WorldWideScience

Sample records for gas adsorption chromatographic

  1. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  2. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    International Nuclear Information System (INIS)

    Kokub, D.; Allahi, A.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.; Hussain, A.

    1993-01-01

    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  3. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  4. Portable gas chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  5. Optimization of the gas chromatographic separations

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1973-01-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs

  6. GAS CHROMATOGRAPHIC AND SPECTROSCOPIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Peroxyformic acid prepared in-situ was employed for epoxidation of canola oil in the presence of toluene. Gas chromatographic analysis of the product revealed the following species: C16:0; C18:0; C18:1; C18:2; C18:3; monoepoxy C18:0; monoepoxy C18:1; monoepoxy C18:2; diepoxy C18:0; diepoxy C18:1 and triepoxy ...

  7. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  8. FTIR gas chromatographic analysis of perfumes

    Science.gov (United States)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  9. Fast gas chromatographic separation of biodiesel.

    Science.gov (United States)

    Pauls, R E

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m × 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  10. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  11. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  12. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    Science.gov (United States)

    Roubani-Kalantzopoulou, Fani

    2009-03-06

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  13. Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering.

    Science.gov (United States)

    Koshari, Stijn H S; Wagner, Norman J; Lenhoff, Abraham M

    2015-06-19

    Measurements of the nanoscale structure of chromatographic adsorbents and the associated distribution of sorbed protein within the media can facilitate improvements in such media. We demonstrate a new technique for this purpose using small-angle neutron scattering (SANS) to characterize the nano- to microscale structure of the chromatographic media and sorbed protein under conditions relevant for preparative chromatographic separations. The adsorption of lysozyme on cellulosic S HyperCel™ (Pall Corporation), a strong cation exchanger, was investigated by SANS. The scattering spectrum is reduced to three contributions arising from (1) the chromatographic medium, (2) discrete protein molecules, and (3) the distribution of sorbed protein within the medium. These contributions are quantified for a range of protein loadings. The total concentration of protein in the chromatographic media can be quantified from the SANS spectrum and the protein is observed to retain its tertiary structure upon adsorption, within the resolution of the method. Further analysis of the SANS spectra shows that protein adsorption is uniform in the media. These measurement techniques provide new and valuable nanoscale information about protein sorption in chromatographic media. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods

    OpenAIRE

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2013-01-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2....

  15. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    Science.gov (United States)

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  16. Comparison of thin layer chromatographic and gas chromatographic determination of propoxur residues in a cocoa ecosystem

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Lowor, S.; Akpabli, C.K.

    2005-01-01

    The fate of propoxur in a cocoa ecosystem has been studied using thin layer chromatographic (TLC) and gas chromatographic (GC) methods. Residues of propoxur as determined by both TLC and GC were not significantly different. TLC analysis of propoxur residues in soil, cocoa leaves and pods did not require any rigorous cleanup since residues measured from cleaned extracts and without cleanup were not significantly different. The residue levels of propoxur in the soil were found to decrease rapidly and, by the 21st day, none was detected in the topsoil (0-15 cm). Evidence of leaching of propoxur residues in the soil has also been demonstrated. The amount left in the top soil after the first seven days were 27%, 23% and 24% of the initial one as determined by the TLC without cleanup, TLC with cleanup and GLC, respectively. No propoxur residue was detected in topsoil 21 days after spraying. About 38% of pesticides detected on the cocoa pod on the day of treatment remained on the pod seven days after treatment. The residue detected on the leaves on the day of treatment was higher than that in or on the soil. This decreased rapidly to 1.7% in 21 days compared to 16% for the soil and 23% for the pod. (author)

  17. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  18. Gas chromatographic method fr determination of carbon in metallic uranium

    International Nuclear Information System (INIS)

    Nikol'skij, V.A.; Markov, V.K.; Evseeva, T.I.; Cherstvenkova, E.P.

    1983-01-01

    Gas chromatographic device to determine carbon in metal uranium is developed. Burnout unite, permitting to load in the burnout tube simultaneously quite a few (up to 20) weight amounts of materials to be burned is a characteristic feature of the device. As a result amendments for control experiment and determination limit are decreased. The time of a single determination is also reduced. Conditions of carbon burn out from metal uranium are studied and temperature and time of complete extraction of carbon in the form of dioxide from weight amount into gaseous phase are established

  19. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  20. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  1. A bubble-based microfluidic gas sensor for gas chromatographs.

    Science.gov (United States)

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-07

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month.

  2. New gas chromatographic instrumentation for studying the action of sulfur dioxide on marbles.

    Science.gov (United States)

    Bakaoukas, Nikolaos; Kapolos, John; Koliadima, Athanasia; Karaiskakis, George

    2005-09-16

    Reversed-flow gas chromatography, which is a sub-technique of inverse gas chromatography, is an experimental arrangement simulating a simple model for the action of air pollutants on buildings and monuments, in laboratory scale. By using a commercial gas chromatograph and an appropriate mathematical analysis, kinetic parameters such as rate constants for adsorption k1, adsorption/desorption kR and surface reaction k2, as well as surface diffusion coefficients Dgamma, deposition velocities Vd and reaction probabilities gamma of SO2 on marble surfaces at different temperatures (303.15-353.15 K) in the presence or in the absence of protective materials (an acrylic copolymer, Paraloid B-72 or a siloxane, CTS Silo 111) were calculated. From the above mentioned physicochemical quantities the ability of the examined materials to minimize the dry deposition of SO2 on marble is carrying out and a possible mechanism for the interaction between SO2 and Paraloid B-72 was suggested. Both materials (CTS SILO 111 and Paraloid B-72) are good enough for protecting marble against SO2 at low temperatures (303.15-323.15), while at high temperatures (333.15-353.15), siloxane seems to protect marble better than acrylic copolymer.

  3. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  4. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  5. [The gas chromatographic analysis of volatile compounds on the compact MKhP chromatograph].

    Science.gov (United States)

    Krasnova, R R; Ianovskiĭ, S M

    1998-01-01

    Methods of analysis of biological specimens, alcohol beverages, and technological liquids in columns with standard adsorbents carbopaque B and C with carbowax 20M, widely used abroad, are described and examples of analyses presented. A special portable chromatographer (MCP) with flame ionization detector has been designed. It is intended for analysis of volatile organic compounds (alcohols, carbohydrates, organochlorine compounds, glycols, esters, etc.) in columns of different polarity. The system of processing of chromatographic findings permits a quantitative analysis of complex chromatograms and automated identification of substances in biological samples by using the available database.

  6. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  7. Miniaturized MEMS-Based Gas Chromatograph for High Inertial Loads Associated with Planetary Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a rugged, miniaturized, low power MEMS-based gas chromatograph (GC) capable of handling the high inertial loads...

  8. Separation and determination of high-carbon alcohols using method of column chromatographic and gas-chromatographic analysis

    International Nuclear Information System (INIS)

    Kang Zhongrong; Li Biping; Zeng Yongchang

    1988-01-01

    This paper describes the separation and determination of high-carbon alcohols from amine extractant by using the method of column chromatography of aluminium oxide and gas-chromatographic analysis. The total conent of high-carbon alcohols is determined by the method of column chromatography, while the components of the high-carbon alcohols and their relative contents are determined by the method of gas-chromatography. A simple reliable and practical method is provided for the analysis of high-carbon alcohol from the amine extractant in this paper

  9. Gas adsorption in active carbons and the slit-pore model 1: Pure gas adsorption.

    Science.gov (United States)

    Sweatman, M B; Quirke, N

    2005-05-26

    We describe procedures based on the polydisperse independent ideal slit-pore model, Monte Carlo simulation and density functional theory (a 'slab-DFT') for predicting gas adsorption and adsorption heats in active carbons. A novel feature of this work is the calibration of gas-surface interactions to a high surface area carbon, rather than to a low surface area carbon as in all previous work. Our models are used to predict the adsorption of carbon dioxide, methane, nitrogen, and hydrogen up to 50 bar in several active carbons at a range of near-ambient temperatures based on an analysis of a single 293 K carbon dioxide adsorption isotherm. The results demonstrate that these models are useful for relatively simple gases at near-critical or supercritical temperatures.

  10. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    Science.gov (United States)

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  11. Insights into Adsorption of Chlorobenzene in High Silica MFI and FAU Zeolites Gained from Chromatographic and Diffractometric Techniques

    Directory of Open Access Journals (Sweden)

    Luisa Pasti

    2018-02-01

    Full Text Available In this work, the capability of two commercial high silica zeolites (HSZs, namely ZSM-5 and Y, for the removal of chlorobenzene (CB from water was investigated by combining chromatographic and diffractometric techniques. The adsorption isotherms and kinetics of CB on ZSM-5 and Y zeolites were determined from batch tests. The adsorption kinetics were very fast; the time to reach equilibrium was less than 10 min. The equilibrium data of CB on the two HSZs showed dissimilarities that are particularly evident in the adsorption data concerning the low concentration range, where Y zeolite is characterized by low adsorption. On the contrary, at higher solution concentrations the adsorption capacity of Y is higher than that of ZSM-5. The crystalline structures of Y and ZSM-5 saturated with CB were investigated by X-ray diffraction (XRD techniques. Rietveld refinement analyses of XRD data allowed for quantitative probing of the structural modifications of both zeolites after CB adsorption and provided insight into the preferred zeolite adsorption sites in both microporous materials. The refined framework–extraframework bond distances confirm that interactions between the selected organic contaminant and hydrophobic zeolites are mediated via co-adsorbed H2O. The occurrence of H2O–CB–framework oxygen oligomers explains variations in both the unit cell parameters and the shape of the channels, clearly confirming that water plays a very relevant role in controlling the diffusion and adsorption processes in hydrophobic zeolites.

  12. Atomistic Modeling of Gas Adsorption in Nanocarbons

    Directory of Open Access Journals (Sweden)

    G. Zollo

    2012-01-01

    Full Text Available Carbon nanostructures are currently under investigation as possible ideal media for gas storage and mesoporous materials for gas sensors. The recent scientific literature concerning gas adsorption in nanocarbons, however, is affected by a significant variation in the experimental data, mainly due to the different characteristics of the investigated samples arising from the variety of the synthesis techniques used and their reproducibility. Atomistic simulations have turned out to be sometimes crucial to study the properties of these systems in order to support the experiments, to indicate the physical limits inherent in the investigated structures, and to suggest possible new routes for application purposes. In consideration of the extent of the theme, we have chosen to treat in this paper the results obtained within some of the most popular atomistic theoretical frameworks without any purpose of completeness. A significant part of this paper is dedicated to the hydrogen adsorption on C-based nanostructures for its obvious importance and the exceptional efforts devoted to it by the scientific community.

  13. New portable micro gas chromatograph for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overton, E.B.; Carney, K.R.; Dharmasena, H.P.; Mainga, A.M.; Ehrmann, U. [Louisiana State Univ., Baton Rouge, LA (United States). Inst. for Environmental Studies

    1994-12-31

    Efforts directed at developing a truly portable method for the analysis of semivolatile compounds have led to the construction and testing of a new generation of micro-GC instrumentation. Building on the successful application of microbore GC columns for in-field analysis of volatile organic compounds, the instrument development group at the LSU-Institute for Environmental Studies has developed a hand portable GC capable of analyzing samples containing compounds with retention indices (100% dimethylpolysiloxane column) up to at least 2,000 in less than 4 minutes, using less than 50 watts (peak) of electrical power. In addition to the ability to analyze semivolatile compounds, the chromatograph is capable of analyzing volatile organics competitively with the most sophisticated of the current commercial portable GCs. The presentation will evaluate chromatographic performance of the instrument at its latest stage of development and demonstrate some applications to environmental analysis using the prototype instrument.

  14. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.

    Science.gov (United States)

    Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George

    2006-09-15

    The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.

  15. Research on technology of online gas chromatograph for SF6 decomposition products

    Science.gov (United States)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  16. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.

    Science.gov (United States)

    Paloglou, A; Martakidis, K; Gavril, D

    2017-01-13

    A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    Science.gov (United States)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  18. Optimization of the gas chromatographic separations; Optimacion de las separaciones cromatograficas en fase gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L.

    1973-07-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs.

  19. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  20. Simple gas chromatographic system for analysis of microbial respiratory gases

    Science.gov (United States)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  1. Gas-chromatographic quantitative determination of argon in air samples, by elimination of oxigen

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-08-01

    A method of gas-chromatographic quantitative determination of argon in air samples, by elimination of oxygen, is presented. Experiments were carried out in a static system. Conditions for the application of the method in dynamic systems are specified. Sensibility of the method: 5 10 -4 cm 3 Ar per cm 3 of air. (author)

  2. Gas Chromatographic-Mass Spectrometric Analysis of Essential Oil ...

    African Journals Online (AJOL)

    Purpose: To analyze the essential oil composition of the flower of Jasminum officinale L. var. grandifloroum L. (Jasminum grandiflorum) by gas chromatography-mass spectrometry (GC-MS). Methods: The optimum GC-MS conditions used for the analysis were 250 oC inlet temperature, 150 oC MSD detector temperature, ...

  3. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... Key words: Acetone-butanol-ethanol fermentation, column temperature programme, gas chromatography, sweet sorghum juice. ..... dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity. J. Membrane Sci. 245: 199-210. Wang F, Kashket S, Kashket ...

  4. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  5. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  6. Study on Detection and Identification of Gas Sensor Based on Chromatographic Separation

    Directory of Open Access Journals (Sweden)

    Xiao Wanfu

    2014-08-01

    Full Text Available This paper developed a chromatographic separation and sensor based on a combination of gas detector, the common precursor gases such as acetone, ether, chloroform and other gas detection. According to the obtained experimental data, proposed one kind based on the principal component analysis and support vector machine algorithm of gas chromatography identification sensor signal processing and recognition; the method used for detection and identification of the air in the precursor gases combine tester self-developed, obtained very good result. This paper designed and developed a chromatographic separation and sensor based on the combination of gas detection instruments, to multi gas detection instrument. On separation characteristics using chromatography, to solve the traditional single common precursor gas detection. The use of a pre processing based on domestication, principal component analysis for feature extraction method of all kinds of gas data. This effectively avoids the sensor substrate voltage fluctuation and gas concentration effects on body recognition, and reduces the gas sample feature vector dimension.

  7. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  8. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    Supplementary Information. Journal of Chemical Sciences. Adsorption of small gas molecules on B36 nanocluster. YOUNES VALADBEIGI. *. , HOSSEIN FARROKHPOUR and MAHMOUD TABRIZCHI. Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *. Corresponding Author: Younes ...

  9. Chromatographic measurement of hydrogen isotopic and permanent gas impurities in tritium

    International Nuclear Information System (INIS)

    Warner, D.K.; Kinard, C.; Bohl, D.C.

    1976-01-01

    This paper describes a gas chromatograph that was designed for dedicated analysis of hydrogen isotopic and permanent gas impurities in tritium and tritium-deuterium mixtures. The instrument that was developed substantially improved the accuracy and precision of hydrogen isotopic analysis in the 20 ppM to one mole percent range as compared with other analytical methods. Several unique design features of the instrument were required due to the radiation and isotopic exchange properties of the tritium in the samples; descriptions of these features are presented along with details of the complete chromatographic system. The experimental procedures used to calibrate the detector and statistically evaluate its performance are given, and the sources of analytical error are cited. The limitations of the present system are also discussed

  10. Gas chromatographic determination of calcium propionate added as preservative to bread.

    Science.gov (United States)

    Lamkin, W M; Unruh, N C; Pomeranz, Y

    1987-01-01

    A simple and rapid gas chromatographic procedure was developed for determining low concentrations of propionate added as a preservative to bread. A bread sample to be analyzed was ground in a meat grinder with a 3 mm hole plate and finely divided by rubbing through a No. 8 sieve. The propionate was then extracted into 0.050M formic acid in a blender at low speed for 5 min, and an aliquot of a filtrate was analyzed directly by gas chromatography. Chromatographic separation was accomplished on a Carbopack C column coated with 0.3% (w/w) Carbowax 20M and 0.1% (w/w) phosphoric acid. Less than 0.2 ppm propionic acid could be detected in the aqueous extract. Over the range of 0.03-0.23% calcium propionate, average relative error was -1.20% with an average coefficient of variation of 2.02%.

  11. Gas chromatographic determination of pesticide residues in white mustard.

    Science.gov (United States)

    Słowik-Borowiec, Magdalena; Szpyrka, Ewa; Walorczyk, Stanisław

    2015-04-15

    A new analytical method employing gas chromatography coupled to electron capture and nitrogen phosphorus detection (GC-ECD/NPD) has been developed and validated for the screening and quantification of 51 pesticides in a matrix of high chlorophyll content - white mustard (Sinapis alba L.). For preparation of the sample extract, the citrate buffered QuEChERS procedure was followed. However certain changes were made to adapt the method to our needs and available laboratory resources. The sample size was reduced to 5 g, 10 mL water was added and exchange of solvent before GC analysis was done. The samples spiked with the target pesticides at the concentration level 0.01 mg/kg and a higher level (depending on the compound) yielded average recoveries in the range of 70-120% with relative standard deviations (RSDs) 0-19% except for HCB, S-metolachlor and teflubenzuron, and displayed very good linearity (R(2)>0.99) for nearly all the analytes. Limit of quantification was 0.01 mg/kg for the majority of the analytes. The expanded measurement uncertainties were estimated employing a "top-down" empirical model as being between 6% and 32% and yielding an average value of 18% (coverage factor k=2, confidence level 95%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The adaptive internet application for interpretation of the transformer oil gas chromatographic analysis results

    Directory of Open Access Journals (Sweden)

    Polužanski Vladimir

    2015-01-01

    Full Text Available This paper describes an adaptive Internet application for the interpretation of the transformer oil gas chromatographic analysis results. The first version of the application is developed by following an evolutionary software development concept. The most important software development risks and the appropriate solutions are described. An open-source web framework named Bootstrap is used for an application implementation. The application is developed by using ASP.NET and MS SQL server.

  13. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  14. Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation.

    Science.gov (United States)

    Chang, Na; Yan, Xiu-Ping

    2012-09-28

    Metal-organic frameworks (MOFs) which offer a variety of topologies, porous networks and high surface areas are promising and have potential for the applications of specific adsorption, isomerization, catalysis and separation. UIO-66 is the first MOF that has been observed to have reverse shape selectivity. However, such reverse shape selectivity of MOFs has never been explored for capillary gas chromatographic separation. Here we report the fabrication of MOF UIO-66 coated capillary column and exploration of the reverse shape selectivity and molecular sieving effect of such column for capillary gas chromatographic separation of alkane isomers and benzene homologues with excellent selectivity and precision. The adsorption enthalpies and entropies on the interaction between hydrocarbons and UIO-66 were measured to illustrate the energy effect on the separation of alkane isomers and benzene homologues on the UIO-66 coated capillary column. UIO-66 coated capillary column gave preferential retention of branched alkane isomers over their linear isomer, showing reverse shape selectivity, making UIO-66 coated capillary column attractive for capillary gas chromatographic separation of alkane isomers. iso-Propylbenzene (branched) eluted after n-propylbenzene on the UIO-66 coated capillary column again shows reverse shape selectivity. However, much bulkier 1,3,5-trimethylbenzene eluted earlier than n-propylbenzene and iso-propylbenzene on the UIO-66 coated capillary column, exhibiting molecular sieving effect. The combination of reverse shape selectivity with molecular sieving effect makes the UIO-66 coated capillary column promising for the separation of structural isomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. TREATMENT OF NATURAL GAS BY ADSORPTION OF CO2

    Directory of Open Access Journals (Sweden)

    Kristýna Hádková

    2015-12-01

    Full Text Available Apart from burning, one of the possible uses of natural gas is as a fuel for motor vehicles. There are two types of fuel from natural gas — CNG (Compressed Natural Gas or LNG (Liquefied Natural Gas. Liquefaction of natural gas is carried out for transport by tankers, which are an alternative to long-distance gas pipelines, as well as for transport over short distance, using LNG as a fuel for motor vehicles. A gas adjustment is necessary to get LNG. As an important part of the necessary adjustment of natural gas to get LNG, a reduction of CO2 is needed. There is a danger of the carbon dioxide freezing during the gas cooling. This work deals with the testing of adsorption removal of CO2 from natural gas. The aim of these measurements was to find a suitable adsorbent for CO2 removal from natural gas. Two different types of adsorbents were tested: activated carbon and molecular sieve. The adsorption properties of the selected adsorbents were tested and compared. The breakthrough curves for CO2 for both adsorbents were measured. The conditions of the testing were estimated according to conditions at a gas regulation station — 4.0MPa pressure and 8 °C temperature. Natural gas was simulated by model gas mixture during the tests. The breakthrough volume was set as the gas volume passing through the adsorber up to the CO2 concentration of 300 ml/m3 in the exhaust gas. The thermal and pressure desorption of CO2 from saturated adsorbents were also tested after the adsorption.

  16. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  17. Ionic liquid functionalization of semi-packed columns for high-performance gas chromatographic separations.

    Science.gov (United States)

    Regmi, Bishnu P; Chan, Ryan; Agah, Masoud

    2017-08-11

    Gas chromatography columns fabricated using microelectromechanical system (MEMS) technology provide a number of clear advantages. However, successful deposition of stationary phases having a wide application range remains an important technical challenge. In this paper, we report, for the first time, on the deposition of room temperature ionic liquids (RTILs)-a versatile class of stationary phases-inside the channels of semi-packed columns (SPCs) for high-performance gas chromatographic separation of complex chemical mixtures. A 1m long, 240μm deep, 190μm wide column comprising an array circular micropillars of 20μm in diameter and 40μm post spacing was fabricated using MEMS processes. Two RTILs were immobilized inside these columns using a dynamic coating method, and the columns were tested for separation of three different mixtures: a 15-component mixture of hazardous chemical pollutants, an 8-component mixture of fatty acid methyl esters, and a sample of gasoline. These columns displayed sharp and symmetrical peaks, significant selectivity variation between the two columns, and rapid separation times. The columns yielded high separation efficiencies measured by approximately 2300 plates/m under isothermal conditions. This work highlights the potential of RTILs to be used as excellent stationary phases for SPCs, thereby dramatically expanding the range of complex mixtures that could be analyzed using a micro gas chromatograph. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Simple and Rapid Extraction for Gas Chromatographic Determination of Thiabendazole and Imazalil Residues in Lemons

    Directory of Open Access Journals (Sweden)

    Navickiene Sandro

    2002-01-01

    Full Text Available A rapid and efficient method is described for the determination of thiabendazole and imazalil residues in lemons (peel and pulp. The procedure is based on the extraction with an hexane:ethyl acetate mixture (1:1, v/v and gas chromatographic analysis using thermionic specific detection (TSD. The possibility of matrix effect was also studied. Mean recoveries from 8 replicates of fortified samples ranged from 79% to 109%, with relative standard deviation values between 2.4% to 12.8%. The detection and quantification limits of the method were 0.2 mg kg-1 and 0.5 mg kg-1, respectively.

  19. Gas chromatographic-mass spectrometric determination of levodropropizine plasma levels in healthy volunteers.

    Science.gov (United States)

    Zaratin, P; De Angelis, L; Cattabeni, F

    1988-08-01

    A gas chromatographic-mass spectrometric method for the qualitative and quantitative analysis of levodropropizine (S(-)-3-(4-phenyl-piperazin-1-yl)-propane-1,2-diol, DF 526) in plasma is described. The method proved to be highly selective and sensitive. Drug concentrations as low as 5 ng/ml could be measured. Levodropropizine plasma levels were measured in 6 healthy volunteers after administration of an acute 60 mg dose. Peak concentrations were reached between 40 and 60 min and measurable amounts of drug were present till 8 h after administration.

  20. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  1. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  2. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Science.gov (United States)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  3. A Gas Chromatographic Method for the Determination of Bicarbonate and Dissolved Gases

    Directory of Open Access Journals (Sweden)

    John H. Loughrin

    2017-11-01

    Full Text Available A gas chromatographic method for the rapid determination of aqueous carbon dioxide and its speciation into solvated carbon dioxide and bicarbonate is presented. One-half mL samples are injected through a rubber septum into 20-mL vials that are filled with 9.5 mL of 0.1 N HCl. A one mL portion of the headspace is withdrawn and injected onto a gas chromatograph equipped with a thermal conductivity detector. Using the dimensionless Henry's constant for carbon dioxide and an adaptation of the Henderson-Hasselbalch equation, carbon dioxide in the samples can be categorized among solvated, bicarbonate, and carbonate forms. Natural water samples as well as wastewater from a municipal sewage treatment plant and a swine rearing operation were analyzed by this method and the results compared favorably to those obtained by titration. Samples stored for up to 5 weeks showed no significant changes in carbon dioxide concentrations. In addition, using flame ionization and electron capture detectors, methane and nitrous oxide concentrations in the samples were also measured.

  4. Application of Gas Chromatographic analysis to RPC detectors in the ATLAS experiment at CERN-LHC

    CERN Document Server

    De Asmundis, R

    2007-01-01

    Starting from 2007 a large number (1200) Resistive Plate Chambers (RPC) detectors will be used as muon trigger detectors in the ATLAS Experiment at CERN-LHC accelerator. RPC are gaseous detector in which the quality and the stability of the gas mixture as well as the design of the gas supplying system, play a fundamental role in their functioning. RPC are foreseen to work more than ten years in the high radiation environment of ATLAS and the gas mixture acts really as a "lifeguard" for the detectors. For this reason a great attention has been devoted to the gas studies in order to optimize RPC performance, robustness and reliability in a high radiation environment. In this paper we describe the work done to decide how to supply and control in an optimal way the gas to the detectors, in order to ensure their best performance for a long time. The activity, based on Gas Chromatographic (GC) analysis, has been carried on a sample of final RPC working in radiation conditions much more intense than those foreseen f...

  5. Qualification of an Agilent Technologies 7890A gas chromatograph used in the biotechnology industry

    International Nuclear Information System (INIS)

    Alvarez Gonzalez, Alberto; Tambara Hernandez, Yanet; Alvarez Gil, Felix

    2014-01-01

    The drug manufacture is governed by strict international standards that guarantee reproducibility and consistency of results. The qualification of the instruments used in the productive processes, as well as in the characterization of products and their quality control are prerequisites to the validation of any analytical technique using them. One of the instrumental techniques used in the biotechnical industry is Gas Chromatography. A standard of pure caffeine was used for analysis in addition to a HP-5 30 m x 0,32 mm d.i. and 0,33 μm thick film column was used in a Gas Chromatograph coupled with a Flame Ionization Detector. For the testing of the different modules involved in the analysis (injector, column, oven and detector), an experimental design was made to estimate several parameters

  6. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  7. Gas chromatographic determination of Di-n-butyl phosphate in radioactive lean organic solvent of FBTR carbide fuel reprocessing

    International Nuclear Information System (INIS)

    Velavendan, P.; Ganesh, S.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work Di-n- butyl phosphate (DBP) a degraded product of Tri-n-butyl phosphate (TBP) formed by acid hydrolysis and radiolysis in the PUREX process was analyzed. Lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solution was determined by standard Gas Chromatographic technique. The method involves the conversion of non-volatile Di-n-butyl phosphate into volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatograph (GC). A calibration graph was made for DBP concentration range of 200-2000 ppm with correlation coefficient of 0.99587 and RSD 1.2 %. (author)

  8. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  9. Off-gas adsorption model and simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, V.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID (United States)

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  10. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  11. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  12. Determination and discrimination of biodiesel fuels by gas chromatographic and chemometric methods

    Directory of Open Access Journals (Sweden)

    Milina R.

    2016-03-01

    Full Text Available Pattern recognition method (PRM was applied to gas chromatographic (GC data for a fatty acid methyl esters (FAME composition of commercial and laboratory synthesized biodiesel fuels from vegetable oils including sunflower, rapeseed, corn and palm oils. Two GC quantitative methods to calculate individual fames were compared: Area % and internal standard. The both methods were applied for analysis of two certified reference materials. The statistical processing of the obtained results demonstrates the accuracy and precision of the two methods and allows them to be compared. For further chemometric investigations of biodiesel fuels by their FAME-profiles any of those methods can be used. PRM results of FAME profiles of samples from different vegetable oils show a successful recognition of biodiesels according to the feedstock. The information obtained can be used for selection of feedstock to produce biodiesels with certain properties, for assessing their interchangeability, for fuel spillage and remedial actions in the environment.

  13. Determination and discrimination of biodiesel fuels by gas chromatographic and chemometric methods

    Science.gov (United States)

    Milina, R.; Mustafa, Z.; Bojilov, D.; Dagnon, S.; Moskovkina, M.

    2016-03-01

    Pattern recognition method (PRM) was applied to gas chromatographic (GC) data for a fatty acid methyl esters (FAME) composition of commercial and laboratory synthesized biodiesel fuels from vegetable oils including sunflower, rapeseed, corn and palm oils. Two GC quantitative methods to calculate individual fames were compared: Area % and internal standard. The both methods were applied for analysis of two certified reference materials. The statistical processing of the obtained results demonstrates the accuracy and precision of the two methods and allows them to be compared. For further chemometric investigations of biodiesel fuels by their FAME-profiles any of those methods can be used. PRM results of FAME profiles of samples from different vegetable oils show a successful recognition of biodiesels according to the feedstock. The information obtained can be used for selection of feedstock to produce biodiesels with certain properties, for assessing their interchangeability, for fuel spillage and remedial actions in the environment.

  14. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials.

    Science.gov (United States)

    Mills, G A; Walker, V

    2000-12-01

    Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.

  15. Volatile hexafluoroacetylacetonates for the isolation and gas-chromatographic determination of trace metals. Pt. 1

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Mirzai, H.

    1985-01-01

    The optimization of the extraction of metal cations [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(IIII), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) and Am(III)] in the form of mixed-ligand complexes with hexafluoroacetylacetone and neutral donators with nitrogen atoms or P=O-groups is described. The thermal and gas-chromatographic characteristics of the extracted volatile compounds are reported. Optimal results were achieved using tri-n-butyl-phosphine oxide as donator. (orig.) [de

  16. Design and Performance of a Gas Chromatograph for Automatic Monitoring of Pollutants in Ambient Air

    Science.gov (United States)

    Villalobos, R.; Stevens, D.; LeBlanc, R.; Braun, L.

    1971-01-01

    In recent years, interest in air pollution constituents has focused on carbon monoxide and hydrocarbons as prime components of polluted air. Instrumental methods have been developed, and commercial instruments for continuous monitoring of these components have been available for a number of years. For the measurement of carbon monoxide, non-dispersive infrared spectroscopy has been the accepted tool, in spite of its marginal sensitivity at low parts-per-million levels. For continuously monitoring total hydrocarbons, the hydrogen flame ionization analyzer has been widely accepted as the preferred method. The inadequacy of this latter method became evident when it was concluded that methane is non-reactive and cannot be considered a contaminant even though present at over 1 ppm in the earth's atmosphere. Hence, the need for measuring methane separately became apparent as a means of measuring the reactive and potentially harmful non-methane hydrocarbons fraction. A gas chromatographic method for the measurement of methane and total hydrocarbons which met these requirements has been developed. In this technique, methane was separated on conventional gas chromatographic columns and detected by a hydrogen flame ionization detector (FID) while the total hydrocarbons were obtained by introducing a second sample directly into the FID without separating the various components. The reactive, or non-methane hydrocarbons, were determined by difference. Carbon monoxide was also measured after converting to methane over a heated catalyst to render it detectable by the FID. The development of this method made it possible to perform these measurements with a sensitivity of as much as 1 ppm full scale and a minimum detectability of 20 ppb. Incorporating this technique, criteria were developed by APCO for a second generation continuous automatic instrument for atmospheric monitoring stations.

  17. On-line gas chromatographic studies of rutherfordium (Element 104), hahnium (Element 105), and homologs

    International Nuclear Information System (INIS)

    Kadkhodayan, B.

    1993-05-01

    Gas-phase isothermal chromatogaphy is a method by which volatile compounds of different chemical elements can be separated according to their volatilities. The technique, coupled with theoretical modeling of the processes occurring in the chromatogaphy column, provides accurate determination of thermodynamic properties (e.g., adsorption enthalpies) for compounds of elements, such as the transactinides, which can only be produced on an atom-at-a-time basis. In addition, the chemical selectivity of the isothermal chromatogaphy technique provides the decontamination from interfering activities necessary for the determination of the nuclear decay properties of isotopes of the transactinide elements. Volatility measurements were performed on chloride species of Rf and its group 4 homologs, Zr and Hf, as well as Ha and its group 5 homologs, Nb and Ta. Adsorption enthalpies were calculated for all species using a Monte Carlo code simulation based on a microscopic model for gas thermochromatography in open columns with laminar flow of the carrier gas. Preliminary results are presented for Zr- and Nb-bromides

  18. Thermal soil desorption for total petroleum hydrocarbon testing on gas chromatographs

    International Nuclear Information System (INIS)

    Mott, J.

    1995-01-01

    Testing for total petroleum hydrocarbons (TPH) is one of the most common analytical tests today. A recent development in chromatography incorporates Thermal Soil Desorption technology to enable analyses of unprepared soil samples for volatiles such as BTEX components and semi-volatiles such as diesel, PCBs, PAHs and pesticides in the same chromatogram, while in the field. A gas chromatograph is the preferred method for determining TPH because the column in a GC separates the individual hydrocarbons compounds such as benzene and toluene from each other and measures each individually. A GC analysis will determine not only the total amount of hydrocarbon, but also whether it is gasoline, diesel or another compound. TPH analysis with a GC is typically conducted with a Flame Ionization Detector (FID). Extensive field and laboratory testing has shown that incorporation of a Thermal Soil Desorber offers many benefits over traditional analytical testing methods such as Headspace, Solvent Extraction, and Purge and Trap. This paper presents the process of implementing Thermal Soil Desorption in gas chromatography, including procedures for, and advantages of faster testing and analysis times, concurrent volatile and semi-volatile analysis, minimized sample manipulation, single gas (H 2 ) operation, and detection to the part-per billion levels

  19. GAS-CHROMATOGRAPHIC DETERMINATION OF N-ACETYLISOPUTREANINE-GAMMA-LACTAM, A UNIQUE CATABOLITE OF N1-ACETYLSPERMIDINE

    NARCIS (Netherlands)

    HESSELS, J; KINGMA, AW; STURKENBOOM, MCJM; ELZINGA, H; VANDENBERG, GA; MUSKIET, FAJ

    1991-01-01

    A capillary gas chromatographic method with nitrogen-phosphorus detection for the determination of N-acetylisoputreanine-gamma-lactam (acisoga) in urine is described. The method was validated by comparing the results with those given by an isotope dilution mass fragmentographic method. Making use of

  20. Incident at university research facility - melt down of gas chromatograph evaporation block and failure of a passive safety barrier

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    Two incidents are described highlighting the importance of process hazard analysis in university laboratories. In the first incident, an online gas chromatograph (GC) was being developed. A complete meltdown of the heating blog was experienced during testing because the PC had failed to turn off...

  1. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    Science.gov (United States)

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  2. Dynamics and adsorption of gas molecules using proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Lee, M. S. [Hanyang Univ., Seoul (Korea, Republic of)

    2007-04-15

    MgO powders and Carbon nanotubes (CNTs) were irradiated by proton beams with high energy (10-35 MeV) for various exposure times, and Ar gas adsorption experiments were carried. A careful investigation measured by TEM studies revealed significant differences in morphological evolution before and after irradiating the proton beams. After irradiating the proton beams, adsorption properties of Ar measured below 80K on MgO powders having only (100) surface exposure exhibited an additional isotherm steps suggesting the creation of the local surface defects presumably due to the bombardments of the protons. Interestingly, CNTs that were radiated by proton beams with energy 35 MeV at the Bragg peak position contain much less Fe, Ni catalysts compare to the ones that were not irradiated by the proton beams. This experiment was re-performed at the same condition to confirm the reproducibility of the result, and the same outcomes were produced.

  3. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  5. Calcium decorated and doped phosphorene for gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, Murugan; Nataraj, Yuvarani; Lakshmipathi, Senthilkumar, E-mail: lsenthilkumar@buc.edu.in

    2016-07-30

    Highlights: • Phosphorene exhibits n-type/p-type nature on decorating/doping calcium respectively. • Gas molecules (CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3}) are physisorbed on phosphorene. • Ca decorated Phosphorene is recommended for high density hydrogen storage applications. • Calcium doping on zigzag and armchair sites makes phosphorene more reactive. • CH{sub 4}, CO{sub 2}, H{sub 2} prefer Ca-doped on zigzag1 site, whereas ammonia prefers Ca-doped on armchair. - Abstract: In this paper, we present the results from first-principles study based on the electronic structure and adsorption characteristics of CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3} adsorbed on Ca decorated/doped phosphorene. Our study finds that phosphorene exhibits n-type behaviour on decorating calcium, and p-type on doping calcium. Gas molecules are physisorbed on both pristine and calcium-mediated phosphorene, visible through their lower binding energy and charge transfer values. Ca decorated phosphorene is suitable for hydrogen storage due to its higher binding energy for H{sub 2}. Ca doped structures shows increased binding affinity towards CH{sub 4} and NH{sub 3} in zigzag1 direction and armchair directions respectively. The extracts of our study implies that Ca doped phosphorene possess increased binding affinity towards gas molecules, and the results are highly helpful for gas adsorption and to design gas sensors based on calcium doped or decorated phosphorene.

  6. Characterization of crude oils and petroleum products: (I Elution liquid chromatographic separation and gas chromatographic analysis of crude oils and petroleum products

    Directory of Open Access Journals (Sweden)

    E.O. Odebunmi

    2002-12-01

    Full Text Available Some physical and chemical properties of samples of light, medium and heavy Nigerian crude oils and petroleum products including gasoline, kerosene and engine oil have been measured and are reported in this paper. The crude oils and petroleum products have also been characterized by fractional distillation and elution liquid chromatography. The fractions obtained from elution liquid chromatography were analyzed using gas chromatography (GC. The GC fractions were identified by comparing the retention time of peaks in the unknown samples with those of components of calibration standard mixtures. The importance of the physico-chemical properties and the significance of the fractional distillation and chromatographic separation methods to industrial process operations have been discussed.

  7. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating.

    Science.gov (United States)

    Eglinton, T I; Aluwihare, L I; Bauer, J E; Druffel, E R; McNichol, A P

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated preparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for (14)C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the (14)C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that Δ(14)C values generally agreed well (±10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (radiocarbon measurements. The addition of carbon accompanying derivatization of functionalized compounds (e.g., fatty acids and sterols) prior to chromatographic separation represents a further source of potential error. This contribution can be removed using a simple isotopic mass balance approach. Based on these preliminary results, the PCGC-based approach holds promise for accurately determining (14)C ages on compounds specific to a given source within complex, heterogeneous samples.

  8. Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard

    Science.gov (United States)

    Bartošová, Alica; Štefko, Tomáš

    2017-06-01

    The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.

  9. Graphitic carbon nitride as high-resolution stationary phase for gas chromatographic separations.

    Science.gov (United States)

    Zheng, Yunzhong; Qi, Meiling; Fu, Ruonong

    2016-07-08

    This work presents the first example of utilization of graphitic carbon nitride (g-C3N4) as stationary phase for capillary gas chromatographic (GC) separations. The statically coated g-C3N4 column showed the column efficiencies of 3760 plates/m and weak polarity. Its resolving capability and retention behaviours were investigated by using the Grob test mixture, and mixtures of diverse types of analytes, and structural and positional isomers. The results showed superior separation performance of the g-C3N4 stationary phase for some critical analytes and preferential retention for aromatic analytes. Specifically, it exhibited high-resolution capability for aromatic and aliphatic isomers such as methylnaphthalenes and dimethylnaphthalenes, phenanthrene and anthracene and alkane isomers. In addition, g-C3N4 column showed excellent thermal stability up to 280°C and good repeatability with relative standard deviation (RSD) values less than 0.09% for intra-day, below 0.23% for inter-day and in the range of 1.9-8.4% for between-column, respectively. The advantageous separation performance shows the potential of g-C3N4 and related materials as stationary phase in GC and other separation technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Graphitic carbon nitride nanofibers in seaweed-like architecture for gas chromatographic separations.

    Science.gov (United States)

    Zheng, Yunzhong; Han, Qing; Qi, Meiling; Qu, Liangti

    2017-05-05

    Seaweed-like graphitic carbon nitride (g-C 3 N 4 ) has a unique porous architecture composed of interlocking g-C 3 N 4 nanofibers (NF-C 3 N 4 ) with much higher surface area than bulk g-C 3 N 4 and shows good potential in separation science. This work investigated the separation performance of NF-C 3 N 4 as stationary phase for capillary gas chromatographic (GC) separations. The NF-C 3 N 4 column exhibits weak polarity and high column efficiency of 4728 plates/m for n-dodecane. Importantly, it displays good separation performance for a wide range of analytes and shows different retention behaviors from the bulk g-C 3 N 4 column and commercial HP-5MS column with 5% phenylpolysiloxane. Particularly, it shows high resolving capability for both aliphatic and aromatic isomers. In addition, NF-C 3 N 4 column has high thermal stability up to 280°C and good separation repeatability with relative standard deviation (RSD) values in the range of 0.29-0.61% for intra-day, 0.56-1.1% for inter-day and 2.0-4.9% for between-column, respectively. Moreover, it was applied for the determination of isomer impurities in real samples, showing good potential in GC applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of gas adsorption on the electronic properties of graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Fathalian, Ali, E-mail: a.fathalian@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-1795 Tehran (Iran, Islamic Republic of); Jalilian, Jaafar [Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. (Iran, Islamic Republic of); Shahidi, Sahar [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-05-15

    We have investigated the effects of O{sub 2} molecule gas adsorption on the electronic properties of semiconductor armchair hydrogenated edges graphene nanoribbons (AHEGN) via density functional theory as implemented in the code WIEN2k. The energy adsorption and electronic properties are calculated for different positions of O{sub 2}. It is found that adsorption energy in the edges is lower than in the other positions. By increasing adsorption of gas concentration, the energy gap of AHEGN decreases and at a critical concentration a semiconducting-metallic phase transition takes place. This system could be used for detection of oxygen molecule gas.

  12. Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics

    Directory of Open Access Journals (Sweden)

    Zhouhua Wang

    2017-01-01

    Full Text Available As kerogen is the main organic component in shale, the adsorption capacity, diffusion and permeability of the gas in kerogen plays an important role in shale gas production. Based on the molecular model of type II kerogen, an organic nanoporous structure was established. The Grand Canonical Monte Carlo (GCMC and Molecular Dynamics (MD methods were used to study the adsorption and diffusion capacity of mixed gas systems with different mole ratios of CO2 and CH4 in the foregoing nanoporous structure, and gas adsorption, isosteric heats of adsorption and self-diffusion coefficient were obtained. The selective permeation of gas components in the organic pores was further studied. The results show that CO2 and CH4 present physical adsorption in the organic nanopores. The adsorption capacity of CO2 is larger than that of CH4 in organic pores, but the self-diffusion coefficient of CH4 in mixed gas is larger than that of CO2. Moreover, the self-diffusion coefficient in the horizontal direction is larger than that in the vertical direction. The mixed gas pressure and mole ratio have limited effects on the isosteric heat and the self-diffusion of CH4 and CO2 adsorption. Regarding the analysis of mixed gas selective permeation, it is concluded that the adsorption selectivity of CO2 is larger than that of CH4 in the organic nanopores. The larger the CO2/CH4 mole ratio, the greater the adsorption and permeation selectivity of mixed gas in shale. The permeation process is mainly controlled by adsorption rather than diffusion. These results are expected to reveal the adsorption and diffusion mechanism of gas in shale organics, which has a great significance for further research.

  13. Miniature, Low Power Gas Chromatograph with Sample Pre-Processing Capability and Enhanced G-Force Survivability for Planetary Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized, low power gas chromatograph (GC) with sample pre-processing capability and enhanced capability for...

  14. Domestic Preparedness Program: Evaluation of the Agilent Gas Chromatograph - Flame Photometric Detector/Mass Selective Detector (GC-FPD/MSD) System Against Chemical Warfare Agents Summary Report

    National Research Council Canada - National Science Library

    Longworth, Terri

    2003-01-01

    This report characterizes the chemical warfare agent (CWA) detection potential of the commercially available Agilent gas chromatograph-flame photometric detector/mass selective detector (GC-FPD/MSD...

  15. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction.

    Science.gov (United States)

    Stanimirova, I; Boucon, C; Walczak, B

    2011-01-30

    Often in analytical practice, a set of samples is described by different types of measurements in the hope that a comprehensive characterisation of samples will provide a more complete picture and will help in determining the similarities among samples. The main focus is then on how to combine the information described by different measurement variables and how to analyse it simultaneously. In other words, the main goal is to find a common representation of samples that emphasises the individual and common properties of the different blocks of variables. Several methods can be adopted for the simultaneous analysis of multiblock data with a common object mode. These are: consensus principal component analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices de la statistique (STATIS).In this article we present a comparison of the performances of these methods for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma compounds formed during the reaction of thermal heating between one or two selected amino acids and one or two reducing sugars have been analysed by head space gas chromatography and the intensity and nature of the odour of the resulting products has been evaluated according to selected descriptors by a panel of sensory experts.The results showed that using the information of the chromatographic and sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of reaction products and sensory profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Comprehensive two-dimensional gas chromatographic separations with a microfabricated thermal modulator.

    Science.gov (United States)

    Serrano, Gustavo; Paul, Dibyadeep; Kim, Sung-Jin; Kurabayashi, Katsuo; Zellers, Edward T

    2012-08-21

    Rapid, comprehensive two-dimensional gas chromatographic (GC × GC) separations by use of a microfabricated midpoint thermal modulator (μTM) are demonstrated, and the effects of various μTM design and operating parameters on performance are characterized. The two-stage μTM chip consists of two interconnected spiral etched-Si microchannels (4.2 and 2.8 cm long) with a cross section of 250 × 140 μm(2), an anodically bonded Pyrex cap, and a cross-linked wall coating of poly(dimethylsiloxane) (PDMS). Integrated heaters provide rapid, sequential heating of each μTM stage, while a proximate, underlying thermoelectric cooler provides continual cooling. The first-dimension column used for GC × GC separations was a 6 m long, 250 μm i.d. capillary with a PDMS stationary phase, and the second-dimension column was a 0.5 m long, 100 μm i.d. capillary with a poly(ethylene glycol) phase. Using sets of five to seven volatile test compounds (boiling point ≤174 °C), the effects of the minimum (T(min)) and maximum (T(max)) modulation temperature, stage heating lag/offset (O(s)), modulation period (P(M)), and volumetric flow rate (F) on the quality of the separations were evaluated with respect to several performance metrics. Best results were obtained with a T(min) = -20 °C, T(max) = 210 °C, O(s) = 600 ms, P(M) = 6 s, and F = 0.9 mL/min. Replicate modulated peak areas and retention times were reproducible to <5%. A structured nine-component GC × GC chromatogram was produced, and a 21 component separation was achieved in <3 min. The potential for creating portable μGC × μGC systems is discussed.

  17. Statistical modelling of measurement errors in gas chromatographic analyses of blood alcohol content.

    Science.gov (United States)

    Moroni, Rossana; Blomstedt, Paul; Wilhelm, Lars; Reinikainen, Tapani; Sippola, Erkki; Corander, Jukka

    2010-10-10

    Headspace gas chromatographic measurements of ethanol content in blood specimens from suspect drunk drivers are routinely carried out in forensic laboratories. In the widely established standard statistical framework, measurement errors in such data are represented by Gaussian distributions for the population of blood specimens at any given level of ethanol content. It is known that the variance of measurement errors increases as a function of the level of ethanol content and the standard statistical approach addresses this issue by replacing the unknown population variances by estimates derived from large sample using a linear regression model. Appropriate statistical analysis of the systematic and random components in the measurement errors is necessary in order to guarantee legally sound security corrections reported to the police authority. Here we address this issue by developing a novel statistical approach that takes into account any potential non-linearity in the relationship between the level of ethanol content and the variability of measurement errors. Our method is based on standard non-parametric kernel techniques for density estimation using a large database of laboratory measurements for blood specimens. Furthermore, we address also the issue of systematic errors in the measurement process by a statistical model that incorporates the sign of the error term in the security correction calculations. Analysis of a set of certified reference materials (CRMs) blood samples demonstrates the importance of explicitly handling the direction of the systematic errors in establishing the statistical uncertainty about the true level of ethanol content. Use of our statistical framework to aid quality control in the laboratory is also discussed. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.

    Science.gov (United States)

    Parastar, Hadi; Bazrafshan, Alisina

    2016-03-18

    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then, the resolved elution profiles are used to make a new data matrix based on peak areas of pure components to cluster by FCM. The FCM clustering parameters (i.e., fuzziness coefficient and number of cluster) are optimized by two different methods of partial least squares (PLS) as a conventional method and minimization of FCM objective function as our new idea. The results showed that minimization of FCM objective function is an easier and better way to optimize FCM clustering parameters. Then, the optimized FCM clustering algorithm is used to cluster samples and variables to figure out the similarities and dissimilarities among samples and to find discriminant secondary metabolites in each cluster (chemotype). Finally, the FCM clustering results are compared with those of principal component analysis (PCA), hierarchical cluster analysis (HCA) and Kohonon maps. The results confirmed the outperformance of FCM over the frequently used clustering algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  20. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    Science.gov (United States)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  1. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv

    2011-12-30

    A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of

  2. Antifreeze proteins: Adsorption to ice, silica and gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Huang; Brown, Alan; Wathen, Brent; Ripmeester, John A.; Walker, VIrginia K.

    2005-07-01

    Certain organisms survive under freezing conditions that could otherwise prove fatal by the synthesis of antifreeze proteins (AFPs). AFPs adsorb to the surface of microscopic ice crystals and prevent further ice growth, resulting in a noncolligative freezing point depression. Type I AFP from the winter flounder (wfAFP) is an alfa-helical, alanine-rich serum protein that helps protect against innoculative freezing from ice-laden seas. The AFP of a moth from the boreal forest, Choristoneura fumiferana (Cf), is a beta-helical threonine-rich protein that helps prevent freezing at the overwintering, caterpillar stage. In contrast, the beta-roll AFP from the grass, Lolium perenne (Lp), confers little freezing point depression and the plants readily freeze. Remarkably, AFPs also adsorb to tetrahyrofuran (THF) hydrate, changing the hydrate's octahedral morphology and, as well, inhibiting the growth of THF and gas hydrates. The hyperactive CfAFP, with 30-100 times the activity of wfAFP toward ice, showed far greater nucleation inhibition for THF hydrate than did a commercial hydrate inhibitor, poly(N-vinylpyrrolidone) (PVP). Active AFPs were also judged to be superior to PVP in that they inhibited the memory effect, a phenomenon whereby hydrate reforms at a faster rate soon after melting. An inactive mutant wfAFP, with an amino acid substitution at the ice-binding site, also reduced the growth of THF hydrate but was ineffective at suppressing hydrate reformation. These results suggest that the molecular properties important for ice adsorption and inhibition of hydrate reformation may be similar, and are distinct from those required for hydrate growth inhibition. The different AFPs also show markedly different aggregations on a third hydrophilic substrate, silica. Together these studies suggest that AFP adsorption to ice, hydrates and silica depends on the overall structure, specific residues and protein-protein interactions. (Author)

  3. Electrostatic interactions in gas-solid chromatography.

    Science.gov (United States)

    Benson, S. W.; King, J., Jr.

    1966-01-01

    Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc

  4. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  5. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water.

    Science.gov (United States)

    Varanusupakul, Pakorn; Vora-Adisak, Narongchai; Pulpoka, Bancha

    2007-08-13

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 degrees C for 60 min with 20% Na2SO4. The linear calibration curves were observed for the concentrations ranging from 1 to 300 microg L(-1) with the correlation coefficients (R2) being greater than 0.99. The method detection limits of most analytes were below 1 microg L(-1) except DCAA and MCAA that were 2 and 18 microg L(-1), respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  6. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  7. Study of residual gas adsorption on GaN nanowire arrays photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Sihao; Liu, Lei, E-mail: liu1133_cn@sina.com.cn; Diao, Yu; Kong, Yike

    2017-05-01

    Highlights: • H{sub 2}O is more easily to absorb on the nanowire surface. • The work function increase after residual gas adsorption. • Bandgaps of the nanowire increase slightly. • Absorption coefficient is reduced and moves to higher energy side. - Abstract: In order to find out the influences of residual gas on GaN nanowire arrays photocathode, the optoelectronic properties of adsorption system are calculated on the basis of first principles. Results suggest that the residual gas adsorption will increase the work function and introduce a dipole moment with a direction from the nanowire to the adsorbates. The surface structures are changed and electrons transfer from nanowire to gas molecule. The bandgaps are enhanced after adsorption. Besides, the peak of absorption coefficients is reduced and moves to higher energy side. It is discovered that residual gas will drastically degrade the characteristics and lifetime of GaN nanowire arrays photocathode.

  8. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    Science.gov (United States)

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Development of the charcoal adsorption technique for determination of radon content in natural gas

    International Nuclear Information System (INIS)

    Paewpanchon, P.; Chanyotha, S.

    2017-01-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. (authors)

  10. Quantum chemical studies of trace gas adsorption on ice nanoparticles

    Science.gov (United States)

    Schrems, Otto; Ignatov, Stanislav K.; Gadzhiev, Oleg B.; Masunov, Artem E.

    2013-04-01

    We have investigated the interaction of atmospheric trace gases with crystalline water ice particles of nanoscale size by modern quantum chemical methods. Small ice particles which can be formed in different altitudes play an important role in chemistry and physics of the Earth atmosphere. Knowledge about the uptake and incorporation of atmospheric trace gases in ice particles as well as their interactions with water molecules is very important for the understanding of processes at the air/ice interface. The interaction of the atmospheric trace gases with atmospheric ice nanoparticles is also an important issue for the development of modern physicochemical models. Usually, the interactions between trace gases and small particles considered theoretically apply small-size model complexes or the surface models representing only fragments of the ideal surface. Ice particles consisting of 48, 72, 216 and 270 water molecules with a distorted structure of hexagonal water ice Ih were studied using the new SCC-DFTBA method combining well the advantages of the DFT theory and semiempirical methods of quantum chemistry. The largest clusters correspond to the minimal nanoparticle size which are considered to be crystalline as determined experimentally. The clusters up to (H2O)72 were studied at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(2d,2p) levels. The larger clusters were studied using DFTBA and DFTB+ methods. Several adsorption complexes for the (H2O)270 water ice cluster were optimized at the RI-BLYP/6-31+G(d) theory level to verify the DFTB+ results. Trace gas molecules were coordinated on different sites of the nanoparticles corresponding to different ice Ih crystal planes: (0001), (10-10), (11-20). As atmospheric trace gases we have chosen CO, CO2, HCO*, HCOH*, HCHO, HCOOH and (HCO)2. which are the possible products and intermediates of the UV photolysis of organic molecules such as HCHCHO adsorbed on the ice surface. The structures of the corresponding coordination

  11. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N 2 O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N 2 O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N 2 O onto CNT, the horizontal adsorption with E ads = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N 2 O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N 2 O were investigated. Adsorption of N 2 O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N 2 O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N 2 O sensors.

  12. Development, Construction, and Operation of a Multisample Volumetric Apparatus for the Study of Gas Adsorption Equilibrium

    Science.gov (United States)

    Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.

    2015-01-01

    The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…

  13. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    NARCIS (Netherlands)

    van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Simpson, W.R.

    2009-01-01

    We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured

  14. Gas Chromatographic-Selected Ion Monitoring-Mass Spectrometric Determination of Cigarette Mainstream Smoke Components with Sensory Attributes

    Directory of Open Access Journals (Sweden)

    Coleman WM

    2014-12-01

    Full Text Available A new method has been developed that detects significant quantitative differences in the amounts of pyrazines, pyridines, furfurals, carboxylic acids, b-damascenone, sclareolide, and megastigmatrienones in the mainstream smoke of a series of five commercial cigarettes. This new quantitative method is based on the gas chromatographic-selected ion monitoring-mass spectrometric (GC-SIM-MS determination of the selected smoke constituents. The accuracy and precision of the approach were well within acceptable parameters with the majority of cases relative standard deviation (RSD values consistently around 5%. Sample preparation was simple requiring only the dissolution of the trapped particulate material in a known volume of methanol followed by injection of this clear dark colored solution into the gas chromatograph. This approach represents an advance in the technology in terms of higher sample throughput and less sample workup. Certain products demonstrated consistent trends in concentration of specific chemical classes. The mainstream smoke from a University of Kentucky reference cigarette, 2R4F, was included for reference purposes. These results are applicable in the overall evaluation of the components responsible for the taste associated with cigarette products.

  15. Proposal for data acquisition system of gas chromatograph and natural gas transfer custody via web; Proposta para um sistema de aquisicao de dados de cromatografia e medicao fiscal de gas natural via web

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jose Paulo C.; Guimaraes, Marcelo F.; Zeitoune, Rafael J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this paper, is presented a proposal of a Chromatograph and Transfer Custody Measurement Data Acquisition System through Web, complementary to the SCADA System, responsible for control and monitoring PETROBRAS Gas Pipelines, intended to comply with the requirements of the Gerencias de Qualidade e Medicao (MQD) and Planejamento Integrado da Logistica (PCL) from PETROBRAS Gas e Energia, regarding the evaluation of the quality of the natural gas that is being commercialized, as well as its billing. (author)

  16. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Science.gov (United States)

    Romero-Hermida, M. I.; Romero-Enrique, J. M.; Morales-Flórez, V.; Esquivias, L.

    2016-08-01

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  17. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Hermida, M. I. [Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro s/n, 11510 Puerto Real (Spain); Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Romero-Enrique, J. M. [Departamento de Física Atómica, Molecular y Nuclear, Área de Física Teórica, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Morales-Flórez, V.; Esquivias, L. [Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Instituto de Ciencia de Materiales de Sevilla (CSIC/US), Av. Américo Vespucio 49, 41092 Sevilla (Spain)

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N{sub 2}, CO{sub 2}, and O{sub 2}, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO{sub 2} adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO{sub 2} adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO{sub 2} adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO{sub 2} adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO{sub 2} concentrations and low temperatures, the CO{sub 2} adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  18. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    Science.gov (United States)

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  19. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    International Nuclear Information System (INIS)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    2016-01-01

    U.S. regulations will require the removal of 129 I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3 I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  20. Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

    International Nuclear Information System (INIS)

    Lee, Eon Ji; Chang, Rak Woo; Han, Ji Hyung; Chung, Taek Dong

    2012-01-01

    In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems

  1. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Science.gov (United States)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  2. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  3. A gas/liquid chromatographic-mass spectrometric method for the rapid screening of 250 pesticides in aqueous matrices

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, B.; Harvan, D.; Brittain, S.; Hass, R. [Eno River Labs, LLC. Durham, NC (United States)

    2004-09-15

    Pesticide residues in food present a potentially serious and significant cause for concern. Many pesticides have been associated with significant health effects to the nervous and endocrine systems and some have been deemed carcinogenic. There are many well-established techniques for pesticide analysis. However, commercial pesticide methods have traditionally only been available for specific pesticide families, such as chlorinated pesticides or herbicides, and at detection limits ranging from 0.05 ppb to 1 ppm in aqueous matrices. Techniques that can quickly screen for the presence/absence of pesticide residues in food matrices are critical in ensuring the safety of food and water. This paper outlines a combined Gas Chromatographic-High Resolution Mass Spectrometric (GC-HRMS) and Liquid Chromatographic Tandem Mass Spectrometric (LC-MS/MS) screening assay for 250 pesticides that was developed for use in water, and soda samples at screening levels ranging from 0.1-5 ppb. The pesticides selected have been identified by the European Union as being of concern and the target of possible legislation. The list encompasses a variety of pesticide classes and compound groupings.

  4. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  5. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01

    Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less

  6. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  7. The studies on gas adsorption properties of MIL-53 series MOFs materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Jiao

    2017-08-01

    Full Text Available Molecular dynamics (MD, grand canonical Monte Carlo (GCMC and ideal adsorbed solution theory (IAST were used to study the structures and gas adsorption properties of MIL-53(M[M=Cr, Fe, Sc, Al] metal organic framework (MOF materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr, the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.

  8. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  9. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparison of radioimmunoassay and gas chromatographic mass spectrometric assay for d-amphetamine

    International Nuclear Information System (INIS)

    Powers, K.H.; Ebert, M.H.

    1979-01-01

    Quantification of low levels of psychotropic drugs (10 -7 to 10 -9 g ml -1 ) in small volumes of plasma requires sensitive and accurate methods. Validation of these methods is best achieved by comparing results obtained using several techniques. In this study, amphetamine levels in plasma were measured using gas chromatography mass spectrometry and radioimmunoassay. Correlation of the results obtained by the two methods was found to be positive and high (R = 0.9822). The average coefficient of variation between assays for gas chromatography mass spectrometry was 5.8% and for radioimmunoassay was 12.3%, while the average coefficient of variation within assays for gas chromatography mass spectrometry was 4.9% and for radioimmunoassay 6.9%. Although gas chromatography mass spectrometry was 1.9 times more sensitive than radioimmunoassay, for most purposes, the convenience of the radioimmunoassay method outweighs the technical superiority of gas chromatography mass spectrometry. (author)

  11. Evaluation of a gas chromatograph with a novel surface acoustic wave detector (SAW GC) for screening of volatile organic compounds in Hanford waste tank samples

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1998-01-01

    A novel instrument, a gas chromatograph with a Surface Acoustic Wave Detector (SAW GC), was evaluated for the screening of organic compounds in Hanford tank headspace vapors. Calibration data were developed for the most common organic compounds, and the accuracy and precision were measured with a certified standard. The instrument was tested with headspace samples collected from seven Hanford waste tanks

  12. Gas chromatographic-mass spectrometric analysis of biomarkers related to folate and cobalamin status in human serum after dimercaptopropanesulfonate reduction and heptafluorobutyl chloroformate derivatization

    Czech Academy of Sciences Publication Activity Database

    Šimek, Petr; Hušek, Petr; Zahradníčková, Helena

    2008-01-01

    Roč. 80, č. 15 (2008), s. 5776-5782 ISSN 0003-2700 R&D Projects: GA ČR GA303/06/1674 Institutional research plan: CEZ:AV0Z50070508 Keywords : biomarkers * gas chromatographic * chloroformate derivatization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.712, year: 2008

  13. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  14. Aging and analytical performances evolution of a gas chromatographic system at Mars

    OpenAIRE

    Bonnet, Jean-Yves; Szopa, Cyril; Millan, Maeva; Coscia, David; Cabane, Michel; Belmahdi, I.; Buch, A.; Dequaire, T.; Coll, Patrice; Teinturier, S.; Mahaffy, P.

    2015-01-01

    International audience; Health data from the gas chromatography (GC) module onboard the SAM instrument [1] will be presented to assess the analytical performances evolution of a GC device in Martian environment through 3 years.

  15. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    Science.gov (United States)

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  16. Effects of {gamma}-irradiation on caprolactam level from multilayer PA-6 films for food packaging: Development and validation of a gas chromatographic method

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Henrique Peres; Felix, Juliana Silva [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil); Manzoli, Jose Eduardo [Nuclear and Energetic Research Institute (IPEN), Sao Paulo, SP (Brazil); Padula, Marisa [Packaging Technology Center/Food Technology Institute (CETEA/ITAL), Campinas, SP (Brazil); Monteiro, Magali [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil)], E-mail: monteiro@fcfar.unesp.br

    2008-07-15

    A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 {mu}g/ml), RSD{<=}4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD{<=}3.8%, recovery from 95.5-100.0% and LOQ of 32 {mu}g/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses.

  17. Effects of γ-irradiation on caprolactam level from multilayer PA-6 films for food packaging: Development and validation of a gas chromatographic method

    Science.gov (United States)

    Araújo, Henrique Peres; Félix, Juliana Silva; Manzoli, José Eduardo; Padula, Marisa; Monteiro, Magali

    2008-07-01

    A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 μg/ml), RSD⩽4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD⩽3.8%, recovery from 95.5-100.0% and LOQ of 32 μg/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses.

  18. First-principles study of gas adsorption on γ-graphyne

    Science.gov (United States)

    Zhang, Peng; Song, Quan; Zhuang, Jun; Ning, Xi-Jing

    2017-12-01

    Inspired by recent successes in the development of graphene-based gas sensors capable of single gas molecule detection, we investigate the adsorption of gas molecules (NO, NO2, NH3, CO, SO2 and H2S) on γ-graphyne which has an energy gap of 0.49 eV via first-principle calculations. The results show that the adsorption of NO (or NO2) at an adsorption density of above 2% (or 4%) can change the graphyne from semiconductor to semimetal or metal, while the other molecules have little effect on the energy gap, suggesting that γ-graphyne can be used as sensitive sensor for selectively detecting NO2 or NO molecules.

  19. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat.

    Science.gov (United States)

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Kramer, John K G; Mossoba, Magdi M; Sidisky, Len; Tyburczy, Cynthia; Rader, Jeanne I

    2012-04-13

    The SLB-IL111, a new ionic liquid capillary column for gas chromatography available from Supelco Inc., was recently shown to provide enhanced separation of unsaturated geometric and positional isomers of fatty acid (FAs) when it was compared to cyanopropylsiloxane (CPS) columns currently recommended for the analysis of fatty acid methyl esters (FAMEs). A 200 m SLB-IL111 capillary column, operated under a combined temperature and eluent flow gradient, was successfully used to resolve most of the FAs contained in milk fat in a single 80 min chromatographic separation. The selected chromatographic conditions provided a balanced, simultaneous separation of short-chain (from 4:0), long-chain polyunsaturated fatty acids (PUFAs), and most of the unsaturated FA positional/geometric isomers contained in milk fat. Among the monounsaturated fatty acids (MUFAs), these conditions separated t11-18:1 and t10-18:1 FAs, the two most abundant trans fatty acids (t-FA) contained in most dairy products. These t-FAs reportedly have different biological activities. The conjugated linoleic acid (CLA) isomers commonly found in dairy products were separated from each other, including t7,c9-18:2 from c9,t11-18:2, which eliminated the need for their complementary silver ion HPLC analysis. The application of the SLB-IL111 column provided a complementary elution profile of FAMEs to those obtained by CPS columns, allowing for a more comprehensive FA analysis of total milk fat. The FAMEs were identified by the use of available reference materials, previously synthesized and characterized reference mixtures, and prior separations of the milk fat FAMEs by silver ion chromatography based on the number/geometry of double bonds. Published by Elsevier B.V.

  20. Gas chromatographic analysis of dimethyltryptamine and beta-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage.

    Science.gov (United States)

    Pires, Ana Paula Salum; De Oliveira, Carolina Dizioli Rodrigues; Moura, Sidnei; Dörr, Felipe Augusto; Silva, Wagner Abreu E; Yonamine, Mauricio

    2009-01-01

    Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2 )> 0.99). The method was also precise (RSD ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Rapid gas chromatographic method for the determination of famoxadone, trifloxystrobin and fenhexamid residues in tomato, grape and wine samples.

    Science.gov (United States)

    Likas, D T; Tsiropoulos, N G; Miliadis, G E

    2007-05-25

    Trifloxystrobin, fenhexamid and famoxadone belong to the generation of fungicides acting against a broad spectrum of fungi and widely used in Integrated Pest Management strategies in different agricultural crops but mainly in viticulture. In the present work, a gas chromatographic (GC) method for their determination was developed and validated on tomato, grape and wine matrices. The method was based on a simple one step liquid-liquid microextraction with cyclohexane/dichloromethane (9+1, v/v) and determination of fungicides by gas chromatography with nitrogen phosphorous (NP-) and electron capture (EC-) detection, and ion trap mass spectrometry (ITMS) for confirmation. The method was validated by recovery experiments, assessment of matrix effect and calculation of the associated uncertainty. Recoveries for GC-NPD and GC-ECD were found in the range of 81-102% with RSD NPD, respectively, depending on the sensitivity of each compound with trifloxystrobin being the most sensitive. The expanded uncertainty, calculated for a sample concentration of 0.10 mg/kg, ranged from 4.8 to 13% for the GC-ECD and from 5.4 to 29% for the GC-NPD. The concentration levels for famoxadone residues found in tomato and grape samples from field experiments were clearly below the EU established MRL values, thus causing no problems in terms of food safety.

  2. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  3. Gas Adsorption Characterization of Rigid and Amorphous Polymers

    Science.gov (United States)

    Larsen, Gregory; Siperstein, Flor; Budd, Peter; Colina, Coray

    2008-03-01

    Nanostructured materials have unusual mechanical, electrical and optical properties and are becoming increasingly important for energy storage. A variety of materials, such as zeolites, metal organic frameworks, covalent organic frameworks, activated carbons, and hypercrosslinked polymers, have recently been explored for energy storage. Polymers of Intrisic Microporosisity (PIMs) are macromolecules that form nanoporous materials (effective pore size structure of the selected monomers, but can be flexible at a macroscopic scale and show swelling properties due to their polymeric nature. PIMs offer an interesting alternative to the materials mentioned above, as the functionality can be directly embedded in the material framework, allowing for intrinsic control in adsorptive properties by the PIM and flexibility in alternate adsorption applications such as CO2 sequestration. In this work, we present our recent efforts to study PIMs by MC simulations, and demonstrate the effects of box size and chain length on simulated measurements including pore size distribution and surface area.

  4. Gas Chromatographic Verification of a Mathematical Model: Product Distribution Following Methanolysis Reactions.

    Science.gov (United States)

    Lam, R. B.; And Others

    1983-01-01

    Investigated application of binomial statistics to equilibrium distribution of ester systems by employing gas chromatography to verify the mathematical model used. Discusses model development and experimental techniques, indicating the model enables a straightforward extension to symmetrical polyfunctional esters and presents a mathematical basis…

  5. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Perez, M.; Gonzalez, D.

    1988-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  6. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-11-01

    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  7. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    Science.gov (United States)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  8. A reliable gas capillary chromatographic determination of lactulose in dairy samples

    OpenAIRE

    Montilla, Antonia; Moreno, F. Javier; Olano, Agustín

    2005-01-01

    A gas capillary chromatography of silylated carbohydrates on SPB-17 phase (50% diphenyl/50% dimethylsiloxane) method for the determination of lactulose has been developed. The method has been evaluated for precision and accuracy using phenyl-β-D-glucoside as internal standard with satisfactory results and, then, applied to 27 commercial milk samples (pasteurized, UHT, sterilized, powder, condensed and chocolate-based milks). Results showed that it was suitable for the determination of lactulo...

  9. Iodine Gas Adsorption in Nanoporous Materials: A Combined Experiment–Modeling Study

    Energy Technology Data Exchange (ETDEWEB)

    Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.; Chapman, Karena W.; Nenoff, Tina M.

    2017-02-13

    Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm, the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.

  10. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study

    International Nuclear Information System (INIS)

    Mouton-Chazel, V.

    1994-01-01

    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.)

  11. Origin of planetary primordial rare gas - The possible role of adsorption.

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1972-01-01

    The degree of physical adsorption of Ne, Ar, Kr, and Xe on pulverized samples of the Allende meteorite at 113 K has been measured. The observed pattern of equilibrium enrichment of heavy rare gases over light on the pulverized meteorite surfaces relative to the gas phase is similar to the enrichment pattern exhibited by planetary primordial rare gas when compared with the composition of solar rare gas. Results indicate that, at 113 K, a total nebular pressure of from .01 to .001 atm would be required to explain the Ar, Kr, and Xe abundances in carbonaceous chondrites with an adsorption mechanism. This pressure estimate is compatible with the range of possible nebular pressures suggested by astrophysical arguments. However, the subsequent mechanism by which initially adsorbed gas might have been transferred into the interiors of grains cannot be identified at present.

  12. Gas chromatographic-mass spectrometric analysis of creosotes extracted from wooden sleepers installed in playgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Rotard, W.; Mailahn, W.

    1987-01-01

    In order to evaluate their hygienic risk, wood samples from sleepers (railroad cross ties) impregnated with coal tar creosote were taken from playgrounds and investigated for hazardous compounds. The samples were extracted with ether, and acid-base-neutral separations were made on the creosote extracts. Water-soluble compounds were also isolated. All the fractions were investigated by capillary gas chromatography-mass spectrometry. Besides phenols in the acidic fractions and N-heterocyclic polynuclear aromatic hydrocarbons (PAH) in the basic fractions, high amounts of neutral PAH and also, in several samples high levels of carcinogenic and cocarcinogenic PAH were determined.

  13. Gas chromatographic determination of cholesterol from food samples using extraction/saponification method

    International Nuclear Information System (INIS)

    Ali, Z.M.; Soomro, A.S.A.

    2007-01-01

    A simple and fast one-step extraction/saponification with Na/OH/KOH (Ethanolic, Sodium Hydroxide/Potassium Hydroxide was compared and validated for determination of cholesterol from locally available 10 edible oil and egg samples. The importance of the use of edible oils and eggs in routine diet is unquestionable, but presence of cholesterol is considered as a risk factor for coronary heart disease and hypertension. The lowering of cholesterol level in order to reduce the risk is widely accepted. The cholesterol in the edible oil and eggs was determined by gas chromatography, through elution from the column (2x3 mm i.d) packed with 3% OV-I01, on Chromosorb G/'NAW 80-100 mesh size at 250-300C with programmed heating rate of 3 degree C/min. Nitrogen gas flow rate was 40 ml/min. The cholesterol samples were run under the conditions after selective extraction in diethyl ether. The calibration was linear within 50-500 IJg/ml concentration range. The amount of cholesterol detected were from 12.92-18.05 mg/g in edible oil and 117.54-143.42 mg/g in egg samples with RSD 1.3-2.7%. (author)

  14. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Dennis, K.J.; Shibamoto, T.

    1990-01-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  15. Gas chromatographic determination of N-nitrosamines in beverages following automatic solid-phase extraction.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2007-11-28

    A semiautomatic method for the determination of seven N-nitrosamines in beverages by gas chromatography with nitrogen-phosphorus detection is proposed. Beverage samples are aspirated into a solid-phase extraction module for preconcentration and cleanup. The influence of the experimental conditions was examined by using various sorbents among which LiChrolut EN was found to provide quantitative elution and the highest preconcentration factors of all. The proposed method is sensitive, with limits of detection between 7 and 33 ng/kg, and precise, with relative standard deviations from 4.3% to 6.0%. The recoveries of N-nitrosamines from beverage samples spiked with 0.5 or 1 microg/kg concentrations of these compounds ranged from 95% to 102%. The method was successfully applied to the determination of residues of the studied N-nitrosamines in beverages including beer, wine, liquor, whisky, cognac, rum, vodka, grape juice, cider, tonic water, and soft drinks. The analytes were only detected in beer samples, positives being confirmed by gas chromatography coupled with impact ionization mass spectrometry.

  16. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field

    NARCIS (Netherlands)

    García-Pérez, E.; Serra-Crespo, P.; Hamad, S.; Kapteijn, F.; Gascon, J.

    2014-01-01

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations

  17. A first-principles study of gas molecule adsorption on borophene

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available Borophene, a new two-dimensional material, was recently synthesized. The unique anisotropic structure and excellent properties of borophene have attracted considerable research interest. This paper presents a first-principles study of the adsorption of gas molecules (CO, CO2, NH3, NO, NO2 and CH4 on borophene. The adsorption configurations, adsorption energies and electronic properties of the gas molecules absorpted on borophene are determined, and the mechanisms of the interactions between the gas molecules and borophene are evaluated. We find that CO, CO2, NH3, NO and NO2 are chemisorbed on borophene, while CH4 is physisorbed on borophene. Furthermore, our calculation also indicate that CO and CO2 are chemisorbed on borophene with moderate adsorption energy and NO, NO2 and NH3 are chemisorbed on borophene via strong covalent bonds. Moreover, CO is found as an electron donor, while CO2 an electron acceptor. The chemisorption of CO and CO2 on borophene increases the electrical conductivity, so It seems that borophene has the potential to be used in high-sensitivity CO and CO2 gas sensors.

  18. Modeling of Shale Gas Adsorption and its Influence on Phase Equilibrium

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2018-01-01

    Natural gas and oil produced from shale accounts for a signicant portion in the global production. Due to the large surface area and high organic content in shale formations, adsorption plays a major role in the storage of the hydrocarbons within the rock and their phase equilibrium. This study...

  19. Performance characteristics of methods of analysis used for regulatory purposes. I. Drug dosage forms. B. Gas chromatographic methods.

    Science.gov (United States)

    Horwitz, W; Albert, R

    1984-01-01

    Gas chromatographic methods for the analysis of drug dosage forms consist of a simple extraction, dilution with an internal standard solution, and injection, or, even simpler, dilution with the internal standard solution and injection. These methods were used in 7 collaborative studies of the determination of 12 pharmaceuticals, published in the Journal of the AOAC during 1973-1983. A total of 43 individual materials consisting of various dosage forms were each analyzed, usually in duplicate, by an average of 8 laboratories, with a total of 582 reported determinations. The average within-laboratory coefficient of variation (CVo) was 1.25% and the average among-laboratories coefficient of variation (CVx) was 2.41%, for a CVo/CVx ratio of 0.52, at an average outlier rate of 1.4% of the reported values. The line of best fit for CVx plotted against concentration increases with decreasing concentration, extending from a CVx of approximately 1.8% at 100% concentration to a CVx of approximately 3.2% at 1% concentration. The change in CVx for a 10-fold decrease in concentration is approximately 0.7% CVx, independent of analyte and matrix.

  20. Gas chromatographic-thermal energy analysis method for N-nitrosodibutylamine in latex infant pacifiers: collaborative study

    Energy Technology Data Exchange (ETDEWEB)

    Each of 5 collaborating laboratories determined volatile N-nitrosamines in 3 blind quadruplicate sets of latex rubber infant pacifier samples, using a gas chromatographic-thermal energy analysis (GC-TEA) method. Volatile N-nitrosamines are extracted from cut-up pacifier nipples with CH/sub 2/Cl/sub 2/. The extract is concentrated and subjected to high temperature purge and trap, and the nitrosamines are eluted from the trap and determined by GC-TEA. N-Nitrosodibutylamine (NDBA) was the only nitrosamine found in sufficient concentration to allow analysis. NDBA concentrations of the 3 sets of samples were 82.6, 21.0, and 7.12 ng/g rubber. The repeatability relative standard deviations ranged from 7.46 to 24.0% and the reproducibility relative standard deviations from 7.46 to 29.2%. The minimum detectable level of NDBA by this method is 3.6 ng/g rubber. The method has been adopted official first action.

  1. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  2. Gas Chromatographic Method: Tool for Rapid and Sensitive Analysis of Residual Solvents in Amoxicillin and Ampicillin Tablets

    Directory of Open Access Journals (Sweden)

    Sk Manirul Haque

    2015-12-01

    Full Text Available A simple and sensitive static head space gas chromatographic (SH-GC method equipped with FID has been developed and validated for simultaneous determination of residual solvents e.g.,  methanol, dichloromethane and toluene in two therapeutic drugs such as amoxicillin  and ampicillin. The separation was achieved with 30 m long Elite - 5 fused silica capillary column and 0.32 mm inner diameter. The developed SH-GC method offered symmetric peak shape, good resolution and reasonable retention time for all the solvents. Beer’s law was obeyed in the concentration ranges 100 – 1200, 50 – 1000 and 50 – 500 ppm for methanol, dichloromethane and toluene, respectively. The method was validated according to international conference on harmonization (ICH guidelines in terms of specificity, linearity, precision, accuracy, limit of detection, limit of quantitation, robustness and solution stability. The degrees of linearity of the calibration curves, the percent recoveries, relative standard deviation for the method were also determined. All the validation parameters were within the acceptable range. The developed SH-GC method could, therefore, be suitable for simple and rapid detection of trace levels residual solvents in other pharmaceutical products and thereby it could be used for routine analysis in any analytical laboratory.

  3. Fast gas chromatographic residue analysis in animal feed using split injection and atmospheric pressure chemical ionisation tandem mass spectrometry.

    Science.gov (United States)

    Tienstra, M; Portolés, T; Hernández, F; Mol, J G J

    2015-11-27

    Significant speed improvement for instrumental runtime would make GC–MS much more attractive for determination of pesticides and contaminants and as complementary technique to LC–MS. This was the trigger to develop a fast method (time between injections less than 10 min) for the determination of pesticides and PCBs that are not (or less) amenable to LC–MS. A key factor in achieving shorter analysis time was the use of split injection (1:10) which allowed the use of a much higher initial GC oven temperature. A shorter column (15 m), higher temperature ramp, and higher carrier gas flow rate (6 mL/min) further contributed to analysis-time reduction. Chromatographic resolution was slightly compromised but still well fit-for-purpose. Due to the high sensitivity of the technique used (GC–APCI-triple quadrupole MS/MS), quantification and identification were still possible down to the 10 μg/kg level, which was demonstrated by successful validation of the method for complex feed matrices according to EU guidelines. Other advantages of the method included a better compatibility of acetonitrile extracts (e.g. QuEChERS) with GC, and a reduced transfer of co-extractants into the GC column and mass spectrometer.

  4. Interlaboratory tests to identify irradiation treatment of various foods via gas chromatographic detection of hydrocarbons, ESR spectroscopy and TL analysis

    International Nuclear Information System (INIS)

    Schreiber, G.A.; Helle, N.; Schulzki, G.; Linke, B.; Spiegelberg, A.; Mager, M.; Boegl, K.W.

    1996-01-01

    The gas chromatographic (GC) analysis of radiation-induced volatile hydrocarbons (HC) and 2-alkylcyclobutanones, the ESR spectroscopic detection of radiation-specific radicals and the thermoluminescence (TL) analysis of silicate mineral are the most important methods for identification of irradiated foods. After successful performance in interlaboratory studies on meat products, fish, spices, herbs and shells of nuts, all or some of these methods have been approved by national authorities in Germany and the United Kingdom. Recently, draft European Standards have been elaborated for approval by member states of the European Committee for Standardization (CEN). Several research laboratories have shown that these methods can be applied to various foods not yet tested in collaborative studies. However, for an effective application in food control it is necessary to prove their suitability in interlaboratory studies. Therefore, in 1993/94, various interlaboratory tests were organised by the BgVV. In an ESR spectroscopic test, shrimps and paprika powder were examined. Shrimps were also the subject of examination in a TL test. Finally, GC detection of radiation-induced hydrocarbons in the fat fraction of foods was used in another test to identify irradiated Camembert, avocado, papaya and mango. In the following paper, results of the interlaboratory tests are summarised. Detailed reports are published by this institute. (author)

  5. Interlaboratory tests to identify irradiation treatment of various foods via gas chromatographic detection of hydrocarbons, ESR spectroscopy and TL analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, G.A.; Helle, N.; Schulzki, G.; Linke, B.; Spiegelberg, A.; Mager, M.; Boegl, K.W. [BgVV - Federal Inst. for Health Protection of Consumers and Veterinary Medicine, Berlin (Germany)

    1996-12-31

    The gas chromatographic (GC) analysis of radiation-induced volatile hydrocarbons (HC) and 2-alkylcyclobutanones, the ESR spectroscopic detection of radiation-specific radicals and the thermoluminescence (TL) analysis of silicate mineral are the most important methods for identification of irradiated foods. After successful performance in interlaboratory studies on meat products, fish, spices, herbs and shells of nuts, all or some of these methods have been approved by national authorities in Germany and the United Kingdom. Recently, draft European Standards have been elaborated for approval by member states of the European Committee for Standardization (CEN). Several research laboratories have shown that these methods can be applied to various foods not yet tested in collaborative studies. However, for an effective application in food control it is necessary to prove their suitability in interlaboratory studies. Therefore, in 1993/94, various interlaboratory tests were organised by the BgVV. In an ESR spectroscopic test, shrimps and paprika powder were examined. Shrimps were also the subject of examination in a TL test. Finally, GC detection of radiation-induced hydrocarbons in the fat fraction of foods was used in another test to identify irradiated Camembert, avocado, papaya and mango. In the following paper, results of the interlaboratory tests are summarised. Detailed reports are published by this institute. (author).

  6. Integration and Ruggedization of a Commercially Available Gas Chromatograph and Mass Spectrometer (GCMS) for the Resource Prospector Mission (RPM)

    Science.gov (United States)

    Loftin, Kathleen; Griffin, Timothy; Captain, Janine

    2013-01-01

    The Resource Prospector is a mission to prospect for lunar volatiles (primarily water) at one of the two lunar poles, as well as demonstrate In-Situ Resource Utilization (ISRU) on the Moon. The Resource Prospector consists of a lander, a rover, and a rover-borne scientific payload. The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, will be able to (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The gas chromatograph mass spectrometer (GCMS) is the primary instrument in the RESOLVE instrumentation suite responsible for identification and quantification of the volatiles evolved from the lunar regolith. Specifically, this instrument must have: a low mass, a low power consumption, be able to perform fast analyses of samples ranging from less than one to greater than ninety nine percent water by mass, be autonomously controlled by the payload's software and avionics platform, and be able to operate in the harsh lunar environment. The RPM's short mission duration is the primary driver of the requirement for a very fast analysis time currently base lined at less than 2 minutes per sample. This presentation will discuss the requirements levied upon the GCMS design, lessons learned from a preliminary field demonstration deployment, the current design, and the path forward.

  7. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials.

    Science.gov (United States)

    Metaxa, E; Agelakopoulou, T; Bassiotis, I; Karagianni, Ch; Roubani-Kalantzopoulou, F

    2009-05-30

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides--building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  8. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials

    International Nuclear Information System (INIS)

    Metaxa, E.; Agelakopoulou, T.; Bassiotis, I.; Karagianni, Ch.; Roubani-Kalantzopoulou, F.

    2009-01-01

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides-building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  9. Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes.

    Science.gov (United States)

    Domínguez, A; Blanco, C G; Barriocanal, C; Alvarez, R; Díez, M A

    2001-05-18

    The aim of this study was to determine the volatile products distribution of co-processing of coal with two plastic wastes, low-density polyethylene from agriculture greenhouses and high-density polyethylene from domestic uses, in order to explain the observed decrease in coal fluidity caused by polyethylene waste addition. Polymeric materials, although they are not volatile themselves, may be analysed by gas chromatography through the use of pyrolysis experiments. In this way, a series of pyrolysis tests were performed at 400 and 500 degrees C in a Gray-King oven with each of the two plastic wastes, one high-volatile bituminous coal and blends made up of coal and plastic waste (9:1, w/w, ratio). The pyrolysis temperatures, 400 and 500 degrees C, were selected on the basis of the beginning and the end of the coal plastic stage. The organic products evolved from the oven were collected, dissolved in pyridine and analysed by capillary gas chromatography using a flame ionization detector. The analysis of the primary tars indicated that the amount of n-alkanes is always higher than that of n-alkenes and the formation of the alkenes is favoured by increasing the pyrolysis temperature. However, this effect may be influenced by the size of the hydrocarbon. Thus, the fraction C17-C31 showed a higher increase of n-alkenes/n-alkanes ratio than other fractions. On the other hand, the difference between the experimental and estimated values from tars produced from single components was positive for n-alkanes and n-alkenes, indicating that co-pyrolysis of the two materials enhanced the chemical reactivity during pyrolysis and produced a higher conversion than that from individual components.

  10. Natural gas adsorption on biomass derived activated carbons: A mini review

    Directory of Open Access Journals (Sweden)

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  11. Chromatographic fingerprint analysis of secondary metabolites in citrus fruits peels using gas chromatography-mass spectrometry combined with advanced chemometric methods.

    Science.gov (United States)

    Parastar, Hadi; Jalali-Heravi, Mehdi; Sereshti, Hassan; Mani-Varnosfaderani, Ahmad

    2012-08-17

    Multivariate curve resolution (MCR) and multivariate clustering methods along with other chemometric methods are proposed to improve the analysis of gas chromatography-mass spectrometry (GC-MS) fingerprints of secondary metabolites in citrus fruits peels. In this way, chromatographic problems such as baseline/background contribution, low S/N peaks, asymmetric peaks, retention time shifts, and co-elution (overlapped and embedded peaks) occurred during GC-MS analysis of chromatographic fingerprints are solved using the proposed strategy. In this study, first, informative GC-MS fingerprints of citrus secondary metabolites are generated and then, whole data sets are segmented to some chromatographic regions. Each chromatographic segment for eighteen samples is column-wise augmented with m/z values as common mode to preserve bilinear model assumption needed for MCR analysis. Extended multivariate curve resolution alternating least squares (MCR-ALS) is used to obtain pure elution and mass spectral profiles for the components present in each chromatographic segment as well as their relative concentrations. After finding the best MCR-ALS model, the relative concentrations for resolved components are examined using principal component analysis (PCA) and k-nearest neighbor (KNN) clustering methods to explore similarities and dissimilarities among different citrus samples according to their secondary metabolites. In general, four clear-cut clusters are determined and the chemical markers (chemotypes) responsible to this differentiation are characterized by subsequent discriminate analysis using counter-propagation artificial neural network (CPANN) method. It is concluded that the use of proposed strategy is a more reliable and faster way for the analysis of large data sets like chromatographic fingerprints of natural products compared to conventional methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Validated gas chromatographic-negative ion chemical ionization mass spectrometric method for delta(9)-tetrahydrocannabinol in sweat patches.

    Science.gov (United States)

    Saito, Takeshi; Wtsadik, Abraham; Scheidweiler, Karl B; Fortner, Neil; Takeichi, Sanae; Huestis, Marilyn A

    2004-11-01

    A sensitive gas chromatography-negative ion chemical ionization mass spectrometry (GC/MS-NICI) method was developed and validated for the measurement of Delta(9)-tetrahydrocannabinol (THC) in human sweat patches. THC-d(0) and THC-d(3) were added to worn blank sweat patches (PharmChek; PharmChem Incorporated) and extracted with 3 mL of methanol-0.2 mol/L sodium acetate buffer (pH 5.0, 3:1 by volume) on a reciprocating shaker at ambient temperature for 30 min. Extracted solution (2 mL) was diluted with 8 mL of 0.1 mol/L sodium acetate buffer (pH 4.5) and extracted by use of solid-phase extraction columns (CleanScreen; United Chemical Technologies). Dried extracts were derivatized with trifluoroacetic acid and analyzed with an Agilent 6890 gas chromatograph interfaced with an Agilent 5973 mass selective detector operated in NICI-selected ion-monitoring mode. The lower limits of detection and quantification for THC in human sweat were 0.2 and 0.4 ng/patch, respectively. The calibration curve was linear from 0.4 to 10 ng/patch (R(2) >0.995). Overall recovery of THC from blank worn patches to which 0.6, 4.0, and 8.0 ng of THC had been added was 44-46%. Assay imprecision, expressed as CV, was THC quantification. This GC/MS-NICI assay for THC in human sweat provides adequate sensitivity and performance characteristics for analyzing THC in sweat patches and meets the requirements of the proposed Substance Abuse and Mental Health Administration's guidelines for sweat testing.

  13. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    Science.gov (United States)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  14. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    Directory of Open Access Journals (Sweden)

    T. Hansen

    2013-10-01

    Full Text Available Total dissolved inorganic carbon (CT is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1 compared to natural open ocean seawater (~1950–2200 μmol kg−1. The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  15. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Science.gov (United States)

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  16. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  17. Remediation of MTBE from drinking water: air stripping followed by off-gas adsorption.

    Science.gov (United States)

    Ramakrishnan, Balaji; Sorial, George A; Speth, Thomas F; Clark, Patrick; Zaffiro, Alan; Patterson, Craig; Hand, David W

    2004-05-01

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-gas treatment often is required in conjunction with it. This study evaluated the combined treatment technologies of air stripping followed by off-gas adsorption on a pilot scale for the treatment of MTBE-contaminated water. The effect of air/water ratios on the treatment efficiency was studied, and the mass transfer coefficient was determined. Air/water ratios of 105:1, 151:1, 177:1, 190:1, 202:1, and 206:1 were used, and a treatment efficiency of >99% was achieved for all the runs conducted. The depth of packing required to achieve maximum treatment efficiency decreased with increasing air/water ratio. Relative humidity (RH) impacts on the MTBE adsorption capacity of a granular activated carbon (GAC) and carbonaceous resin were determined from pilot plant studies. Breakthrough profiles obtained from the pilot plant studies conducted at 20, 30, and 50% RH indicated that GAC has a higher adsorptive capacity than resin. The adsorptive capacity of GAC decreased with increasing RH, whereas RH did not impact the resin adsorptive capacity.

  18. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  19. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties

    Science.gov (United States)

    Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-01

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes. PMID:28049851

  20. Stability of Fluorosurfactant Adsorption on Mineral Surface for Water Removal in Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Lijun You

    2015-01-01

    Full Text Available Long-term effectiveness of rock wettability alteration for water removal during gas production from tight reservoir depends on the surfactant adsorption on the pore surface of a reservoir. This paper selected typical cationic fluorosurfactant FW-134 as an example and took advantage of Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and atomic force microscope (AFM to investigate its adsorption stability on the rock mineral surface under the oscillation condition at high temperature for a long time. The experimental results indicate that the F element content on the sample surface increases obviously, the surface structure of fluorine-carbonization also undergoes a significant change, and the fluorine surfactant exhibits a good interfacial modification and wettability alteration ability due to its adsorption on the pore surface transforming the chemical structure of the original surface. The adsorption increases indistinctly with the concentration of over 0.05% due to a single layer adsorption structure and is mainly electrostatic adsorption because the chemical bonding between the fluorosurfactant and the rock mineral surface, the hydrogen bonding, is weak and inconspicuous.

  1. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  2. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Science.gov (United States)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  3. Thermal desorption-Gas chromatographic methodology for the determination of residual solvents in mesoporous silica.

    Science.gov (United States)

    Asfaw, Adissu Alemayehu; Wolfs, Kris; Schepdael, Ann Van; Adams, Erwin

    2017-06-02

    In this work, thermal desorption-gas chromatography-flame ionization detection (TD-GC-FID) was adapted to enable the determination of residual solvents (RS) in mesoporous silica (MPSi). MPSi is often utilized in various pharmaceutical formulations or drug delivery systems and the accurate determination of RS is an important part of pharmaceutical quality control. Seven commonly used solvents (methanol, ethanol, acetone, isopropanol, dichloromethane, tetrahydrofuran and hexafluoroisopropanol) were evaluated in combination with 3 types of MPSi having pore sizes of 2-3, 15 and 25nm. Validation results showed general recovery values >98% and good linearity over the concentration ranges studied. The limits of detection (LOD) and limits of quantification (LOQ) for the different solvents ranged from 0.03 to 0.08μg and from 0.1 to 0.2μg per tube, respectively. Verification of the accuracy of the TD method was investigated by using an alternative method based on complete dissolution of MPSi in hydrofluoric acid (HF) followed by full evaporation headspace-GC (HS-GC). The results obtained from both procedures were not statistically different (p>0.05) when applied to actual experimental drug samples consisting of itraconazole loaded on MPSi. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gas chromatographic and electron spin resonance investigations of gamma-irradiated frog legs

    International Nuclear Information System (INIS)

    Morehouse, K.M.; Ku, Yuoh; Albrecht, H.L.; Yang, G.C.

    1991-01-01

    Several very sensitive techniques to measure radiation-induced products in frog legs were investigated. Presented here are results from the use of electron spin resonance (ESR) spectroscopy and capillary gas chromatography (GC) to measure radiolysis products in γ-irradiated frog legs. When bone is irradiated, a characteristic ESR signal develops and is easily measured. The intensity of the ESR signal is dose-dependent and stable for several months at room temperature. When triglycerides or fatty acids are irradiated, some of the major stable products formed are hydrocarbons with one less carbon than the precursor fatty acids. These hydrocarbons are formed as the result of the loss of CO 2 during various free radical reactions. A capillary GC procedure was developed to monitor the formation of these hydrocarbons in γ-irradiated frog legs. Since frog legs contain large amounts of palmitic, stearic, oleic, and linoleic acids, the formation of the hydrocarbons (pentadecane, heptadecane, 8-heptadecene, and 6,9-heptadecadiene, respectively) from the decarboxylation of these fatty acids was monitored. The yields of these hydrocarbons were found to be linear with applied dose. A sample from a lot of imported frog legs that were believed to have been treated with ionizing radiation was also analyzed. The ESR technique, in conjunction with the GC data on the hydrocarbons, appears to be a useful approach for identifying and monitoring frog legs that have been treated with ionizing radiation. (author)

  5. A gas chromatographic method for the identification of gamma-irradiated frog legs

    International Nuclear Information System (INIS)

    Morehouse, K.M.; Yuoh Ku

    1990-01-01

    When triglycerides or fatty acids are irradiated, some of the major stable products formed are hydrocarbons with one less carbon than the parent fatty acids. These hydrocarbons are formed as the result of the loss of CO 2 via various free radical reactions. A procedure has been developed utilizing capillary gas chromatography (GC) to monitor the formation of these hydrocarbons in gamma-irradiated frog legs. Since frog legs contain large amounts of palmitic, stearic, oleic, and linoleic acids, the formation of the hydrocarbons (pentadecane, heptadecane, 8-heptadecene, and 6,9-heptadecadiene, respectively) from the decarboxylation of these fatty acids was monitored. The yield of these hydrocarbons was found to be linear with applied dose. A sample from a lot of imported frog legs that were believed to have been irradiated was also analyzed. The results obtained from the GC determination of the hydrocarbons compared favorably with those obtained by using electron spin resonance to monitor the free radicals trapped in the frog leg bone after irradiation. (author)

  6. Evaluation of gas chromatographic methods for the determination of trans fat.

    Science.gov (United States)

    Delmonte, Pierluigi; Rader, Jeanne I

    2007-09-01

    Consumption of trans fat has been associated with increased risk of coronary heart disease. For nutrition labeling purposes, the US Food and Drug Administration (FDA) defines trans fat as the sum of all the fatty acids with at least one nonconjugated double bond in the trans configuration. The FDA regulation states that label declarations of trans fat are not required for products that contain less than 0.5 g of trans fat per serving if no claims are made about fat, fatty acids or cholesterol. While attenuated total reflection Fourier-transformed infrared spectroscopy (ATR-FT-IR) provides reproducible measurements for samples containing more than 5% trans fat, methods based on gas chromatography (GC) are needed to measure lower trans fat levels. Trans fat quantitation by GC has recently been updated by considering more fatty acids, focusing more attention on fatty acids present in low amounts, and by using 100-m high-polarity capillary columns for optimal separation. The consistently high interlaboratory relative standard deviations (RSD, e.g., 21% at 1% trans fatty acids (TFA), 60% at 0.17% TFA), and intralaboratory RSD values (e.g., 10% at 1% TFA, 16% at 0.17% TFA) for trans fat at 1% or less of total fat reported in the collaborative study data for American Oil Chemists Society Official Method Ce 1h-05 suggest the need to carefully define the parameters associated with GC analysis of fatty acids.

  7. Gas chromatographic/mass spectrometric characterization of dromostanolone metabolites in human urine

    International Nuclear Information System (INIS)

    Kim, Tae Wook; Choi, Man Ho; Jung, Byung Hwa; Chung, Bong Chul

    1998-01-01

    The metabolism of dromostanolone (2α-methyl-5α-androstan-17β-ol-3-one) was studied in three adult volunteers after oral dose of 20 mg. Solvent extracts of urine obtained after enzyme hydrolysis were derivatized with MSTFA/TMCS and MSTFA/TMIS. The structures of intact drug and its metabolites were determined by gas chromatography/mass spectrometry (GC/MS) in electron impact (EI) mode. The major metabolite (2α-methyl-5α-androstan-3α-ol-17-one), its 3β-epimer, parent compound, and several hydroxylated metabolites including intact drug were detected by comparing total ion chromatograms of control urine with that of the administered sample. Two epimers of 2α-methyl-5α-androstan-3, 17β-diol were detected using selected ion monitoring. The maximum excretion of dromostanolone and 2α-methyl-5α-androstan-3α-ol-17-one was reached in 6.2-15 hr. The half-life of intact dromostanolone was 5.3 hr. About 3.0% of the administered amount was found to be excreted within 95 hr as unchanged form

  8. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism.

    Science.gov (United States)

    Kuhara, Tomiko

    2005-01-01

    Urine contains numerous metabolites, and can provide evidence for the screening or molecular diagnosis of many inborn errors of metabolism (IEMs). The metabolomic analysis of urine by the combined use of urease pretreatment, stable-isotope dilution, and capillary gas chromatography/mass spectrometry offers reliable and quantitative data for the simultaneous screening or molecular diagnosis of more than 130 IEMs. Those IEMs include hyperammonemias and lactic acidemias, and the IEMs of amino acids, pyrimidines, purines, carbohydrates, and others including primary hyperoxalurias, hereditary fructose intolerance, propionic acidemia, and methylmalonic acidemia. Metabolite analysis is comprehensive for mutant genotypes. Enzyme dysfunction-either by the abnormal structure of an enzyme/apoenzyme, the reduced quantity of a normal enzyme/apoenzyme, or the lack of a coenzyme-is involved. Enzyme dysfunction-either by an abnormal regulatory gene, abnormal sub-cellular localization, or by abnormal post-transcriptional or post-translational modification-is included. Mutations-either known or unknown, common or uncommon-are involved. If the urine metabolome approach can accurately observe quantitative abnormality for hundreds of metabolites, reflecting 100 different disease-causing reactions in a body, then it is possible to simultaneously detect different mutant genotypes of far more than tens of thousands. (c) 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:814-827, 2005.

  9. Determination of Profenofos Pesticidal Residue in Lettuce (Lactuca sativa L. by Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Yohannes Alen

    2015-05-01

    Full Text Available The determination of profenofos pesticidal residue in the lettuce (Lactuca sativa L. by using gas chromatography using flame photometric detector (FPD had been investigated. The lettuce was collected from Padang Luar area, Agam distric, West Sumatera. Sample for determination of profenofos residue divided into three groups: unwashed (A, washed with water (B, and washed with detergent (C. Maceration with sonication was used for the extraction using ethylacetateas a solvent. The results showed that profenofos pesticide residue in sample A, B and C were 0.204, 0.080 and 0.061 ppm, respectively. These profenofos pesticidal residue are over than the Maximum Residue Limits (MRL that established by The Japan Food Chemical Research Foundation (0.05 ppm even though World Health Organization (WHO has not established Maximum Residue Limits (MRL profenofos on lettuce. Based on the statistical analysis one-way method (Anova using SPSS 20.0 showed that there was a significant concentrations difference between lettuce A from lettuce B and lettuce C with p < 0.05.

  10. Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Giannitto, Andrea; Maggi, Maria Anna

    2013-07-12

    In this paper, we predict the retention of polybrominated diphenyl ethers (PBDEs) in capillary gas-chromatography (GC) within a useful range of separation conditions. In a first stage of this study, quantitative structure-retention relationships (QSRRs) of PBDEs in six stationary phases with different polarity are established. The single-column QSRR models are generated using the retention data of 126 PBDE congeners by multilinear regression (MLR) coupled to genetic algorithm variable selection applied to a large set of theoretical molecular descriptors of different classes. A quite accurate fitting of experimental retentions is obtained for each of the six GC columns adopting five molecular descriptors. In a further step of this work six molecular descriptors were extracted within the set of molecular descriptors (17 variables) involved in the various single-column QSRRs. The selected molecular descriptors are combined with observed retentions of ten representative PBDEs, adopted as descriptors of the GC system. These quantities are considered as the independent variables of a multiple-column retention model able to simultaneously relate GC retention to PBDE molecular structure and kind of column. The quantitative structure/column-retention relationship is established using a multi-layer artificial neural network (ANN) as regression tool. To optimise the ANN model, a validation set is generated by selecting two out of the six calibration columns. Splitting of columns between training and validation sets, as well as selection of PBDE congeners to be used as column descriptors, is performed with the help of a principal component analysis on the retention data. Cross-column predictive performance of the final model is tested on a large external set consisting of retention data of 180 PBDEs collected in four separation conditions different from those considered in model calibration (different columns and/or temperature program). Copyright © 2013 Elsevier B.V. All

  11. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations.

    Science.gov (United States)

    Darko, Ernest; Thurbide, Kevin B; Gerhardt, Geoff C; Michienzi, Joseph

    2013-06-04

    A gas chromatography (GC) column is fabricated within a low-temperature cofired ceramic (LTCC) tile, and its analytical properties are characterized. By using a dual-spiral design, a 100 μm wide square channel up to 15 m in length is produced within an 11 cm × 5.5 cm LTCC tile. The channel is dynamically coated with an OV-101 stationary phase that is cross-linked with dicumyl peroxide. While the uncoated LTCC tiles were able to separate a mixture of n-alkanes, the peak shapes were broad (base width of ~2 min) and tailing. In contrast to this, the coated LTCC tiles produced sharp (base width of ~8-10 s), symmetrical, well-resolved peaks for the same analytes. By using a 7.5 m long channel, about 15,000 plates were obtained for a dodecane test analyte. Further, the coated LTCC tiles were found to produce plate heights that were about 3-fold smaller than those obtained from a conventional capillary GC column of similar length, dimension, and coating operated under the same conditions. As a result, test analyte separations were slightly improved in the LTCC tiles, and their overall performance fared well. In terms of temperature programming, it was found that a series of n-alkanes separated on the LTCC tile provided a cumulative peak capacity of around 54 peaks when using C₈ to C₁₃ as analyte markers. Results indicate that LTCC tiles provide a viable and useful alternative platform for performing good quality GC separations.

  12. Gas Desorption Behavior of Graphite Anodes in Lithium Ion Secondary Batteries After Adsorption of Electrolytes

    Science.gov (United States)

    Watanabe, Toshinori; Nobuta, Yuji; Yamauchi, Yuji; Hino, Tomoaki; Kubota, Yoshihiro; Ohzeki, Katsutomo

    When it was soaked, more were desorbed In this study, gas desorption behaviors of graphite anode samples after various surface treatments and electrolyte solvent adsorption properties were investigated. The total amount of desorbed gases for the natural graphite samples increased after soaking in propylene carbonate, and increased even further with Raman R value, suggesting that surface defects act as an effective adsorption site for the electrolyte. These findings indicate that surface treatment such as a coating might be an effective remedy to reduce the amount of desorption gases in natural graphite samples. It was also found that the total amount of gas desorption largely decreased with the coating with polymer resin and subsequent heat treatment at 423 K for 12 hours in a medium of air. It is likely that the dominant gas species present in the natural graphite after the electrolyte soaking are dependent on the binding energy and the molecular structure of the electrolyte solvent.

  13. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  14. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    Science.gov (United States)

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  15. Adsorption of gas molecules on graphene-like InN monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiang; Yang, Qun [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Meng, Ruishen [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Tan, Chunjian [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Liang, Qiuhua [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Jiang, Junke [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Ye, Huaiyu [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Chen, Xianping, E-mail: xianpingchen@cqu.edu.cn [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China)

    2017-05-15

    Highlights: • A comprehensive adsorption mechanism of InN monolayer is theoretical studied to distinguish the physic/chemi-sorption. • Different adsorption sites for different gases are systematically discussed. • The influence (enhanced or weakened) of external electric field to InN-gas system is well investigated. • The influences of gas adsorption to the optical properties (work function and light adsorption ability) of InN monolayer are also researched. - Abstract: Using first-principles calculation within density functional theory (DFT), we study the gas (CO, NH{sub 3}, H{sub 2}S, NO{sub 2}, NO, SO{sub 2}) adsorption properties on the surface of single-layer indium nitride (InN). Four different adsorption sites (Bridge, In, N, Hollow) are chosen to explore the most sensitive adsorption site. On the basis of the adsorption energy, band gap and charge transfer, we find that the most energetic favourable site is changeable between In site and N site for different gases. Moreover, our results reveal that InN is sensitive to NH{sub 3}, SO{sub 2}, H{sub 2}S and NO{sub 2}, by a physisorption or a chemisorption nature. We also perform a perpendicular electric field to the system and find that the applied electric field has a significant effect for the adsorption process. Besides, we also observed the desorption effects on NH{sub 3} adsorbed at the hollow site of InN when the electric field applied. In addition, the optical properties of InN monolayer affected by different gases are also discussed. Most of the gas adsorptions will cause the inhibition of light adsorption while the others can reduce the work function or enhance the adsorption ability in visible region. Our theoretical results indicate that monolayer InN is a promising candidate for gas sensing applications.

  16. Italian and Argentine olive oils: a NMR and gas chromatographic study

    Directory of Open Access Journals (Sweden)

    Segre, Annalaura

    2001-12-01

    Full Text Available High-field Nuclear Magnetic Resonance (NMR spectroscopy and Gas Chromatography (GC were used to analyze 16 monovarietal olive oils obtained from few matched Mediterranean cultivars grown in experimental fields located in Italy and in the Catamarca region of Argentina. The Catamarca region is characterized by extreme pedoclimatic conditions and by a wild spontaneous vegetation. The proposed sampling allows to study the effect of different pedoclimatic conditions on olive oil composition. GC gives the fatty acid profile of olive oil samples. 1H and 13C NMR techniques provide different information: the 1H NMR spectrum allows the measurement of minor components of olive oils such as b-sytosterol, hexanal, trans-2-hexenal, formaldehyde, squalene, cycloartenol and linolenic acid; the 1C NMR spectrum allows to obtain information about glycerol tri-esters of olive oils, i.e., about their acyl composition and positional distribution on glycerol moiety. All the NMR and GC results have been submitted to Linear Discriminant Analysis (LDA and Tree Cluster Analysis (TCA. A careful analysis of the statistical results allows to select the Mediterranean cultivars less affected by the climatic conditions present in the Catamarca region. The selected cultivars produce olive oils which keep their Mediterranean characteristics and which can be proposed as colonizing plants in this wild Argentine region.La espectroscopía de Resonancia Magnética Nuclear de alta resolución (RMN y Cromatografía Gaseosa (CG fueron utilizadas para analizar 16 monovariedades de aceites de oliva, obtenidas de algunos olivares Mediterráneos cultivados contemporáneamente en campos experimentales localizados en Italia y en la región de Catamarca en Argentina. Estas muestras permiten estudiar diferentes condiciones pedoclimáticas en la composición de los aceite de oliva. La CG proporciona el perfil en ácidos grasos de los aceites de oliva y las técnicas RMN 1H y RMN 13C suministran

  17. Graphene oxide foams and their excellent adsorption ability for acetone gas

    International Nuclear Information System (INIS)

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-01-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials

  18. Antioxidant and Antiangiogenic Properties, and Gas Chromatographic-Time of Flight Analysis of Sonchus arvensis Leaves Extracts

    International Nuclear Information System (INIS)

    Itam, A.; Shah, A. M.; Majid, A.; Ismail, Z.

    2015-01-01

    Sonchus arvensis L. (Asteraceae) is one of the medicinal herbs used in traditional medicines, in which the leaf extract was used as a diuretic, lithotriptic and antiurolithiasis agent. The leaves of S. arvensis reported contain several compounds, including a variety of flavonoids, terpenoids and sterol, even this plant also contain silica and potassium. Flavonoids are secondary metabolite compound which have ability as antioxidant. In this study, the aims are to determine of antioxidants and antiangiogenic properties, and phytoconstituents quantitative of aqueous and methanol extracts of S. arvensis leaves. The antioxidant properties were studied using 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical, xanthine oxidase and beta-carotene-linoleate models system. Furthermore, the antiangiogenic property was evaluated using ex vivo rat aorta ring assay. Quantitative determination of extracts phytoconstituents were carried out by using Gas Chromatographic-Time of Flight (GC-TOF) mass spectrophotometric methods. The results showed that the aqueous and methanol extracts have ability as antioxidant which is antioxidant activities of aqueous extracts on DPPH radical and inhibition of xanthine oxidase activity are higher than that of methanol extracts. Meanwhile antioxidant activity using beta-carotene-linoleate model system of S. arvensis aqueous extract is lower than that of methanol extracts. Nevertheless, the differences of these antioxidant activities are not significant. Antiangiogenic property of aqueous extract is also higher than that of methanol extract which is measured at 100 meu g mL/sup -1/ of extracts. This indicates that there is correlation between antioxidant activity and antiangigenic property, exhibiting that this plant possesses the potential to prevent or cure the diseases that related to angiogenesis such as cancer. (author)

  19. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  20. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  1. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response.

    Science.gov (United States)

    Kou, Liangzhi; Frauenheim, Thomas; Chen, Changfeng

    2014-08-07

    Recent reports on the fabrication of phosphorene, that is, mono- or few-layer black phosphorus, have raised exciting prospects of an outstanding two-dimensional (2D) material that exhibits excellent properties for nanodevice applications. Here, we study by first-principles calculations the adsorption of CO, CO2, NH3, NO, and NO2 gas molecules on a monolayer phosphorene. Our results predict superior sensing performance of phosphorene that rivals or even surpasses that of other 2D materials such as graphene and MoS2. We determine the optimal adsorption positions of these molecules on the phosphorene and identify molecular doping, that is, charge transfer between the molecules and phosphorene, as the driving mechanism for the high adsorption strength. We further calculated the current-voltage (I-V) relation using the nonequilibrium Green's function (NEGF) formalism. The transport features show large (1-2 orders of magnitude) anisotropy along different (armchair or zigzag) directions, which is consistent with the anisotropic electronic band structure of phosphorene. Remarkably, the I-V relation exhibits distinct responses with a marked change of the I-V relation along either the armchair or the zigzag directions depending on the type of molecules. Such selectivity and sensitivity to adsorption makes phosphorene a superior gas sensor that promises wide-ranging applications.

  2. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  3. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  4. Characterization of crude oils and petroleum products: (I) Elution liquid chromatographic separation and gas chromatographic analysis of crude oils and petroleum products

    OpenAIRE

    E.O. Odebunmi; E.A. Ogunsakin; P.E.P. Ilukhor

    2002-01-01

    Some physical and chemical properties of samples of light, medium and heavy Nigerian crude oils and petroleum products including gasoline, kerosene and engine oil have been measured and are reported in this paper. The crude oils and petroleum products have also been characterized by fractional distillation and elution liquid chromatography. The fractions obtained from elution liquid chromatography were analyzed using gas chromatography (GC). The GC fractions were identified by comparing the r...

  5. Solid-phase microextraction for gas chromatographic/mass spectrometric analysis of dimethoate in human biological samples.

    Science.gov (United States)

    Gallardo, E; Barroso, M; Margalho, C; Cruz, A; Vieira, D N; López-Rivadulla, M

    2006-01-01

    A new, simple and rapid procedure for the determination of dimethoate in urine and blood samples was developed using direct immersion solid-phase microextraction and gas chromatography/mass spectrometry. This technique required only 0.1 mL of sample, and ethion was used as internal standard. Two types of coated fibre were compared (100 microm polydimethylsiloxane, and 65 microm Carbowax/divinylbenzene). Other parameters, such as extraction temperature, adsorption and desorption time, salt addition, agitation and pH, were optimized to enhance the sensitivity of the method. Limits of detection (LODs) and quantitation (LOQs) were 50 and 100 ng/mL for urine and 200 and 500 ng/mL for blood, respectively. The method was found to be linear between the LOQ and 40 microg/mL for urine, and between the LOQ and 50 microg/mL for blood, with correlation coefficients ranging from 0.9923-0.9996. Precision (intra- and interday) and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. The mean absolute recoveries of dimethoate were 1.24 and 0.50% for urine and blood, respectively. Because of its simplicity and the fact that small volumes of sample are used, the described method can be successfully used in the diagnosis of poisoning by this pesticide, namely in those situations where the sample volume is limited, as frequently occurs in forensic toxicology. Copyright 2006 John Wiley & Sons, Ltd.

  6. Gas Phase Transport, Adsorption and Surface Diffusion in Porous Glass Membrane

    Czech Academy of Sciences Publication Activity Database

    Yang, J.; Čermáková, Jiřina; Uchytil, Petr; Hamel, Ch.; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 104, 2-4 (2005), s. 344-351 ISSN 0920-5861. [International Conference on Catalysis in Membrane Reactors /6./. Lahnstein, 06.07.2004-09.07.2004] R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas phase transport * vycor glass * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.365, year: 2005

  7. Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: Quantum chemical calculations

    Science.gov (United States)

    Kazemi, Mohammad; Rad, Ali Shokuhi

    2017-06-01

    In the present study, we used density functional theory calculations (at B3LYP and ωB97XD Levels) to search on the adsorption of Sulfur mustard gas (defined as mustard gas) on the surface of fullerene-like ZnO nanocage as a semiconductor. We found three different configurations of adsorbed gas on the surface of this nanostructure semiconductor. The values of adsorption energy of mustard gas are calculated in the range of -144∼ -200 kJ/mol with enthalpies in the range of -132∼-195 kJ/mol and Gibbs free energies in the range of -88∼-144 kJ/mol (T = 298 K, based on ωB97XD level), which indicate exothermic and spontaneous chemisorption. For all geometries, we calculated geometry parameters by taking into account the charge analysis and frontier molecular orbital study. The result of this study can be a support for next studies to develop new nanomaterials as adsorbent/sensor for mustard gas.

  8. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition

    Science.gov (United States)

    2014-03-20

    areas and high adsorptive capacities. We find that a nanoscale coating of Al2O3 formed by atomic layer deposition (ALD) on the surface of nonwoven ...distribution is unlimited. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition The... Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition Report Title While metal-organic frameworks (MOFs) show great

  9. Iodine Adsorption by Ag-Aerogel under Prototypical Vessel Off-Gas Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. The required plant decontamination factor for iodine will vary based on fuel burnup, cooling time, and other factors but is very likely to be >1000 and could be as high as 8000. Multiple off-gas streams within a UNF reprocessing plant combine prior to environmental release, and each of these streams contains some amount of iodine. To achieve the decontamination factors (DFs) that are likely to be required by regulations, iodine removal from the vessel off-gas will be necessary. The vessel off-gas contains iodine at very dilute concentrations (ppb levels), and will also contain water vapor. Iodine species present are likely to include both elemental and organic iodides. There will also be solvent vapors and volatile radiolysis products. The United States has considered the use of silver-based sorbents for removal of iodine from UNF off-gas streams, but little is known about the behavior of those sorbents at very dilute iodine concentrations. The purpose of this study was to expose silver-functionalized silica aerogel (AgAerogel) to a prototypical vessel off-gas stream containing 40 ppb methyl iodide to obtain information about organic iodine capture by silver-sorbents at very low iodine concentrations. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the overall system DF could be obtained. Results show that CH3I penetrates into a AgAerogel sorbent bed to a depth of 3.9 cm under prototypical vessel off-gas conditions. An iodine loading of 22 mg I/g AgAerogel was observed in the first 0.3 cm of the bed. Of the iodine delivered to the system, 48% could not be accounted for, and future efforts will investigate this concern. Direct calculation of the decontamination factor is not

  10. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study

    International Nuclear Information System (INIS)

    Liang, Xiong-Yi; Ding, Ning; Ng, Siu-Pang; Wu, Chi-Man Lawrence

    2017-01-01

    Highlights: • H 2 O, NH 3 , CO, NO 2 and NO are physically adsorbed on pristine graphene. • The adsorption energies of all gas molecules on graphene are increased after doping with Ga. • NO 2 shows the strongest affinity to Ga-doped graphene. • The electronic properties and adsorption of NO 2 on graphene and can be effectively tuned using an external electric field. - Abstract: Density functional theory calculations have been carried out to study the adsorption of varous gas molecules (H 2 O, NH 3 , CO, NO 2 and NO) on pristine graphene and Ga-doped graphene in order to explore the feasibility of Ga-doped graphene based gas sensor. For each gas molecule, various adsorption positions and orientations were considered. The most stable configuration was determined and the adsorption energies with van der Waals interactions were calculated. Further, electronic properties such as electron density, density of states, charge transfer and band structure were investigated to understand the mechanism of adsorption. The results showed that the gas molecules studied were only weakly adsorbed on pristine graphene with small adsorption energies. On the other hand, the adsorption energies of all gas molecules on Ga-doped graphene increased by various amounts. Adsorption of gas molecules on Ga-doped graphene can open a relatively large band gap ranging from 0.267 to 0.397 eV. NO 2 was found to be very sensitive to Ga-doped graphene with adsorption energy of −1.928 eV due to strong orbital hybridization and large charge transfer. Furthermore, our study suggests that the affinity and electronic properties of NO 2 on Ga-doped graphene can be dramatically changed by an external electric field. A negative electric field enhances the adsorption of NO 2 on Ga-doped graphene as reflected in the increase in adsorption energy. In contrast, the interaction will be weakened under a positive electric field. The results of the DFT calculation indicates the potential application of Ga

  11. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiong-Yi [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ding, Ning [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan 250014 (China); Ng, Siu-Pang [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Wu, Chi-Man Lawrence, E-mail: lawrence.wu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan 250014 (China)

    2017-07-31

    Highlights: • H{sub 2}O, NH{sub 3}, CO, NO{sub 2} and NO are physically adsorbed on pristine graphene. • The adsorption energies of all gas molecules on graphene are increased after doping with Ga. • NO{sub 2} shows the strongest affinity to Ga-doped graphene. • The electronic properties and adsorption of NO{sub 2} on graphene and can be effectively tuned using an external electric field. - Abstract: Density functional theory calculations have been carried out to study the adsorption of varous gas molecules (H{sub 2}O, NH{sub 3}, CO, NO{sub 2} and NO) on pristine graphene and Ga-doped graphene in order to explore the feasibility of Ga-doped graphene based gas sensor. For each gas molecule, various adsorption positions and orientations were considered. The most stable configuration was determined and the adsorption energies with van der Waals interactions were calculated. Further, electronic properties such as electron density, density of states, charge transfer and band structure were investigated to understand the mechanism of adsorption. The results showed that the gas molecules studied were only weakly adsorbed on pristine graphene with small adsorption energies. On the other hand, the adsorption energies of all gas molecules on Ga-doped graphene increased by various amounts. Adsorption of gas molecules on Ga-doped graphene can open a relatively large band gap ranging from 0.267 to 0.397 eV. NO{sub 2} was found to be very sensitive to Ga-doped graphene with adsorption energy of −1.928 eV due to strong orbital hybridization and large charge transfer. Furthermore, our study suggests that the affinity and electronic properties of NO{sub 2} on Ga-doped graphene can be dramatically changed by an external electric field. A negative electric field enhances the adsorption of NO{sub 2} on Ga-doped graphene as reflected in the increase in adsorption energy. In contrast, the interaction will be weakened under a positive electric field. The results of the DFT

  12. A multiresidue method by high performance liquid chromatography-based fractionation and gas chromatographic determination of trace levels of pesticides in air and water.

    Science.gov (United States)

    Seiber, J N; Glotfelty, D E; Lucas, A D; McChesney, M M; Sagebiel, J C; Wehner, T A

    1990-01-01

    A multiresidue analytical method is described for pesticides, transformation products, and related toxicants based upon high performance liquid chromatographic (HPLC) fractionation of extracted residue on a Partisil silica gel normal phase column followed by selective-detector gas chromatographic (GC) determination of components in each fraction. The HPLC mobile phase gradient (hexane to methyl t-butyl ether) gave good chromatographic efficiency, resolution, reproducibility and recovery for 61 test compounds, and allowed for collection in four fractions spanning polarities from low polarity organochlorine compounds (fraction 1) to polar N-methylcarbamates and organophosphorus oxons (fraction 4). The multiresidue method was developed for use with air samples collected on XAD-4 and related trapping agents, and water samples extracted with methylene chloride. Detection limits estimated from spiking experiments were generally 0.3-1 ng/m3 for high-volume air samples, and 0.01-0.1 microgram/L for one-liter water samples. Applications were made to determination of pesticides in fogwater and air samples.

  13. Determination of triazine and chloroacetanilide herbicides in soils by microwave-assisted extraction (MAE) coupled to gas chromatographic analysis with either GC-NPD or GC-MS.

    Science.gov (United States)

    Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2002-08-28

    A simple and rapid method based on microwave-assisted extraction (MAE) coupled to gas chromatographic analysis was developed for the analysis of triazine (atrazine, cyanazine, metribuzine, simazine and deethylatrazine, and deisopropylatrazine) and chloroacetanilide (acetochlor, alachlor, and metolachlor) herbicide residues in soils. Soil samples are processed by MAE for 5 min at 80 degrees C in the presence of acetonitrile (20 mL/sample). Mean recovery values of most solutes are >80% in the 10 to 500 microg/kg fortification range with respective RSDs (relative standard deviations) NPD) or a mass spectrometric detector (GC-MS).

  14. Performance of an electrothermal swing adsorption system with postdesorption liquefaction for organic gas capture and recovery.

    Science.gov (United States)

    Mallouk, Kaitlin E; Rood, Mark J

    2013-07-02

    The use of adsorption on activated carbon fiber cloth (ACFC) followed by electrothermal swing adsorption (ESA) and postdesorption pressure and temperature control allows organic gases with boiling points below 0 °C to be captured from air streams and recovered as liquids. This technology has the potential to be a more sustainable abatement technique when compared to thermal oxidation. In this paper, we determine the process performance and energy requirements of a gas recovery system (GRS) using ACFC-ESA for three adsorbates with relative pressures between 8.3 × 10(-5) and 3.4 × 10(-3) and boiling points as low as -26.3 °C. The GRS is able to capture > 99% of the organic gas from the feed air stream, which is comparable to destruction efficiencies for thermal oxidizers. The energy used per liquid mole recovered ranges from 920 to 52,000 kJ/mol and is a function of relative pressure of the adsorbate in the feed gas. Quantifying the performance of the bench-scale gas recovery system in terms of its ability to remove organic gases from the adsorption stream and the energy required to liquefy the recovered organic gases is a critical step in developing new technologies to allow manufacturing to occur in a more sustainable manner. To our knowledge, this is the first time an ACFC-ESA system has been used to capture, recover, and liquefy organic compounds with vapor pressures as low as 8.3 × 10(-5) and the first time such a system has been analyzed for process performance and energy consumption.

  15. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...... is applied. A sodium sulfite-based converter material was prepared by dry impregnation of sodium sulfite and calcium sulfate powders on zeolite pellets using water glass as binder. The sulfite converter works well at 500°C with less than 10ppmv HCl in the simulated cement kiln flue gas. The 95% response time...... of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...

  16. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. An integrated methodological approach to the computer-assisted gas chromatographic screening of basic drugs in biological fluids using nitrogen selective detection.

    Science.gov (United States)

    Dugal, R; Massé, R; Sanchez, G; Bertrand, M J

    1980-01-01

    This paper presents the methodological aspects of a computerized system for the gas-chromatographic screening and primary identification of central nervous system stimulants and narcotic analgesics (including some of their respective metabolites) extracted from urine. The operating conditions of a selective nitrogen detector for optimized analytical functions are discussed, particularly the effect of carrier and fuel gas on the detector's sensitivity to nitrogen-containing molecules and discriminating performance toward biological matrix interferences. Application of simple extraction techniques, combined with rapid derivatization procedures, computer data acquisition, and reduction of chromatographic data are presented. Results show that this system approach allows for the screening of several drugs and their metabolites in a short amount of time. The reliability and stability of the system have been tested by analyzing several thousand samples for doping control at major international sporting events and for monitoring drug intake in addicts participating in a rehabilitation program. Results indicate that these techniques can be used and adapted to many different analytical toxicology situations.

  18. Applicability of molecular simulations for modelling the adsorption of the greenhouse gas CF4 on carbons

    Science.gov (United States)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Kowalczyk, Piotr; Harris, Peter J. F.; Koter, Stanisław

    2013-01-01

    Tetrafluoromethane, CF4, is a powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF4 adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical parameters of the supercritical Dubinin-Astakhov model proposed by Ozawa and finally the meaning of the parameter k of the empirical relation proposed by Amankwah and Schwarz.

  19. Capillary gas chromatographic detection of invert sugar in heated, adulterated, and adulterated and heated apple juice concentrates employing the equilibrium method.

    Science.gov (United States)

    Low, N H; McLaughlin, M; Hofsommer, H J; Hammond, D A

    1999-10-01

    The equilibrium method is introduced for the detection of invert sugar addition to apple juice. The method consists of a pre-equilibration of the sample with dry pyridine at 50 degrees C for 20 min followed by the addition of trimethylsilylimidazole and heating at 75 degrees C for 40 min. The resulting derivatized carbohydrates are then analyzed by capillary gas chromatography. This method was successfully used by independent laboratories to distinguish heated pure, intentionally adulterated (with invert sugar), and intentionally adulterated and then heated apple juice concentrates. The equilibrium method was shown to give significantly lower coefficients of variation for this sample set when compared to the original capillary gas chromatographic method. In addition, these results indicate that it may also be an effective method for the detection of medium invert sugar, depending on the level of the fingerprint oligosaccharides in this sweetener.

  20. Critical Comparison of Structured Contactors for Adsorption-Based Gas Separations.

    Science.gov (United States)

    DeWitt, Stephen J A; Sinha, Anshuman; Kalyanaraman, Jayashree; Zhang, Fengyi; Realff, Matthew J; Lively, Ryan P

    2018-03-26

    Recent advances in adsorptive gas separations have focused on the development of porous materials with high operating capacity and selectivity, useful parameters that provide early guidance during the development of new materials. Although this material-focused work is necessary to advance the state of the art in adsorption science and engineering, a substantial problem remains: how to integrate these materials into a fixed bed to efficiently utilize the separation. Structured sorbent contactors can help manage kinetic and engineering factors associated with the separation, including pressure drop, sorption enthalpy effects, and external heat integration (for temperature swing adsorption, or TSA). In this review, we discuss monoliths and fiber sorbents as the two main classes of structured sorbent contactors; recent developments in their manufacture; advantages and disadvantages of each structure relative to each other and to pellet packed beds; recent developments in system modeling; and finally, critical needs in this area of research. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Determination of physical adsorption loss of primary standard gas mixtures in cylinders using cylinder-to-cylinder division

    Science.gov (United States)

    Lee, Sangil; Eon Kim, Mi; Hyub Oh, Sang; Seog Kim, Jin

    2017-12-01

    Primary standard gas mixtures (PSMs) are typically prepared in cylinders and the amount-of-substance fractions are determined by purity analysis and gravimetric method. However, the actual amount-of-substance fraction can be different from the gravimetrically determined value due to adsorption loss onto the internal surface of cylinders. The resulted difference due to the adsorption loss can be larger than the PSM uncertainty. In this study, the cylinder-to-cylinder division method is proposed to evaluate any potential physical adsorption loss onto the internal surface of cylinders. A method for estimating the amount of adsorption loss, the corrected amount-of-substance fraction and its uncertainty due to the adsorption loss is described.

  2. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  3. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  4. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    Science.gov (United States)

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this

  5. In-plume gas scavenging: Insights into gas adsorption, ash-surface chemistry and the role of water

    Science.gov (United States)

    Casas, Ana S.; Wadsworth, Fabian; Ayris, Paul M.; Cimarelli, Corrado; Dingwell, Donald B.

    2017-04-01

    In-plume gas scavenging-processes are well known to occur in large volcanic eruptions, where, over the range of plume conditions (temperature and gas composition) and physicochemical ash-surface properties, volcanic gases (mainly SO2, HCl, and HF) can be sequestrated by the occurrence (alone or combined) of three processes: (1) salt deposition, (2) adsorption, or (3) acidic liquid condensation on the ash-surface. Several studies have sought to constrain the diffusion-driven mechanisms through which scavenging occurs, the optimal temperatures for efficient scavenging, and the likely reaction products formed. Here we bolster these datasets with new high-resolution experimental work. Our current project additionally seeks to identify the role of water vapour in gas scavenging processes using a time- and temperature- series of experiments with well-characterized ash samples, for which, particle size distribution, surface area, and bulk chemistry were constrained. These samples will be exposed to various hydrous and anhydrous gas atmospheres with proportions of some plume-relevant gas mixtures (SO2, SO2-H2O) at high temperatures (200 to 800 °C) for various time series (1 to 60 min.) in the Advanced Ash-Gas Reactor (AGAR) available at the LMU chemistry laboratory. Post-experimental samples are analyzed by standard leachate techniques. We show that a diffusion-controlled sequestration mechanism will be strongly temperature dependent proportional to the diffusivity of the mobile species. In complex mixtures of gases, which could result in the diffusion of more than a single species, it remains to be tested whether simple diffusion models can yield average sequestration volumes. This will be tested explicitly using simple diffusion time scaling laws. Future work should target the additional combined effects of HCl, SO2 and H2O in more realistic complex volcanic atmospheres.

  6. Adsorption of gas molecules on Cu impurities embedded monolayer MoS{sub 2}: A first- principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Li, C.Y. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Liu, L.L. [Key Lab for Special Functional Materials of Ministry of Eduaction, Henan Province, Henan University, Kaifeng 475004 (China); Zhou, B.; Zhang, Q.K. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Tang, Z., E-mail: ztang@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China)

    2016-09-30

    Highlights: • Embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2}. • Transition-metal Cu atom can break the chemical inactivation of MoS{sub 2} surface. • MoS{sub 2}-Cu system is a promising for future application in gas molecules sensing. - Abstract: Adsorption of small gas molecules (O{sub 2}, NO, NO{sub 2} and NH{sub 3}) on transition-metal Cu atom embedded monolayer MoS{sub 2} was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2} with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS{sub 2} embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS{sub 2} with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH{sub 3} molecule acts as electron donor after adsorption, which is different from the other gas molecules (O{sub 2}, NO, and NO{sub 2}). The results suggest that MoS{sub 2}-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  7. Noble gas adsorption with and without mechanical stress: Not Martian signatures but fractionated air

    Science.gov (United States)

    Schwenzer, Susanne P.; Herrmann, Siegfried; Ott, Ulrich

    2012-06-01

    Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra-terrestrial end-members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low-temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.

  8. Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Cui, Mengyang; Ye, Zhenhua

    2016-01-01

    Highlights: • Ethanol adsorbed on V 2 O 5 (010) surface was investigated by ab initio calculations. • Ethanol prefers to adsorb on “Hill”-like surface, rather than“Valley”-like region. • Surface O 1(H) site plays a key role to dominate the ethanol adsorption process. • Sensing mechanism is related with electronic structure and electron redistribution. • Gas sensitivity is reflected by quantitative electron population analysis. - Abstract: The adsorption of ethanol on V 2 O 5 (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O 1(H) ) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V 2 O 5 and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V 2 O 5 . The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V 2 O 5 (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and correlates the adsorption ability of surface sites

  9. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jiang, Zhenzuo; Liu, Yanan; Zhu, Yan; Yang, Jing; Sun, Lili; Chai, Xin; Wang, Yuefei

    2016-09-01

    Human milk, infant formula, pure milk and fermented milk as food products or dietary supplements provide a range of nutrients required to both infants and adults. Recently, a growing body of evidence has revealed the beneficial roles of short-chain fatty acids (SCFAs), a subset of fatty acids produced from the fermentation of dietary fibers by gut microbiota. The objective of this study was to establish a chromatographic fingerprint technique to investigate SCFAs in human milk and dairy products by gas chromatography coupled with mass spectrometry. The multivariate method for principal component analysis assessed differences between milk types. Human milk, infant formula, pure milk and fermented milk were grouped independently, mainly because of differences in formic acid, acetic acid, propionic acid and hexanoic acid levels. This method will be important for the assessment of SCFAs in human milk and various dairy products.

  10. Gas chromatographic determination of pesticides in vegetable samples by sequential positive and negative chemical ionization and tandem mass spectrometric fragmentation using an ion trap analyser.

    Science.gov (United States)

    Hernando, M D; Agüera, A; Fernández-Alba, A R; Piedra, L; Contreras, M

    2001-01-01

    A selective and sensitive chromatographic method is described for the determination of nine organochlorine and organophosphorus pesticides in vegetable samples by gas chromatography-mass spectrometry. The proposed method combines the use of positive and negative chemical ionisation and tandem mass spectrometric fragmentation, resulting in a significant increase in selectivity and allowing the simultaneous confirmation and quantification of trace levels of pesticides in complex vegetable matrices. Parameters relative to ionisation and fragmentation processes were optimised to obtain maximum sensitivity. Repeatability and reproducibility studies yielded relative standard deviations lower than 25% in all cases. Identification criteria, such as retention time and relative abundance of characteristic product ions, were also evaluated in order to guarantee the correct identification of the target compounds. The method was applied to real vegetable samples to demonstrate its use in routine analysis.

  11. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study

    Science.gov (United States)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.

    2016-09-01

    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  12. Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in Chaihu Shugan San essential oils.

    Science.gov (United States)

    He, Min; Yang, Zhi-Yu; Yang, Tian-Biao; Ye, Ying; Nie, Juan; Hu, Yong; Yan, Pan

    2017-05-01

    Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic (GC/GC×GC) technologies, were used to explore the compositions of Chaihu Shugan San essential oils, that were extracted from the herbal formulae by different schemes. We have shown that chemometric resolution using gas chromatographic- mass spectrometry (GC-MS) could be used for the qualitative and quantitative analysis of the majority of Terpenoids or Phthalides from herb formulae and single herbs. A GC×GC system was further optimized to achieve the increased peak capacity and the enhanced signal of the hydro-distillation sample (CSSh). When hardware bottleneck resulted from very complex sample, chemometric tools were once again applied to recover the stained information in the second dimension ( 2 D) matrix data. Heuristic evolving latent projections (HELP) could be used for two dimensional (2D) sub-matrixes Xi at n spectral detection channels, after three dimensional (3D) data splitting. For a real 3D data matrix, alternating trilinear decomposition (ATLD) algorithm could conduct regularization for an iterative trilinear decomposition procedure, by Moore-Penrose pseudoinverse computations based on singular value decomposition. After retention indices (RI) confirmation, 216 target analytes (terpenoids or phthalides) could be elucidated both in CSSh and in supercritical fluid extract (CSSs). Based on the obtained data, some potential quality markers (Q-markers) were identified which may affect the quality of the products. Finally, a "connectivity map" was plotted to describe the unique mechanisms of tradition Chinese medicine (TCM). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  14. Adsorption of volatile polonium species on metals in various gas atmospheres. Pt. II. Adsorption of volatile polonium on platinum, silver and palladium

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Joerg Neuhausen; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Misiak, Ryszard [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry

    2016-07-01

    This work presents the results obtained from studying the interaction between polonium compounds formed in different atmospheres and platinum, palladium and silver surfaces obtained by thermochromatography. These results are of crucial importance for the design of cover gas filter systems for lead-bismuth eutectic (LBE)-based nuclear facilities such as accelerator driven systems (ADS). The results obtained from studying the interaction of polonium and platinum under inert atmosphere and reducing atmospheres with and without addition of moisture show that polonium is deposited at temperatures between 993 and 1221 K, with adsorption enthalpies ranging from -235 to -291 kJ mol{sup -1}, indicating a very strong adsorption of the polonium species present on platinum surfaces. The interaction between polonium and silver was investigated using purified inert, reducing and oxidizing carrier gases. Results show a deposition temperature between 867 and 990 K, with adsorption enthalpies ranging from -205 to -234 kJ mol{sup -1}. The interaction of polonium and palladium was studied in purified helium and purified hydrogen. For both conditions a deposition temperature of 1221 K was observed corresponding to an adsorption enthalpy of -340 kJ mol{sup -1}. No highly volatile polonium species was formed at any of the applied experimental conditions.

  15. CO2 adsorption on carbon models of organic constituents of gas shale and coal.

    Science.gov (United States)

    Liu, Yangyang; Wilcox, Jennifer

    2011-01-15

    Imperfections of the organic matrix in coal and gas shales are modeled using defective and defect-free graphene surfaces to represent the structural heterogeneity and related chemical nature of these complex systems. Based upon previous experimental investigations that have validated the stability and existence of defect sites in graphene, plane-wave electronic density functional theory (DFT) calculations have been performed to investigate the mechanisms of CO(2) adsorption. The interactions of CO(2) with different surfaces have been compared, and the physisorption energy of CO(2) on the defective graphene adsorption site with one carbon atom missing (monovacancy) is approximately 4 times as strong as that on a perfect defect-free graphene surface, specifically, with a physisorption energy of ∼210 meV on the monovacancy site compared to ∼50 meV on a perfect graphene surface. The energy associated with the chemisorption of CO(2) on the monovacancy site is substantially stronger at ∼1.72 eV. Bader charge, density of states, and vibrational frequency estimations were also carried out and the results indicate that the CO(2) molecule binds to the surface becoming more stable upon physisorption onto the monovacancy site followed by the original C═O bonds weakening upon CO(2) chemisorption onto the vacancy site.

  16. A porous cadmium(II) framework. Synthesis, crystal structure, gas adsorption, and fluorescence sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Pingping [College of Sciences, Agricultural University of Hebei, Baoding (China)

    2017-05-18

    The Cd{sup II} compound, namely [Cd(Tppa)(SO{sub 4})(H{sub 2}O)]{sub n} (1) [Tppa = tris(4-(pyridyl)phenyl) amine], was synthesized by the reaction of CdSO{sub 4}.8H{sub 2}O and Tppa under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D inorganic -[Cd-SO{sub 4}-Cd]{sub n}- chains. Topological analysis reveals that compound 1 represents a trinodal (3,4,6)-connected topological network with the point symbol of {6.7"2}{sub 2}{6"4.7.10}{6"4.7"5.8"4.10"2}. Gas adsorption properties investigations indicate that compound 1 exhibits moderate adsorption capacities for light hydrocarbons at room temperature. Luminescence property studies revealed that this Cd{sup II} compound exhibits high fluorescence sensitivity for sensing of CS{sub 2} molecule. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. On-site monitoring of biogenic emissions from Eucalyptus dunnii leaves using membrane extraction with sorbent interface combined with a portable gas chromatograph system.

    Science.gov (United States)

    Liu, Xinyu; Pawliszyn, Richard; Wang, Limei; Pawliszyn, Janusz

    2004-01-01

    Membrane extraction with sorbent interface, combined with a portable gas chromatograph system (MESI-Portable GC) for continuous on-line monitoring of biogenic volatile organic compounds (BVOCs) emissions (from leaves of Eucalytus dunnii in a greenhouse), is presented herein. A sampling chamber was designed to facilitate the extraction and identification of the BVOCs emitted by the Eucalytus dunnii leaves. Preliminary experiments, including; enrichment times, microtrap temperatures, stripping gas flow rates, and desorption temperatures were investigated to optimize experimental parameters. The main components of BVOCs released by the Eucalytus dunnii leaves were identified by comparing the retention times of peaks with those of authentic standard solutions. They were then confirmed with solid phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS). BVOC emission profiles of [small alpha]-pinene, eucalyptol, and [gamma]-terpinene emitted by intact and damaged Eucalytus dunnii leaves were obtained. The findings suggest that the MESI-Portable GC system is a simple and useful tool for field monitoring changes in plant emissions as a function of time.

  18. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects,...

  19. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    .4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  20. Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: A first-principle study

    Science.gov (United States)

    Cheng, Yongfa; Meng, Ruishen; Tan, Chunjian; Chen, Xianping; Xiao, Jing

    2018-01-01

    Two-dimensional (2D) materials have gained tremendous research interests for gas sensing applications because of their ultrahigh theoretical specific surface areas and unique electronic properties. Here, we investigate the adsorption of CO, SO2, NH3, O2, NO and NO2 gas molecules on pure and doped boron phosphide (BP) systems using first-principles calculations to exploit their potential in gas sensing. Our results predict that all six gas molecules show stronger adsorption interactions on impurities-doped BP over the pristine monolayer BP. Al-doped BP shows the highest sensitivity to all gas molecules, but N-doped BP is more suitable as a sensing material for SO2, NO and NO2 due to the feasibility of desorption. We further calculated the current-voltage (I-V) relation by mean of nonequilibrium Green's function (NEGF) formalism. The I-V curves indicate that the electronic properties of the doping systems change significantly with gas adsorption by studying the nonparamagnetic molecules NH3 and the paramagnetic molecules NO, which can be more likely to be measured experimentally compared to graphene and phosphorene. This work explores the possibility of BP as a superior sensor through introducing the appropriate dopants.

  1. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    Science.gov (United States)

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gas chromatography-mass spectrometry and high-performance liquid chromatographic analyses of thermal degradation products of common plastics.

    Science.gov (United States)

    Pacáková, V; Leclercq, P A

    1991-08-30

    The thermo-oxidation of five commonly used materials, namely low-density polyethylene, retarded polyethylene, paper with a polyethylene foil, a milk package and filled polypropylene, was studied. Capillary gas chromatography and gas chromatography-mass spectrometry were used to analyze the volatile degradation products, while high-performance liquid chromatography was employed to measure polycyclic aromatic hydrocarbons. The results are discussed from the point of view of toxicity of the products.

  3. Quantification of Biogenic and Anthropogenic Hydrocarbons using a Commercial Gas Chromatograph - Ion Trap Mass Spectrometer at a Ground Site near Fort McKay, AB

    Science.gov (United States)

    Tokarek, T. W.; Osthoff, H. D.

    2014-12-01

    The extraction of fossil fuels from the Alberta oil sands has been the focus of considerable attention due to its association with sizeable emissions of a variety of atmospheric pollutants, the magnitude and impacts of which are currently poorly constrained by observations. In order to more reliably estimate the magnitude and impact of these emissions, an intensive air quality measurement campaign, called "Fort McMurray Oil Sands Strategic Investigation of Local Sources" (FOSSILS), was conducted in the summer of 2013 as part of the Alberta-Canada joint oil sands monitoring program (JOSM) to identify and quantify emissions and their transformations from the Alberta oil sands. The challenge is that the region is surrounded by boreal forest, which provides a substantial background of biogenic hydrocarbons during summer. In this presentation, measurements of volatile organic compounds (VOCs) at the AMS13 ground site near Fort McKay, Alberta, from Aug 17 to Sept 6, 2013 using a commercial Griffin 450 gas chromatograph equipped with ion trap mass spectrometric detection and Tenax preconcentration are described. The combination of retention information and electron impact mass spectral data allowed unambiguous identification and quantification of the major biogenic monoterpenes, e.g., α and β-pinene, limonene, camphene, and 3Δ-carene, and of many anthropogenically derived hydrocarbons. Mixing ratios of biogenic hydrocarbons varied with time of day, temperature, and solar radiation, with maxima typically occurring at night, rationalized by nocturnal mixing heights and low mixing ratios of the nocturnal oxidants ozone (O3) and the nitrate radical (NO3). In contrast, mixing ratios of anthropogenic VOCs, e.g., benzene, toluene, ethyl benzene, and o-, p-, and m-xylene (BTEX), strongly depended on meteorological conditions, i.e., local wind direction. During episodes with high BTEX abundance, many additional high molecular weight hydrocarbons were observed which were not

  4. Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties.

    Science.gov (United States)

    Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Tringe, Joseph; Castro, Ricardo H R; Faller, Roland; Stroeve, Pieter

    2016-11-08

    Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N 2 , Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.

  5. Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres. Pt. I. Adsorption of volatile polonium and bismuth on gold

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Neuhausen, Joerg; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry; Rijpstra, Kim [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Cottenier, Stefaan [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Ghent Univ., Zwijnaarde (Belgium). Dept. of Materials Science and Engineering

    2016-07-01

    Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead-bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as -250±7 kJ mol{sup -1}, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO{sub 2} is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

  6. Development and validation of a stability-indicating gas chromatographic method for quality control of residual solvents in blonanserin: a novel atypical antipsychotic agent.

    Science.gov (United States)

    Peng, Ming; Liu, Jin; Lu, Dan; Yang, Yong-Jian

    2012-09-01

    Blonanserin is a novel atypical antipsychotic agent for the treatment of schizophrenia. Ethyl alcohol, isopropyl alcohol and toluene are utilized in the synthesis route of this bulk drug. A new validated gas chromatographic (GC) method for the simultaneous determination of residual solvents in blonanserin is described in this paper. Blonanserin was dissolved in N, N-dimethylformamide to make a sample solution that was directly injected into a DB-624 column. A postrun oven temperature at 240°C for approximately 2 h after the analysis cycle was performed to wash out blonanserin residue in the GC column. Quantitation was performed by external standard analyses and the validation was carried out according to International Conference on Harmonization validation guidelines Q2A and Q2B. The method was shown to be specific (no interference in the blank solution), linear (correlation coefficients ≥0.99998, n = 10), accurate (average recoveries between 94.1 and 101.7%), precise (intra-day and inter-day precision ≤2.6%), sensitive (limit of detection ≤0.2 ng, and limit of quantitation ≤0.7 ng), robust (small variations of carrier gas flow, initial oven temperature, temperature ramping rate, injector and detector temperatures did not significantly affect the system suitability test parameters and peak areas) and stable (reference standard and sample solutions were stable over 48 h). This extensively validated method is ready to be used for the quality control of blonanserin.

  7. High performance liquid chromatographic separations of gas oil samples and their hydrotreated products using commercial normal phases.

    Science.gov (United States)

    Oro, Nicole E; Lucy, Charles A

    2011-10-28

    Three commercially available high performance liquid chromatography columns are used in normal phase or quasi-normal phase mode for the separation of gas oil samples. The columns are tested with 20 analytical standards to determine their suitability for separations of petroleum samples and their ability to separate the nitrogen group-types (pyrrole and pyridine) found in petroleum. The columns studied are polymeric hypercrosslinked polystyrene (HGN), a biphenyl phase, and a Chromegabond "DNAP" column from ES Industries. The HGN column separates gas oils based on both ring structure and heteroatom, while the biphenyl phase has low retention of most compounds studied in quasi-normal phase mode. The "DNAP" column is selective for nitrogen-containing compounds, separating them from PAHs as well as oxygen and sulphur compounds. Retention data of standards on all three columns is shown, along with chromatograms of gas oil samples on the HGN and "DNAP" columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Coordination polymers from a highly flexible alkyldiamine-derived ligand: structure, magnetism and gas adsorption studies.

    Science.gov (United States)

    Hawes, Chris S; Chilton, Nicholas F; Moubaraki, Boujemaa; Knowles, Gregory P; Chaffee, Alan L; Murray, Keith S; Batten, Stuart R; Turner, David R

    2015-10-28

    The synthesis and structural, magnetic and gas adsorption properties of a series of coordination polymer materials prepared from a new, highly flexible and internally functional tetrakis-carboxybenzyl ligand H4L derived from 1,2-diaminoethane have been examined. The compound poly-[Ni3(HL)2(OH2)4]·2DMF·2H2O 1, a two-dimensional coordination polymer, contains aqua- and carboxylato-bridged trinuclear Ni(II) clusters, the magnetic behaviour of which can be well described through experimental fitting and ab initio modelling to a ferromagnetically coupled trimer with a positive axial zero-field splitting parameter D. Compound poly-[Zn2L]·2DMF·3H2O 2, a three-dimensional coordination polymer displaying frl topology, contains large and well-defined solvent channels, which are shown to collapse on solvent exchange or drying. Compound poly-[Zn2(L)(DMSO)4]·3DMSO·3H2O 3, a highly solvated two-dimensional coordination polymer, displayed poor stability characteristics, however a structurally related material poly-[Zn2(L)(bpe)(DMSO)2]·DMSO·3H2O 4 was prepared under similar synthetic conditions by including the 1,2-bis(4-pyridyl)ethylene bpe co-ligand. Compound 4, containing small one-dimensional solvent channels, shows excellent structural resilience to solvent exchange and evacuation, and the evacuated material displays selective adsorption of CO2 over N2 at 273 K in the pressure range 0-1 atm. Each of the coordination polymers displays subtle differences in the conformation and binding mode of the ligand species, with switching between two distinct conformers (X-shaped and H-shaped), as well as a variable protonation state of the central core, with significant effects on the resulting network structures and physical properties of the materials.

  9. Gas chromatographic analysis of Tri-N-Octyl-Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene mixtures

    International Nuclear Information System (INIS)

    Perez Garcia, M.

    1973-01-01

    A study about the minimum limit of TOPO, detectable by gas chromatography in an organic phase formed by D2EHPA and kerosene is carried out. The retention time and response factor under the same conditions are also studied. Octacosane has been used as a reference hydrocarbon. (Author) 8 refs

  10. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  11. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  12. Rapid and simple clean-up and derivatizaton procedure for the gas chromatographic determination of acidic drugs in plasma

    NARCIS (Netherlands)

    Roseboom, H.; Hulshoff, A.

    1979-01-01

    A rapid and simple clean-up and derivatization procedure that can be generally applied to the gas chromatographie (GC) determination of acidic drugs of various chemical and therapeutic classes is described. The drugs are extracted from acidified plasma with chloroform containing 5% of isopropanol,

  13. Fully automated system for the gas chromatographic characterization of polar biopolymers based on thermally assisted hydrolysis and methylation

    NARCIS (Netherlands)

    Kaal, E.; de Koning, S.; Brudin, S.; Janssen, H.-G.

    2008-01-01

    Pyrolysis-gas chromatography (Py-GC) is a powerful tool for the detailed compositional analysis of polymers. A major problem of Py-GC is that polar (bio)polymers yield polar pyrolyzates which are not easily accessible to further GC characterization. In the present work, a newly developed fully

  14. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  15. Determination of Diffusion Coefficients and Activation Energy of Selected Organic Liquids using Reversed-Flow Gas Chromatographic Technique

    International Nuclear Information System (INIS)

    Khalisanni Khalid; Rashid Atta Khan; Sharifuddin Mohd Zain

    2012-01-01

    Evaporation of vaporize organic liquid has ecological consequences when the compounds are introduced into both freshwater and marine environments through industrial effluents, or introduced directly into the air from industrial unit processes such as bioreactors and cooling towers. In such cases, a rapid and simple method are needed to measure physicochemical properties of the organic liquids. The Reversed-Flow Gas Chromatography (RF-GC) sampling technique is an easy, fast and accurate procedure. It was used to measure the diffusion coefficients of vapors from liquid into a carrier gas and at the same time to determine the rate coefficients for the evaporation of the respective liquid. The mathematical expression describing the elution curves of the samples peaks was derived and used to calculate the respective parameters for the selected liquid pollutants selected such as methanol, ethanol, 1-propanol, 1-butanol, n-pentane, n-hexane, n-heptane and n-hexadecane, evaporating into the carrier gas of nitrogen. The values of diffusion coefficients found were compared with those calculated theoretically or reported in the literature. The values of evaporation rate were used to determine the activation energy of respective samples using Arrhenius equation. An interesting finding of this work is by using an alternative mathematical analysis based on equilibrium at the liquid-gas interphase, the comparison leads to profound agreement between theoretical values of diffusion coefficients and experimental evidence. (author)

  16. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.

    Science.gov (United States)

    Guo, Jing; Zhang, Shaojie; Carta, Giorgio

    2014-08-22

    A glycosylated IgG2 monoclonal antibody exhibits a two-peak elution behavior when loaded on a strong cation exchange column and eluted with either a linear salt gradient or two salt steps at increasing salt concentrations. The two-peak behavior is more pronounced for conditions where the initial antibody binding is stronger, i.e. at lower pH and buffer concentration, where the hold time prior to elution is longer, where the protein mass load is lower, and where the load flow rate is higher. The effect is also dependent on the resin type, being prominent for the polymer-functionalized resin Fractogel EMD SO₃(-) and virtually absent for a macroporous resin with similar backbone but no grafted polymers. Size exclusion chromatography and dynamic light scattering show that the early eluting peak consists exclusively of the native monomeric species while the late eluting peak is a mixture of monomeric and aggregated species. Batch adsorption/desorption experiments show that the bound protein can be desorbed in two steps, with a fraction desorbed in 0.33 M NaCl, corresponding to native monomer, and a second fraction desorbed in 1M NaCl. The latter fraction decreases with protein mass load and becomes almost negligible when the resin is initially completely saturated with protein. Confocal laser scanning microscopy showed that the two-peak elution/desorption behavior is related to the unique kinetics of protein binding in the Fractogel resin. Following partial loading of the resin, the bound protein migrates toward the center of the particles during a hold step and is redistributed across the particle volume attaining low local bound protein concentrations. For these conditions the protein is apparently destabilized forming a strongly-bound unfolded intermediate that, in turn, generates aggregates upon elution in high salt. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gas chromatographic-mass spectroscopic determination of benzene in indoor air during the use of biomass fuels in cooking time.

    Science.gov (United States)

    Sinha, Sukesh Narayan; Kulkarni, P K; Desai, N M; Shah, S H; Patel, G M; Mansuri, M M; Parikh, D J; Saiyed, H N

    2005-02-18

    A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment.

  18. Selective gas-chromatographic detection using an ion-selective electrode-II Selective detection of fluorine compounds.

    Science.gov (United States)

    Kojima, T; Ichise, M; Seo, Y

    1972-04-01

    Components in samples are separated on a gas chromatography column using hydrogen as carrier gas. The individual components from the column are passed through a platinum tube heated at 1000 degrees , where they undergo hydrogenolysis, and fluorine compounds are converted into hydrogen fluoride. The hydrogen fluoride is dissolved in a slow stream of an absorption solution, and the fluoride ion concentration in the resulting solution is monitored in a flow-cell with a fluoride ion electrode. The potentiometric output of the cell is converted into a signal, which is proportional to the concentration of fluoride ion, by an antilogarithmic converter, and recorded. The response of the detector to fluorine compounds was about 10,000 times that to an equal quantity of other organic compounds, and 5 x 10(-11) mole of fluorobenzene could be detected.

  19. Mass spectral identification and gas-liquid chromatographic determination of methyl 4-chloroindolyl-3-acetate in canned and frozen peas.

    Science.gov (United States)

    Heikes, D L

    1980-11-01

    Methyl 4-chloroindolyl-3-acetate (MCIA), a naturally occurring auxin, has been identified in canned and frozen peas by gas-liquid chromatography (GLC)/mass spectrometry. Eight samples were analyzed for MCIA using slightly modified official AOAC multiple pesticide residue procedures employing GLC with microcoulometric detection. Levels of MCIA averaged 0.20 ppm for canned peas and 0.16 ppm for frozen peas. Recovery of MCIA from a fortified sample was 40%.

  20. Contamination of the operating room by anesthetic gases and vapors. II. Gas chromatographic analysis of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, A.D.; Ferraiolo, G.; Rovatti, M.; Zattoni, J.; Donato, A.

    1981-12-01

    The contamination by nitrous oxide of an operating room atmosphere was studied in a number of experiments, in the absence of personnel and using a gaschromatographic method. The evacuating device of the anesthesia machine proved to be ineffective to overcome the hazard of leaks in the breathing system, whereas the air conditioning flow rates (12 outside air changes per hour) minimized waste anesthetic gas concentrations.

  1. Determination of polycyclic aromatic hydrocarbons (PAHs). gas chromatographic method; Determinazione degli idrocarburi policiclici aromatici (IPA). Metodo gascaromatografico

    Energy Technology Data Exchange (ETDEWEB)

    Menichini, E.; Viviano, G. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale

    1997-12-01

    The method enables the determination of 4- to 6- ring PAHs and particularly of carcinogenic PAHs regulated in Italy. This revision is based on the results of a national collaborative study. Sample extract, obtained by a method described in a previous report (Rapporto ISTISAN: 90/33) is cleaned up by thin layer chromatography and analysed by gas chromatography; identification is confirmed by mass spectrometry. An intralaboratory quality control program is described.

  2. Gas chromatographic-mass spectrometric determination of aromatic hydrocarbon metabolites from livers of fish exposed to fuel oil.

    Science.gov (United States)

    Krahn, M M; Malins, D C

    1982-10-15

    Metabolites of several two- and three-ring aromatic hydrocarbons (AHs) have been found in livers of English sole exposed to No. 2 fuel oil. Four metabolites of the C2H5-naphthalenes, six of the C3H7-naphthalenes and one each of fluorene, phenanthrene and anthracene have been partially characterized and their concentrations, which ranged from 50 to 1100 ng/g, were determined. Metabolites were separated from the liver matrix using an automated extractor/concentrator. The resulting extract was then purified by high-performance liquid chromatography, and the metabolites were characterized and quantitated by gas chromatography-mass spectrometry.

  3. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    Directory of Open Access Journals (Sweden)

    Yuriy Vashpanov

    2011-11-01

    Full Text Available This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  4. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs for Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Mays Alhamami

    2014-04-01

    Full Text Available Metal-organic frameworks (MOFs are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses.

  5. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    Science.gov (United States)

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose.

  6. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.

    Science.gov (United States)

    Fragkaki, A G; Farmaki, E; Thomaidis, N; Tsantili-Kakoulidou, A; Angelis, Y S; Koupparis, M; Georgakopoulos, C

    2012-09-21

    The comparison among different modelling techniques, such as multiple linear regression, partial least squares and artificial neural networks, has been performed in order to construct and evaluate models for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids. The performance of the quantitative structure-retention relationship study, using the multiple linear regression and partial least squares techniques, has been previously conducted. In the present study, artificial neural networks models were constructed and used for the prediction of relative retention times of anabolic androgenic steroids, while their efficiency is compared with that of the models derived from the multiple linear regression and partial least squares techniques. For overall ranking of the models, a novel procedure [Trends Anal. Chem. 29 (2010) 101-109] based on sum of ranking differences was applied, which permits the best model to be selected. The suggested models are considered useful for the estimation of relative retention times of designer steroids for which no analytical data are available. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Gas chromatographic determination of electron capture sensitive volatile industrial chemical residues in foods, using AOAC pesticide multiresidue extraction and cleanup procedures.

    Science.gov (United States)

    Yurawecz, M P; Puma, B J

    1986-01-01

    Electron capture (EC) gas chromatographic (GC) parameters have been developed for determining some of the more volatile industrial chemicals that can be determined by the AOAC multiresidue method for organochlorine and organophosphorus pesticides with modified GC operating conditions. Retention times relative to pentachlorobenzene are reported for 143 industrial chemicals, pesticides, and related compounds on OV-101 GC columns at 130 degrees C. Also reported for most of the compounds are recoveries from fortified samples carried through the AOAC extraction and cleanup procedures for fatty and/or nonfatty foods, Florisil elution characteristics, and GC relative retention times on mixed OV-101 + OV-210 columns at 130 degrees C. Our laboratory has used the modified EC/GC parameters with the AOAC multiresidue extraction/cleanup procedures to determine many volatile halogenated industrial chemical contaminants in foods, chiefly in samples of fresh-water fish. Other modifications of the AOAC method are described to improve the tentative identification and quantitative measurement of these volatile residues.

  8. Radiolytic degradation of TBP-HNO3 system: gas chromatographic determination of radiation chemical yields of n-butanol and nitrobutane

    International Nuclear Information System (INIS)

    Krishnamurthy, M.V.; Sipahimalani, A.T.

    1995-01-01

    Radiolytic degradation of the TBP-HNO 3 system has been studied for the radiation dose range of 19.8 to 262 kGy by the gas chromatographic method. n-Butanol and nitrobutane formed due to irradiation have been identified and estimated in pure TBP, TBP-3M HNO 3 extract and TBP-5M HNO 3 extract. The G-values (radiation chemical yields) of n-butanol are determined to be 0.28, 0.77 and 0.47 for a pure TBP, TBP-3M HNO 3 extract and TBP-5M HNO 3 extract, respectively. The G-values of nitrobutane (1-nitrobutane) are 0.55 and 1.09 for TBP-3M HNO 3 extract and TBP-5M HNO 3 extract. It is found that G(n-butanol) is less for TBP-5M HNO 3 extract than for TBP-3M HNO 3 extract, while G(nitrobutane) is grater for TBP-5M HNO 3 extract than for TBP-3M HNO 3 extract. This is explained on the basis of the formation of TBP.HNO 3 species and the role played by nitric acid in the TBP phase. (author) 12 refs.; 2 figs

  9. Detection of clenbuterol at trace levels in doping analysis using different gas chromatographic-mass spectrometric techniques.

    Science.gov (United States)

    Yang, Sheng; Liu, Xin; Xing, Yanyi; Zhang, Dapeng; Wang, Shan; Wang, Xiaobing; Xu, Youxuan; Wu, Moutian; He, Zhenwen; Zhao, Jian

    2013-01-01

    This study demonstrates the development of a gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS-MS) assay to detect clenbuterol in human urine and the comparison of this method with GC-MS techniques and gas chromatography-high resolution mass spectrometry (GC-HRMS) techniques. Urine samples were hydrolyzed with β-glucuronidase, extracted with methyl tert-butyl ether and dried under nitrogen. The derivative reagent was N-methyl-N-(trimethylsilyl)-trifluoroacetamide with NH4I and was analyzed by GC-MS, GC-MS-MS and GC-HRMS. A validation study was conducted by GC-MS-MS. The analyses of clenbuterol using different mass spectrometric techniques were compared. The limit of detection (LOD) for clenbuterol in human urine was 2 ng/mL by GC-MS (selected ion monitoring mode: SIM mode), 0.06 ng/mL by GC-HRMS and 0.03 ng/mL by GC-MS-MS, respectively, while the LOD by GC-HRMS was 0.06. With GC-MS-MS, the intra-assay and inter-assay precisions were less than 15%, the recoveries were 86 to 112% and the linear range was 0.06 to 8.0 ng/mL. The GC-MS under SIM mode can be used as a screening tool to detect clenbuterol at trace levels in human urine. The GC-MS-MS and GC-HRMS methods can confirm clenbuterol when its concentration is below 2 ng/mL. The results demonstrate that the GC-MS-MS method is quite sensitive, specific and reliable for the detection of clenbuterol in doping analysis.

  10. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    Directory of Open Access Journals (Sweden)

    H. A. J. Meijer

    2009-09-01

    Full Text Available We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured with only one device, making it a very cost-efficient system. No time lags are introduced between the measured mixing ratios. The system is designed to operate fully autonomously which makes it ideal for measurements at remote and unmanned stations. Only a small amount of sample air is needed, which makes this system also highly suitable for flask air measurements. In principle, only two reference cylinders are needed for daily operation and only one calibration per year against international WMO standards is sufficient to obtain high measurement precision and accuracy. The system described in this paper is in use since May 2006 at our atmospheric measurement site Lutjewad near Groningen, The Netherlands at 6°21´ E, 53°24´N, 1 m a.s.l. Results show the long-term stability of the system. Observed measurement precisions at our remote research station Lutjewad were: ±0.04 ppm for CO2, ±0.8 ppb for CH4, ±0.8 ppb for CO, ±0.3 ppb for N2O, and ±0.1 ppt for SF6. The ambient mixing ratios of all measured species as observed at station Lutjewad for the period of May 2007 to August 2008 are presented as well.

  11. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments

    Science.gov (United States)

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Ortega, Daniela E.

    2018-01-01

    The adsorption of pollutant gases (CO, CO2, SO2 and H2S) onto Fe-doped graphene nanosheets (FeG) is studied on the basis of density functional theory calculations at the PBE/Def2-SVP level of theory. The most stable adsorption configurations, binding characteristics, electronic properties and stability at room temperature of the FeG-Gas interactions is fully analyzed. The gas molecules are chemisorbed onto FeG with adsorption energies in the range of 0.54-1.8 eV, with an enhanced adsorption strength compared to intrinsic graphene. The stability of the FeG-Gas interactions is dominated by Lewis-acid-base interactions, and its strength is sorted as SO2 > CO > H2S > CO2. The adsorption stability is also retained at room temperature (300 K). Due to the strong interaction of SO2, CO, and H2S, FeG could catalyze or activate these gas molecules, suggesting the possibility of FeG as a catalyst substrate. The electron acceptor/donor character of CO, CO2, SO2 and H2S molecules when adsorbed onto FeG causes charge transfer processes that are responsible for the change in conductance of FeG; thus, the response of the HOMO-LUMO gap of FeG under gas adsorption could be useful for sensing applications. Furthermore, the analysis of the co-adsorption in O2 environments shows that the CO2 interaction turns unstable onto FeG, while the sensing response towards H2S is suppressed. Finally, these results give new insights into the emerging applications of Fe-doped graphene in gas capture/filtration devices, solid-state gas sensors or as a catalyst substrate.

  12. Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Lorena, E-mail: lorena.vidal@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain); Ahmadi, Mazaher [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Fernández, Elena [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain); Madrakian, Tayyebeh [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Canals, Antonio, E-mail: a.canals@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain)

    2017-06-08

    This study presents a new, user-friendly, cost-effective and portable headspace solid-phase extraction technique based on graphene oxide decorated with iron oxide magnetic nanoparticles as sorbent, located on one end of a small neodymium magnet. Hence, the new headspace solid-phase extraction technique has been called Magnetic Headspace Adsorptive Extraction (Mag-HSAE). In order to assess Mag-HSAE technique applicability to model analytes, some chlorobenzenes were extracted from water samples prior to gas chromatography-mass spectrometry determination. A multivariate approach was employed to optimize the experimental parameters affecting Mag-HSAE. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; extraction time, 30 min; sorbent amount, 10 mg; stirring speed, 1500 rpm, and ionic strength, non-significant), obtaining a linear response from 0.5 to 100 ng L{sup −1} for 1,3-DCB, 1,4-DCB, 1,2-DCB, 1,3,5-TCB, 1,2,4-TCB and 1,2,3-TCB; from 0.5 to 75 ng L{sup −1} for 1,2,4,5-TeCB, and PeCB; and from 1 to 75 ng L{sup −1} for 1,2,3,4-TeCB. The repeatability of the proposed method was evaluated at 10 ng L{sup −1} and 50 ng L{sup −1} spiking levels, and coefficients of variation ranged between 1.5 and 9.5% (n = 5). Limits of detection values were found between 93 and 301 pg L{sup −1}. Finally, tap, mineral and effluent water were selected as real water samples to assess method applicability. Relative recoveries varied between 86 and 110% showing negligible matrix effects. - Highlights: • A new extraction technique named Magnetic Headspace Adsorptive Extraction is presented. • Graphene oxide/iron oxide composite deposited on a neodymiun magnet as sorbent. • Sorbent of low cost, rapid and simple synthesis, easy manipulation and portability options. • Fast and efficient extraction and sensitive determination of chlorobenzenes in water samples.

  13. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    Science.gov (United States)

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  14. Comparison of a jet separator and an open splitter as an interface between a multi-capillary gas chromatographic column and a time-of-flight mass spectrometer

    Science.gov (United States)

    Pongpun; Mlynski; Crisp; Guilhaus

    2000-09-01

    A gas chromatographic/time-of-flight mass spectrometric (GC/TOFMS) interface is being developed for fast on-line analysis utilizing multi-capillary column technology. A variable gap-distance jet separator has been constructed and its performance compared with that of a commercially supplied post-column open splitter recommended for use between the multi-capillary column and a mass spectrometer. Both interfaces were found to be compatible with the GC/TOFMS system at high carrier gas flow-rates, facilitating high-speed and high-resolution separations. The systems were investigated and tested with a mixture of volatile organic compounds (VOCs) with molecular masses from 85 to 166: dichloromethane, toluene, m-dichlorobenzene, o-dichlorobenzene and tetrachloroethylene. The optimum tip-to-tip gap distance corresponding to the highest efficiency of the jet separator was found to be 0.030 mm for each compound at carrier gas flow-rates of 20, 40 and 60 ml min(-1) giving, in the ion source housing, ion gauge pressure readings of 1.6 x 10(-6), 5.0 x 10(-6) and 5.8 x 10(-6) mbar, respectively. The efficiency of the jet separator (10-30% yields) was significantly higher than that of the open splitter (6-9% yields). The observation that the open splitter did not provide a constant flow-rate to the ion source was not in agreement with the manufacturer's specifications. A method for measuring the gas flow-rates in all parts of the equipment is described. The correlation between yield in the jet separator and molecular mass for the heterogeneous set of compounds studied was found to be less linear than usually reported for homologous series of compounds in jet separator studies. The result suggests that the pressure conditions in the jet may be sufficient for the separation process to be partly controlled by diffusion rather than predominately by effusion. Copyright 2000 John Wiley & Sons, Ltd.

  15. Evaluation of Pentachlorophenol Residues in Some Hygienic Papers Prepared from Virgin and Secondary Pulp by Electron Capture Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Behrouz Akbari-adergani

    2016-01-01

    Full Text Available In this study, residual amount of pentachlorophenol (PCP as the most important paper preservative, which is extremely hazardous pollutant, was determined in some tissue papers and napkins. Twenty-five samples of two producing hygienic paper factories prepared from virgin and secondary pulp were analyzed for the presence of trace amount of PCP. The analytical procedure involved direct extraction of PCP from hygienic paper and its determination by gas chromatography with electron capture detection. The statistical results for the analysis of all samples revealed that there were significant differences between mean of PCP in hygienic papers prepared from virgin and secondary pulp (P<0.05. This method gave recoveries of 86-98% for hygienic paper made from virgin pulp and 79-92% for hygienic paper made from secondary pulp. The limit of detection (LOD and limit of quantification (LOQ for PCP were 6.3 and 21.0 mg/kg, respectively. The analytical method has the requisite sensitivity, accuracy, precision and specificity to assay PCP in hygienic papers. This study demonstrates a concern with exposition to PCP considering that hygienic paper is largely consumed in the society.

  16. Antioxidant Activity and Gas Chromatographic-Mass Spectrometric Analysis of Extracts of the Marine Algae, Caulerpa peltata and Padina Gymnospora.

    Science.gov (United States)

    Murugan, Kavitha; Iyer, Vidhya V

    2014-01-01

    The results of our previous investigations on extracts of selected marine algae showed that Caulerpa peltata and Padina gymnospora had more promising antiproliferative and antioxidant activities than Gelidiella acerosa and Sargassum wightii. Based on these results, the more active chloroform extract of C. peltata and ethyl acetate extract of P. gymnospora were further analyzed for their constituents by using gas chromatography in tandem with mass spectrometry. The GC-MS analysis (GC % peak area given in parentheses) showed that fucosterol (12.45%) and L-(+)-ascorbic acid 2, 6-dihexadecanoate (8.13%) were the major compounds present in P. gymnospora ethyl acetate extract. On the other hand, C. peltata chloroform extract had 1-heptacosanol (10.52%), hexacosanol acetate (9.28%), tetradecyl ester of chloroacetic acid (7.22%), Z,Z-6, 28-heptatriactontadien-2-one (6.77%) and 10, 13-dimethyl-methyl ester of tetradecanoic acid (5.34%) as major compounds. Also described in the report are the beta-carotene bleaching inhibitory and total reducing activities of the chloroform and ethyl acetate extracts of C. peltata and P. gymnospora, respectively, relative to the other three extracts (aqueous, methanol, chloroform or ethyl acetate) of the two algae.

  17. Characterization of odorous contaminants in post-consumer plastic packaging waste using multidimensional gas chromatographic separation coupled with olfactometric resolution.

    Science.gov (United States)

    Strangl, Miriam; Fell, Tanja; Schlummer, Martin; Maeurer, Andreas; Buettner, Andrea

    2017-04-01

    The increasing world population with their growing consumption of goods escalates the issue of sustainability concepts with increasing demands in recycling technologies. Recovery of post-consumer packaging waste is a major topic in this respect. However, contamination with odorous constituents currently curtails the production of recycling products that meet the high expectations of both consumers and industry. To guarantee odor-free recyclates, the main prerequisite is to characterize the molecular composition of the causative odorants in post-consumer plastic packaging waste. However, targeted characterization of odorous trace contaminants among an abundance of volatiles is a major challenge and requires specialized and high-resolution analytical approaches. For this aim, post-consumer packaging waste was characterized by sensory analysis and two-dimensional high resolution gas chromatography coupled with mass spectrometry and olfactometry. The 33 identified odorants represent various structural classes as well as a great diversity of smell impressions with some of the compounds being identified in plastics for the first time. Substances unraveled within this study provide insights into sources of odorous contamination that will require specific attention in the future in terms of screening and prevention in recycling products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comprehensive two-dimensional gas chromatographic profiling and chemometric interpretation of the volatile profiles of sweat in knit fabrics.

    Science.gov (United States)

    de la Mata, A Paulina; McQueen, Rachel H; Nam, Seo Lin; Harynuk, James J

    2017-03-01

    Human axillary sweat is a poorly explored biofluid within the context of metabolomics when compared to other fluids such as blood and urine. In this paper, we explore the volatile organic compounds emitted from two different types of fabric samples (cotton and polyester) which had been worn repeatedly during exercise by participants. Headspace solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed to profile the (semi)volatile compounds on the fabric. Principal component analysis models were applied to the data to aid in visualizing differences between types of fabrics, wash treatment, and the gender of the subject who had worn the fabric. Statistical tools included with commercial chromatography software (ChromaTOF) and a simple Fisher ratio threshold-based feature selection for model optimization are compared with a custom-written algorithm that uses cluster resolution as an objective function to maximize in a hybrid backward-elimination forward-selection approach for optimizing the chemometric models in an effort to identify some compounds that correlate to differences between fabric types. The custom algorithm is shown to generate better models than the simple Fisher ratio approach. Graphical Abstract A route from samples and questions to data and then answers.

  19. Gas chromatographic sulphur speciation in heavy crude oil using a modified standard D5623 method and microfluidic Deans switching.

    Science.gov (United States)

    Heshka, Nicole E; Choy, Joanne M; Chen, Jinwen

    2017-12-29

    A modification to American Society for Testing and Materials (ASTM) method D5623 is proposed to enable successful and repeatable analysis of heavy crude oil samples. A two-dimensional gas chromatography configuration was implemented, with separation of sulphur compounds occurring on two columns. A Deans switch is used to enable heart-cutting of volatile sulphur compounds onto a DB-Sulfur stationary phase, and separation occurs concurrently with the backflushing of the primary column. The use of a sulphur-selective detector increases selectivity, and 22 volatile sulphur species are quantified in less than 15min, which is almost half the time of the original ASTM method. Samples ranging from light distillation cuts to whole crudes (boiling from 100°C to >750°C) were analyzed with minimal sample preparation. The calculated limit of detection was 0.7mg/kg, repeatability was 3% relative standard deviation (RSD), and a linear range of 1-250mg/kg was obtained, with an R 2 value of 0.994 or better, depending on the compound. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Development and single-laboratory validation of a new gas chromatographic multi-pesticide method of analysis of commercial emulsifiable concentrate formulations containing alachlor, chlorpyrifos methyl, fenthion and trifluralin as active ingredients.

    Science.gov (United States)

    Karasali, Helen; Balayannis, George; Hourdakis, Adamantia; Ambrus, Arpad

    2006-10-06

    A multi-pesticide (MP) method was developed and single-laboratory validated for the quality control of commercial pesticide products containing alachlor, chlorpyrifos methyl, fenthion and trifluralin as active ingredients (a.i.). A capillary gas chromatographic system with flame ionization detection (FID) and a programmable temperature vaporising split injector was used. The performance characteristics (specificity, linearity, precision and repeatability) of the method satisfied international acceptability criteria.

  1. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Culp, J.T.; Natesakhawat, Sittichai; Bockrath, B.C.; Zande, B. (Advanced Materials Corp., Pittsburgh, PA); Sankar, S.G. (Advanced Materials Corp., Pittsburgh, PA); Garberoglio, G. (Universita di Trento, Italy); Johnson, J.K.

    2007-07-05

    We have improved the activation process for CuBTC [Cu3(BTC)2, BTC ) 1,3,5-benzenetricarboxylate] by extracting the N,N-dimethylformamide-solvated crystals with methanol; we identify material activated in this way as CuBTC-MeOH. This improvement allowed the activation to be performed at a much lower temperature, thus greatly mitigating the danger of reducing the copper ions. A review of the literature for H2 adsorption in CuBTC shows that the preparation and activation process has a significant impact on the adsorption capacity, surface area, and pore volume. CuBTC-MeOH exhibits a larger pore volume and H2 adsorption amount than any previously reported results for CuBTC. We have performed atomically detailed modeling to complement experimentally measured isotherms. Quantum effects for hydrogen adsorption in CuBTC were found to be important at 77 K. Simulations that include quantum effects are in good agreement with the experimentally measured capacity for H2 at 77 K and high pressure. However, simulations underpredict the amount adsorbed at low pressures. We have compared the adsorption isotherms from simulations with experiments for H2 adsorption at 77, 87, 175, and 298 K; nitrogen adsorption at 253 and 298 K; and argon adsorption at 298 and 356 K. Reasonable agreement was obtained in all cases.

  2. Development of a gas-liquid chromatographic method for the analysis of fatty acid tryptamides in cocoa products.

    Science.gov (United States)

    Hug, Bernadette; Golay, Pierre-Alain; Giuffrida, Francesca; Dionisi, Fabiola; Destaillats, Frédéric

    2006-05-03

    The determination of the occurrence and level of cocoa shells in cocoa products and chocolate is an important analytical issue. The recent European Union directive on cocoa and chocolate products (2000/36/EC) has not retained the former limit of a maximum amount of 5% of cocoa shells in cocoa nibs (based on fat-free dry matter), previously authorized for the elaboration of cocoa products such as cocoa mass. In the present study, we report a reliable gas-liquid chromatography procedure suitable for the determination of the occurrence of cocoa shells in cocoa products by detection of fatty acid tryptamides (FATs). The precision of the method was evaluated by analyzing nine different samples (cocoa liquors with different ranges of shells) six times (replicate repeatability). The variations of the robust coefficient of variation of the repeatability demonstrated that FAT(C22), FAT(C24), and total FATs are good markers for the detection of shells in cocoa products. The trueness of the method was evaluated by determining the FAT content in two spiked matrices (cocoa liquors and cocoa shells) at different levels (from 1 to 50 mg/100 g). A good relation was found between the results obtained and the spiking (recovery varied between 90 and 130%), and the linearity range was established between 1 and 50 mg/100 g in cocoa products. For total FAT contents of cocoa liquor containing 5% shells, the measurement uncertainty allows us to conclude that FAT is equal to 4.01 +/- 0.8 mg/100 g. This validated method is perfectly suitable to determine shell contents in cocoa products using FAT(C22), FAT(C24), and total FATs as markers. The results also confirmed that cocoa shells contain FAT(C24) and FAT(C22) in a constant ratio of nearly 2:1.

  3. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    Science.gov (United States)

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  4. Green Ocean Amazon (GoAmazon) 2014/15. Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SVTAG) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A. H. [Univ. of California, Berkeley, CA (United States); Yee, L. D. [Univ. of California, Berkeley, CA (United States); Issacman-VanWertz, G. [Univ. of California, Berkeley, CA (United States); Wernis, R. A. [Univ. of California, Berkeley, CA (United States)

    2016-03-01

    In areas where biogenic emissions are oxidized in the presence of anthropogenic pollutants such as SO2, NOx, and black carbon, it has become increasingly apparent that secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (VOCs) is substantially enhanced. Research is urgently needed to elucidate fundamental processes of natural and anthropogenically influenced VOC oxidation and the contribution of these processes to SOA formation. GoAmazon 2014/15 afforded study of the chemical transformations in the region downwind of Manaus, Brazil, where local biogenic VOC emissions are high, and their chemical oxidation can be studied both inside and outside of the urban plume to differentiate the role of anthropogenic influence on secondary aerosol formation during oxidation of these natural VOC emissions. To understand the connection between primary biogenic VOC emissions and their secondary products that form aerosols, we made time-resolved molecular level measurements by deploying a Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SV-TAG) and a sequential filter sampler during two intensive operational periods (IOPs) of the GoAmazon 2014/15 field campaign. The SV-TAG measured semi-volatile organic compounds in both the gas and particle phases and the sequential filter sampler collected aerosols on quartz fiber filters in four-hour increments used for offline analysis. SV-TAG employed novel online derivatization that provided chemical speciation of highly oxygenated or functionalized compounds that comprise a substantial fraction of secondary organic aerosols, yet are poorly characterized. It also provided partitioning of these compounds between the vapor and particle phases at sufficient time resolution to define the importance of competing atmospheric processes. These measurements were supported by offline analysis of the filters using two-dimensional gas chromatography (GC x GC) with high-resolution time-of-flight mass spectrometry

  5. An atomistic model of a disordered nanoporous solid: Interplay between Monte Carlo simulations and gas adsorption experiments

    Science.gov (United States)

    Canti, Lorenzo; Fraccarollo, Alberto; Gatti, Giorgio; Errahali, Mina; Marchese, Leonardo; Cossi, Maurizio

    2017-04-01

    A combination of physisorption measurements and theoretical simulations was used to derive a plausible model for an amorphous nanoporous material, prepared by Friedel-Crafts alkylation of tetraphenylethene (TPM), leading to a crosslinked polymer of TPM connected by methylene bridges. The model was refined with a trial-and-error procedure, by comparing the experimental and simulated gas adsorption isotherms, which were analysed by QSDFT approach to obtain the details of the porous structure. The adsorption of both nitrogen at 77 K and CO2 at 273 K was considered, the latter to describe the narrowest pores with greater accuracy. The best model was selected in order to reproduce the pore size distribution of the real material over a wide range of pore diameters, from 5 to 80 Å. The model was then verified by simulating the adsorption of methane and carbon dioxide, obtaining a satisfactory agreement with the experimental uptakes. The resulting model can be fruitfully used to predict the adsorption isotherms of various gases, and the effect of chemical functionalizations or other post-synthesis treatments.

  6. Interlaboratory study of a multiresidue gas chromatographic method for determination of organochlorine and pyrethroid pesticides and polychlorobiphenyls in milk, fish, eggs, and beef fat.

    Science.gov (United States)

    Bordet, François; Inthavong, Dary; Fremy, Jean-Marc

    2002-01-01

    An interlaboratory study was conducted to validate a gas chromatographic (GC) method for determination of 21 organochlorine pesticides, 6 pyrethroid pesticides, and 7 polychlorobiphenyl (PCB) congeners in milk, beef fat, fish, and eggs. The method was performed at low contamination levels, which represent relevant contents in food, and is an extension of the European standard (method NF-EN-1528, Parts 1-4). It enlarges the applicable scope of the reference EN method to pyrethroid pesticides and proposes the use of solid-phase extraction (SPE) as a cleanup procedure. Cryogenic extraction was made, and SPE cleanup was performed with 2 successive SPE cartridges: C18 and Florisil. After injection of the purified extract onto a GC column, residues were measured by electron capture detection. Food samples (liquid milk, beef fat, mixed fish, and mixed eggs) were prepared, tested for homogeneity, and sent to 17 laboratories in France. Test portions were spiked with 27 pesticides and 7 PCBs at levels from 26 to 45, 4 to 27, 31 to 67, and 19 to 127 ng/g into milk, eggs, fish, and fat, respectively. Based on results for spiked samples, the relative standard deviation for repeatability ranged from 1.5 to 6.8% in milk, 3 to 39% in eggs, 4.5 to 12.2% in fish, and 7 to 13% in fat. The relative standard deviation for reproducibility ranged from 33 to 50% in milk, 29 to 59% in eggs, 31 to 57% in fish, and 30 to 62% in fat. This method showed acceptable intra- and interlaboratory precision data, as corroborated by HORRAT values at low levels of pesticide and PCB contamination. The statistical evaluation of the results was performed according to the International Organization for Standardization (ISO; ISO 3534 standard) and 5725-2 Guideline.

  7. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC Analysis

    Directory of Open Access Journals (Sweden)

    Pahn-Shick Chang

    2013-02-01

    Full Text Available Static headspace gas chromatographic (SHS-GC analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate and alcohols (2-propanol, 3-methyl-1-butanol, in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution.

  8. The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method.

    Science.gov (United States)

    Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-04-11

    The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Construction of a dispositive with adsorption to determine the natural gas humidity contents; Desenvolvimento de um dispositivo com adsorcao para determinacao do teor de umidade do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Geraldine A.S.; Chiavone Filho, Osvaldo; Medeiros, Gilsom G. de; Dantas Neto, Afonso A.; Barros Neto, Eduardo L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Cavalcanti Neto, Avelino Q. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The natural gas is an energy resource with many applications. Researches have been developed to improve its quality and for specification of its components in accordance with ANP standards. The presence of pollutants (CO{sub 2}, H{sub 2}S, N{sub 2} and H{sub 2}O) demands that the gas suffers previous treatment, before being submitted to the separation process. The water in the gas provokes the hydrates formation and this can cause serious operation problems. The gases received in the collecting stations contains water at approximately 600 ppmv. According to the ANP standard 104/2002, the gas must present in its composition 125 ppmv of water to be sell. The search for humidity analyzers for gases with accuracy motivated this work. The construction of a device based on ASTM D - 4178/82 (revised in 1999), had the objective to create a calibrate for humidity analyzers, based on patterns of amount of known water. The dosage of water is made by adsorption with molecular sieve type 4A-513, 4-8 mesh and 8-12 mesh. The developed device will allow calibration rehearsals, experiments of adsorption in function of the temperature, flow, adsorbent, as well as the most necessary knowledge of the of water amount in the process. (author)

  10. A modified commercial gas chromatograph for the continuous monitoring of the thermal degradation of sunflower oil and off-line solid phase extraction gas-chromatography-mass spectrometry characterization of released volatiles.

    Science.gov (United States)

    Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J

    2015-04-03

    A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Science.gov (United States)

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  12. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal–organic framework materials

    Science.gov (United States)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Schröder, Martin

    2017-01-01

    A family of Cu(II)-based metal–organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4′-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4′′-(pyridin-4-yl)-1,1′:4′,1′′-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895262

  13. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    Energy Technology Data Exchange (ETDEWEB)

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D.

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  14. An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    Science.gov (United States)

    Bourtsoukidis, Efstratios; Helleis, Frank; Tomsche, Laura; Fischer, Horst; Hofmann, Rolf; Lelieveld, Jos; Williams, Jonathan

    2017-12-01

    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography-mass spectrometry (GC-MS) system with a time resolution of 2-3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (˜ 6 °C s-1) the sample enrichment traps to -140 °C, and a new chromatographic oven designed for rapid cooling rates (˜ 30 °C s-1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work

  15. Determination of the analytical performance of a headspace capillary gas chromatographic technique and karl Fischer coulometric titration by system calibration using oil samples containing known amounts of moisture.

    Science.gov (United States)

    Jalbert, J; Gilbert, R; Tétreault, P

    1999-08-01

    Over the past few years, concerns have been raised in the literature about the accuracy of the Karl Fischer (KF) method for assessing moisture in transformer mineral oils. To better understand this issue, the performance of a static headspace capillary gas chromatographic (HS-CGC) technique was compared to that of KF coulometric titration by analyzing moisture in samples containing known amounts of water and various samples obtained from the National Institute of Standards and Technology (NIST). Two modes of adding samples into the KF vessel were used:  direct injection and indirect injection via an azeotropic distillation of the moisture with toluene. Under the conditions used for direct injection, the oil matrix was totally dissolved in the anolyte, which allowed the moisture to be titrated in a single-phase solution rather than in a suspension. The results have shown that when HS-CGC and combined azeotropic distillation/KF titration are calibrated with moisture-in-oil standards, a linear relation is observed over 0-60 ppm H(2)O with a correlation coefficient better than 0.9994 (95% confidence), with the regression line crossing through zero. A similar relation can also be observed when calibration is achieved by direct KF addition of standards prepared with octanol-1, but in this case an intercept of 4-5 ppm is noted. The amount of moisture determined by curve interpolation in NIST reference materials by the three calibrated systems ranges from 13.0 to 14.8 ppm for RM 8506 and 42.5 to 46.4 ppm for RM 8507, and in any case, the results were as high as those reported in the literature with volumetric KF titration. However, titration of various dehydrated oil and solvent samples showed that direct KF titration is affected by a small bias when samples contain very little moisture. The source of error after correction for the large sample volume used for the determination (8 mL) is about 6 ppm for Voltesso naphthenic oil and 4 ppm for toluene, revealing a matrix

  16. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  17. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study; Analyse des processus d`adsorption a l`interface solide - gaz par l`etude du phenomene de polarisation

    Energy Technology Data Exchange (ETDEWEB)

    Mouton-Chazel, V.

    1994-10-05

    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.). 169 refs.

  18. Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas.

    Science.gov (United States)

    Zhao, Hongyu; Shi, Lei; Zhang, Zhongzheng; Luo, Xiaona; Zhang, Lina; Shen, Qun; Li, Shenggang; Zhang, Haijiao; Sun, Nannan; Wei, Wei; Sun, Yuhan

    2018-01-31

    Carbons are considered less favorable for postcombustion CO 2 capture because of their low affinity toward CO 2 , and nitrogen doping was widely studied to enhance CO 2 adsorption, but the results are still unsatisfactory. Herein, we report a simple, scalable, and controllable strategy of tethering potassium to a carbon matrix, which can enhance carbon-CO 2 interaction effectively, and a remarkable working capacity of ca. 4.5 wt % under flue gas conditions was achieved, which is among the highest for carbon-based materials. More interestingly, a high CO 2 /N 2 selectivity of 404 was obtained. Density functional theory calculations evidenced that the introduced potassium carboxylate moieties are responsible for such excellent performances. We also show the effectiveness of this strategy to be universal, and thus, cheaper precursors can be used, holding great promise for low-cost carbon capture from flue gas.

  19. Adsorption of small gas molecules on pure and Al-doped graphene ...

    Indian Academy of Sciences (India)

    2017-10-03

    -doped graphene than that of pure graphene (PG). The Al-doped graphene shows the highest adsorption energy with NO2, NH3 and CO2 molecules, whereas the PG binds strongly with NO2. Therefore, the strong interactions ...

  20. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    Science.gov (United States)

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  2. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes.

    Science.gov (United States)

    Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu

    2018-03-01

    Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel preconcentration technique for on-line coupling to high-speed narrow-bore capillary gas chromatography: sample enrichment by equilibrium (ab)sorption. II. Coupling to a portable micro gas chromatograph.

    Science.gov (United States)

    Tuan, H P; Janssen, H G; Cramers, C A; Mussche, P; Lips, J; Wilson, N; Handley, A

    1997-12-12

    The technique of equilibrium (ab)sorption has been proven to be a powerful method for preconcentration of gaseous samples for high-speed narrow-bore capillary gas chromatography (GC) in general and field-portable GC instruments, often referred as micro GCs, in particular. Using a simple experimental set-up equipped with an open-tubular enrichment column it is possible to produce a homogeneously enriched sample plug, allowing reproducible injections of an enriched sample into the micro GC. Using a non-polar trapping column enrichment factors found for n-alkanes in the range of C7 to C10 ranged from 15 to 150 and agree well with calculated values. Using a highly retentive Thermocap column, the enrichment factor observed for heptane was above 500. As the use of this new preconcentration method requires only minimum modification of the micro GC, the chromatographic performance of the instrument was not compromised by direct coupling to the preconcentration device. Examples of on-line enrichment with portable micro GC analysis of VOCs from air are shown. These examples clearly demonstrate the potentials of the new method in field analysis.

  4. Physical adsorption: rare gas atoms on solid surfaces. Progress report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cole, M.W.

    1981-02-01

    This project has entailed investigation of three areas during the current term: physical adsorption, photostimulated field emission (PSE), and phonon reflection at interfaces. The principal effort has been directed toward understanding interactions associated with physical adsorption and the associated properties of a film. The specific topics pursued include the detailed form of the long range interaction, the configuration space wave function, and the interaction between adatoms. Experimental confirmation of the last two come from neutron scattering and thermodynamic measurements, respectively. The research in PSE has yielded results which improve upon previous calculations. There is, however, a remaining disagreement with experiment; suggestions for the origin are discussed. The phonon reflection work is directed toward understanding the role of surface roughness, an important factor in increasing the energy transmission across interfaces. A formalism has been developed which will be evaluated in the future.

  5. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump; system description and seasonal gas utilization efficiency

    International Nuclear Information System (INIS)

    Dawoud, Belal

    2014-01-01

    The main objective of this work is to introduce an innovative hybrid heating appliance incorporating a gas condensing boiler and a zeolite-water adsorption heat pump. The condensing boiler is applied to drive the zeolite-water heat pump for the heating base-load and to assist the heat pump in the so called “mixed operation” mode, in which both the heat pump and the condensing boiler are working in series to cover medium heating demands. Peak heating demands are covered by the condensing boiler in the so called “direct heating” mode. The three operation modes of the hybrid heating appliance have been technically described. In addition, the laboratory test conditions for estimating the seasonal heating performance according to the German Guideline VDI 4650-2 have been introduced. For both heating systems 35/28 °C and 55/45 °C, which represent the typical operating conditions of floor and high temperature radiating heating systems in Europe, seasonal heating gas utilization efficiencies of 1.34 and 1.26 have been measured, respectively with a ground heat source. In two field test installations in one-family houses in Germany, the introduced heating appliance showed 27% more seasonal gas utilization efficiency for heating and domestic hot water production, which is equivalent to a CO 2 -emission reduction of 20% compared to the gas condensing boiler technology

  6. Adsorption of small gas molecules on pure and Al-doped graphene ...

    Indian Academy of Sciences (India)

    The interaction of small gas molecules (CCl 4 , CH 4 , NH 3 , CO 2 , N 2 , CO, NO 2 CCl 2 F 2 , SO 2 , CF 4 , H 2 ) on pure and aluminium-doped graphene were investigated by using the density functional theory to explore their potential applications as sensors. It has been found that all gas molecules show much stronger ...

  7. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction

    KAUST Repository

    Xue, Dongxu

    2015-03-31

    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e. Eu3+, Tb3+ and Y3+) fcu metal‒organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cut-off ideal for selective adsorption kinetics separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in-situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the RE-fcu-MOF plat-form, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded nota-ble gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol and butanol/water pair systems.

  8. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction.

    Science.gov (United States)

    Xue, Dong-Xu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy J; Eddaoudi, Mohamed

    2015-04-22

    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cutoff, ideal for selective adsorption kinetics based separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the first RE-fcu-MOF platform, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded notable gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol, and butanol/water pair systems.

  9. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  10. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  11. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  12. Adsorption of 2 Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas Surface Interface

    Science.gov (United States)

    2014-11-19

    hydroxylated silica to help construct an understanding of how sulfur mustard gas adheres to hydroxyl-containing surfaces. In this study, infrared spectroscopy...SECURITY CLASSIFICATION OF: This work investigates the fundamental nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen...Hydrogen-Bond Acceptor at the Gas –Surface Interface The views, opinions and/or findings contained in this report are those of the author(s) and

  13. A novel zinc(II) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties

    Czech Academy of Sciences Publication Activity Database

    Almáši, M.; Zeleňák, V.; Zukal, Arnošt; Kuchár, J.; Čejka, Jiří

    2016-01-01

    Roč. 45, č. 3 (2016), s. 1233-1242 ISSN 1477-9226 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : synthesis * gas adsorption properties * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.029, year: 2016

  14. Adsorption of small gas molecules on pure and Al-doped graphene ...

    Indian Academy of Sciences (India)

    2017-10-03

    Oct 3, 2017 ... Abstract. The interaction of small gas molecules (CCl4, CH4, NH3, CO2, N2, CO, NO2, CCl2F2, SO2, CF4, H2) on pure and aluminium-doped graphene were investigated by using the density functional theory to explore their potential applications as sensors. It has been found that all gas molecules show ...

  15. Liquid chromatographic extraction medium

    Science.gov (United States)

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  16. High gas temperature furnace for species determination of organometallic compounds with a high pressure liquid chromatograph and a Zeeman atomic absorption spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; McLaughlin, R.D.; Hadeishi, T.

    1979-03-01

    A new furnace has been constructed that allows atomic absorption detection of volatile organometallic compounds. The operation of this furnace is demonstrated by analyzing the eluent of a high pressure liquid chromatograph utilizing Zeeman atomic absorption spectrometry. The content of tetraethyllead in National Bureau of Standards gasoline standards was determined. Data are presented on the ability of this furnace to suppress interference with cadmium and lead determinations by MgCl/sub 2/, CuCl/sub 2/, and CaCl/sub 2/. It was found that two orders of magnitude more interferent can be tolerated. The determination of lead in automotive exhaust is also described. 7 figures, 4 tables.

  17. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  18. The influence of adsorption coating on molecular heat transfer in the system `rarefied gas — metal'

    Science.gov (United States)

    Ukhov, A. I.; Borisov, S. F.; Porodnov, B. T.

    2010-03-01

    Based on the classical concept of atomic motion and the Goodman and Wachman lattice theory, we have developed a computer program to model the equilibrium and non-equilibrium scattering of helium atoms by 3D tungsten crystal lattice with allowance for adsorption surface coating. Within the concept of energy accommodation coefficient, we have calculated the rate of molecular heat transfer of helium to clean tungsten surface or to tungsten surface partially covered with an adsorbate. The calculations were performed for various surface temperatures. The calculated dependences were compared to test data obtained in experiments with surfaces controlled in terms of their chemical composition. Within the developed approach, the simulations proved capable of providing an adequate description to experimental data obtained for the equilibrium energy accommodation coefficient on the clean surface, and also for the non-equilibrium energy accommodation coefficient for the surface partially covered with adsorbate.

  19. Headspace solid-phase microextraction and gas chromatographic analysis of low-molecular-weight sulfur volatiles with pulsed flame photometric detection and quantification by a stable isotope dilution assay.

    Science.gov (United States)

    Ullrich, Sebastian; Neef, Sylvia K; Schmarr, Hans-Georg

    2018-02-01

    Low-molecular-weight volatile sulfur compounds such as thiols, sulfides, disulfides as well as thioacetates cause a sulfidic off-flavor in wines even at low concentration levels. The proposed analytical method for quantification of these compounds in wine is based on headspace solid-phase microextraction, followed by gas chromatographic analysis with sulfur-specific detection using a pulsed flame photometric detector. Robust quantification was achieved via a stable isotope dilution assay using commercial and synthesized deuterated isotopic standards. The necessary chromatographic separation of analytes and isotopic standards benefits from the inverse isotope effect realized on an apolar polydimethylsiloxane stationary phase of increased film thickness. Interferences with sulfur-specific detection in wine caused by sulfur dioxide were minimized by addition of propanal. The method provides adequate validation data, with good repeatability and limits of detection and quantification. It suits the requirements of wine quality management, allowing the control of oenological treatments to counteract an eventual formation of excessively high concentration of such malodorous compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Numerical Simulation of Simultaneous Electrostatic Precipitation and Trace Gas Adsorption: Electrohydrodynamic Effects

    Energy Technology Data Exchange (ETDEWEB)

    Clack, Herek L., E-mail: hclack@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI (United States)

    2017-03-21

    Electrostatic precipitators (ESPs) are now being tasked with simultaneously removing particulate matter (PM) and trace gas-phase pollutants such as mercury released during coal combustion. This represents a significant expansion of their original operational mission, one which is not captured by decades old quasi-1-D analytical expressions developed from first principles for predicting PM removal alone. At the same time, technological advances in ESP power supplies have led to steady increases over the years in the applied voltage achievable in new or refurbished ESPs. In light of these industry trends, the present study extends our previous study to examine the multiphase flow phenomena that may occur during such ESP operations, specifically the effects of electrohydrodynamic (EHD) fluid flow phenomena that can emerge when electrical current densities are high and/or fluid velocities are low. The results show good agreement at low current densities between the present numerical simulation results and ESP performance predictions obtained from classical analytical expressions, with increasing divergence in predicted performance at higher current densities. Under the influence of EHD phenomena, the acceleration of the fluid by electric body forces effectively increases average fluid velocities through the ESP channel with a commiserate reduction in PM removal efficiency. The impact on trace gas-phase pollutant removal is mixed, with EHD phenomena found to variously promote or inhibit gas-phase pollutant removal.

  1. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    Science.gov (United States)

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  3. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  4. Development of a transportable gas analyzer: thermal desorber / micro gas chromatograph / mass spectrometer coupling (m-TD / m-GC / MS). Application to on-line analysis of volatile organic compounds at traces level; Developpement d'un analyseur de gaz transportable: couplage thermodesorbeur / micro-chromatographe / spectrometre de masse (m-TD / m-CG / SM). Application a l'analyse en ligne des composes organiques volatils a l'etat de traces

    Energy Technology Data Exchange (ETDEWEB)

    Cozic, R.

    2004-06-01

    Volatile organic compounds (VOC) play a central part in the photochemical pollution of the atmosphere. Monitoring of these products in air became a need, because of their toxicity. Currently, traditional analytical methods of air have drawbacks. Instruments are too specific or the technique consists in trapping pollutants and then to turn over the sample to the laboratory for analysis. The subject of the thesis is the development of an on-site analytical technique, offering new prospects for air analysis. The developed transportable analyzer results from the coupling of a thermal desorber (m-TD), a micro gas chromatograph (m-GC) and a mass spectrometer (MS). The instrument makes it possible, in a few minutes, to perform qualitative and quantitative analysis of a very broad range of VOC at traces level. An example of on-site application of the analyzer relates to the monitoring of working atmospheres. (author)

  5. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  6. Active gas adsorption-promoted evaporation of tungsten and niobium in strong electric fields

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Mikhajlovskij, I.M.

    1980-01-01

    Field-ion methods and pulsed mass-spectrometeric analysis are used to study field evaporation of tungsten and niobium affected by nitrogen and hydrogen. Active gas-promoted evaporation is found to take place at field intensities high enough for the field ionization of active gases. The evaporating field intensity is established to increase from 1.45x10 8 to 5.5x10 8 V/cm while passing from continuous to pulsed conditions of evaporation, this testifies to the change of the mechanism of the promoted evaporation. Under the effect of active gases, the evaporation rate essentially depends on the surface state. It is shown that in the microcrystals irradiated with 1-3 kV helium ions, the dependence of the evaporation rate of Nb in hydrogen on the field intensity gets monotonous. The obtained results are in fair agreement with the recombination model of a promoted evaporation [ru

  7. MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC ...

    African Journals Online (AJOL)

    Peters

    MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC. FINGERPRINTS OF LEAVES OF NIGERIAN CASSIA TORA LINN. Fatokun Omolola T1*., EsievoKevwe B2., Ugbabe Grace E3. and Kunle Oluyemisi F4. Department of Medicinal Plant Research and Traditional Medicine, National Institute for.

  8. CHROMATOGRAPHIC SEPARATION AND SPECTRO ...

    African Journals Online (AJOL)

    The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF), X-ray diffractometry (XRD), Optical microscopy, infrared (IR) and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic ...

  9. Investigating adsorption/desorption of carbon dioxide in aluminum compressed gas cylinders.

    Science.gov (United States)

    Miller, Walter R; Rhoderick, George C; Guenther, Franklin R

    2015-02-03

    Between June 2010 and June 2011, the National Institute of Standards and Technology (NIST) gravimetrically prepared a suite of 20 carbon dioxide (CO2) in air primary standard mixtures (PSMs). Ambient mole fraction levels were obtained through six levels of dilution beginning with pure (99.999%) CO2. The sixth level covered the ambient range from 355 to 404 μmol/mol. This level will be used to certify cylinder mixtures of compressed dry whole air from both the northern and southern hemispheres as NIST standard reference materials (SRMs). The first five levels of PSMs were verified against existing PSMs in a balance of air or nitrogen with excellent agreement observed (the average percent difference between the calculated and analyzed values was 0.002%). After the preparation of a new suite of PSMs at ambient level, they were compared to an existing suite of PSMs. It was observed that the analyzed concentration of the new PSMs was less than the calculated gravimetric concentration by as much as 0.3% relative. The existing PSMs had been used in a Consultative Committee for Amount of Substance-Metrology in Chemistry Key Comparison (K-52) in which there was excellent agreement (the NIST-analyzed value was -0.09% different from the calculated value, while the average of the difference for all 18 participants was -0.10%) with those of other National Metrology Institutes and World Meteorological Organization designated laboratories. In order to determine the magnitude of these losses at the ambient level, a series of "daughter/mother" tests were initiated and conducted in which the gas mixture containing CO2 from a "mother" cylinder was transferred into an evacuated "daughter" cylinder. These cylinder pairs were then compared using cavity ring-down spectroscopy under high reproducibility conditions (the average percent relative standard deviation of sample response was 0.02). A ratio of the daughter instrument response to the mother response was calculated, with the

  10. A zeolite-like zinc triazolate framework with high gas adsorption and separation performance.

    Science.gov (United States)

    Lin, Rui-Biao; Chen, Da; Lin, Yan-Yong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2012-09-17

    The reaction of commercially available 3-amino-1,2,4-triazole (Hatz) and Zn(OH)(2) at room temperature produced a porous zeolite-like metal azolate framework, [Zn(atz)(2)] (MAF-66). Single-crystal X-ray diffraction studies of MAF-66 showed that atz(-) served as an imidazolate-type ligand, linking tetrahedral Zn(II) ions to form a noninterpenetrated dia framework, which contains a narrow, three-dimensional intersecting channel system (void = 49.8%) functionalized by amino groups and uncoordinated triazolate N atoms on the pore surface. Gas-sorption measurements of MAF-66 revealed high CO(2) uptakes (27.6/19.4 wt % at 273/298 K and 1 atm) and high Henry's law CO(2)/N(2) selectivity (403/225 at 273/298 K). The host-guest interactions between CO(2) and the pore surface were also studied by in situ IR absorption spectroscopy and powder X-ray diffraction measurements.

  11. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.; McDaniel, J.A.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478 K approximately 15% of the surface is coverred for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this. (orig.)

  12. Trans fat labeling and levels in U.S. foods: assessment of gas chromatographic and infrared spectroscopic techniques for regulatory compliance.

    Science.gov (United States)

    Mossoba, Magdi M; Moss, Julie; Kramer, John K G

    2009-01-01

    Trans fatty acids are found in a variety of foods like dairy and meat products, but the major dietary sources are products that contain commercially hydrogenated fats. There has been a renewed need for accurate analytical methods for the quantitation of total trans fat since mandatory requirements to declare the amount of trans fat present in food products and dietary supplements were issued in many countries. Official capillary GC and IR methodologies are the two most common validated methods used to identify and quantify trans fatty acids for regulatory compliance. The present article provides a comprehensive discussion of the GC and IR techniques, including the latest attenuated total reflection (ATR)-FTIR methodology called the negative second derivative ATR-FTIR procedure, which is currently being validated in an international collaborative study. The identification and quantitation of trans fatty acid isomers by GC is reviewed and an alternative GC method is proposed using two temperature programs and combining their results; this proposed method deals more effectively with the resolution of large numbers of geometric and positional monoene, diene, and triene fatty acid isomers present in ruminant fats. In addition, the different methylation procedures that affect quantitative conversion to fatty acid methyl esters are reviewed. There is also a lack of commercial chromatographic standards for many trans fatty acid isomers. This review points to potential sources of interferences in the FTIR determination that may lead to inaccurate results, particularly at low trans levels. The presence of high levels of saturated fats may lead to interferences in the FTIR spectra observed for trans triacylglycerols (TAGs). TAGs require no derivatization, but have to be melted prior to IR measurement. While GC is currently the method of choice, ATR-FTIR spectroscopy is a viable, rapid alternative, and a complementary method to GC for a more rapid determination of total trans

  13. Polyclotrimers of 1,4-Diethynylbenzene, 2,6-Diethynylnaphthalene, and 2,6-Diethynylanthracene: Preparation and Gas Adsorption Properties

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Slováková, E.; Balcar, Hynek; Sedláček, J.

    2013-01-01

    Roč. 214, č. 18 (2013), s. 2016-2026 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GAP108/11/1661; GA ČR GA203/08/0604 Institutional support: RVO:61388955 Keywords : hydrogen adsorption capacity * microporous polymers * nitrogen adsorption irreversibility Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.451, year: 2013

  14. Smooth esterification of Di-and Tricarboxylic acids with methyl and ethyl chloroformates in gas chromatographic profiling of urinary acidic metabolites

    Czech Academy of Sciences Publication Activity Database

    Hušek, Petr; Šimek, Petr; Matucha, P.

    2003-01-01

    Roč. 58, - (2003), s. 623-630 ISSN 0009-5893 R&D Projects: GA AV ČR IPP1050128; GA ČR GA203/01/1586 Institutional research plan: CEZ:AV0Z5007907 Keywords : gas chromatography * esterification with chloroformates Subject RIV: CC - Organic Chemistry Impact factor: 1.145, year: 2003

  15. At-line gas chromatographic-mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface

    NARCIS (Netherlands)

    Blokker, P.; Pel, R.; Akoto, L.; Udo, A.; Brinkman, U.A.Th.; Vreuls, R.J.J.

    2002-01-01

    Thermally assisted hydrolysis and methylation¯gas chromatography (THM¯GC) is an important tool to analyse fatty acid in complex matrices. Since THM¯GC has major drawbacks such as isomerisation when applied to fatty acids in natural matrices, a direct thermal desorption (DTD) interface and an

  16. Measurement, by adsorption, of the dispersion of platinum on supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castells, R.C.

    1979-12-01

    A gas chromatographic pulsed adsorption technique similar to that of Freel was used in hydrogen and oxygen chemisorption measurements, and in ''titrating'' adsorbed hydrogen with oxygen pulses (H-O) and adsorbed oxygen with hydrogen pulses (O-H) on the surfaces of a Houdry 3H (0.30-0.70% platinum/alumina) catalyst and of 3.7 and 2.3% Pt/silica catalysts. In successive H-O and O-H titration cycles, hydrogen and oxygen consumption increased, leveling off after 8-10 cycles for Pt/alumina and after 3-4 cycles for the Pt/silica catalyst. The adsorption of hydrogen increased, whereas that of oxygen decreased with increasing number of cycles. The H-O titration sequence was a more accurate method of measuring metal dispersion than hydrogen adsorption or the O-H sequence.

  17. Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity

    Science.gov (United States)

    2018-01-01

    Controlled assembly of two-dimensional (2D) supramolecular organic frameworks (SOFs) has been demonstrated through a binary strategy in which 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)naphthalene (2), generated in situ by oxidative dehydrogenation of 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)dihydropyridyl)naphthalene (1), is coupled in a 1:1 ratio with terphenyl-3,3′,4,4′-tetracarboxylic acid (3; to form SOF-8), 5,5′-(anthracene-9,10-diyl)diisophthalic acid (4; to form SOF-9), or 5,5′-bis-(azanediyl)-oxalyl-diisophthalic acid (5; to form SOF-10). Complementary O–H···N hydrogen bonds assemble 2D 63-hcb (honeycomb) subunits that pack as layers in SOF-8 to give a three-dimensional (3D) supramolecular network with parallel channels hosting guest DMF (DMF = N,N′-dimethylformamide) molecules. SOF-9 and SOF-10 feature supramolecular networks of 2D → 3D inclined polycatenation of similar hcb layers as those in SOF-8. Although SOF-8 suffers framework collapse upon guest removal, the polycatenated frameworks of SOF-9 and SOF-10 exhibit excellent chemical and thermal stability, solvent/moisture durability, and permanent porosity. Moreover, their corresponding desolvated (activated) samples SOF-9a and SOF-10a display enhanced adsorption and selectivity for CO2 over N2 and CH4. The structures of these activated compounds are well described by quantum chemistry calculations, which have allowed us to determine their mechanical properties, as well as identify their soft deformation modes and a large number of low-energy vibration modes. These results not only demonstrate an effective synthetic platform for porous organic molecular materials stabilized solely by primary hydrogen bonds but also suggest a viable means to build robust SOF materials with enhanced gas uptake capacity and selectivity. PMID:29651229

  18. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  19. A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO 2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Phillip J.; Siegelman, Rebecca L.; Forse, Alexander C.; Gonzalez, Miguel I.; Runčevski, Tomče [Materials; Martell, Jeffrey D.; Reimer, Jeffrey A.; Long, Jeffrey R. [Materials

    2017-09-14

    A new diamine-functionalized metal–organic framework comprised of 2,2-dimethyl-1,3-diaminopropane (dmpn) appended to the Mg2+ sites lining the channels of Mg2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) is characterized for the removal of CO2 from the flue gas emissions of coal-fired power plants. Unique to members of this promising class of adsorbents, dmpn–Mg2(dobpdc) displays facile step-shaped adsorption of CO2 from coal flue gas at 40 °C and near complete CO2 desorption upon heating to 100 °C, enabling a high CO2 working capacity (2.42 mmol/g, 9.1 wt %) with a modest 60 °C temperature swing. Evaluation of the thermodynamic parameters of adsorption for dmpn–Mg2(dobpdc) suggests that the narrow temperature swing of its CO2 adsorption steps is due to the high magnitude of its differential enthalpy of adsorption (Δhads = -73 ± 1 kJ/mol), with a larger than expected entropic penalty for CO2 adsorption (Δsads = -204 ± 4 J/mol·K) positioning the step in the optimal range for carbon capture from coal flue gas. In addition, thermogravimetric analysis and breakthrough experiments indicate that, in contrast to many adsorbents, dmpn–Mg2(dobpdc) captures CO2 effectively in the presence of water and can be subjected to 1000 humid adsorption/desorption cycles with minimal degradation. Solid-state 13C NMR spectra and single-crystal X-ray diffraction structures of the Zn analogue reveal that this material adsorbs CO2 via formation of both ammonium carbamates and carbamic acid pairs, the latter of which are crystallographically verified for the first time in a porous material. Taken together, these properties render dmpn–Mg2(dobpdc) one of the most promising adsorbents for carbon capture applications.

  20. Adsorption properties of Silochrom chemically modified with nickel acetylacetonate

    Science.gov (United States)

    Pakhnutova, Evgeniya; Slizhov, Yuriy

    2017-11-01

    One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.

  1. Comparison of adsorption systems using natural gas fired fuel cell as heat source, for residential air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, M.; Meunier, F. [LGP2ES, Cnam-IFFI (EA21), case 331, 292 rue Saint-Martin, 75141 Paris Cedex 03 (France); Coulie, J.; Herail, E. [N-GHY, Site Industriel Saint Antoine, ZI Montplaisir, 51 rue Isaac Newton, 81000 Albi (France)

    2009-06-15

    This article aims to evaluate the performances of an adsorption system driven thanks to the heat rejected by the post-combustion exhaust gases of a reformer/fuel cell system for residential air-conditioning application. Three adsorption pairs were compared: activated carbon/methanol, silica gel/water and zeolite/water. Taking into account both cooling power and sensitivity to performances of the heat rejection and recovery exchangers, it appears that zeolite 13X/water is the adsorption pair giving the best performance for this application. Nevertheless, a more detailed model would be of interest to better quantify the heat transfer impact on performance. (author)

  2. Tuning Gas Adsorption Properties of Zeolite-like Supramolecular Assemblies with gis Topology via Functionalization of Isoreticular Metal–Organic Squares

    KAUST Repository

    Wang, Shuang

    2017-07-11

    A strategy based on metal-ligand directed assembly of metal-organic squares (MOSs), built-up from four-membered ring (4MR) secondary building units (SBUs), has been employed for the design and construction of isoreticular zeolite-like supramolecular assemblies (ZSAs). Four porous Co-based ZSAs having the same underlying gis topology, but differing only with respect to the capping and bridging linkers, were successfully isolated and fully characterized. In this series, each MOS in ZSA-3-ZSA-6 possess an ideal square geometry and is connected to four neighboring MOS via a total of 16 hydrogen bonds to give a 3-periodic porous network.To systematically assess the effect of the pore system (size and functionality) on the gas adsorption properties, we evaluated the MOSs for their affinity for different probe molecules such as CO2 and light hydrocarbons. ZSA-3-ZSA-6 showed high thermal stability (up to 300 °C) and was proven highly porous as evidenced by gas adsorption studies. Notably, alkyl-functionalized MOSs were found to offer potential for selective separation of CO2, C3H6, and C3H8 from CH4 and H2 containing gas stream, such as natural gas and refinery-off gases.

  3. Tuning Gas Adsorption Properties of Zeolite-like Supramolecular Assemblies with gis Topology via Functionalization of Isoreticular Metal-Organic Squares.

    Science.gov (United States)

    Wang, Shuang; Belmabkhout, Youssef; Cairns, Amy J; Li, Guanghua; Huo, Qisheng; Liu, Yunling; Eddaoudi, Mohamed

    2017-10-04

    A strategy based on metal-ligand directed assembly of metal-organic squares (MOSs), built-up from four-membered ring (4MR) secondary building units (SBUs), has been employed for the design and construction of isoreticular zeolite-like supramolecular assemblies (ZSAs). Four porous Co-based ZSAs having the same underlying gis topology, but differing only with respect to the capping and bridging linkers, were successfully isolated and fully characterized. In this series, each MOS in ZSA-3-ZSA-6 possess an ideal square geometry and is connected to four neighboring MOS via a total of 16 hydrogen bonds to give a 3-periodic porous network.To systematically assess the effect of the pore system (size and functionality) on the gas adsorption properties, we evaluated the MOSs for their affinity for different probe molecules such as CO 2 and light hydrocarbons. ZSA-3-ZSA-6 showed high thermal stability (up to 300 °C) and was proven highly porous as evidenced by gas adsorption studies. Notably, alkyl-functionalized MOSs were found to offer potential for selective separation of CO 2 , C 3 H 6 , and C 3 H 8 from CH 4 and H 2 containing gas stream, such as natural gas and refinery-off gases.

  4. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    Science.gov (United States)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  5. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L

    2014-12-01

    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  6. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    International Nuclear Information System (INIS)

    Smith, Philip A.; Lepage, Carmela R. Jackson; Savage, Paul B.; Bowerbank, Christopher R.; Lee, Edgar D.; Lukacs, Michael J.

    2011-01-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H] + ) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H] + ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d 15 provided evidence that [M+H] + production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H] + ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  7. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  8. A new headspace gas chromatographic method for the determination of methanol content in paper materials used for food and drink packaging.

    Science.gov (United States)

    Hu, Hui-Chao; Tian, Ying-Xin; Jin, Hui-Jun; Chai, Xin-Sheng; Barnes, Donald G

    2013-10-02

    This study reports on a method for determination of methanol in paper products by headspace gas chromatography (HS-GC). The method is based on the hydrolysis of the pulp or paper matrix, using a phosphoric acid solution (42.5%) as the medium at 120 °C in 5 h (excluding air contact) in order to release matrix-entrapped methanol, which is then determined by HS-GC. Data show that, under the given conditions of hydrolysis, no methanol was formed from the methoxyl groups in the material. Reproducibility tests of the method generated a relative standard deviation of methanol content in paper-related materials. The method can play an important role in addressing food safety concerns that may be raised regarding the use of paper materials in food and beverage packaging.

  9. Gas chromatographic determination of N-nitrosamines, aromatic amines, and melamine in milk and dairy products using an automatic solid-phase extraction system.

    Science.gov (United States)

    Jurado-Sanchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2011-07-13

    A reliable analytical method was presented for the simultaneous determination of six N-nitrosamines, nine aromatic amines, and melamine in milk and dairy products using gas chromatography coupled with mass spectrometry. The sample treatment includes the precipitation of proteins with acetonitrile, centrifugation, solvent changeover by evaporation, and continuous solid-phase extraction for cleanup and preconcentration purposes. Samples (5 g) containing 0.15-500 ng of each amine were analyzed, and low detection limits (15-130 ng/kg) were achieved. Recoveries for milk and dairy products samples spiked with 1, 10, and 50 μg/kg ranged from 92% to 101%, with intraday and interday relative standard deviation values below 7.5%. The method was successfully applied to determine amine residues in several milk types (human breast, cow, and goat) and dairy products.

  10. Determinação espectrofotométrica e cromatográfica em fase gasosa de ácido tricloracético em urina Spectrophotometric and gas chromatographic determination of trichloroacetic acid in urine

    Directory of Open Access Journals (Sweden)

    Maria de Fatima M. Pedrozo

    1996-06-01

    Full Text Available Solventes halogenados -- 1,1,1-tricloretano, tricloretileno, percloretileno -- apresentam o ácido tricloracético (TCA como produto de biotransformação comum, o qual pode ser utilizado como indicador biológico de dose interna na exposição a estes compostos. Foi realizado estudo de métodos espectrofotométrico e cromatográfico em fase gasosa para a determinação do TCA, bem como da aplicação destes métodos à sua determinação em urina de indivíduos expostos ao 1,1,1-tricloretano. Os resultados mostram a boa precisão à determinação do TCA em urina de indivíduos expostos ao 1,1,1-tricloretano e nenhuma diferença significativa foi observada entre os métodos, ainda que o cromatográfico em fase gasosa apresentasse menor limite de detecção.Some chlorinated hydrocarbon solvents -- 1,1,1-trichloroethane, tricloroethylene and perchloroethylene -- have a common biotransformation product, trichloroacetic acid, which can be used as their biological exposure index. The spectrophotometric and gas chromatographic methods for the determination of trichloroacetic acid were studied and used as well as in its determination in the urine of workers exposed to 1,1,1-trichloroethane . Both methods showed good precision and no statistically significant difference was found although the gas cromatographic method presented a lower detection limit.

  11. Joint approximate diagonalization of eigenmatrices as a high-throughput approach for analysis of hyphenated and comprehensive two-dimensional gas chromatographic data.

    Science.gov (United States)

    Zarghani, Maryam; Parastar, Hadi

    2017-11-17

    The objective of the present work is development of joint approximate diagonalization of eigenmatrices (JADE) as a member of independent component analysis (ICA) family, for the analysis of gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) data to address incomplete separation problem occurred during the analysis of complex sample matrices. In this regard, simulated GC-MS and GC×GC-MS data sets with different number of components, different degree of overlap and noise were evaluated. In the case of simultaneous analysis of multiple samples, column-wise augmentation for GC-MS and column-wise super-augmentation for GC×GC-MS was used before JADE analysis. The performance of JADE was evaluated in terms of statistical parameters of lack of fit (LOF), mutual information (MI) and Amari index as well as analytical figures of merit (AFOMs) obtained from calibration curves. In addition, the area of feasible solutions (AFSs) was calculated by two different approaches of MCR-BANDs and polygon inflation algorithm (FACPACK). Furthermore, JADE performance was compared with multivariate curve resolution-alternating least squares (MCR-ALS) and other ICA algorithms of mean-field ICA (MFICA) and mutual information least dependent component analysis (MILCA). In all cases, JADE could successfully resolve the elution and spectral profiles in GC-MS and GC×GC-MS data with acceptable statistical and calibration parameters and their solutions were in AFSs. To check the applicability of JADE in real cases, JADE was used for resolution and quantification of phenanthrene and anthracene in aromatic fraction of heavy fuel oil (HFO) analyzed by GC×GC-MS. Surprisingly, pure elution and spectral profiles of target compounds were properly resolved in the presence of baseline and interferences using JADE. Once more, the performance of JADE was compared with MCR-ALS in real case. On this matter, the mutual information

  12. [Determination of pesticide residues in fugu, eel and prawn using gas chromatography-mass spectrometry with gel permeation chromatographic clean-up].

    Science.gov (United States)

    Zheng, Feng; Pang, Guofang; Li, Yan; Wang, Minglin; Fan, Chunlin

    2009-09-01

    A multiresidue analytical method was developed for the determination of 191 pesticides in fugu, eel and prawn using gas chromatography-mass spectrometry (GC-MS). The samples were extracted with ethyl acetate and cyclohexane (1:1, v/v), and cleaned-up by gel permeation chromatography (GPC). The GPC eluant collected from 26 min to 44 min was concentrated to 1 mL, then analyzed using GC-MS. A DB-1701 column was used for the separation. The MS detection was performed in selected ion monitoring mode. The recoveries were determined at the two spiked levels of I LOQ and 4 LOQ (LOQ: limit of quantification). The overall recoveries were from 50.2% to 120%, and in which the recoveries of 89.5% pesticides were from 70% to 120%. The relative standard deviations (RSDs) of the recoveries were from 0.6% to 21.6%. The calibration curves of all pesticides showed good linearities in the respective ranges with the correlation coefficient above 0.97. The limits of detection and the limits of quantification were 0.002-0.3 mg/kg and 0.007-1.2 mg/kg, respectively. The sensitivity and accuracy of the method met the requirements of the multiple pesticide residues. This method was applicable to determine 191 multiple pesticide residues in fugu, eel, prawn and other fishes.

  13. Quantification of Delta9-tetrahydrocannabinol and its major metabolites in meconium by gas chromatographic-mass spectrometric assay: assay validation and preliminary results of the "meconium project".

    Science.gov (United States)

    Marchei, Emilia; Pellegrini, Manuela; Pacifici, Roberta; Palmi, Ilaria; Lozano, Jaime; García-Algar, Oscar; Pichini, Simona

    2006-10-01

    A rapid and simple procedure based on gas chromatography-mass spectrometry (GC-MS) is described for determination of Delta-tetrahydrocannabinol (THC), 11-hydroxy-Delta-tetrahydrocannabinol (THC-OH) and 11-nor-Delta-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in meconium using Delta-tetrahydrocannabinol (Delta-THC) and deuterated THC-COOH as internal standards. The biological matrix was subjected to liquid-liquid extraction after enzyme hydrolysis for conjugated analytes.Chromatography was performed on a fused silica capillary column and analytes were determined in the selected-ion-monitoring (SIM) mode. The method was validated in the range 20 to 500 microg/g using 1g of meconium per assay. The method was applied to the analysis of meconium in a cohort of newborns to assess eventual fetal exposure to cannabis. Within positive samples, THC-COOH and THC-OH (range: 33.7 to 182.1 and 20.7 to 493.3 microg/g, respectively) were both present in the majority of cases with only 1 specimen with THC-OH as the most abundant metabolite and 2 with THC only.

  14. Combination of electromembrane extraction with dispersive liquid-liquid microextraction followed by gas chromatographic analysis as a fast and sensitive technique for determination of tricyclic antidepressants.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Rezazadeh, Maryam

    2013-01-15

    For the first time, combination of electromembrane extraction (EME) and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-flame ionization detection (GC/FID) was developed for determination of tricyclic antidepressants (TCAs) in untreated human plasma and urine samples. Response surface methodology (RSM) was used for optimization of experimental parameters, so that extraction time of 14min, voltage of 240V, donor phase of 64mM HCl and acceptor phase of 100mM HCl were obtained as optimal extraction conditions. Matrix effect and carry-over were investigated in this work. The results indicated matrix effect for urine and plasma samples in comparison with neat solutions, so match matrix method was used for drawing working calibration curves. However, no carry-over was appeared at the retention time of investigated TCAs (S/N86.5%. The results showed that EME-DLLME-GC/FID is a promising combination for analysis of TCAs present at low concentrations in biological matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Gas chromatographic quantification of aliphatic aldehydes in freshly distilled Calvados and Cognac using 3-methylbenzothiazolin-2-one hydrazone as derivative agent.

    Science.gov (United States)

    Ledauphin, Jérôme; Barillier, Daniel; Beljean-Leymarie, Martine

    2006-05-19

    A new precise and sensitive method was used for the quantification of aliphatic aldehydes from C5 to C11 in highly ethanolic beverages such as freshly distilled spirits. Carbonyl compounds were derivatized using 3-methylbenzothiazolin-2-one hydrazone (MBTH) and then separated and detected by gas chromatography-mass spectrometry (GC-MS). Selective mass spectrometric detection of molecular ions of derivatives was performed to obtain a good sensibility (0.2-1.2 microg l(-1)) and a good selectivity. For a concentration of 20 microg l(-1), relative standard deviations were lower than 10% except for heaviest compounds (decanal and undecanal) where RSD were between 11 and 13%. The concentrations of aliphatic aldehydes were determined in nine samples of freshly distilled Calvados and two samples of freshly distilled Cognac with highest concentrations reported for 3-methylbutanal (from 170 to 1220 microg l(-1) in Calvados and from 1540 to 5500 microg l(-1) in Cognac). 3-Methylbutanal and hexanal, due to their low detection thresholds, could be important olfactive markers of these two products. Less than 1h30 is required to quantify the nine studied aliphatic aldehydes in freshly distilled spirits.

  16. Investigation on the performance of polymer zirconium compound (PZC) for chromatographic Tc-99m generator preparation

    International Nuclear Information System (INIS)

    Le Van So

    2004-01-01

    The performance of PZC was investigated for chromatographic Tc-99m generator preparation. Mo-adsorption of PZC in different Mo-solutions and Tc-99m elution of 99 Mo-PZC column were studied. Mo- adsorption capacity of higher than 250mgMo/gPZC and Tc-99m elution yield of higher than 80% were achieved with PZC adsorbent. Mo-99 breakthrough of 0.02% and Molybdenum element breakthrough of around 5μg Mo/ml were found in Tc-99m eluate. A good relationship between the Mo-content of adsorption solution and the Mo-adsorption capacity, adsorption percentage, Mo-breakthrough and Tc-99m elution yield was found. The preparation of PZC based Tc-99m chromatographic generator with 4 gram weight of PZC was successfully conducted. (author)

  17. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    Science.gov (United States)

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Akihiro [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nishida, Manami [Hiroshima University Technical Center, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Saito, Takeshi [Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143 (Japan); Kishiyama, Izumi; Miyazaki, Shota [GL Sciences Inc., Sayamagahara 237-2, Iruma, Saitama 358-0032 (Japan); Murakami, Katsunori [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nagao, Masataka [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Namura, Akira, E-mail: namera@hiroshima-u.ac.jp [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan)

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d{sub 5} was used as an internal standard. The linear ranges were 0.01-5.0 {mu}g mL{sup -1} for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 {mu}g mL{sup -1} for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation {>=}0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 {mu}g mL{sup -1} of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio {>=} 3) in urine was 5 ng mL{sup -1} for MA and MDMA and 10 ng mL{sup -1} for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  19. Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee

    International Nuclear Information System (INIS)

    Risticevic, Sanja; Carasek, Eduardo; Pawliszyn, Janusz

    2008-01-01

    Increasing consumer awareness of food safety issues requires the development of highly sophisticated techniques for the authentication of food commodities. The food products targeted for falsification are either products of high commercial value or those produced in large quantities. For this reason, the present investigation is directed towards the characterization of coffee samples according to the geographical origin. The conducted research involves the development of a rapid headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) method that is utilized for the verification of geographical origin traceability of coffee samples. As opposed to the utilization of traditional univariate optimization methods, the current study employs the application of multivariate experimental designs to the optimization of extraction-influencing parameters. Hence, the two-level full factorial first-order design aided in the identification of two influential variables: extraction time and sample temperature. The optimum set of conditions for the two variables was 12 min and 55 deg. C, respectively, as directed by utilization of Doehlert matrix and response surface methodology. The high-throughput automated SPME procedure was completed by implementing a single divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50/30 μm metal fiber with excellent durability properties ensuring the completion of overall sequence of coffee samples. The utilization of high-speed TOFMS instrument ensured the completion of one GC-MS run of a complex coffee sample in 7.9 min and the complete list of benefits provided by ChromaTOF software including fully automated background subtraction, baseline correction, peak find and mass spectral deconvolution algorithms was exploited during the data evaluation procedure. The combination of the retention index (RI) system using C 8 -C 40 alkanes and the mass spectral library search was utilized for the

  20. Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell.

    Science.gov (United States)

    Pätzold, R; Brückner, H

    2006-07-01

    Fermented cocoa beans of various countries of origin (Ivory Coast, Ghana, Sulawesi), cocoa beans roasted under defined conditions (100-150 degrees C; 30-120 min), low and high fat cocoa powder, various brands of chocolate, and cocoa shells were analyzed for their contents of free L-and D-amino acids. Amino acids were isolated from defatted products using a cation exchanger and converted into volatile N(O)-pentafluoropropionyl amino acid 2-propyl esters which were analyzed by enantioselective gas chromatography mass spectrometry on a Chirasil-L-Val capillary column. Besides common protein L-amino acids low amounts of D-amino acids were detected in fermented cocoa beans. Quantities of D-amino acids increased on heating. On roasting cocoa beans of the Forastero type from the Ivory Coast at 150 degrees C for 2 h, relative quantities of D-amino acids approached 17.0% D-Ala, 11.7% D-Ile, 11.1% D-Asx (Asp + Asn), 7.9% D-Tyr, 5.8% D-Ser, 4.8% D-Leu, 4.3% D-Phe, 37.0% D-Pro, and 1.2% D-Val. In cocoa powder and chocolate relative quantities amounted to 14.5% D-Ala, 10.6% D-Tyr, 9.8% D-Phe, 8.1% L-Asx, and 7.2% D-Ile. Lower quantities of other D-amino acids were also detected. In order to corroborate our hypothesis that D-amino acids are generated from Amadori compounds (fructose amino acids) formed in the course of the Maillard reaction, fructose-L-phenylalanine and fructose-D-phenylalanine were synthesized and heated at 200 degrees C for 5-60 min. Already after 5 min release of 11.7% D-Phe and 11.8% L-Phe in the free form could be analyzed. Based on the data a racemization mechanism is presented founded on the intermediate and reversible formation of an amino acid carbanion in the Amadori compounds.

  1. In situ recovery of the aroma compound perillene from stirred-tank cultured Pleurotus ostreatus using gas stripping and adsorption on polystyrene.

    Science.gov (United States)

    Krings, Ulrich; Berger, Ralf G

    2008-08-01

    Supplementation of the key metabolite, alpha-(Z)-acaridiol, to stirred-tank cultured Pleurotus ostreatus was used to demonstrate that integrated in situ product recovery resulted in high conversion rates and quantitative separation of the target product perillene from the nutrient medium. The conversion of beta-myrcene by P. ostreatus was scaled-up from shake-flasks into a controlled, stirred tank bioreactor equipped with gas stripping and adsorption on a polystyrene fixed bed. The formation of the attractive flavour compound perillene was measured daily using standard controlled capillary gas chromatography. The formation of alpha-(Z)-acaridiol was the metabolic bottleneck of the conversion of beta-myrcene to perillene. Efficient in situ recovery of the volatile product enabled quantitative separation of the pure flavour compound. Appropriated bioprocessing, i.e. in situ separation of product, steadily shifted the metabolic equilibria and thus accomplished high conversion rate and pure product.

  2. Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites - the interplay of infrared spectroscopy and theoretical calculations

    Czech Academy of Sciences Publication Activity Database

    Otero Areán, C.; Nachtigallová, Dana; Nachtigall, Petr; Garrone, E.; Rodríguez Delgado, M.

    2007-01-01

    Roč. 9, č. 12 (2007), s. 1421-1437 ISSN 1463-9076 R&D Projects: GA MŠk LC512; GA ČR GA203/06/0324 Grant - others: UIB (ES) MAT2006-05350 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.343, year: 2007

  3. DFT study on the adsorption behavior and electronic response of AlN nanotube and nanocage toward toxic halothane gas

    Science.gov (United States)

    Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.

    2018-04-01

    We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.

  4. Gas chromatographic analysis of plant sterols

    Science.gov (United States)

    Phytosterols are well-known for their ability to lower blood cholesterol by competing with absorption of cholesterol from the diet and reabsorption of bile cholesterol. Phytosterols as food ingredients are “Generally Recognized As Safe” (GRAS) by the FDA, and they are increasingly incorporated into ...

  5. Gas chromatographic and mass spectrometric analysis of ...

    Indian Academy of Sciences (India)

    Unknown

    prevent this abuse and the side effects of these drugs in various countries, the urine and fluids are analysed ... samples in fishes and animals (Wright and Hunt 1982;. Young et al 1983; Kagawa et al 1984; McFarilane ... and metabolism of anabolic steroids in man or animal, although a knowledge of metabolism is necessary ...

  6. Gas chromatographic and mass spectrometric analysis of ...

    Indian Academy of Sciences (India)

    The lower detection limit was 10 ng/ml in 5 ml of urine. The conjugated steroids from urine were centrifuged to 2,430 for 10 min, the supernatant solution passed through Amberlite XAD-2 column and the steroids eluted fraction esterified by using MSTFA and TMSI. The rate of metabolism and urinary excretion seem to be ...

  7. Gas chromatographic and mass spectrometric analysis of ...

    Indian Academy of Sciences (India)

    Unknown

    over sodium sulphate, evaporated at room temperature under nitrogen and the residues dissolved in 30–50 µl of methanol and injected. 2.4 Urine collection ... with potassium bicarbonate and extracted with 5 ml of diethylether. The residue, after evaporation of the diethyl- ether, was derivatized with 50 µl of a solution of.

  8. Removal of VOCs from humidified gas streams using activated carbon cloth

    Science.gov (United States)

    Cal, M.P.; Rood, M.J.; Larson, S.M.

    1996-01-01

    This research investigates the effects of relative humidity (RH) on the adsorption of soluble (acetone) and insoluble (benzene) volatile organic compounds (VOCs) with activated carbon cloths (ACC). A gravimetric balance was used in conjunction with a gas chromatograph/mass spectrophotometer to determine the individual amounts of water and VOC adsorbed on an ACC sample. RH values from 0 to 90% and organic concentrations from 350 to 1000 ppmv were examined. The presence of water vapor in the gas-stream along with acetone (350 and 500 ppmv) had little effect on the adsorption capacity of acetone even at 90% RH. Water vapor in the gas stream had little effect on the adsorption capacity of benzene (500 ppmv) until about 65% RH, when a rapid decrease resulted in the adsorption capacity of benzene with increasing RH. This RH was also about where capillary condensation of water vapor occurs within ACC pores. Water vapor condenses within the ACC pores, making them unavailable for benzene adsorption. Increasing benzene concentration can have a significant effect on the amount of water vapor adsorbed. At 86% RH and 500 ppmv, 284 mg/g water was adsorbed, while at 86% RH and 1000 ppmv, only 165 mg/g water was adsorbed. Water vapor was more inhibitory for benzene adsorption as benzene concentration in the gas stream decreased. Copyright ?? 1996 Elsevier Science Ltd.

  9. Radioimmunoassay of methaqualone in human urine compared with chromatographic methods

    International Nuclear Information System (INIS)

    Mule, S.J.; Kogan, M.; Jukofsky, D.

    1978-01-01

    The 125 I-radioimmunoassay for methaqualone in human urine was evaluated by a comparison with newly modified gas-liquid chromatographic and thin-layer chromatographic methods. The statistically significant sensitivity value for the radioimmunoassay was at 2 μg of methaqualone per liter of urine. The coefficient of variation was 2.88 -+ 0.16% intraassay. There was cross-reactivity only with metabolites of methaqualone, 4'-hydroxymethaqualone being twice as sensitively measured as methaqualone. There was complete agreement between results by radioimmunoassay and by gas-liquid chromatography in 96.7% of the samples analyzed. Only 1.2% of the radioimmunoassay values were false positives, and 2.1% false negatives (phi = 0.8917, P < 0.001). Comparisons between the thin-layer chromatographic data and the gas--liquid chromatographic or radioimmunoassay data showed less agreement because of the 50- to 200-fold higher sensitivity of the latter techniques. Gas--liquid chromatography therefore appears to represent the best reference method for the evaluation of the radioimmunoassay, which appears to be a very sensitive and reliable technique for detecting methaqualone and its metabolites in human urine

  10. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity.

    Science.gov (United States)

    Zhang, Zhijuan; Zhao, Yonggang; Gong, Qihan; Li, Zhong; Li, Jing

    2013-01-25

    Microporous metal-organic frameworks (MOFs) have attracted tremendous attention because of their versatile structures and tunable porosity that allow almost unlimited ways to improve their properties and optimize their functionality, making them very promising for a variety of important applications, especially in the adsorption and separation of small gases and hydrocarbons. Numerous studies have demonstrated that MOFs with multifunctional groups, such as open metal sites (OMSs) and Lewis basic sites (LBSs), interact strongly with carbon dioxide and are particularly effective in its capture and separation from binary mixtures of CO(2) and N(2). In this feature article, we briefly review the current state of MOF development in this area, with an emphasis on the effect of multifunctional groups on the selectivity and capacity of MOFs for the CO(2) capture from flue gas mixtures.

  11. Determination of solute descriptors by chromatographic methods.

    Science.gov (United States)

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  12. Determination of solute descriptors by chromatographic methods

    International Nuclear Information System (INIS)

    Poole, Colin F.; Atapattu, Sanka N.; Poole, Salwa K.; Bell, Andrea K.

    2009-01-01

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298 K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  13. Acid Gas Adsorption on Metal-Organic Framework Nanosheets as a Model of an "All-Surface" Material.

    Science.gov (United States)

    Howe, Joshua D; Liu, Yang; Flores, Luis; Dixon, David A; Sholl, David S

    2017-03-14

    To establish a model of metal-organic framework (MOF) surfaces and build an understanding of surface-specific ligand adsorption phenomena in MOFs, we present a computational study exploring multiple models of a series of MOF-2 nanosheet materials, "M-BDCs", with M = Zn, Cu, and Co and BDC = benzene-1,4-dicarboxylate. We study and assess the appropriateness of a series of models ranging from small clusters (18 atoms) to fully periodic sheet models. We additionally study the interactions of these models with acid gases and energy-relevant small molecules (CO, CO 2 , H 2 O, SO 2 , NO 2 , and H 2 S). We employ computational methods ranging from DFT with various exchange-correlation functionals to perturbative and coupled-cluster methods. For these systems, we present binding energies and enthalpies with the various ligands studied as well as IR frequency shifts for the normal modes of these ligands upon complexation with the open-metal sites of these materials. Our calculations lead to an understanding of phenomena unique to MOF surfaces and the importance of the periodicity in these materials in capturing surface-specific adsorption behaviors.

  14. Predictive Simulation of Gas Adsorption in Fixed-Beds and Limitations due to the Ill-Posed Danckwerts Boundary Condition

    Science.gov (United States)

    Knox, James Clinton

    2016-01-01

    The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.

  15. Derivatization reactions in the gas—liquid chromatographic analysis of drugs in biological fluids

    NARCIS (Netherlands)

    Hulshoff, A.; Lingeman, H.

    1984-01-01

    Alkylation, acylation, silylation and other derivatization reactions applied to the gas chromatographic analysis of drugs in biological matrices are reviewed. Reaction conditions are discussed in relation to reaction mechanisms. Detector-oriented labelling of drugs, and derivatization with chiral

  16. New developments in adsorptive gas and water purification. Lectures and posters; Neue Entwicklungen zur adsorptiven Gas- und Wasserreinigung. Beitraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    Heschel, W. [comp.

    2000-07-01

    The conference discussed the following issues: Activated carbon preparation and selective pretreatment, lignite adsorbers, purification of liquid effluents containing heavy metals and/or salts, purification of off-gas and natural gas, desulphurisation, regeneration of adsorbents. [German] Die Tagung beschaeftigte sich u.a. mit den Themen: Aktivkohle Herstellung und Vorbehandlung zum gezielten Einsatz, Adsorber aus Braunkohle, Reinigung von Schwermetall- und Salz-haltigem Abwasser, Reinigung von Abgasen und Erdgas, Entschwefelung, und der Regenerierung der Adsorbentien.

  17. Adsorption facility and adsorption vessel for radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Harashina, Heihachi; Miwa, Keiichi; Kobayashi, Takeo.

    1992-01-01

    If 14 CO 2 gas-containing gases to be adsorbed are pressurized and sent to a packaging adsorption means, CO 2 ingredient in the gases to be adsorbed is adsorbed or absorbed, and remaining gases are passed through and sent out to downstream. CO 2 adsorption or absorption of the packaging adsorption means is judged by monitoring the state of the remaining gases, and if it is normal, remaining gases are sent further to downstream and processed. If abnormality is found, a gas feedback system is operated, and CO 2 removing gas is sent again to the packaging adsorption means, in which CO 2 gases are adsorbed or absorbed again repeatingly. With such procedures, in a case where C 14 nuclides having a long half decay time are supplied in the form of 14 CO 2 gas, they are efficiently adsorbed or absorbed in the packaging system to improve removing and storing property of 14 C nuclides. (T.M.)

  18. Influence of electron radiation and gas adsorption on the optical properties of CdS in the exciton region

    International Nuclear Information System (INIS)

    Westhoff, A.

    1978-01-01

    The influence of the crystal region close to the surface on the excition spectra of CdS-single crystals was investigated at 10 K. Negative charged surface states and the positive space charge of ionized donators create an electric field in the surface edge layer that could be changed by different treatment of the crystal surface. Measurement of reflection, luminescence and photoconductivity made it possible to trace these changes. The evaluation of measurements yield the following low energy electron radiation (2-3 keV) of the crystals increases the concentration of donors and the width of the larger close to the surface. The adsorption of oxygen, water, atomic hydrogen, and thermal treatment however cancels these changes. (orig.) [de

  19. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  20. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    Science.gov (United States)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  1. Theoretical study of gas and solvent phase stability and molecular adsorption of noncanonical guanine bases on graphene.

    Science.gov (United States)

    Saikia, Nabanita; Karna, Shashi P; Pandey, Ravindra

    2017-06-28

    The gas and solvent phase stability of noncanonical (Gua) n nucleobases is investigated in the framework of dispersion-corrected density functional theory (DFT). The calculated results strongly support the high tendency for the dimerization of (Gua) n bases in both gas and solvent phases. An interplay between intermolecular and bifurcated H-bonds is suggested to govern the stability of (Gua) n bases which bears a correlation with the description of dispersion correction terms employed in the DFT calculations. For example, a higher polarity is predicted for (Gua) n bases by the dispersion-corrected DFT in contrast to the non-polar nature of (Gua) 3 and (Gua) 4 predicted by the hybrid meta-GGA calculations. This distinct variation becomes significant under physiological conditions as polar (Gua) n is likely to exhibit greater stabilization in the gas phase compared to solvated (Gua) n . Graphene acting as a substrate induces modification in base configurations via maximization of π-orbital overlap between the base and substrate. In solvent, the substrate-induced effects are further heightened with lowering of the dipole moments of (Gua) n as also displayed by the corresponding isosurface of the electrostatic potential. The graphene-induced stability in both gas and solvent phases appears to fulfill one of the prerequisite criteria for molecular self-assembly. The DFT results therefore provide atomistic insights into the stability and molecular assembly of free-standing noncanonical (Gua) n nucleobases which can be extended to understanding the self-assembly process of functional biomolecules on 2D materials for potential biosensing applications.

  2. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    sulphonate (synthesized). Instrumentation. The chromatographic apparatus consisted of a Cecil 1200 series. 1000 high performance liquid chromatograph. The analytical column was ODS hypersil C18,5 µm particle size in 250 mm ...

  3. Verification of hydrogen isotope separation by pressure swing adsorption process: Successive volume reduction of isotopic gas mixture using SZ-5A column

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K., E-mail: kotoh@nucl.kyushu-u.ac.jp [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takashima, S.; Tsuge, T. [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8601 (Japan)

    2011-12-15

    For the purpose of verifying the applicability of pressure swing adsorption (PSA) process to such as volume reduction of tritiated waste storage, an experimental series was carried out by a PSA apparatus having a zeolite packed column operated at the liquefied nitrogen temperature, where synthetic zeolite 5A was used as a candidate of adsorbents. Experimental results are shown here which were obtained from cyclic operation of isolating a volume of hydrogen decontaminated with its heaver isotope from a mixture of H{sub 2} and D{sub 2} while reducing a volume of this mixture storage. Successive reduction during six cycles is observed in the inventory of this hydrogen mixture in a gas holder. Experimental data are analyzed in order to evaluate the performance of this PSA process operating the hydrogen isotope separation, where several factors are introduced defining efficiencies of decontamination, volumetric reduction, and so on. These factors suggest that the PSA process is available for successive reduction of a tritiated hydrogen storage inventory. A tritium waste management system of PSA process combined with electrolysis is considerable which is aiming at reducing the inventory of tritiated water in storage.

  4. Development of a bar adsorptive micro-extraction-large-volume injection-gas chromatography-mass spectrometric method for pharmaceuticals and personal care products in environmental water matrices.

    Science.gov (United States)

    Neng, N R; Nogueira, J M F

    2012-01-01

    The combination of bar adsorptive micro-extraction using activated carbon (AC) and polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phases, followed by liquid desorption and large-volume injection gas chromatography coupled to mass spectrometry, under selected ion monitoring mode acquisition, was developed for the first time to monitor pharmaceutical and personal care products (PPCPs) in environmental water matrices. Assays performed on 25 mL water samples spiked (100 ng L(-1)) with caffeine, gemfibrozil, triclosan, propranolol, carbamazepine and diazepam, selected as model compounds, yielded recoveries ranging from 74% to 99% under optimised experimental conditions (equilibrium time, 16 h (1,000 rpm); matrix characteristics: pH 5, 5% NaCl for AC phase; LD: methanol/acetonitrile (1:1), 45 min). The analytical performance showed good precision (RSD 0.99), where the PS-DVB sorbent phase showed a much better efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, sea, estuary and wastewater samples allowed very good performance at the trace level. The proposed method proved to be a suitable sorption-based micro-extraction alternative for the analysis of priority pollutants with medium-polar to polar characteristics, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor PPCPs in water matrices.

  5. Kinetics of adsorptive removal of DEClP and GB on impregnated Al2O3 nanoparticles.

    Science.gov (United States)

    Saxena, Amit; Srivastava, Avanish K; Singh, Beer; Gupta, Arvind K; Suryanarayana, Malladi V S; Pandey, Pratibha

    2010-03-15

    Nanoparticles of AP-Al(2)O(3) (aero-gel produced alumina) have been produced by an alkoxide based synthesis involving aluminum powder, methanol, toluene and water. Thus produced alumina nanoparticles were characterized and the data indicated the formation of nanoparticles of alumina in the size range of 2-30 nm with high surface area (375 m(2)/g). Thereafter, these nanoparticles were impregnated with reactive chemicals. Adsorptive removal kinetics for DEClP (diethylchlorophosphate) and GB (isopropylmethylphosphonofluoridate, sarin) was monitored by GC-FID (gas chromatograph coupled with flame ionization detector) technique and found to be following pseudo first order reaction kinetics. Among impregnated AP-Al(2)O(3) nanoparticles based sorbent systems AP-Al(2)O(3) impregnated with 9-molybdo-3-vanadophosphoric acid (10%, w/w) was found to be the most reactive with least half-life values of 7 and 30 min for the removal of DEClP and GB, respectively, whereas unimpregnated AP-Al(2)O(3) nanoparticles showed the best adsorption potential among all studied systems. In addition to this, hydrolysis reaction {identified using GC/MS (gas chromatograph coupled with mass spectrometer) technique} was found to be the route of degradation of DEClP and GB on impregnated alumina nanoparticles. (c) 2009 Elsevier B.V. All rights reserved.

  6. A study of the thermal activation of synthetic zeolites (molecular sieve) for gas-solid chromatography

    International Nuclear Information System (INIS)

    Walker, J.A.J.

    1978-10-01

    The thermal activation of synthetic zeolites from two sources has been investigated with reference to the adsorption chromatography of inorganic gases. It was found that the heats of adsorption for oxygen and carbon monoxide increased with activation temperature. Limits of detection for oxygen in argon and conversely argon in oxygen were determined as well as the chromatographic stability of the activated zeolite. The practical implications and importance of the results are discussed and the application to the analysis of fast reactor blanket gas is mentioned. An explanation is proposed for the adsorption behaviour of these activated materials, based on an electrostatic mechanism, and this has suggested a reason for the separation characteristics of oxygen and argon on polar zeolites. Further work is identified including the investigation of energy states of the oxygen molecule adsorbed on activated zeolite by means of ultra-violet photoelectron spectroscopy. (author)

  7. Development, modelling, optimisation and scale-up of chromatographic purification of a therapeutic protein

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Thomas Budde; Kidal, Steffen

    2007-01-01

    optimisation of a purification step necessitate simulations and thus models of the adsorption isotherm. A model for ion-exchange is reviewed and the strategy for estimation of model parameters is reported. Examples are shown where computer simulations are used for development and optimisation......Development of a chromatographic purification step proceeds through a number of stages. High-throughput screening techniques are used to identify suitable resins. This technique is also suitable for the design of a capture step and some intermediate chromatographic steps, but development and true...

  8. Improved Thermal Modulator for Gas Chromatography

    Science.gov (United States)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  9. Simple setup for gas-phase h/d exchange mass spectrometry coupled to electron transfer dissociation and ion mobility for analysis of polypeptide structure on a liquid chromatographic time scale

    DEFF Research Database (Denmark)

    Mistarz, Ulrik Hvid; Brown, Jeffery M; Haselmann, Kim F

    2014-01-01

    Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX...... gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3...

  10. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  11. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  12. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    Science.gov (United States)

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  13. Chromatographic Separation of Vitamin E Enantiomers

    Directory of Open Access Journals (Sweden)

    Ju-Yen Fu

    2017-02-01

    Full Text Available Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.

  14. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  15. Study of gas emission from the internal chambers of cryogenic equipment

    International Nuclear Information System (INIS)

    Matyash, Y.I.; Fel'dman, R.G.; Ivakhnenko, Z.N.; Myasnikov, V.M.

    1986-01-01

    One of the methods of improving the efficiency of cryogenic gas equipment (CGE) is adsorption purification of the working medium. The type and quantity of adsorben can be decided after knowing the qualitative and quantitative nature of gas emissions. Gas emissions were studied by the chromatographic method using a heat-conduction detectory. This method made it possible to determine simultaneously the impurities which differ significantly in terms of physicochemical properties. It was established that carbon dioxide and hydrocarbons are continuously emitted in the gaseous medium of the CGE at a constant rate. For the type of machine which was studied, the rates of gas emission were as follows: carbon dioxide and ethane - 0.2 mg/h; ethylene and methane - 0.1 mg/h; propylene, N-butane, and isobutane - 0.2 mg/h

  16. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  17. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady......-state process where the rate of adsorption is equal to the rate of desorption. The analysis includes the competitive Langmuir isotherm and the exponentially modified Langmuir isotherm. If the adsorbate binds to one ligand only, the different approaches become identical. When the adsorbate acts as a ligand...

  18. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    Science.gov (United States)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  19. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  20. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  1. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  2. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons; Separacion por cromatografia de gases de alta eficiencia de hidrocarburos aromaticos policiclicos, (PAH) y alifaticos (AH) ambientales, empleado como fases estacionarias OV-1 y SE-54

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Gonzalez, D.

    1988-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs.

  3. Chromatographic analysis of tryptophan metabolites.

    Science.gov (United States)

    Sadok, Ilona; Gamian, Andrzej; Staniszewska, Magdalena Maria

    2017-08-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. © 2017 The Authors. Journal of Separation Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Maximizing Chromatographic Information from Environmental Extracts by GCxGC-ToF-MS

    NARCIS (Netherlands)

    Skoczynska, E.M.; Korytar, P.; Boer, de J.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GCxGC) coupled with a time-of-flight (ToF) detector allows the separation of many constituents of previously unresolved complex mixtures (UCM) of contaminants in sediment samples. In addition to the powerful chromatographic resolution, automated mass

  5. Phenomenological studies and modelling of the gaseous impurities oxidation and adsorption mechanisms in helium: application for the purification system optimization in gas cooled nuclear reactors

    International Nuclear Information System (INIS)

    Legros, F.

    2008-01-01

    In GEN IV studies on future fission nuclear reactors, two concepts using helium as a coolant have been selected: GFR and VHTR. Among radioactive impurities and dusts, helium can contain H 2 , CO, CH 4 , CO 2 , H 2 O, O 2 , as well as nitrogenous species. To optimize the reactor functioning and lifespan, it is necessary to control the coolant chemical composition using a dedicated purification system. A pilot designed at the CEA allows studying this purification system. Its design includes three unit operations: H 2 and CO oxidation on CuO, then two adsorption steps. This study aims at providing a detailed analysis of the first and second purification steps, which have both been widely studied experimentally at laboratory scale. A first modelling based on a macroscopic approach was developed to represent the behaviour of the reactor and has shown that the CuO fixed bed conversion is dependent on the chemistry (mass transfer is not an issue) and is complete. The results of the structural analysis of the solids allow considering the CuO as particles made of 200 nm diameter grains. Hence, a new model at grain scale is proposed. It is highlighted that the kinetic constants from these two models are related with a scale factor which depends on geometry. A competition between carbon monoxide and hydrogen oxidation has been shown. Activation energies are around 30 kJ.mol-1. Simulation of the simultaneous oxidations leads to consider CO preferential adsorption. A similar methodology has been applied for CO 2 and H 2 O adsorption. The experimental isotherms showed a Langmuir type adsorption. Using this model, experimental and theoretical results agree. (author) [fr

  6. Development of analytical methods for the gas chromatographic determination of 1,2-epoxy-3-butene, 1,2:3,4-diepoxybutane, 3-butene-1,2-diol, 3,4-epoxybutane-1,2-diol and crotonaldehyde from perfusate samples of 1,3-butadiene exposed isolated mouse and rat livers

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, S.; Schuster, A.; Filser, J.G.

    2003-07-01

    Mutagenicity and carcinogenicity of 1,3-butadiene (BD) highly probably results from epoxide metabolites as 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 3,4-epoxybutane-1,2-diol (EBD). A further metabolite crotonaldehyde (CA) has also been discussed to be relevant. So far, in BD exposed rodents only EB and DEB concentrations had been quantified. However, the methods used were either not very sensitive or instrumentally expensive. Therefore, the goal of the present work was to establish simple analytical methods selective and sensitive enough to determine all of these compounds and a further secondary BD intermediate, 3-butene-1,2-diol (B-diol), in BD exposed rodent livers. The once-through perfused liver system was chosen for testing the applicability of the methods to be developed, since it enables BD exposures of this quantitatively most relevant metabolising organ near to the in-vivo situation. All the metabolites were extracted from the aqueous perfusion medium and analysed using a gas chromatograph equipped with a mass selective detector (GC/MS) in the PCI mode. (orig.)

  7. Sour pressure swing adsorption process

    Science.gov (United States)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    Science.gov (United States)

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  9. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.

    Science.gov (United States)

    Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B

    2017-06-09

    In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A novel analytical method of 1-(3-trifluoromethylphenyl piperazine and 1-(3-chlorophenyl piperazine in fluids of drug addicts using liquid-liquid extraction-gas chromatographic/nitrogen-phosphorous detection

    Directory of Open Access Journals (Sweden)

    Jing Chang

    2017-01-01

    Full Text Available In accordance with the research specifications and guidelines in China, we developed a novel experimental method to detect new piperazine-type drugs, such as 1-(3-trifluoromethylphenyl piperazine and 1-(3-chlorophenyl piperazine. In this study, a new pretreatment method and gas chromatography (GC/nitrogen-phosphorus detector detection technique were used to characterize these two kinds of drugs in urine and blood samples. For the purpose of isolation of these trace drugs from the samples, liquid-liquid extraction/solid-phase extraction was modified and validated for this specific study. The pretreatment method presented in this paper has many advantages, such as high recovery rate, high extraction efficiency, high detection sensitivity, low limit of detection, and simple operation. The GC/NPD instrument is popular in most laboratories because it can meet the routine requirements of forensic science. All these aspects make this combination of sample pretreatment and GC/NPD technique the most suitable choice for drug detection in biological samples.

  11. Chromatographic matrix based on hydrogel-coated reticulated polyurethane foams, prepared by gamma irradiation

    Science.gov (United States)

    Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano

    2017-12-01

    Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.

  12. Rapid Determination of Technetium-99 in Large Volume Seawater Samples Using Sequential Injection Extraction Chromatographic Separation and ICP-MS Measurement

    DEFF Research Database (Denmark)

    Shi, Keliang; Qiao, Jixin; Wu, Wangsuo

    2012-01-01

    , and measurement of 99Tc by inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic behaviors of technetium, molybdenum, and ruthenium were investigated, and the mechanism of adsorption and elution of TcO4– on a TEVA column using HNO3 was explored. The results show that not only NO3– but also...

  13. Experimental study and modelling of competitive adsorption equilibria of aromatics in liquid phase on X and Y faujasites; Etude experimentale et modelisation des equilibres d'adsorption competitive d'aromatiques en phase liquide sur des faujasites X et Y

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, H.

    2000-10-13

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic molecular sieves. The aim of this work is to study and model adsorption equilibria of C{sub 8} and C{sub 10} aromatics on X and Y zeolites. The experimental data are obtained by an entirely automated equipment allowing to work in a large range of temperature (50 deg. C - 250 deg. C). With this equipment, we can follow the evolution of the composition of the liquid phase and determine the composition of the adsorbed phase at equilibrium by a mass balance calculation and with an inert component. Two analytical techniques are used to determine the composition of the liquid phase: (1) a classical method using a gas chromatograph (GC) allowed to measure selectivities in the concentration range (3%-97%) in a component; (2) an original method based on the use and on the measure of {sup 13}C labelled xylenes was developed to investigate the ranges of strongly contrasting concentrations [0-3%] and [97%-100%] in a component, which are representative of high purity domains. Lastly, three thermodynamic models are used to describe the adsorption equilibria: the Langmuir-Freundlich model, the quasi-chemical model and the statistical model. The last model is the more interesting, because it is based on physical considerations. A new statistical model has been developed with taking into account some observations coming from adsorption phenomenon in zeolites. (author)

  14. Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model

    International Nuclear Information System (INIS)

    Chin, Huai-Ying; Hsieh, Min-Kang; Chen, Yan-Ping; Chen, Po-Chun; Lin, Shiang-Tai; Chen, Li-Jen

    2013-01-01

    Highlights: • The hydrate phase is described by the van der Waals and Platteeuw model. • An explicit pressure-dependent Langmuir adsorption constant is used in our model. • Phase behavior of gas hydrates with organic inhibitors and electrolytes predicted. • Our model well predicts phase behavior of gas hydrates at high pressures. -- Abstract: A new approach is developed for the prediction of the melting curve of gas hydrate with single or multiple additives, including organic inhibitors and electrolytes. This is made possible by combining a predictive equation of state for the fluid phase, the Peng–Robinson–Stryjek–Vera equation of state (PRSV EoS) combined with the COSMO-SAC activity coefficient model through the first order modified Huron–Vidal (MHV1) mixing rule, and a modified van der Waals–Platteeuw model for the hydrate phase. We have examined this method for the change of the melting condition of gas hydrate upon addition of single organic inhibitor, single electrolyte, and a mixture of organic and electrolyte. The absolute average relative deviation in temperature (AARD-T) for these three types of systems are 0.79% (695 data points, T from 230.2 K to 294.0 K, P from 0.10 MPa to 33.9 MPa), 0.16% (810 data points, T from 259.5 K to 299.1 K, P from 0.13 MPa to 71.56 MPa), and 1.56% (316 data points, T from 248.2 K to 292.9 K, P from 0.90 MPa to 73.28 MPa), respectively. We believe that the proposed model is useful for the exploitation of natural or synthetic gas hydrates with multiple additives

  15. Gas chromatographic-tandem mass spectrometric analysis of β-lyase metabolites of sulfur mustard adducts with glutathione in urine and its use in a rabbit cutaneous exposure model.

    Science.gov (United States)

    Lin, Ying; Dong, Yuan; Chen, Jia; Li, Chun-Zheng; Nie, Zhi-Yong; Guo, Lei; Liu, Qin; Xie, Jian-Wei

    2014-01-15

    A method for quantitation of β-lyase metabolites of sulfur mustard (SM) adducts with glutathione has been developed and validated using gas chromatography-tandem mass spectrometry (GC-MS/MS). The linear range of quantitation was 0.1-1000ng/mL in urine with a method detection limit of 0.02ng/mL. The method was applied in a rabbit exposure model. Domestic rabbits were cutaneously exposed to neat liquid SM in three dosage levels, and the β-lyase metabolites in urine were determined as 1,1'-sulfonylbis[2-(methylthio)ethane] (SBMTE). The study showed that even though more than 99% of the total amount of β-lyase metabolites was excreted in the first week after exposure, the β-lyase metabolites of SM adducts with glutathione could be detected in urine from rabbits for up to 3 or 4 weeks after the SM cutaneous exposure. For high dosage group (15mg/kg, 0.15 LD50), the mean concentration of SBMTE detected was 0.32ng/mL on day 28. For middle (5mg/kg, 0.05 LD50) and low (2mg/kg, 0.02 LD50) dosage groups, the mean concentrations of SBMTE were 0.07ng/mL and 0.02ng/mL on day 21, respectively. The data from this study indicate that the method is sensitive and provides a relatively long time frame for the retrospective detection of SM exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Determination of Differential Enthalpy and Isotherm by Adsorption Calorimetry

    Directory of Open Access Journals (Sweden)

    V. Garcia-Cuello

    2008-01-01

    Full Text Available An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.

  17. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.

    Science.gov (United States)

    Singla, Preeti; Riyaz, Mohd; Singhal, Sonal; Goel, Neetu

    2016-02-21

    Understanding interactions of biomolecules with nanomaterials at the molecular level is crucial to design new materials for practical use. In the present study, adsorption of three distinct types of amino acids, namely, valine, arginine and aspartic acid, over the surface of structurally analogous but chemically different graphene and BN nanosheets has been explored within the formalism of DFT. The explicit dispersion correction incorporated in the computational methodology improves the accuracy of the results by accounting for long range van der Waals interactions and is essential for agreement with experimental values. The real biological environment has been mimicked by re-optimizing all the model structures in an aqueous medium. The study provides ample evidence in terms of adsorption energy, solvation energy, separation distance and charge analysis to conclude that both the nano-surfaces adsorb the amino acids with release of energy and there are no bonded interactions between the two. The polarity of the BN nanosheet provides it an edge over the graphene surface to have more affinity towards amino acids.

  18. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  19. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Science.gov (United States)

    Wojtacha-Rychter, Karolina; Smoliński, Adam

    2017-10-01

    One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen) released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  20. Behavior of short silica monolithic columns in high pressure gas chromatography.

    Science.gov (United States)

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adsorption -capacity data for 283 organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

    1995-05-01

    Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

  2. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  3. Identificação de compostos orgânicos e farmacêuticos em esgoto hospitalar utilizando cromatografia gasosa acoplada a espectrometria de massa Identification of organic and pharmaceutical compositions in hospital wastewater using a gas chromatograph coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    Francisco Vieira Paiva

    2011-03-01

    Full Text Available Os resíduos líquidos provenientes dos estabelecimentos assistenciais de saúde são mais complexos do que os esgotos domésticos. Sua composição contém inúmeros compostos farmacêuticos, saneantes, elementos radiativos e de laboratórios. O conhecimento desses compostos pode auxiliar na escolha do tratamento adequado para esses esgotos e diminuir os impactos ambientais nos corpos receptores. A pesquisa foi realizada utilizando um sistema combinado (UASB e lodos ativados para tratar a água residuária de um hospital. Neste trabalho, foram realizadas análises físico-químicas para caracterização do esgoto e cromatografia gasosa acoplada à espectrometria de massa para identificação de compostos químicos farmacêuticos, podendo-se constatar a presença de inúmeros elementos residuais dos fármacos usados no hospital.Liquid waste residues from health care establishments are more complex than those from residential sewage. Their composition contains several pharmaceutical chemical composites, sanitizers, radioactive, and laboratorial elements. Knowing about these composites may aid in choosing the proper treatment for these sewages, and diminish the environmental impact in receptors. The study was carried out in a combined system (UASB and activated sludge to treat a hospital wastewater. In this experiment, material and chemical analyses were employed to trace sewage characteristics and gas chromatography associated with mass spectrometry to identify pharmacologic chemical composites, where innumerous residual elements were found in chromatographs.

  4. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  5. Antidiarrhoeal Activity of Chromatographic Fractions of ...

    African Journals Online (AJOL)

    Erah

    Purpose: The present study was undertaken in order to evaluate the antidiarrhoeal activity of three chromatographic fractions (L, S and Y) of Stereospermum kunthianum stem bark in mice. Methods: Vacuum liquid/column chromatography (VLC/ CC) were used to obtain three fractions (L,S and Y) of Stereospermum ...

  6. Liquid chromatographic determination of pyrethroid insecticide ...

    African Journals Online (AJOL)

    A new high performance liquid chromatography (HPLC) method for the quantitative analysis of cypermethrin in vegetable samples has been described. The determination of cypermethrin was carried out on Kromosil C18 analytical column (250 mm × 4.6 mm I.D., 5 μm particle size), under reversed phase chromatographic ...

  7. Liquid chromatographic analysis of phenobarbitone, ethosuximide ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous assay of four anticonvulsant drugs, phenobarbitone, ethosuximide, phenytoin and carbamazepine on a polystyrene-divinyl benzene column is described. The method was developed by the systematic study of different types of co-polymer materials, type and ...

  8. Rapid validated liquid chromatographic method coupled with ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop and validate a fast, sensitive, and simple liquid chromatographic method coupled with tandem mass spectrometry for the ... European Medicines Agency (EMA) guidelines. Results: The proposed method ... that few articles were published for NTB quantification in rat biological fluids and tissues.

  9. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... liquid chromatographic with UV/Fluorescence detection is described. Proguanil was derivatised to its corresponding ... proguanil in combination with other antimalarial drugs has also been reported to posses synergic toxicity ..... Chlorophenyl Biguanide in Biological Fluids. Afr. J. Biotechnol. 4(8):. 856-861.

  10. Chromatographic characterisation, in vitro antioxidant and free ...

    African Journals Online (AJOL)

    Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of G. kola seeds.

  11. Extraction chromatographic studies on a strontium selective crown ether

    International Nuclear Information System (INIS)

    Pathak, P.N.; Mohapatra, P.K.; Kulkarni, M.J.; Manchanda, V.K.

    1998-08-01

    Selective adsorption of radiostrontium from nitric acid medium on a chromatographic resin material consisting of di-t-butyl cyclohexano 18 crown 6/n-octanol sorbed onto amberlite XAD-7 (particle size: 100-150μm) has been carried out. The column capacity is evaluated as ∼ 21 mg of Sr per gram of the resin material. The separation of radiostrontium from several metal ions present in environmental and biological samples viz. Li, Na, K, Mg, Ca, Al, Fe, Co, Ni, Zn and Cd has been achieved. A promising separation method for 90 Y from 90 Sr- 90 Y mixture has also been developed. Nitric acid concentration has no observable effect on the elution profile of 90 Y as the entire amount of the loaded 90 Y activity can be eluted by 1.5 ml of the acid in a wide concentration range (0. 1 - 10 M). Half-life of the eluted 90 Y sample is calculated as 63.75 ± 0.40 hours by following the decay profile. Repeated elutions using 1.5 ml of 3 M HNO 3 after loading 200 μCi of 90 Sr - 90 Y revealed that the product with ∼ 98% radiochemical purity could be obtained up to the 12th run beyond which the contamination due to 90 Sr increased significantly. (author)

  12. LWR fuel reprocessing and recycle program. Quarterly report, July 1--September 30, 1976. [Shear; voloxidation; dissolution; Purex; off-gas adsorption; MOX fuel fabrication; environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Vondra, B.L.

    1976-11-01

    Two additional dissolutions were made using irradiated fuel for the H.B. Robinson II reactor; the solids are being characterized. An extension of time was given for bid proposals for a model /sup 1///sub 2/-ton/day voloxidizer. Preliminary heat transfer tests of a rotary kiln voloxidizer were completed. Residence times were measured in a 6-in. dia. tube; results were in agreement with those obtained in a previous test with a commercial kiln. The remaining fluorocarbon adsorption process pilot-plant tests scheduled under campaign 3 were completed; more than 99.99% of the carbon dioxide and xenon impurities were removed. Studies of stainless steel corrosion by R-12 solutions in presence of iodine and water are continuing. Methyl iodide was found to be miscible in R-12. An ORNL/SRL survey study was made of commercial and potential spent LWR fuel reprocessors to identify unresolved shearing and related head-end problems. Areas of difficulty were categorized as: (A) mechanical technology, (B) safety technology, (C) waste disposal, and (D) a pressing need for an LWR fuel Reference Information Center. A new hot-cell domestic shearing system must be developed, and remote operability and maintenance must be demonstrated at high throughputs. 22 tables, 10 fig. (DLC)

  13. A novel nickel metal-organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation.

    Science.gov (United States)

    Almáši, Miroslav; Zeleňák, Vladimír; Opanasenko, Maksym; Cejka, Jíří

    2014-03-07

    A new non-interpenetrating 3D metal-organic framework {[Ni4(μ6-MTB)2(μ2-H2O)4(H2O)4]·10DMF·11H2O}n (DMF = N,N'-dimethylformamide) built from nickel(ii) ions as connectors and methanetetrabenzoate ligands (MTB(4-)) as linkers has been synthesized and characterized. The single crystal X-ray diffraction showed that complex exhibits CaF2-like fluorite structure topology and four types of 3D channels with sizes about 12.6 × 9.4 Å(2), 9.4 × 8.0 Å(2), 12.6 × 11.7 Å(2) and 14.9 × 14.9 Å(2), which are filled with guest molecules. Conditions of the activation of the compound have been studied and optimized by powder X-ray diffraction during in situ heating, thermogravimetric analysis and infrared spectroscopy. Nitrogen and carbon dioxide adsorption showed that the activated sample exhibits a BET specific surface area of 700 m(2) g(-1) and a carbon dioxide uptake of 12.36 wt% at 0 °C, which are the highest values reported for the compounds of the MTB(4-) series. The complex was tested in Knoevenagel condensation of aldehydes and active methylene compounds. Straightforward dependence of the substrate conversion on the size of used aldehyde was established. A possible mechanism of Knoevenagel condensation over a MTB(4-) containing a metal-organic framework was proposed.

  14. Gas Chromatographic-Mass Spectrometric Analysis of Essential Oil ...

    African Journals Online (AJOL)

    administration of phytol exerts an anxiolytic-like effect on mice by producing sedative and anxiolytic activities [11]. Phytol also directly activates peroxisome proliferator-activated receptor α (PPARα) and regulated gene expression involved in lipid metabolism in. PPARα-expressing HepG2 hepatocytes [12]. Furthermore,.

  15. Gas Chromatographic Analysis of Sulfur Mustard in Diethyl Phthalate

    National Research Council Canada - National Science Library

    Lancaster, Paul

    1998-01-01

    ...) that had been trapped in the solvent, diethyl phthalate (DEP) is described. The method utilises the improved sensitivity and selectivity offered by the new Pulsed Flame Photometric Detector to detect routinely samples containing...

  16. Physicochemical, thin layer and gas-liquid chromatographic ...

    African Journals Online (AJOL)

    DELL

    2012-05-22

    May 22, 2012 ... Whole flowers inflorescence was used for the estimation of nutrient elements. Chemicals and apparatus. All the chemicals used were of analytical grade. Refractive index of the oil was determined with Abbe Refractometer. Schimadzu Ge equipped with flame ionization detector (FID) and a glass column.

  17. Gas chromatographic retention characteristics of different polysiloxane oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Van Lenten, F. J.; Conaway, J. E.; Rogers, L. B.

    1975-01-01

    The effects on the Kovats and McReynolds indices for a modified set of Rohrschneider solutes have been examined using two different batches of a commercial polysiloxane stationary phase, Dow-Corning DC-710, and five pure oligomers isolated from the mixture. The significant differences that were found between batches appear to be due primarily to changes in the percentage of one oligomer, the cyclic pentamer. This finding emphasizes the desirability of using a pure stationary phase as well as carefully specifying the column temperature in order to improve intra- and inter- laboratory comparisons of retention indices.

  18. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis

    Czech Academy of Sciences Publication Activity Database

    Hušek, Petr; Šimek, Petr; Hartvich, Petr; Zahradníčková, Helena

    2008-01-01

    Roč. 1186, 1/2 (2008), s. 391-400 ISSN 0021-9673 R&D Projects: GA ČR GA203/04/0192; GA ČR GA303/06/1674 Institutional research plan: CEZ:AV0Z50070508 Keywords : amino acids * derivatization * pentafluoropropyl- and heptafluorobutyl chloroformates Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.756, year: 2008

  19. Application of gas-liquid chromatography and high-performance liquid chromatography to the analysis of trace amounts of salicylic acid, acetylsalicylic anhydride and acetylsalicylsalicylic acid in aspirin samples and aspirin formulations.

    Science.gov (United States)

    Ali, S L

    1976-11-03

    The gas-liquid chromatographic (GLC) determination of salicylic acid (SA) in 12 commercial acetylsalicylic acid (aspirin, ASA) samples and 12 ASA formulations is reported. The GLC determination of SA as an impurity in ASA, utilising methylation with methyl iodide in the presence of potassium carbonate, requires a column chromatographic separation of SA prior to derivatization. Trace amounts of SA in ASA have also been determined by high-performance liquid chromatography (HPLC) on a Sil-X-I adsorption column using light petroleum-ethyl acetate-acetic acid as the mobile phase. Acetylsalicylic anhydride (ASN) and acetylsalicylsalicylic acid (ASSA) were determined by HPLC on a reversed-phase C18 column with water-methanol mixtures as the mobile phase. GLC was also applied to the determination of ASN as an impurity in ASA formulations.

  20. Adsorption-driven translocation of polymer chain into nanopores

    Science.gov (United States)

    Yang, Shuang; Neimark, Alexander V.

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation.

  1. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device.

    Science.gov (United States)

    Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A

    1999-08-23

    A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.

  2. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    Science.gov (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. NATURE OF THE INTERACTION BETWEEN ELECTRONS AND WELL-DEFINED SURFACES. III. ULTRA-HIGH VACUUM SYSTEM AND SAMPLE OUTGASSING. IV. GAS SOURCE FOR THE ULTRA-HIGH VACUUM STUDY OF ADSORPTION OF KNOWN GAS LAYERS ON CLEAR SURFACES

    Science.gov (United States)

    such cleaning is to incorporate the sample and necessary measuring components in an ultra- high vacuum system, capable of maintaining a pressure of 1...layers on a clean surface necessitates an ultra- high vacuum gas manifold system. The vacuum pumping, valving, measuring equipment and gas manifold are...described. Ion gauges can be calibrated absolutely against a high vacuum McLeod gauge. By this system, capable of 1 x 10 to the -9th power to 1 x 10 to

  4. Chromatographic separation of human salivary peroxidases.

    Science.gov (United States)

    Mäkinen, K K; Tenovuo, J

    1976-01-01

    A series of rapid and simple chromatographic purification procedures for peroxidase-like enzymes occurring in the human oral cavity is presented. Samples of whole saliva, parotid saliva, gingival exudate and various bacterial preparations contain peroxidases which were purified using molecular exclusion and ion exchange chromatography, and isoelectric focusing. Salivary lactoperoxidase can be easily separated from bacterial and leucocyte peroxidase activity by the methods presented.

  5. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  6. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1976-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  7. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1977-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by first selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 6 claims, 8 drawing figures

  8. adsorption isotherm a

    African Journals Online (AJOL)

    ADOWIE PERE

    sawmill factory waste: adsorption isotherm and kinetic studies. KELLE, HI. Department of Pure and ... Keywords: Sawdust, crude oil, adsorption kinetics, oil sorption capacity, sorbed oil recoverability, adsorption isotherm. Key methods available for ..... of Basic Dyes from Aqueous Solution. By Sphagnum Moss Peat, Can.

  9. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading.

    Science.gov (United States)

    Pal, Arun; Chand, Santanu; Elahi, Syed Meheboob; Das, Madhab C

    2017-11-14

    A microporous MOF {[Zn(SDB)(L) 0.5 ]·S} n (IITKGP-5) with a polar pore surface has been constructed by the combination of a V-shaped -SO 2 functionalized organic linker (H 2 SDB = 4,4'-sulfonyldibenzoic acid) with an N-rich spacer (L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene), forming a network with sql(2,6L1) topology. IITKGP-5 is characterized by TGA, PXRD and single crystal X-ray diffraction. The framework exhibits lozenge-shaped channels of an approximate size of 4.2 × 5.6 Å 2 along the crystallographic b axis with a potential solvent accessible volume of 26%. The activated IITKGP-5a revealed a CO 2 uptake capacity of 56.4 and 49 cm 3 g -1 at 273 K/1 atm and 295 K/1 atm, respectively. On the contrary, it takes up a much smaller amount of CH 4 (17 cm 3 g -1 at 273 K and 13.6 cm 3 g -1 at 295 K) and N 2 (5.5 cm 3 g -1 at 273 K; 4 cm 3 g -1 at 295 K) under 1 atm pressure exhibiting its potential for a highly selective adsorption of CO 2 from flue gas as well as a landfill gas mixture. Based on the ideal adsorbed solution theory (IAST), a CO 2 /N 2 selectivity of 435.5 and a CO 2 /CH 4 selectivity of 151.6 have been realized at 273 K/100 kPa. The values at 295 K are 147.8 for CO 2 /N 2 and 23.8 for CO 2 /CH 4 gas mixtures under 100 kPa. In addition, this MOF nearly approaches the target values proposed for PSA and TSA processes for practical utility exhibiting its prospect for flue gas separation with a CO 2 loading capacity of 2.04 mmol g -1 .

  10. Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption-desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries.

    Science.gov (United States)

    de la Peña Moreno, Fernando; Blanch, Gracia Patricia; Flores, Gema; Ruiz Del Castillo, Maria Luisa

    2010-02-12

    A method based on the use of the through oven transfer adsorption-desorption (TOTAD) interface in on-line coupling between reversed phase liquid chromatography and gas chromatography (RPLC-GC) for the determination of chiral volatile compounds was developed. In particular, the method was applied to the study of the influence of methyl jasmonate (MJ) treatment on the production and enantiomeric composition of selected aroma compounds in strawberry. The compounds studied were ethyl 2-methylbutanoate, linalool and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (i.e. furaneol), which were examined on days 3, 6 and 9 after treatment. The method developed resulted in relative standard deviations (RSDs) of 21.6%, 8.1% and 9.8% and limits of detection (LD) of 0.04, 0.07 and 0.02mg/l for ethyl 2-methylbutanoate, linalool and furaneol, respectively. The application of the RPLC-TOTAD-GC method allowed higher levels of ethyl 2-methylbutanoate, linalool and furaneol to be detected, particularly after 9 days of treatment. Besides, MJ demonstrated to affect the enantiomeric distribution of ethyl 2-methylbutanoate. On the contrary, the enantiomeric composition of linalool and furaneol kept constant in both control and MJ-treated strawberries throughout the study. These results are discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Methanol Adsorption on Graphene

    Directory of Open Access Journals (Sweden)

    Elsebeth Schröder

    2013-01-01

    bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene is studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons. For the high coverage adsorption energies, we also find reasonably good agreement with previous desorption measurements.

  12. Monte Carlo simulations of adsorption-induced segregation

    DEFF Research Database (Denmark)

    Christoffersen, Ebbe; Stoltze, Per; Nørskov, Jens Kehlet

    2002-01-01

    Through the use of Monte Carlo simulations we study the effect of adsorption-induced segregation. From the bulk composition, degree of dispersion and the partial pressure of the gas phase species we calculate the surface composition of bimetallic alloys. We show that both segregation and adsorption...... are well-described within the method. It is shown that adsorption of CO and O(2), on a PtRu alloy increases the concentration of Ru in the surface. Furthermore we present a database of CO adsorption energies collected from the literature. (C) 2002 Elsevier Science B.V. All rights reserved....

  13. Chromatographic screening techniques in systematic toxicological analysis.

    Science.gov (United States)

    Drummer, O H

    1999-10-15

    A review of techniques used to screen biological specimens for the presence of drugs was conducted with particular reference to systematic toxicological analysis. Extraction systems of both the liquid-liquid and solid-phase type show little apparent difference in their relative ability to extract a range of drugs according to their physio-chemical properties, although mixed-phase SPE extraction is a preferred technique for GC-based applications, and liquid-liquid were preferred for HPLC-based applications. No one chromatographic system has been shown to be capable of detecting a full range of common drugs of abuse, and common ethical drugs, hence two or more assays are required for laboratories wishing to cover a reasonably comprehensive range of drugs of toxicological significance. While immunoassays are invariably used to screen for drugs of abuse, chromatographic systems relying on derivatization and capable of extracting both acidic and basic drugs would be capable of screening a limited range of targeted drugs. Drugs most difficult to detect in systematic toxicological analysis include LSD, psilocin, THC and its metabolites, fentanyl and its designer derivatives, some potent opiates, potent benzodiazepines and some potent neuroleptics, many of the newer anti-convulsants, alkaloids colchicine, amantins, aflatoxins, antineoplastics, coumarin-based anti-coagulants, and a number of cardiovascular drugs. The widespread use of LC-MS and LC-MS-MS for specific drug detection and the emergence of capillary electrophoresis linked to MS and MS-MS provide an exciting possibility for the future to increase the range of drugs detected in any one chromatographic screening system.

  14. Experimental study for the use of sulfur hexafluoride as dielectric gas in particle accelerators

    International Nuclear Information System (INIS)

    Candanedo y Bernabe, C.

    1993-01-01

    The sulfur hexafluoride is the better dielectric gas in the world. It is used in particle accelerator, power stations and high voltage transformators. This is a high stable gas, but when is used as dielectric is degraded in toxic and corrosive fluorides this degradation of sulfur hexafluoride is a function of the voltaic arc, crown effect, pressure, temperature and radiation. The purification of the sulfur fluoride permitted to work in safe form and without the risks as contaminant. The objective of the work is the development of a process for the separation of the wastes from the fabrication of sulphur fluoride and the products of degradation. This process used adsorbents when this gas is used as dielectric. The methodology employed was bibliography research, experimental design of the equipment, construction of the experimental equipment, selection and use of adsorbents, installation of the adsorption columns for the experimentation, flow of the sulfur hexafluoride through the adsorbents, searching of the fluoride hexafluoride before and after of the step through the adsorption columns and writing of the results. In base to the results we conclude that the process is good. The work could be advantage using chromatographic techniques with adequate standards. Is possible to extend the study using an additional number of adsorbents. (Author). 34 refs, 7 graphs, 3 tabs

  15. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  16. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  17. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  18. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  19. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  20. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis.

    Science.gov (United States)

    Wang, Xuan; Ye, Nengsheng

    2017-12-01

    In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chromatographic Determination of Toluene and its Metabolites in Urine for Toluene Exposure - A Review

    International Nuclear Information System (INIS)

    Mohamad Raizul Zinalibdin; Abdul Rahim Yacob; Mohd Marsin Sanagi

    2016-01-01

    The determinations of toluene and their metabolites in biological samples such as urine and blood allow the estimation of the degree of exposure to this chemical. Chromatographic methods and preliminary methods are now universally employed for this purpose. Preliminary color test methods are well established for qualitative determination of toluene and its metabolites. Mobile test kits using color test methods are a vast tool for screening urine samples but chromatographic methods are still needed for confirmation and quantitative analysis. Gas chromatography (GC) methods are well-adapted for the determination of toluene metabolite in urine, but these methods often require several pretreatment steps. Meanwhile, high performance liquid chromatography (HPLC) is becoming a powerful tool for the accurate and easy determination of toluene metabolites considering its decisive advantages for routine monitoring. Furthermore, recent development in HPLC could widen the usefulness of this method to solve the most complex analytical problems that could be encountered during the measurement. (author)

  2. Ion chromatographic determination of Di-n-butyl phosphate in degraded organic solvent

    International Nuclear Information System (INIS)

    Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work a method for the determination of Di-n-butyl phosphate in organic streams using Ion Chromatography technique is developed and described here. The method involves the separation of Di-n-butyl phosphate (DBP) from 30% TBP-NPH (Tri-n-butylphosphate diluted in Normal Paraffin Hydrocarbon) and uranium/nitric acid matrix by an extraction of DBP in alkaline medium and subsequent ion-exchange separation in ion chromatography column followed by suppressed conductivity detection. Direct determination of DBP in lean/loaded organic solvent will lead to in accurate determination of DBP due to organic interference. DBP is quantified to lower limit of 1 ppm with 3% RSD. The results obtained with ion chromatographic technique are compared with those obtained by standard gas chromatographic technique. The developed method is much faster and total analysis can be completed within two hours. (author)

  3. A review of the extraction and chromatographic determination methods for the analysis of parabens.

    Science.gov (United States)

    Piao, Chunying; Chen, Ligang; Wang, Yu

    2014-10-15

    Parabens are a family of most widely used antimicrobial preservatives in food ingredients, cosmetic consumer products and pharmaceutical preparations. But several recent studies have cautioned that exposure to parabens may have more harmful consequences on animal and human health than what we realized previously, which made the analysis of parabens necessary. In this paper, we reviewed main sample preparation methods and chromatographic analysis methods proposed in formerly published works dealing with the analysis of parabens in different matrices. The sample preparation methods included ultrasonic assisted extraction, supercritical fluid extraction, pressurized liquid extraction, solid phase extraction, solid phase microextraction, liquid phase microextraction, dispersive liquid-liquid microextraction, stir bar sorptive extraction and matrix solid phase dispersion. The chromatographic analysis methods involved liquid chromatography, gas chromatography, and capillary electrophoresis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Thermodynamics of hydrogen adsorption on calcium-exchanged faujasite-type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, G.T.; Arean, C.O.; Carayol, M.R.L. [Departamento de Quimica, Universidad de las Islas Baleares, 07122 Palma de Mallorca (Spain); Bonelli, B.; Armandi, M.; Garrone, E. (Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, 10129 Turin, Italy, and INSTM Unit of Torino Politecnico); Parra, J.B.; Ania, C.O. [CSIC, Instituto Nacional del Carbon, Apdo. 73, E-33080 Oviedo (Spain)

    2009-05-15

    A combination of variable-temperature infrared spectroscopy with volumetric gas adsorption measurements was used to study the thermodynamics of hydrogen adsorption, at a low temperature, on calcium-exchanged zeolites X and Y. Two adsorption regimes were considered: (i) localized adsorption of dihydrogen molecules on Ca{sup 2+} cation sites, and (ii) delocalized hydrogen adsorption following saturation of the Ca{sup 2+} adsorbing centres. For localized adsorption, the corresponding enthalpy change was found to be in the range of -12 to -15 kJ mol{sup -1}, while the isosteric heat of delocalized adsorption was found to be in the range of 4.5-5.5 kJ mol{sup -1}. These experimental results are discussed in the broader context of corresponding data for other alkaline zeolites, with a focus on correlation between adsorption enthalpy and entropy for the localized adsorption regime. (author)

  5. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  6. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  7. The Use Of New Adsorption Technology

    International Nuclear Information System (INIS)

    Khattaby, M.; El-Azm, A.

    2004-01-01

    Adsorption is widely used in Gas Dehydration. Recently, new technology has been applied by using a new type of silica gel adsorbent for both gas dehydration and hydrocarbon dew pointing. A study to evaluate the different methods of hydrocarbon dew pointing was performed by Enppi and proved that the use of adsorption process with a new type of silica gel has significant cost benefits over the life of field. In Egypt, this new technology has been used in the Rosetta gas plant, which was designed for 302 MMSCFD (275 + 10%). The plant has been operational for about 4 years and experience demonstrated that the new type of silica gel has high performance, excellent reliability and low operating cost. Following these good results, the plant has been tested up to 380 MMSCFD and again the adsorbent proved its high performance and efficiency

  8. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour....../gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  9. Effects of chromatographic fractions of Euphorbia hirta on the rat ...

    African Journals Online (AJOL)

    The ethanolic extract of this plant was subjected to chromatographic separation using the vacuum liquid chromatographic technique, a modified form of classical column chromatography. With the aid of thin layer chromatography, six fractions of this plant were obtained and were administered to rats in graded doses of ...

  10. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  11. A first-principles study of chlorine adsorption characteristics on α ...

    Indian Academy of Sciences (India)

    enhances the Cl2 adsorption characteristics in the mixed gas environment. Keywords. Chromium oxide; nanostructures; adsorption; Mulliken population; adsorbed energy. 1. Introduction. In recent years, research is focused on metal oxide se- miconductor (MOX) based chemiresistive gas sensors.1. The surface reactivity of ...

  12. Interface for liquid chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  13. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  14. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  15. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  16. Brazilian organic sugarcane spirits: Physicochemical and chromatographic profile

    Directory of Open Access Journals (Sweden)

    Felipe Cimino Duarte

    Full Text Available ABSTRACT There has been a growing demand for products from organic agriculture for the food market. Brazil leads the production of sugarcane spirits and produces about 1.6 billion liters/year. New technologies have been sought throughout the supply chain to improve production, and organic raw material has been used in the production of sugar cane for the production of beverages. This study aimed to define the physicochemical and chromatographic profiles of eleven organic sugarcane spirits samples from various Brazilian states. The secondary components and contaminants were identified and quantified through physicochemical analyses, HPLC and gas chromatography (GC. A significant percentage of the organic sugarcane spirits samples contained concentrations of components that were above the limits required by the Ministry of Agriculture, Livestock and Provisioning (MAPA, specifically the esters (18.20%, copper and dry extract (9.10%. This contamination is caused by bad conditions employed during the production process, which are not in compliance with the good manufacturing practices determined and legislated by Brazilian law.

  17. Gas chromatography at the Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Laesser, R.; Gruenhagen, S.

    2003-08-01

    Among the analytical techniques (mass spectrometry, laser Raman spectroscopy, gas chromatography, use of ionisation chambers) employed at the Tritium Laboratory Karlsruhe (TLK), gas chromatography plays a prominent role. The main reasons for that are the simplicity of the gas chromatographic separation process, the small space required for the equipment, the low investment costs in comparison to other methods, the robustness of the equipment, the simple and straightforward analysis and the fact that all gas species of interest (with the exception of water) can easily be detected by gas chromatographic means. The conventional gas chromatographs GC1 and GC2 used in the Tritium Measurement Techniques (TMT) System of the TLK and the gas chromatograph GC3 of the experiment CAPER are presented in detail, by discussing their flow diagrams, their major components, the chromatograms measured by means of various detectors, shortcomings and possible improvements. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures. To overcome this disadvantage, micro gas chromatography for hydrogen analysis was developed. Reduction of the retention times by one order of magnitude was achieved. (orig.)

  18. Monolayer adsorption of noble gases on graphene

    Science.gov (United States)

    Maiga, Sidi M.; Gatica, Silvina M.

    2018-02-01

    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  19. Gas adsorption on metal-organic frameworks

    Science.gov (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  20. Adsorption Isotherms from Temperature-Programmed Physiosorption - Equilibrium & Kinetics -

    NARCIS (Netherlands)

    Mugge, J.M.

    2000-01-01

    The separation of gas mixtures is a major operation in the process industry for hydrocarbon separation, removal of pollutant from effluent streams, and purification of process streams. The work in this thesis is related to gas separation by pressure swing adsorption (PSA); a well-known example is

  1. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  2. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high IgG adsorptions. Besides......In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...

  3. Characterization of Methane Excess and Absolute Adsorption in Various Clay Nanopores from Molecular Simulation.

    Science.gov (United States)

    Tian, Yuanyuan; Yan, Changhui; Jin, Zhehui

    2017-09-20

    In this work, we use grand canonical Monte Carlo (GCMC) simulation to study methane adsorption in various clay nanopores and analyze different approaches to characterize the absolute adsorption. As an important constituent of shale, clay minerals can have significant amount of nanopores, which greatly contribute to the gas-in-place in shale. In previous works, absolute adsorption is often calculated from the excess adsorption and bulk liquid phase density of absorbate. We find that methane adsorbed phase density keeps increasing with pressure up to 80 MPa. Even with updated adsorbed phase density from GCMC, there is a significant error in absolute adsorption calculation. Thus, we propose to use the excess adsorption and adsorbed phase volume to calculate absolute adsorption and reduce the discrepancy to less than 3% at high pressure conditions. We also find that the supercritical Dubinin-Radushkevich (SDR) fitting method which is commonly used in experiments to convert the excess adsorption to absolute adsorption may not have a solid physical foundation for methane adsorption. The methane excess and absolute adsorptions per specific surface area are similar for different clay minerals in line with previous experimental data. In mesopores, the excess and absolute adsorptions per specific surface area become insensitive to pore size. Our work should provide important fundamental understandings and insights into accurate estimation of gas-in-place in shale reservoirs.

  4. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    International Nuclear Information System (INIS)

    Ying Liu

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  5. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  6. Chemometric approach for development, optimization, and validation of different chromatographic methods for separation of opium alkaloids.

    Science.gov (United States)

    Acevska, J; Stefkov, G; Petkovska, R; Kulevanova, S; Dimitrovska, A

    2012-05-01

    The excessive and continuously growing interest in the simultaneous determination of poppy alkaloids imposes the development and optimization of convenient high-throughput methods for the assessment of the qualitative and quantitative profile of alkaloids in poppy straw. Systematic optimization of two chromatographic methods (gas chromatography (GC)/flame ionization detector (FID)/mass spectrometry (MS) and reversed-phase (RP)-high-performance liquid chromatography (HPLC)/diode array detector (DAD)) for the separation of alkaloids from Papaver somniferum L. (Papaveraceae) was carried out. The effects of various conditions on the predefined chromatographic descriptors were investigated using chemometrics. A full factorial linear design of experiments for determining the relationship between chromatographic conditions and the retention behavior of the analytes was used. Central composite circumscribed design was utilized for the final method optimization. By conducting the optimization of the methods in very rational manner, a great deal of excessive and unproductive laboratory research work was avoided. The developed chromatographic methods were validated and compared in line with the resolving power, sensitivity, accuracy, speed, cost, ecological aspects, and compatibility with the poppy straw extraction procedure. The separation of the opium alkaloids using the GC/FID/MS method was achieved within 10 min, avoiding any derivatization step. This method has a stronger resolving power, shorter analysis time, better cost/effectiveness factor than the RP-HPLC/DAD method and is in line with the "green trend" of the analysis. The RP-HPLC/DAD method on the other hand displayed better sensitivity for all tested alkaloids. The proposed methods provide both fast screening and an accurate content assessment of the six alkaloids in the poppy samples obtained from the selection program of Papaver strains.

  7. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin

    Science.gov (United States)

    Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.

    2018-02-01

    The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.

  8. Chromatographic methods of the measurements of the chloride compounds in troposphere and stratosphere

    International Nuclear Information System (INIS)

    Lasa, J.; Rosiek, J.

    1992-01-01

    The paper contains a description of various chromatographic techniques used for the analysis of the tropospheric techniques used for the analysis of the tropospheric and stratospheric halogenated compounds. The types of the column packings used for separation of halogenated compounds are described. Model chromatograms illustrating the separation of halogenated compounds are presented. The methods of the air sampling and injection for the packed and capillary columns were described. The methods of the preparation of gas calibration mixtures are presented. Operational conditions for electron capture detector used by the authors of quoted paper are also given. (author). 66 refs, 29 figs, 13 tabs

  9. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  10. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  11. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  12. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  14. Method for chromatographically recovering scandium and yttrium

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1991-01-01

    This paper describes a method for chromatographically recovering scandium and yttrium from the residue of a sand chlorinator. It comprises: providing a residue from a sand chlorinator, the residue containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; digesting the residue with an acid to produce an aqueous liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; feeding the metal containing liquid through a cation exchanger; eluding the cation exchanger with an acid eluant to to produce: a first eluate containing at least half of the total weight of the calcium and sodium in the feed liquid; a second eluate containing at least half of the total weight of the one or more radioactive metals in the feed liquid; a third eluate containing at least half of the yttrium in the feed liquid, and a fourth eluate containing at least half of the weight of the scandium in the feed liquid

  15. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evolved gas composition monitoring by repetitive injection gas chromatography.

    Science.gov (United States)

    White, Robert L

    2015-11-20

    Performance characteristics and applications of a small volume gas chromatograph oven are described. Heating and cooling properties of the apparatus are evaluated and examples are given illustrating the advantages of greatly reducing the air bath volume surrounding fused silica columns. Fast heating and cooling of the oven permit it to be employed for repetitive injection analyses. By using fast gas chromatography separations to achieve short assay cycle times, the apparatus can be employed for on-line species-specific gas stream composition monitoring when volatile species concentrations vary on time scales of a few minutes or longer. This capability facilitates repeated sampling and fast gas chromatographic separations of volatile product mixtures produced during thermal analyses. Applications of repetitive injection gas chromatography-mass spectrometry evolved gas analyses to monitoring purge gas effluent streams containing volatile acid catalyzed polymer cracking products are described. The influence of thermal analysis and chromatographic experimental parameters on effluent sampling frequency are delineated. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Waved graphene: Unique structure for the adsorption of small molecules

    International Nuclear Information System (INIS)

    Pan, Hui

    2017-01-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H 2 , N 2 , NO, and CO are increased by 6–9 times, and that for O 2 is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H 2 on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O 2 on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  18. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  19. THE PERFORMANCE OF NATURAL SORBENTS IN THE SULFUR DIOXIDE ADSORPTION

    Directory of Open Access Journals (Sweden)

    Т. L. Rakyts’ka

    2015-02-01

    Full Text Available The performance of natural sorbents with different mineralogical makeup (zeolites, layered aluminosilicates, basalt tuffs, and dispersed silicas in the adsorption-desorption of sulfur dioxide at its contents in the gas-air mixture of 150 and 200 mg/m3 and at the temperature of 20 °C has been studied. The S02 adsorption has been found to be predominately the physical one. The adsorption capacity values obtained experimentally for the sorbents have been compared with the data presented in the literature.

  20. Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions

    Directory of Open Access Journals (Sweden)

    Sidratul Choudhury

    2017-02-01

    Full Text Available This work presents the first instance of reversed-phase liquid chromatographic separation of small molecules using graphene oxide nanoparticle-modified polystyrene-divinylbenzene polymeric high internal phase emulsion (GONP PS-co-DVB polyHIPE materials housed within a 200-µm internal diameter (i.d. fused silica capillary. The graphene oxide nanoparticle (GONP-modified materials were produced as a potential strategy to increase both the surface area limitations and the reproducibility issues observed in monolithic stationary phase materials. GONP PS-co-DVB polyHIPEs were found to have a surface area up to 40% lower than unmodified polymeric high internal phase emulsion (polyHIPE stationary phases. However, despite having a surface area significantly lower than that of the unmodified material, the GONP-modified polyHIPEs demonstrated superior analyte adsorption properties. Reducing the GONP material did not have any significant impact on elution order or retention factor of the analytes, which was most likely due to low GONP loading attributed to the 250-nm GONPs utilised. The lower surface area of GONP-modified polyHIPEs provided similar separation efficiency and increased repeatability from injection to injection resulting in % relative standard deviations (%RSDs of less than 0.6%, indicating the potential offered by graphene oxide (GO-modified polyHIPES in flow through applications such as adsorption or separation processes.