebetween for cooling an ion injection electrode by passing cooling water during operation of the solidification treatment. During the operation of the solidification treatment, cooling water is passed in the pipelines to cool the ion injection electrode. During storage, a solidification vessel is cooled by natural heat dissipation from an exposed portion at the surface of the solidification vessel. Accordingly, after-heat of radioactive gas solidified in a metal accumulation layer can be removed efficiently, safely and economically to improve the reliability. (N.H.)

  13. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    Energy Technology Data Exchange (ETDEWEB)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  14. Processing of carbon composite paper as electrode for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, R.B.; Maheshwari, Priyanka H.; Dhami, T.L. [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Sharma, R.K.; Sharma, C.P. [Soft Polymeric Group, Division of Engineering Materials, National Physical Laboratory, New Delhi 110012 (India)

    2006-10-27

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material. (author)

  15. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution

    Science.gov (United States)

    Mercado-Cabrera, Antonio; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Jaramillo-Sierra, Bethsabet; Valencia-Alvarado, Raúl; Rodríguez-Méndez, Benjamín; Muñoz-Castro, Arturo E.

    2017-07-01

    Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% Ar-20% O2 and 0% Ar-100% O2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ˜0.0115 S m-1 up to ˜0.0430 S m-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.

  16. CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties

    International Nuclear Information System (INIS)

    Shi Junxiang; Xue Xingjian

    2010-01-01

    A comprehensive 2-D CFD model is developed to investigate bi-electrode supported cell (BSC) performance. The model takes into account the coupled complex transport phenomena of mass/heat transfer, charge (electron/ion) transport, and electrochemical reactions. The uniqueness of this modeling work is that heterogeneous electrode properties are taken into account, which includes not only linear functionally graded porosity distribution but also various nonlinear distributions in a general sense according to porous electrode features in BSC design. Extensive numerical analysis is performed to elucidate various heterogeneous porous electrode property effects on cell performance. Results indicate that cell performance is strongly dependent on porous microstructure distributions of electrodes. Among the various porosity distributions, inverse parabolic porosity distribution shows promising effects on cell performance. For a given porosity distribution of electrodes, cell performance is also dependent on operating conditions, typically fuel/gas pressure losses across the electrodes. The mathematical model developed in this paper can be utilized for high performance BSC SOFC design and optimization.

  17. The influence of conductive additives and inter-particle voids in carbon EDLC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfo, A.G.; Wilson, G.J.; Huynh, T.D.; Hollenkamp, A.F. [CSIRO - Energy Technology, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-10-15

    Through the interpretation of porosity and intrusion data, and correlation to the electrochemical response, this study has confirmed that are not only carbon blacks (CBs) very effective in improving the electrical connectivity of a carbon electrode coating, but they also significantly modify the porosity of the electrode coating and thereby also influence ionic diffusion. CBs are more effective conductive fillers than graphites in EDLC electrodes. The highly branched structure of CBs allows multiple electrical contact points and results in a lower electrode electronic resistance. CBs can decrease inter-particle porosity (both volume and size) and introduce additional porosity that is characteristic of the type of carbon employed. It is observed that electrode coatings prepared from a carbon slurry have a highly macroporous structure and that electrolyte accessibility to individual activated carbon particles is unlikely to be the limiting factor to accessing capacitance. Electrochemical testing has confirmed the strong relationship between bulk electrode resistance and the accessibility of capacitance at different rates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    Science.gov (United States)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  19. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  20. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  1. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  2. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    Science.gov (United States)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  3. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies

    Directory of Open Access Journals (Sweden)

    Ira Katz

    2016-01-01

    Full Text Available New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  4. Study of diffuse H II regions potentially forming part of the gas streams around Sgr A*

    Science.gov (United States)

    Armijos-Abendaño, J.; López, E.; Martín-Pintado, J.; Báez-Rubio, A.; Aravena, M.; Requena-Torres, M. A.; Martín, S.; Llerena, M.; Aldás, F.; Logan, C.; Rodríguez-Franco, A.

    2018-05-01

    We present a study of diffuse extended ionized gas towards three clouds located in the Galactic Centre (GC). One line of sight (LOS) is towards the 20 km s-1 cloud (LOS-0.11) in the Sgr A region, another LOS is towards the 50 km s-1 cloud (LOS-0.02), also in Sgr A, while the third is towards the Sgr B2 cloud (LOS+0.693). The emission from the ionized gas is detected from Hnα and Hmβ radio recombination lines (RRLs). Henα and Hemβ RRL emission is detected with the same n and m as those from the hydrogen RRLs only towards LOS+0.693. RRLs probe gas with positive and negative velocities towards the two Sgr A sources. The Hmβ to Hnα ratios reveal that the ionized gas is emitted under local thermodynamic equilibrium conditions in these regions. We find a He to H mass fraction of 0.29±0.01 consistent with the typical GC value, supporting the idea that massive stars have increased the He abundance compared to its primordial value. Physical properties are derived for the studied sources. We propose that the negative velocity component of both Sgr A sources is part of gas streams considered previously to model the GC cloud kinematics. Associated massive stars with what are presumably the closest H II regions to LOS-0.11 (positive velocity gas), LOS-0.02, and LOS+0.693 could be the main sources of ultraviolet photons ionizing the gas. The negative velocity components of both Sgr A sources might be ionized by the same massive stars, but only if they are in the same gas stream.

  5. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  6. Effects of N2 gas on preheated laminar LPG jet diffusion flame

    International Nuclear Information System (INIS)

    Mishra, D.P.; Kumar, P.

    2010-01-01

    This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

  7. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    Science.gov (United States)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  8. Novel Plasma Reactor with Rotary Helix Electrode Used in Coupling of CH4 at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Wang Dawang; Ma Tengcai

    2006-01-01

    At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C 2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C 2 yield per pass was 69.85% and C 2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate

  9. Concentration contours in lattics and grain boundary diffusion in a polycrystalline solid

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jae, Won Mok; El Saied, Usama; Olander, Donald R.

    1995-01-01

    Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusivity can be estimated and used directly for low burn up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission gas release

  10. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  11. Efecto sobre la reacción de oxígeno de la forma y la microestructura del contacto electrodo-electrolito de electrodos a difusión interna en Celdas de Combustible de Óxido Sólido (SOFC

    Directory of Open Access Journals (Sweden)

    Jiménez, R.

    1999-12-01

    Full Text Available In this work we have studied the elemental electrode shape and electrode - electrolyte contact microstructure influence of Internal diffusion (ID gas electrode in solid oxide fuel cells (SOFC. First the influence over the electrolyte effective resistance is studied. Then the influence of the shape of the elemental contact grain of ID electrode is also studied. Finally the influence of the electrode - electrolyte contact microstructure in the electrode response for a pure diffuse control is modelled. From the obtained results, conclusions on the contact microstructure and electrode shape influence over the oxygen reaction of this kind of gas electrodes are commented.

    En este trabajo, se estudia la influencia de la forma del electrodo elemental y la microestructura del contacto electrodo-electrolito, del electrodo de gas a difusión interna en celdas de combustible de óxido sólido (SOFC. Se determina la influencia de la microestructura del contacto electrodo electrolito sobre la resistencia efectiva del electrolito, la influencia de la forma del contacto de un grano elemental de un electrodo poroso suponiendo que sea aproximadamente una semiesfera sobre la reacción del electrodo y finalmente la influencia de la microestructura del contacto electrodo - electrolito en la respuesta a un control difusivo puro del electrodo. De los resultados obtenidos se pueden extraer conclusiones sobre la influencia de la microestructura del contacto y forma del electrodo en la reacción de oxígeno en este tipo de electrodos de gas.

  12. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  13. La formation de l'oxyde azotique dans les flammes de diffusion de gaz naturel Nitrogen. Oxyde Formation in Natural-Gas Diffusion Flams

    Directory of Open Access Journals (Sweden)

    Portrait L. M.

    2006-11-01

    Full Text Available L'étude de la formation de l'oxyde azotique dans des flammes de diffusion de ga naturel est effectuée depuis deux ans sur le four expérimental du Groupe d'Etude des Flammes de Gaz Naturel situé à Toulouse. Un certain nombre de variables ont été explorées : type de flamme, excès d'air, préchauffage de l'air, teneur en oxygène du comburant, puissance calorifique, et débit de moment cinétique. L'étude a mis en évidence une corrélation générale, quelle que soit la variable considérée, entre la quantité maximale d'oxyde d'azote formé et la température maximale de la flamme. Certains des résultats précédents ont été exploités à l'Institut Français du Pétrole, en vue d'établir une équation de vitesse de formation de NO applicable aux flammes axiales de diffusion de gaz naturel. Les calculs s'appuient sur les connaissances obtenues lors de l'étude cinétique de formation de NO effectuée au Laboratoire d'Aérothermique Fondamentale. Les résultats du calcul théorique confirment ceux de l'étude sur le four expérimental en ce qui concerne l'influence prépondérante de la température sur la formation de l'oxyde azotique. Par ailleurs, le calcul théorique retrouve bien les résultats obtenus lors de l'étude fondamentale, selon lesquels la cinétique de formation de NO évolue le long de la flamme depuis le front de flamme jusqu'aux gaz brûlés. La généralisation à un grand nombre de flammes de l'équation cinétique expérimentale obtenue nécessite maintenant de prendre en compte certains phénomènes de diffusion négligés jusqu'à présent. Research on the formation of nitrogen oxide in natural-gas diffusion flammes has been going on for two years in the experimental furnace of the Groupe d'Etude des Flammes de Gaz Naturel located in Toulouse. Different variables have been investigoted such as type of flamme, air excess, air preheating, oxygen content in the oxidant, heating power and kinetic moment output

  14. Thermal diffusion and separation of isotopes; Diffusion thermique et separation d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Andre

    1944-03-30

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  15. Studies on metal hydride electrodes containing no binder additives

    Energy Technology Data Exchange (ETDEWEB)

    Rogulski, Z.; Dlubak, J. [Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw (Poland); Karwowska, M.; Gumkowska, A.; Czerwinski, A. [Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw (Poland); Krebs, M.; Pytlik, E.; Schmalz, M. [VARTA Microbattery GmbH, Daimlerstrasse 1, 73479 Ellwangen (Germany)

    2010-11-15

    Electrochemical properties of hydrogen storage alloys (AB{sub 5} type: LaMm-Ni{sub 4.1}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.45}) were studied in 6 M KOHaq using Limited Volume Electrode (LVE) method. Working electrodes were prepared by pressing alloy powder (without binding and conducting additives) into a metal net wire serving as a support and as a current collector. Cyclic voltammetry curves reveal well defined hydrogen sorption and desorption peaks which are separated from other faradic processes, such as surface oxidation. Voltammograms of LVE resemble the curves obtained by various authors for single particle metal alloy electrodes. Hydrogen diffusion coefficient calculated at room temperature for LV electrodes and for 100% state of charge reaches a constant value of ca. 3.3 x 10{sup -9} and 2.1 x 10{sup -10} cm{sup 2} s{sup -1}, for chronoamperometric and chronopotentiometric measurements, respectively. A comparison of the electrodes with average alloy particle sizes of ca. 50 and 4 {mu}m allows us to conclude that at room temperature hydrogen storage capability of AB{sub 5} alloy studied is independent on the alloy particle size. On the other hand, reduction of the particle size increases alloy capacity at temperatures below -10 C and reduces time of electrochemical activation of the electrode. (author)

  16. Development of performance model of CDI electrode for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk

    2010-02-15

    taken up to reach 95% of the salt removal amount. The effects of design parameters on KPI are studied: salt concentration, imposed voltage, electrode gap distance, pore depth, pore diffusion coefficient, pore radius, and flow rate. Pore depth and pore diffusion coefficient are found to have most influential effects on KPI: their exponents are 1 and 0.5, respectively.

  17. Development of performance model of CDI electrode for desalination

    International Nuclear Information System (INIS)

    Jeon, Byong Guk

    2010-02-01

    up to reach 95% of the salt removal amount. The effects of design parameters on KPI are studied: salt concentration, imposed voltage, electrode gap distance, pore depth, pore diffusion coefficient, pore radius, and flow rate. Pore depth and pore diffusion coefficient are found to have most influential effects on KPI: their exponents are 1 and 0.5, respectively

  18. A method of calculating fission gas diffusion from UO{sub 2} fuel and its application to the X-2-f loop test

    Energy Technology Data Exchange (ETDEWEB)

    Booth, A H

    1957-09-15

    A method for calculating the fraction of the rare gas fission products that diffuses out of a UO{sub 2} fuel element under conditions In a reactor is outlined, The method is based on the values of the diffusion constant found in laboratory experiments, as described In CRDC-718, and assumes that these remain unaltered during the period that the fuel is in the reactor, The method has been applied to two types of oxide in the X-2-f loop test of 1956 and the results compared with the amounts of fission gas found by analysis of the gases collected in sheath puncture experiments, as described in CRDC-719. The calculated values depend heavily on the estimated temperatures In the fuel. They are in close agreement with the experimental values provided that, in calculating the temperature, certain assumptions are made regarding the thermal expansion of the oxide cylinder. (author)

  19. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  20. Application of multicomponent diffusion theory for description of impurities distribution in complex diffusive doping of semiconductors

    International Nuclear Information System (INIS)

    Uskov, V.A.; Kondrachenko, O.E.; Kondrachenko, L.A.

    1977-01-01

    A phenomenological theory of multicomponent diffusion involving interaction between the components is employed to analyze how the interaction between two admixtures affects their simultaneous or consequent diffusion into a semiconductor. The theory uses the equations of multicomponent dissusion under common conditions (constant diffusion coefficients and equilibrium distribution of vacancies). The experiments are described on In and Sb simultaneous diffusion into Ge. The diffusion is performed according to the routine gas phase technology with the use of radioactive isotopes In 114 and Sb 124 . It is shown that the introduction of an additional diffusion coefficient D 12 makes it possible to simply and precisely describe the distribution of interacting admixtures in complex diffusion alloying of semiconductors

  1. Ultrafast lithium diffusion in bilayer graphene

    Science.gov (United States)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  2. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  3. Ionic diffusion in the double layer at model electrode/molten salt interfaces

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Tosi, M.P.

    1991-08-01

    The anisotropic ionic diffusion coefficients in model electrochemical cells in the molten-salt regime for the electrolyte are evaluated from the ionic density profiles reported in simulation work of Grout and coworkers. A local description of the diffusion processes for counterions and coions in the electrical double layer is obtained from the data. (author). 10 refs, 1 fig., 1 tab

  4. On the noble gas isotopic fractionation in naturally occurring gases

    International Nuclear Information System (INIS)

    Marty, B.

    1984-01-01

    The isotopic composition of neon in the mantle is an important geochemical constraint on the formation of the earth and subsequent degassing. Some deviation of neon isotopic composition in natural gas and rock samples from the atmospheric value which can not be accounted for by the known nuclear process has been reported, and Nagao et al. interpreted the deviation as the result of mass fractionation in natural gas in Japan. The possible cause of such fractionation was investigated. Gaseous diffusion, such as (a) free-molecule diffusion, (b) mutual diffusion and (c) thermal diffusion, is able to cause isotopic fractionation. After the detailed consideration on these three diffusion processes, conclusion that free-molecule diffusion occurs only in very particular condition, and it is questionable that thermal diffusion occurs in nature, were obtained. (b) which means the interaction of two or more gases, is supposed to occur in nature, and is able to confirm experimentally. In mutual diffusion only, gas transfer is concerned, but other form of fractionation should not be neglected. In solid diffusion, gas is trapped by fine grained sedimentary rocks, and may be fractionated by adsorption and communication to exterior through minute channels. Underground water also works as noble gas reservoir. For example, when gas stream is in contact with water, continuous exchange is possible to take place at the interface of gas and liquid, which contributes to the fractionation. (Ishimitsu, A.)

  5. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    Science.gov (United States)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  6. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  7. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  8. Investigation on the structure, thermodynamic and electrochemical properties of the MmNi3.55Mn0.4Al0.3Fe0.75 compound used as negative electrode in Ni–MH batteries

    International Nuclear Information System (INIS)

    Ben Moussa, M.; Abdellaoui, M.; Lamloumi, J.; Percheron Guégan, A.

    2013-01-01

    Highlights: •The solid–gas capacity at room temperature is equal to 3.93 H/mol. •The value pressure equilibrium is 0.024 bar. •The average radius particles decrease with number of cycles. •The hydrogen diffusion coefficient D H , increase with number of cycles. -- Abstract: The structure, thermodynamic and electrochemical properties of the hydride poly-substituted MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloy used as material for negative electrode in Ni–MH batteries investigated. The solid–gas capacity and pressure equilibrium measurement at room temperature are respectively 3.93 H/mol and 0.024 bars. The chronoamperometry method shows the size of the particles (a) participating in the electrochemical reaction decrease of cycle number. The hydrogen diffusion coefficient determined by electrochemical impedance spectroscopy (EIS) increase of the number of cycles from 3.5 × 10 −12 cm 2 s −1 before cycling to 7.29 × 10 −10 cm 2 s −1 after 13 cycles charge–decharge

  9. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    Science.gov (United States)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  10. Determination of tellurium in gallium by alternating current stripping voltammetry with a mercury/graphite electrode

    International Nuclear Information System (INIS)

    Berengard, I.B.; Kaplan, B. Ya.

    1986-01-01

    The analytical signal in ac stripping coltammetry (ACSV) with mercury indicator electrodes depends on the weight of the electrolytically collected analyte at the electrode surface, the depth of the collection layer being equal to the effective diffusion-layer thickness. Replacement of the static mercury drop electrode (SMDE) by the mercury/graphite electrode (MGE) is of practical interest in that the analyte detection limit can be lowered by decreasing the colume of the telluriumcontaining polarographed solution; in addition, plant laboratories find it difficult to control the SDME uniformity. The work in this article was done on a PU-1 universal polarograph in a square-wave vol tage component mode using the three-electrode cell shown. The rotating mercury/graphite electrode is found by the authors to be superior to the static mercury drop electrode in that it can lower the detection limit for tellurium in gallium to 5.10 /SUP -7percent/ , due to the smaller volume of the polarographed solution

  11. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    Science.gov (United States)

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.

  12. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  13. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  14. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    Science.gov (United States)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  15. A planar micro-flame ionization detector with an integrated guard electrode

    International Nuclear Information System (INIS)

    Kuipers, W J; Müller, J

    2008-01-01

    The flame ionization detector (FID) quantifies small concentrations of organic compounds by flame ionization of hydrocarbons and measurement of the resulting ion current. The ion current represents the number of carbon atoms in the sample gas. The miniaturization of the FID by MEMS technology (µFID) is expected to increase its use, because of reduced oxyhydrogen consumption. This loosens safety precautions and makes portable applications possible. In contrast to a former µFID design, the current planar µFID is designed to prevent environmental air from entering the system and deteriorating the measurement signal. The oxyhydrogen flame burns in the silicon plane of an almost completely encapsulating glass–silicon–glass sandwich. Only a small opening remains for removal of the exhaust gas from the system. In between the detector electrodes, a guard electrode is integrated to intercept and by-pass leak currents past the picoammeter, which then only measures the ion current. Due to the design of the guard electrode, small leak currents are still measured by the picoammeter. Yet, these leak currents can be corrected for to obtain the ion current. Measurements of the ion current as a function of the applied voltage and the sample gas flow show expected FID behaviour

  16. Coupled reaction-diffusion equations to model the fission gas release in the irradiation of the uranium dioxide

    International Nuclear Information System (INIS)

    Moyano, Edgardo A.; Scarpettini, Alberto F.

    2003-01-01

    A semi linear model of weakly coupled parabolic p.d.e. with reaction-diffusion is investigated. The system describes fission gas transfer from grain interior of UO 2 to grain boundaries. The problem is studied in a bounded domain. Using the upper-lower solutions method, two monotone sequences for the finite differences equations are constructed. Reasons are mentioned that allow to affirm that in the proposed functional sector the algorithm converges to the unique solution of the differential system. (author)

  17. “Imaging” LEIS of micro-patterned solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, John, E-mail: john.druce@i2cner.kyushu-u.ac.jp [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Simrick, Neil [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Ishihara, Tatsumi [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Kilner, John [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom)

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  18. A survey of reference electrodes for high temperature waters

    International Nuclear Information System (INIS)

    Molander, A.; Eriksson, Sture; Pein, K.

    2000-11-01

    , suggestions of variations of the conventional platinum electrode is given. Interesting variations are platinum electrodes with flowing electrolyte or quasi reversible hydrogen electrode. Development of silver chloride electrodes for extended lifetime can be done with e g a diffusion barrier to limit dilution. Also completely new types of reference electrodes are treated, as e g metal/metal oxide electrodes. These can be interesting but more development is required. Finally a survey of the measurements in BWR-PWR and CANDU reactors published in literature is given. In BWRs, American power plants (with electrodes from GE), Swedish power plants (with electrodes from Studsvik), Siemens and Toshiba have published measurements of larger extent. In PWRs, above all Ringhals and Siemens perform measurements today, even if a number of measurements through the years are published

  19. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  20. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    Science.gov (United States)

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.