WorldWideScience

Sample records for ganglionic degeneration regional

  1. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  2. Tibial periosteal ganglion cyst: The ganglion in disguise

    Science.gov (United States)

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  3. Cystic degeneration of the tibial nerve. Magnetic resonance neurography and sonography appearances of an intraneural ganglion cyst

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio Silveira, Claudio Regis [Sao Carlos Imaging/Sao Carlos Hospital, Musculoskeletal Imaging Division, Fortaleza, CE (Brazil); Maia Vieira, Clarissa Gadelha; Machado Pereira, Brenda [Sao Carlos Imaging/Sao Carlos Hospital, Fortaleza, CE (Brazil); Pinto Neto, Luiz Holanda [Articular Clinic, Fortaleza, CE (Brazil); Chhabra, Avneesh [UT Southwestern, Radiology and Orthopaedic Surgery, Dallas, TX (United States)

    2017-12-15

    Extra- and intraneural ganglion cysts have been described in the literature. The tibial nerve ganglion is uncommon and its occurrence without intra-articular extension is atypical. The pathogenesis of cystic degeneration localized to connective and perineural tissue secondary to chronic mechanical irritation or idiopathic mucoid degeneration is hypothesized. Since the above pathology is extremely rare and the magnetic resonance imaging examination detects the defining characteristics of the intrinsic alterations of the tibial nerve, the authors illustrate such a case of tibial intaneural ganglion cyst with its magnetic resonance neurography and sonography appearances. (orig.)

  4. Is FDG-PET a useful tool in clinical practice for diagnosing corticobasal ganglionic degeneration?

    NARCIS (Netherlands)

    Coulier, IMF; de Vries, JJ; Leenders, KL

    2003-01-01

    Seven consecutive patients were suspected to suffer from corticobasal ganglionic degeneration (CBGD) and were studied with F-[18]-fluorodeoxyglucose (FDG) PET imaging of the brain. At the time of their FDG-PET scan, 4 of 7 patients fulfilled the clinical criteria of CBGD as proposed by Lang and

  5. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  6. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration

    Directory of Open Access Journals (Sweden)

    Valeria Colafrancesco

    2011-01-01

    Full Text Available The aim of this study was to investigate the effect of nerve growth factor (NGF administration on retinal ganglion cells (RGCs in experimentally induced glaucoma (GL and diabetic retinopathy (DR. GL was induced in adult rats by injection of hypertonic saline into the episcleral vein of the eye and diabetes (DT was induced by administration of streptozoticin. Control and experimental rats were treated daily with either ocular application of NGF or vehicle solution. We found that both animal models present a progressive degeneration of RGCs and changing NGF and VEGF levels in the retina and optic nerve. We then proved that NGF eye drop administration exerts a protective effect on these models of retinal degeneration. In brief, our findings indicate that NGF can play a protective role against RGC degeneration occurring in GL and DR and suggest that ocular NGF administration might be an effective pharmacological approach.

  7. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2018-05-01

    Full Text Available AIM: To evaluate the intrinsic excitability of retinal ganglion cells (RGCs in degenerated retinas. METHODS: The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS rats, a common retinitis pigmentosa (RP model, in a relatively late stage of retinal degeneration (P90 were investigated. Several parameters of RGC morphologies and action potentials (APs were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS: Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells, and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION: RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  8. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation

    Directory of Open Access Journals (Sweden)

    Yong Sook eGoo

    2016-01-01

    Full Text Available Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD and retinitis pigmentosa (RP, but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice, where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs. Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  9. The meniscus ganglion

    International Nuclear Information System (INIS)

    Schaefer, H.

    1982-01-01

    Normal dimensions of the meniscus quoted in the literature vary somewhat; measurements were therefore carried out on the height and width on standardised arthrograms. This made it possible to evaluate changes in the height of the meniscus objectively and to diagnose degeneration with a ganglion at an earlier stage. Taking into account other, secondary, signs, 261 meniscus ganglia were diagnosed amongst 3133 meniscus lesions (8.3%) in the course of 5650 knee arthrograms. These were confirmed at operation and histologically. For the first time it has been possible to provide an estimate of the frequency of meniscus ganglion in the radiological literature. (orig.) [de

  10. EFFECT OF INTRAVITREAL RANIBIZUMAB ON GANGLION CELL COMPLEX AND PERIPAPILLARY RETINAL NERVE FIBER LAYER IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco

    2017-07-01

    To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.

  11. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  12. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  13. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    Science.gov (United States)

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75 NTR , TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75 NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75 NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  14. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  15. First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model.

    Science.gov (United States)

    Turkmenoglu, Osman N; Kanat, Ayhan; Yolas, Coskun; Aydin, Mehmet Dumlu; Ezirmik, Naci; Gundogdu, Cemal

    2017-01-01

    The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH ( n = 8), serum saline (SS) (SS; n = 6) and control ( n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. The mean alive neuron density of the L4DRG was 15420 ± 1240/mm 3 and degenerated neuron density was 1045 ± 260/mm 3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm 3 and 1365 ± 480/mm 3 in serum saline (SS), 9845 ± 1028/mm 3 and 4560 ± 1340/mm 3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm 3 in the control group and 1,030 ± 0,240 mm 3 in the SF group and 0,910 ± 0,170 mm 3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups ( P < 0.05). Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  16. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    Science.gov (United States)

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  17. Intramuscular dissection of a large ganglion cyst into the gastrocnemius muscle.

    Science.gov (United States)

    Nicholson, Luke T; Freedman, Harold L

    2012-07-01

    Ganglion cysts are lesions resulting from the myxoid degeneration of the connective tissue associated with joint capsules and tendon sheaths. Most common around the wrist joint, ganglion cysts may be found elsewhere in the body, including in and around the knee joint. Uncommonly, ganglion cysts can present intramuscularly. Previous reports document the existence of intramuscular ganglia, often without histologic confirmation. This article describes a case of an intramuscular ganglion cyst in the medial gastrocnemius muscle of a 53-year-old woman. The patient initially presented for discomfort associated with the lesion. Examination was consistent with intramuscular cystic lesion of unknown etiology. Ultrasound and magnetic resonance imaging revealed the origin of the mass at the semimembranosus-gastrocnemius bursa. Because of its location, the mass was initially suspected to be a dissecting Baker's cyst, an uncommon but previously reported diagnosis. The patient underwent surgical excision, and examination of the intact specimen revealed a thin, fibrous, walled cyst with no lining epithelium, which was consistent with a ganglion cyst. To the authors' knowledge, this is the first report in the orthopedic literature of a ganglion cyst dissecting into the gastrocnemius muscle. Because ganglion cysts commonly require excision for definitive treatment and do not respond well to treatment measures implemented for Baker's cysts, including resection of underlying meniscal tears, the authors believe it is important for orthopedic surgeons to be able to distinguish between Baker's and other cysts associated with the knee joint, including ganglion cysts, which may require more definitive treatment. Copyright 2012, SLACK Incorporated.

  18. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    Science.gov (United States)

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  19. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  20. A mouse model for degeneration of the spiral ligament.

    Science.gov (United States)

    Kada, Shinpei; Nakagawa, Takayuki; Ito, Juichi

    2009-06-01

    Previous studies have indicated the importance of the spiral ligament (SL) in the pathogenesis of sensorineural hearing loss. The aim of this study was to establish a mouse model for SL degeneration as the basis for the development of new strategies for SL regeneration. We injected 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, at various concentrations into the posterior semicircular canal of adult C57BL/6 mice. Saline-injected animals were used as controls. Auditory function was monitored by measurements of auditory brain stem responses (ABRs). On postoperative day 14, cochlear specimens were obtained after the measurement of the endocochlear potential (EP). Animals that were injected with 5 or 10 mM 3-NP showed a massive elevation of ABR thresholds along with extensive degeneration of the cochleae. Cochleae injected with 1 mM 3-NP exhibited selective degeneration of the SL fibrocytes but alterations in EP levels and ABR thresholds were not of sufficient magnitude to allow for testing functional recovery after therapeutic interventions. Animals injected with 3 mM 3-NP showed a reduction of around 50% in the EP along with a significant loss of SL fibrocytes, although degeneration of spiral ganglion neurons and hair cells was still present in certain regions. These findings indicate that cochleae injected with 3 mM 3-NP may be useful in investigations designed to test the feasibility of new therapeutic manipulations for functional SL regeneration.

  1. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Kelly E O'Quin

    Full Text Available The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish and eyeless (cavefish morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2 hybrid progeny. We used next generation sequencing (RAD-seq and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.

  2. REDUCED GANGLION CELL VOLUME ON OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH GEOGRAPHIC ATROPHY.

    Science.gov (United States)

    Ramkumar, Hema L; Nguyen, Brian; Bartsch, Dirk-Uwe; Saunders, Luke J; Muftuoglu, Ilkay Kilic; You, Qisheng; Freeman, William R

    2017-11-07

    Geographic atrophy (GA) is the sequelae of macular degeneration. Automated inner retinal analysis using optical coherence tomography is flawed because segmentation software is calibrated for normal eyes. The purpose of this study is to determine whether ganglion cell layer (GCL) volume is reduced in GA using manual analysis. Nineteen eyes with subfoveal GA and 22 controls were selected for morphometric analyses. Heidelberg scanning laser ophthalmoscope optical coherence tomography images of the optic nerve and macula were obtained, and the Viewing Module was used to manually calibrate retinal layer segmentation. Retinal layer volumes in the central 3-mm and surrounding 6-mm diameter were measured. Linear mixed models were used for statistics. The GCL volume in the central 3 mm of the macula is less (P = 0.003), and the retinal nerve fiber layer volume is more (P = 0.02) in patients with GA when compared with controls. Ganglion cell layer volume positively correlated with outer nuclear layer volume (P = 0.020). The patients with geographic atrophy have a small significant loss of the GCL. Ganglion cell death may precede axonal loss, and increased macular retinal nerve fiber layer volumes are not indicative of GCL volume. Residual ganglion cell stimulation by interneurons may enable vision in patients with GA.

  3. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-03-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO/sub 2/) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO/sub 2/, and oxygen extraction fraction were measured by the positron emission tomography using /sup 15/O/sub 2/, C/sup 15/O/sub 2/ inhalation technique. In addition to reduction of CBF and CMRO/sub 2/ in the basal ganglionic region, CBF and CMRO/sub 2/ decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO/sub 2/ decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO/sub 2/ was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO/sub 2/ were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia.

  4. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    Science.gov (United States)

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  5. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  6. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina.

    Directory of Open Access Journals (Sweden)

    Christine Haselier

    Full Text Available Retinal prostheses that are currently used to restore vision in patients suffering from retinal degeneration are not adjusted to the changes occurring during the remodeling process of the retina. Recent studies revealed abnormal rhythmic activity in the retina of genetic mouse models of retinitis pigmentosa. Here we describe this abnormal activity also in a pharmacologically-induced (MNU mouse model of retinal degeneration. To investigate how this abnormal activity affects the excitability of retinal ganglion cells, we recorded the electrical activity from whole mounted retinas of rd10 mice and MNU-treated mice using a microelectrode array system and applied biphasic current pulses of different amplitude and duration to stimulate ganglion cells electrically. We show that the electrical stimulation efficiency is strongly reduced in degenerated retinas, in particular when abnormal activity such as oscillations and rhythmic firing of bursts of action potentials can be observed. Using a prestimulus pulse sequence, we could abolish rhythmic retinal activity. Under these conditions, the stimulation efficiency was enhanced in a few cases but not in the majority of tested cells. Nevertheless, this approach supports the idea that modified stimulation protocols could help to improve the efficiency of retinal prostheses in the future.

  7. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    International Nuclear Information System (INIS)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-01-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO 2 ) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO 2 , and oxygen extraction fraction were measured by the positron emission tomography using 15 O 2 , C 15 O 2 inhalation technique. In addition to reduction of CBF and CMRO 2 in the basal ganglionic region, CBF and CMRO 2 decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO 2 decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO 2 was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO 2 were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia. These results suggest that measurements of cerebral blood flow and metabolism were necessary to study the responsible lesion for aphasia. (author)

  8. Radiofrequency ablation of stellate ganglion in a patient with complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Chinmoy Roy

    2014-01-01

    Full Text Available Complex regional pain syndrome (CRPS is characterized by a combination of sensory, motor, vasomotor, pseudomotor dysfunctions and trophic signs. We describe the use of radiofrequency (RF ablation of Stellate ganglion (SG under fluoroscopy, for long-term suppression of sympathetic nervous system, in a patient having CRPS-not otherwise specified. Although the effects of thermal RF neurolysis may be partial or temporary, they may promote better conditions toward rehabilitation. The beneficial effect obtained by the RF neurolysis of SG in this particular patient strongly advocates the use of this mode of therapy in patients with CRPS.

  9. Phosphodiesterase type 4 inhibitor rolipram improves survival of spiral ganglion neurons in vitro.

    Directory of Open Access Journals (Sweden)

    Katharina Kranz

    Full Text Available Sensorineural deafness is caused by damage of hair cells followed by degeneration of the spiral ganglion neurons and can be moderated by cochlear implants. However, the benefit of the cochlear implant depends on the excitability of the spiral ganglion neurons. Therefore, current research focuses on the identification of agents that will preserve their degeneration. In this project we investigated the neuroprotective effect of Rolipram as a promising agent to improve the viability of the auditory neurons. It is a pharmaceutical agent that acts by selective inhibition of the phosphodiesterase 4 leading to an increase in cyclic AMP. Different studies reported a neuroprotective effect of Rolipram. However, its significance for the survival of SGN has not been reported so far. Thus, we isolated spiral ganglion cells of neonatal rats for cultivation with different Rolipram concentrations and determined the neuronal survival rate. Furthermore, we examined immunocytologically distinct proteins that might be involved in the neuroprotective signalling pathway of Rolipram and determined endogenous BDNF by ELISA. When applied at a concentration of 0.1 nM, Rolipram improved the survival of SGN in vitro. According to previous studies, our immunocytological data showed that Rolipram application induces the phosphorylation and thereby activation of the transcription factor CREB. This activation can be mediated by the cAMP-PKA-signalling pathway as well as via ERK as a part of the MAP-kinase pathway. However, only in cultures pre-treated with BDNF, an endogenous increase of BDNF was detected. We conclude that Rolipram has the potential to improve the vitality of neonatal auditory nerve cells in vitro. Further investigations are necessary to prove the effect of Rolipram in vivo in the adult organism after lesion of the hair cells and insertion of cochlear implants.

  10. THICKNESS OF THE MACULA, RETINAL NERVE FIBER LAYER, AND GANGLION CELL-INNER PLEXIFORM LAYER IN THE AGE-RELATED MACULAR DEGENERATION: The Repeatability Study of Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-02-01

    To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.

  11. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    H. Nagasawa

    1993-01-01

    Full Text Available We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those of blood flow and oxygen metabolism. This unique combination study measuring both cerebral glucose utilization and dopamine metabolism in the nigrostriatal system can provide efficient information about the dysfunctions which are correlated with individual clinical symptoms, and this study is essential to diagnosis of corticobasal degeneration.

  12. Exploring the nearly degenerate stop region with sbottom decays

    Energy Technology Data Exchange (ETDEWEB)

    An, Haipeng [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA, 91125 (United States); Gu, Jiayin [Center for Future High Energy Physics, Institute of High Energy Physics,19B YuquanLu, Chinese Academy of Sciences, Beijing, 100049 (China); DESY,Notkestraße 85, Hamburg, D-22607 (Germany); Wang, Lian-Tao [Enrico Fermi Institute, University of Chicago,5640 S Ellis Ave., Chicago, IL, 60637 (United States); Kavli Institute for Cosmological Physics, University of Chicago,5640 S Ellis Ave., Chicago, IL, 60637 (United States)

    2017-04-13

    A light stop with mass almost degenerate with the lightest neutralino has important connections with both naturalness and dark matter relic abundance. This region is also very hard to probe at colliders. In this paper, we demonstrate the potential of searching for such stop particles at the LHC from sbottom decays, focusing on two channels with final states 2ℓ+E{sub T}{sup miss} and 1b1ℓ+E{sub T}{sup miss}. We found that, if the lightest sbottom has mass around or below 1 TeV and has a significant branching ratio to decay to stop and W (b̃→t̃ W), a stop almost degenerate with neutralino can be excluded up to about 500–600 GeV at the 13 TeV LHC with 300 fb{sup −1} data. The searches we propose are complementary to other SUSY searches at the LHC and could have the best sensitivity to the stop-bino coannihilation region. Since they involve final states which have already been used in LHC searches, a reinterpretation of the search results already has sensitivity. Further optimization could deliver the full potential of these channels.

  13. Exploring the nearly degenerate stop region with sbottom decays

    Energy Technology Data Exchange (ETDEWEB)

    An, Haipeng [California Institute of Technology, Pasadena, CA (United States). Walter Burke Inst. for Theoretical Physics; Gu, Jiayin [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wang, Lian-Tao [Chicago Univ., IL (United States). Enrico Fermi Inst.; Chicago Univ., IL (United States). Kavli Inst. for Cosmological Physics

    2016-11-15

    A light stop with mass almost degenerate with the lightest neutralino has important connections with both naturalness and dark matter relic abundance. This region is also very hard to probe at colliders. In this paper, we demonstrate the potential of searching for such stop particles at the LHC from sbottom decays, focusing on two channels with final states 2l+E{sup miss}{sub T} and 1b1l+E{sup miss}{sub T}. We found that, if the lightest sbottom has mass around or below 1 TeV and has a significant branching ratio to decay to stop and W (b→tW), a stop almost degenerate with neutralino can be excluded up to about 500-600 GeV at the 13 TeV LHC with 300 fb{sup -1} data. The searches we propose are complementary to other SUSY searches at the LHC and could have the best sensitivity to the stop-bino coannihilation region. Since they involve final states which have already been used in LHC searches, a reinterpretation of the search results already has sensitivity. Further optimization could deliver the full potential of these channels.

  14. CT-guided stellate ganglion blockade vs. radiofrequency neurolysis in the management of refractory type I complex regional pain syndrome of the upper limb

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, Adrian [University Hospital CHU Gabriel Montpied, Radiology Department, Clermont-Ferrand (France); Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); CHU Clermont-Ferrand, Hopital Gabriel Montpied, Clermont-Ferrand (France); Aubry, Sebastien; Kastler, Bruno [University Hospital CHU Jean Minjoz, Radiology and Interventional Pain Unit, Besancon (France); Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); Sailley, Nicolas; Michalakis, Demosthene [University Hospital CHU Jean Minjoz, Radiology and Interventional Pain Unit, Besancon (France); Siliman, Gaye [University Hospital CHU St Jacques, Clinical Investigation Center, Besancon (France); Gory, Guillaume [Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France); Lajoie, Jean-Louis [University Hospital CHU Jean Minjoz, Pain evaluation and Management Unit, Besancon (France)

    2013-05-15

    To describe and evaluate the feasibility and efficacy of CT-guided radiofrequency neurolysis (RFN) vs. local blockade of the stellate ganglion in the management of chronic refractory type I complex regional pain syndrome (CRPS) of the upper limb. Sixty-seven patients were included in this retrospective study between 2000 and 2011. All suffered from chronic upper limb type I CRPS refractory to conventional pain therapies. Thirty-three patients underwent stellate ganglion blockade and 34 benefited from radiofrequency neurolysis of the stellate ganglion. CT guidance was used in both groups. The procedure was considered effective when pain relief was {>=}50 %, lasting for at least 2 years. Thirty-nine women (58.2 %) and 28 men (41.8 %) with a mean age of 49.5 years were included in the study. Univariate analysis performed on the blockade and RFN groups showed a significantly (P < 0.0001) higher success rate in the RFN group (67.6 %, 23/34) compared with the blockade group (21.2 %, 7/33) with an odds ratio of 7.76. CT-guided radiofrequency neurolysis of the stellate ganglion is a safe and successful treatment of chronic refractory type I CRPS of the upper limb. It appears to be more effective than stellate ganglion blockade. (orig.)

  15. Progress toward the maintenance and repair of degenerating retinal circuitry.

    Science.gov (United States)

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  16. Macular ganglion cell complex and retinal nerve fiber layer comparison in different stages of age-related macular degeneration.

    Science.gov (United States)

    Zucchiatti, Ilaria; Parodi, Maurizio Battaglia; Pierro, Luisa; Cicinelli, Maria Vittoria; Gagliardi, Marco; Castellino, Niccolò; Bandello, Francesco

    2015-09-01

    To employ optical coherence tomography (OCT) to analyze the morphologic changes in the inner retina in different categories of age-related macular degeneration (AMD). Observational cross-sectional study. Single-center study. Inclusion criteria were age over 50, diagnosis of Age-Related Eye Disease Study (AREDS) category 2 and 3, naïve neovascular AMD, and atrophic AMD. Healthy patients of similar age acted as a control group. Primary outcome measures were the changes in ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL). Secondary outcomes included modifications of rim area and cup-to-disc ratio. One hundred and thirty eyes of 130 patients were recruited: 26 eyes for AREDS category 2, 26 for AREDS category 3, 26 for neovascular AMD, 26 with atrophic AMD, and 26 controls. Mean peripapillary RNFL thickness was significantly lower in neovascular AMD, compared to controls (P = .004); peripapillary RNFL did not significantly vary among AREDS category 2 and 3 and atrophic AMD groups, compared to controls. Mean GCC thickness was higher in the control group, becoming progressively thinner up to neovascular and atrophic AMD groups (P < .0001). Rim area was significantly thinner in the neovascular AMD group compared with controls (P = .047); cup-to-disc ratio was higher in the neovascular AMD group compared with the control group (P = .047). This study demonstrates that eyes with neovascular AMD display reduced RNFL and GCC thickness. RNFL is partially spared in atrophic advanced AMD. The identification of alteration in RNFL and GCC thickness may reveal useful for future therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Directory of Open Access Journals (Sweden)

    Eun Kyoung Kim

    Full Text Available To evaluate the changes of retinal nerve fiber layer (RNFL, ganglion cell layer (GCL, inner plexiform layer (IPL, and ganglion cell-inner plexiform layer (GCIPL thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT in macular region of glaucoma patients.In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS values were measured using 24-2 standard automated perimetry (SAP.RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001. Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001. In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness.Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  18. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.

    Science.gov (United States)

    Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee

    2017-01-01

    To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.

  19. Macrostructure of the Cranial Cervical Ganglion in the River Buffalo (Bubalus Bubalis

    Directory of Open Access Journals (Sweden)

    Hossein Dehghani

    2011-09-01

    Full Text Available AbstractThe autonomic nervous system consists of a vast range of nerves and ganglions. Anatomical studies have demonstrated that the sympathetic innervations of the head and neck are affected by the neurons that ramify from the cranial cervical ganglion (CCG. The CCG is the end of the sympathetic cervical trunk, which runs with the vagal nerve during its cervical course. In this study sixteen adult (2 - 5 year river buffalo of both sexes (eight male, eight female weighing around 250 - 450 kg were dissected to investigate the weight, situation and arrangement of nerve branches of the cranial cervical ganglion bilaterally. The ganglions showed a fusiform shape and reddish in color. The cranial cervical ganglion covered by the digastricus muscle. It lies in dorsal region of the base of epiglottic cartilage, ventromedial to tympanic bulla and ventrally to atlantic fossa, and medial of the occipital artery. This study showed that the cranial cervical ganglions in river buffalo were well-developed structure. The main branches of cranial cervical ganglion included the internal carotid, external carotid and jugular nerves.

  20. Vascular mechanism of axonal degeneration in peripheral nerves in hemiplegic sides after cerebral hemorrhage: An experimental study

    Directory of Open Access Journals (Sweden)

    Bayram Ednan

    2008-04-01

    Full Text Available Abstract Background Though retrograde neuronal death and vascular insufficiency have been well established in plegics following intracerebral hemorrhage, the effects of plegia on arterial nervorums of peripheral nerves have not been reported. In this study, the histopathological effects of the intracerebral hemorrhage on the dorsal root ganglions and sciatic nerves via affecting the arterial nervorums were investigated. Methods This study was conducted on 13 male hybrid rabbits. Three animals were taken as control group and did not undergo surgery. The remaining 10 subjects were anesthetized and were injected with 0.50 ml of autologous blood into their right sensory-motor region. All rabbits were followed-up for two months and then sacrificed. Endothelial cell numbers and volume values were estimated a three dimensionally created standardized arterial nervorums model of lumbar 3. Neuron numbers of dorsal root ganglions, and axon numbers in the lumbar 3 nerve root and volume values of arterial nervorums were examined histopathologically. The results were analyzed by using a Mann-Whitney-U test. Results Left hemiplegia developed in 8 animals. On the hemiplegic side, degenerative vascular changes and volume reduction in the arterial nervorums of the sciatic nerves, neuronal injury in the dorsal root ganglions, and axonal injury in the lumbar 3 were detected. Statistical analyses showed a significant correlation between the normal or nonplegic sides and plegic sides in terms of the neurodegeneration in the dorsal root ganglions (p Conclusion Intracerebral hemorrhage resulted in neurodegeneration in the dorsal root ganglion and axonolysis in the sciatic nerves, endothelial injury, and volume reduction of the arterial nervorums in the sciatic nerves. The interruption of the neural network connection in the walls of the arterial nervorums in the sciatic nerves may be responsible for circulation disorders of the arterial nervorums, and arterial

  1. Intravenous regional block is similar to sympathetic ganglion block for pain management in patients with complex regional pain syndrome type I

    Directory of Open Access Journals (Sweden)

    M.S.A. Nascimento

    2010-12-01

    Full Text Available Sympathetic ganglion block (SGB or intravenous regional block (IVRB has been recommended for pain management in patients with complex regional pain syndrome type I (CRPS-I. Forty-five patients were initially selected but only 43 were accepted for the study. The present study evaluated the efficacy of IVRB produced by combining 70 mg lidocaine with 30 µg clonidine (14 patients, 1 male/13 females, age range: 27-50 years versus SGB produced by the injection of 70 mg lidocaine alone (14 patients, 1 male/13 females, age range: 27-54 years or combined with 30 µg clonidine (15 patients, 1 male/14 females, age range: 25-50 years into the stellate ganglion for pain management in patients with upper extremity CRPS-I. Each procedure was repeated five times at 7-day intervals, and pain intensity and duration were measured using a visual analog scale immediately before each procedure. A progressive and significant reduction in pain scores and a significant increase in the duration of analgesia were observed in all groups following the first three blocks, but no further improvement was obtained following the last two blocks. Drowsiness, the most frequent side effect, and dry mouth occurred only in patients submitted to SGB with lidocaine combined with clonidine. The three methods were similar regarding changes in pain intensity and duration of analgesia. However, IVRB seems to be preferable to SGB due to its easier execution and lower risk of undesirable effects.

  2. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  3. Caspases in retinal ganglion cell death and axon regeneration

    Science.gov (United States)

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  4. ["Point by point" approach to structure-function correlation of glaucoma on the ganglion cell complex in the posterior pole].

    Science.gov (United States)

    Zeitoun, M

    2017-01-01

    the two previous ones. In pathologically thin areas, the distribution of these three functional groups seems to correspond to the progression of glaucomatous visual degradation, including a period of resistance, a period of rapid decline, finally leading to complete functional loss. In the studied area, the analysis of retinal ganglion cell complex is relevant to identify areas which are still functional when they exceed 70 microns. Scotomas correspond to the thin areas less than 70 microns. The functionality of areas which are pathologically thinned by glaucomatous degeneration is not correlated to their thickness. In the future, the correlation between structure and function, currently "regional" may be realized "point by point" once automation of the visual field superimposition is made available for the ganglion cell complex. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Photoacoustic microscopy of complex regional pain syndrome type I (CRPS-1) after stellate ganglion blocks in vivo

    Science.gov (United States)

    Zhou, Yong; Yi, Xiaobin; Xing, Wenxin; Hu, Song; Maslov, Konstantin I.; Wang, Lihong V.

    2015-03-01

    We used photoacoustic microscopy (PAM) to assist diagnoses and monitor the progress and treatment outcome of complex regional pain syndrome type 1 (CRPS-1). Blood vasculature and oxygen saturation (sO2) were imaged by PAM in eight adult patients with CRPS-1. Patients' hands and cuticles were imaged both before and after stellate ganglion block (SGB) for comparison. For all patients, both the vascular structure and sO2 could be assessed by PAM. In addition, more vessels and stronger signals were observed after SGB.

  6. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  7. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model.

    Science.gov (United States)

    Schaub, Julie A; Kimball, Elizabeth C; Steinhart, Matthew R; Nguyen, Cathy; Pease, Mary E; Oglesby, Ericka N; Jefferys, Joan L; Quigley, Harry A

    2017-05-01

    To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains.

  8. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available Alzheimer's disease (AD is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ in brain and retina. Because bone marrow transplantation (BMT results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4% compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.

  9. Stellate ganglion block for persistent idiopathic facial pain

    Directory of Open Access Journals (Sweden)

    Poonam Patel

    2016-01-01

    Full Text Available Persistent idiopathic facial pain is a facial pain disorder without any identifiable cause. A patient has persistent facial pain without any objective sign on clinical examination or investigations. There are associated psychological problems such as depression and anxiety. This condition is poorly responsive to therapy with anticonvulsants or analgesics. Stellate ganglion block interrupts the sympathetic supply to head, neck, and upper extremities. This block can be used to alleviate pain of sympathetic origin in head and neck region as well as upper extremities. We report a case of a middle-aged female with persistent idiopathic facial pain on the right side of face with no response to analgesics and anticonvulsants. Her pain was provoked by exposure to cold weather or wind. Assuming a sympathetic component to her pain, we did a right-sided stellate ganglion block for her with local anesthetic and steroid. The patient had significant pain relief (>80% after the block. This indicates that the sympathetic nervous system plays a major role in initiation and perpetuation of this pain condition. Stellate ganglion block can be done early in such patients both as a diagnostic and therapeutic modality.

  10. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    OpenAIRE

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes ...

  11. The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations.

    Science.gov (United States)

    Collin, S P

    1988-01-01

    A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.

  12. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    Science.gov (United States)

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  13. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma

    Science.gov (United States)

    Akaiwa, Kei; Namekata, Kazuhiko; Azuchi, Yuriko; Guo, Xiaoli; Kimura, Atsuko; Harada, Chikako; Mitamura, Yoshinori; Harada, Takayuki

    2017-01-01

    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP. PMID:28703795

  14. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    Science.gov (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  15. Dorsal Root Ganglion Stimulation for Complex Regional Pain Syndrome (CRPS) Recurrence after Amputation for CRPS, and Failure of Conventional Spinal Cord Stimulation.

    Science.gov (United States)

    Goebel, Andreas; Lewis, Sarah; Phillip, Rhodri; Sharma, Manohar

    2018-01-01

    Limb amputation is sometimes being performed in long-standing complex regional pain syndrome (CRPS), although little evidence is available guiding management decisions, including how CRPS recurrence should be managed. This report details the management of a young soldier with CRPS recurrence 2 years after midtibial amputation for CRPS. Conventional spinal cord stimulation did not achieve paraesthetic coverage, or pain relief in the stump, whereas L4 dorsal root ganglion stimulation achieved both coverage and initially modest pain relief, and over time, substantial pain relief. Current evidence does not support the use of amputation to improve either pain or function in CRPS. Before a decision is made, in exceptional cases, about referral for amputation, dorsal root ganglion stimulation should be considered as a potentially effective treatment, even where conventional spinal cord stimulator treatment has failed to achieve reliable paraesthetic cover. Furthermore, this treatment may provide pain relief in those patients with CRPS recurrence in the stump after amputation. © 2017 World Institute of Pain.

  16. Selective Fiber Degeneration in the Peripheral Nerve of a Patient With Severe Complex Regional Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Adrien Yvon

    2018-04-01

    Full Text Available Aims: Complex regional pain syndrome (CRPS is characterized by chronic debilitating pain disproportional to the inciting event and accompanied by motor, sensory, and autonomic disturbances. The pathophysiology of CRPS remains elusive. An exceptional case of severe CRPS leading to forearm amputation provided the opportunity to examine nerve histopathological features of the peripheral nerves.Methods: A 35-year-old female developed CRPS secondary to low voltage electrical injury. The CRPS was refractory to medical therapy and led to functional loss of the forelimb, repeated cutaneous wound infections leading to hospitalization. Specifically, the patient had exhausted a targeted conservative pain management programme prior to forearm amputation. Radial, median, and ulnar nerve specimens were obtained from the amputated limb and analyzed by light and transmission electron microscopy (TEM.Results: All samples showed features of selective myelinated nerve fiber degeneration (47–58% of fibers on electron microscopy. Degenerating myelinated fibers were significantly larger than healthy fibers (p < 0.05, and corresponded to the larger Aα fibers (motor/proprioception whilst smaller Aδ (pain/temperature fibers were spared. Groups of small unmyelinated C fibers (Remak bundles also showed evidence of degeneration in all samples.Conclusions: We are the first to show large fiber degeneration in CRPS using TEM. Degeneration of Aα fibers may lead to an imbalance in nerve signaling, inappropriately triggering the smaller healthy Aδ fibers, which transmit pain and temperature. These findings suggest peripheral nerve degeneration may play a key role in CRPS. Improved knowledge of pathogenesis will help develop more targeted treatments.

  17. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    Science.gov (United States)

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  19. Ganglion Cysts

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Ganglion Cysts Email to a friend * required fields ...

  20. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  1. Expanding the spectrum of human ganglionic eminence region anomalies on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Righini, Andrea; Parazzini, Cecilia; Izzo, Giana [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Cesaretti, Claudia [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Ospedale Maggiore Policlinico, Medical Genetics Unit, Fondazione I.R.C.C.S. Ca' Granda, Milan (Italy); Conte, Giorgio [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); Frassoni, Carolina; Inverardi, Francesca [Fondazione I.R.C.C.S. Istituto Neurologico ' ' C. Besta' ' , Clinical Epileptology and Experimental Neurophysiology Unit, Milan (Italy); Bulfamante, Gaetano; Avagliano, Laura [San Paolo Hospital, Division of Human Pathology, Milan (Italy); Rustico, Mariangela [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynaecology, Prenatal Diagnosis, Milan (Italy)

    2016-03-15

    Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)

  2. Expanding the spectrum of human ganglionic eminence region anomalies on fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Righini, Andrea; Parazzini, Cecilia; Izzo, Giana; Cesaretti, Claudia; Conte, Giorgio; Frassoni, Carolina; Inverardi, Francesca; Bulfamante, Gaetano; Avagliano, Laura; Rustico, Mariangela

    2016-01-01

    Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)

  3. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    Science.gov (United States)

    Locri, Filippo; Amato, Rosario; Marsili, Stefania; Rusciano, Dario; Bagnoli, Paola

    2018-01-01

    Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON) and is an initial symptom of multiple sclerosis (MS). Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC) loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG), were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM), a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®), a balanced mixture of fatty acids (FAs), counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role. PMID:29517994

  4. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Massimo Dal Monte

    2018-03-01

    Full Text Available Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON and is an initial symptom of multiple sclerosis (MS. Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG, were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM, a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®, a balanced mixture of fatty acids (FAs, counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role.

  5. Microvascularization in trigeminal ganglion of the common tree shrew (Tupaia glis).

    Science.gov (United States)

    Kongstaponkit, S; Pradidarcheep, W; Toutip, S; Chunhabundit, P; Somana, R

    1997-01-01

    Since there is only a limited number of studies of the blood supply to the trigeminal ganglion (TG) in mammalian species, the TG from 16 common tree shrews (Tupaia glis) were investigated by light microscope, transmission electron microscope (TEM) and the corrosion cast technique in conjunction with scanning electron microscope (SEM). It was found that the TG contained clusters of neurons in the peripheral region whereas the bundles of nerve fibers were located more centrally. Each ganglionic neuron had a concentric nucleus and was ensheathed by satellite cells. It was noted that blood vessels of a continuous type were predominantly found in the area where the neurons were densely located and were much less frequently observed in the area occupied by nerve fibers. With TEM, the TG was shown to be mainly associated with large neurons containing big nuclei and prominent nucleoli. The blood supply of the TG is derived from the most rostral branch of the pontine artery, from the stapedial artery or sometimes from the supraorbital artery, and from the accessory meningeal artery which is a branch of the maxillary artery passing through the foramen ovale. These arteries give off branches and become capillary networks in the ganglion before draining blood to the peripheral region. The veins at the medial border drained into the cavernous sinus directly or through the inferior hypophyseal vein, while those at the lateral side of the ganglion carried the blood into the pterygoid plexus via an accessory meningeal vein. The veins along the trigeminal nerve root joined the posterior part of the cavernous sinus. These studies establish a unique anatomical distribution of the TG blood supply in the tree shrew and the utility of the cast/SEM technique in discerning detailed features of the blood supply in the nervous system.

  6. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    Science.gov (United States)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  7. NUTRITION AND VASCULAR SUPPLY OF RETINAL GANGLION CELLS DURING HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Paul eRutkowski

    2016-04-01

    Full Text Available Purpose. To review the roles of the different vascular beds nourishing the inner retina (retinal ganglion cells during normal development of the human eye and using our own tissue specimens to support our conclusions.Methods. An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated.Results. The first critical interaction between vascular bed and retinal ganglion cell (RGC formation occurs in the 6th-8th month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first three years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail.Conclusion. This delicately balanced situation of retinal ganglion cell nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.

  8. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease.

    Science.gov (United States)

    Whiting, Rebecca E H; Jensen, Cheryl A; Pearce, Jacqueline W; Gillespie, Lauren E; Bristow, Daniel E; Katz, Martin L

    2016-05-01

    CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests

  9. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    Science.gov (United States)

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.

  10. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice

    Directory of Open Access Journals (Sweden)

    Hernán H. Dieguez

    2018-02-01

    Full Text Available Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age

  11. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.

    Science.gov (United States)

    Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H

    2017-02-15

    Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  13. Piriformis ganglion: An uncommon cause of sciatica.

    Science.gov (United States)

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Periosteal ganglion

    International Nuclear Information System (INIS)

    Kolar, J.; Zidkova, H.; Matejovsky, Z.

    1986-01-01

    Ganglionic cysts are a common myxomatous degenerative disorder in periarticular connective tissues particularly in the hand and foot as well as within the subchondral bone adjacent to osteoarthritic joints. Compared with them, periosteal ganglia are only rarely reported in the literature. Their radiologic features are quite typical as documented by the following observation. (orig.) [de

  15. Quantum degenerate systems

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)

    2012-10-15

    A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.

  16. CT and fluoroscopy guided celiac ganglion block

    International Nuclear Information System (INIS)

    Lim, Sun Kyung; Kwon, Dae Ik; Ahn, Hyup; Kim, Jong Il; Kim, Byung Young; Lee, Jong Gil

    1994-01-01

    To evaluate the effects and usefulness of fluoroscopy guided celiac ganglion block after marking of needle path with CT scan. Celiac ganglion block with 100% ethyl alcohol was performed in 50 cancer patients who were inoperable and had intractable abdominal pain. Duration and degree of pain relief after the procedure and its complication were analyzed. Early pain relief was observed in 98% and long term relief in 68% without serious complication. Fluoroscopy guided celiac ganglion block after marking of needle path with CT scan was a safe and valuable procedure in relieving intractable pain in terminal cancer patients and reduced the time in the CT room

  17. Lycium barbarum (wolfberry reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection.

    Directory of Open Access Journals (Sweden)

    Hongying Li

    Full Text Available Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP are neuroprotective for retinal ganglion cells (RGCs in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1. This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.

  18. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    Science.gov (United States)

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  19. Responses of macaque ganglion cells to far violet lights

    International Nuclear Information System (INIS)

    De Monasterio, F.M.; Gouras, P.

    1977-01-01

    In a sample of 487 colour-opponent ganglion cells recorded in the central retina of the rhesus and cynomolgus monkeys, 9% of these neurones were found to have responses with the same sign at both ends of the visible spectrum mediated by red-sensitive cones and mid-spectral responses of opposite sign mediated by green-sensitive cones. Selective chromatic adaptation showed that the responses to far violet lights (400 to 420 nm) were due to input from red- and not blue-sensitive cones. These responses were enhanced by backgrounds depressing the sensitivity of blue- and green-sensitive cones and they were depressed by backgrounds depressing the sensitivity of red-sensitive cones; the sensitivity of these responses was yoked to that of responses to far red lights. The relative incidence of these ganglion cells was maximal at the foveal region and decreased towards the peripheral retina. The properties of these cells are consistent with some psychophysical observations of human vision at the short wave-lengths. (author)

  20. CT-guided injection for ganglion impar blockade: a radiological approach to the management of coccydynia

    International Nuclear Information System (INIS)

    Datir, A.; Connell, D.

    2010-01-01

    -guided injection over those performed under fluoroscopy may include accurate and confident needle placement in the sacro-coccygeal region, ease of wide area coverage, lesser risk of complications due to inadvertent injections into the major pelvic structures, and increased likelihood of reaching the ganglion impar, especially in cases with anatomical variation in the ganglion impar location. These factors may have implications in the overall success rate of ganglion impar blockade.

  1. CT-guided injection for ganglion impar blockade: a radiological approach to the management of coccydynia

    Energy Technology Data Exchange (ETDEWEB)

    Datir, A., E-mail: apdatir@gmail.co [Jackson Memorial Hospital, Miami, FL (United States); Connell, D. [Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex (United Kingdom)

    2010-01-15

    -guided injection over those performed under fluoroscopy may include accurate and confident needle placement in the sacro-coccygeal region, ease of wide area coverage, lesser risk of complications due to inadvertent injections into the major pelvic structures, and increased likelihood of reaching the ganglion impar, especially in cases with anatomical variation in the ganglion impar location. These factors may have implications in the overall success rate of ganglion impar blockade.

  2. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.

    Science.gov (United States)

    Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián

    2018-02-07

    Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and

  3. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons

    Science.gov (United States)

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  4. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro.

    Science.gov (United States)

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.

  5. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia.

    Science.gov (United States)

    Ueki, Yumi; Ramirez, Grisela; Salcedo, Ernesto; Stabio, Maureen E; Lefcort, Frances

    2016-01-01

    Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein ( IKBKAP ). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre ( Tα1-Cre ). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.

  6. Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy.

    Science.gov (United States)

    Srinivasan, Sangeetha; Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2017-12-01

    To examine the neuronal structural integrity of cornea and retina as markers for neuronal degeneration in nonproliferative diabetic retinopathy (NPDR). Participants were recruited from the broader Brisbane community, Queensland, Australia. Two hundred forty-one participants (187 with diabetes and 54 nondiabetic controls) were examined. Diabetic retinopathy (DR) was graded according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), corneal nerve fiber tortuosity (CNFT), full retinal thickness, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), focal (FLV) and global loss volumes (GLV), hemoglobin A1c (HbA1c), nephropathy, neuropathy, and cardiovascular measures were examined. The central zone (P = 0.174), parafoveal thickness (P = 0.090), perifovea (P = 0.592), RNFL (P = 0.866), GCC (P = 0.798), and GCC GLV (P = 0.338) did not differ significantly between the groups. In comparison to the control group, those with very mild NPDR and those with mild NPDR had significantly higher focal loss in GCC volume (P = 0.036). CNFL was significantly lower in those with mild NPDR (P = 0.004) in comparison to the control group and those with no DR. The CNBD (P = 0.094) and CNFT (P = 0.458) did not differ between the groups. Both corneal and retinal neuronal degeneration may occur in early stages of diabetic retinopathy. Further studies are required to examine these potential markers for neuronal degeneration in the absence of clinical signs of DR.

  7. Paranode Abnormalities and Oxidative Stress in Optic Nerve Vulnerable to Secondary Degeneration: Modulation by 670 nm Light Treatment.

    Directory of Open Access Journals (Sweden)

    Charis R Szymanski

    Full Text Available Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.

  8. Arthroscopic excision of ganglion cysts.

    Science.gov (United States)

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Intra-articular ganglion cysts of the knee: clinical and MR imaging features

    International Nuclear Information System (INIS)

    Kim, M.G.; Cho, W.H.; Kim, B.H.; Choi, J.A.; Lee, N.J.; Chung, K.B.; Choi, Y.S.; Cho, S.B.; Lim, H.C.

    2001-01-01

    The purpose of this study was to present clinical and MR imaging features of intra-articular ganglion cysts of the knee. Retrospective review of 1685 consecutive medical records and MR examinations of the knee performed at three imaging centers allowed identification of 20 patients (13 men and 7 women; mean age 35 years), in whom evidence of intra-articular ganglion cyst was seen. Of the 20 ganglion cysts, 5 were found in the infrapatellar fat pad, 10 arose from the posterior cruciate ligament, and 5 from the anterior cruciate ligament. Three of five patients with ganglion cyst in the infrapatellar fat pad had a palpable mass. In 7 of 15 patients with ganglion cyst in the intercondylar notch, exacerbation of pain occurred in a squatting position. On four MR arthrographies, ganglion cysts were an intra-articular round, lobulated, low signal intensity lesion. Five cases of fat-suppressed contrast-enhanced T1-weighted SE images demonstrated peripheral thin rim enhancement. The clinical presentation of intra-articular ganglion cyst is varied according to its intra-articular location. The MR appearance of intra-articular ganglion cyst is characteristic and usually associated with the cruciate ligament or the infrapatellar fat pad. Magnetic resonance arthrography has no definite advantage over conventional MR in the evaluation of the lesion. For intra-articular ganglion cyst in the infrapatellar fat pad, fat-suppressed contrast-enhanced MR imaging could be useful, because a thin, rim-enhancing feature of intra-articular ganglion cyst allows it to be distinguished from synovial hemangioma and synovial sarcoma. (orig.)

  10. Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration.

    Science.gov (United States)

    Malania, Maka; Konrad, Julia; Jägle, Herbert; Werner, John S; Greenlee, Mark W

    2017-06-01

    Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways.

  11. Topography of ganglion cell production in the cat's retina

    International Nuclear Information System (INIS)

    Walsh, C.; Polley, E.H.

    1985-01-01

    The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with [ 3 H]thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development

  12. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  13. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  14. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Science.gov (United States)

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  15. Antonius Balthazar Raymundus Hirsch and the peregrination of "gasserian ganglion".

    Science.gov (United States)

    Sonig, Ashish; Thakur, Jai; Grass, Monica; Khan, Imad Saeed; Gandhi, Viraj; Nanda, Anil

    2013-09-01

    The anatomical description of the fifth cranial nerve ganglion lacked detail before the work of Antonius Balthazar Raymundus Hirsch (1744-1778). Hirsch used new dissection techniques that resulted in the most meticulous report of the trigeminal ganglion (the gasserian ganglion) to have been reported. In 1765, the 21-year-old published these findings in a thesis, Paris Quinti Nervorum Encephali Disquisitio Anatomica In Quantum Ad Ganglion Sibi Proprium, Semilunare, Et Ad Originem Nervi Intercostalis Pertinet [An anatomical inquiry of the fifth pair of the nerves of the brain, so far as it relates to the ganglion unto itself, the semilunar, and to the source of the intercostal nerve]. Hirsch wrote his thesis as a paean to his ailing teacher, Johann Lorenz Gasser, but Gasser died before Hirsch was able to defend his thesis. Thereafter, Hirsch applied to teach anatomy at his alma mater, the University of Vienna, but the university did not consider his application, deeming him too young for the position. Oddly, Hirsch died at the young age of 35. For the present paper, the library at the University of Vienna (Universität Wien), Austria, was contacted, and Anton Hirsch's thesis was digitized and subsequently translated from Latin into English. The authors here attempt to place the recognition of the fifth cranial nerve ganglion within a historical perspective and trace the trajectory of its anatomical descriptions.

  16. Ganglion cysts at the gastrocnemius origin: a series of ten cases

    International Nuclear Information System (INIS)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Bell, J.

    2007-01-01

    To describe ganglion cysts arising close to the origin of the medial and lateral head of gastrocnemius as identified on magnetic resonance (MR) imaging. We present a series of ten cases of ganglion cysts arising close to the gastrocnemius origin from the medial and lateral femoral condyles. These were collected over a 6-year period from our imaging database. All patients attended for routine MR imaging of the knee with a variety of clinical presentations. Data collected included patient demographics, ganglion size, ganglion site, clinical presentation and ancillary MR imaging findings. The ten patients in this series consisted of seven males and three females, five right and five left knees, age range 27-68 years, mean age 40.6 years. The mean maximal dimension of the ganglion cysts was 26 mm, range 15-40 mm. The medial gastrocnemius origin was involved in eight patients and the lateral origin in two patients. The MR imaging findings consisted of both uni- and multi-loculated cysts, often containing numerous septations with fluid signal characteristics. The cysts were extra-capsular with no clear communication with the joint. One patient presented with a popliteal soft tissue mass and none of the cases required surgical intervention for cyst removal. MR imaging may identify ganglion cysts arising in an intra- or extra-articular site around the knee. This series documents the MR imaging characteristics of ganglion cysts arising close to the gastrocnemius origin and discusses the relevance of this imaging finding. (orig.)

  17. File list: His.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  18. File list: His.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  19. File list: Unc.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  20. File list: Unc.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  1. File list: Unc.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  2. Ganglion Cyst Associated with Triangular Fibrocartilage Complex Tear That Caused Ulnar Nerve Compression

    Directory of Open Access Journals (Sweden)

    Ugur Anil Bingol, MD

    2015-03-01

    Full Text Available Summary: Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyonʼs canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination.

  3. File list: DNS.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  4. File list: DNS.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  5. File list: Pol.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  6. File list: Pol.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  7. File list: DNS.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  8. File list: Pol.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  9. A Comparative Analysis of Ganglion Cell Complex Parameters in ...

    African Journals Online (AJOL)

    Dr femi Oderinlo

    in the eyes, the optic nerve head, nerve fibre layer and retinal ganglion cells. Retinal ganglion cells encompass three layers ... of the macula in eyes with mild diabetic retinopathy. 8. *Correspondence: O Oderinlo, Eye Foundation ... most sensitive detection of GCC thinning. FLV provides a. 10 quantitative measure of the ...

  10. Density, proportion, and dendritic coverage of retinal ganglion cells of the common marmoset (Callithrix jacchus jacchus

    Directory of Open Access Journals (Sweden)

    F.L. Gomes

    2005-06-01

    Full Text Available We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm² at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm² at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.

  11. Ganglion cysts in the paediatric wrist: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Jennifer; Bartlett, Murray [Royal Children' s Hospital, Medical Imaging Department, Melbourne, VIC (Australia)

    2013-12-15

    The majority of published literature on ganglion cysts in children has been from a surgical perspective, with no dedicated radiologic study yet performed. Our aim was to assess the magnetic resonance (MR) imaging appearance of ganglion cysts in a series of paediatric MR wrist examinations. Ninety-seven consecutive paediatric MR wrist examinations were retrospectively reviewed for the presence of ganglion cysts. Only those studies with wrist ganglia were included. Cysts were assessed for location, size, internal characteristics and secondary effect(s). Forty-one ganglion cysts (2-32 mm in size) were seen in 35/97 (36%) patients (24 female, 11 male), mean age: 13 years 11 months (range: 6 years 3 months-18 years). The majority were palmar (63.4%) with the remainder dorsal. Of the cysts, 43.9% were related to a wrist ligament(s), 36.6% to a joint and 17.1% to the triangular fibrocartilage complex. Of the patients, 91.4% had wrist symptoms: pain (n=29, 82.9%), swelling (n=7, 20%) and/or palpable mass (n=4, 11.4%); 71.4% patients had significant additional wrist abnormalities. Ganglion cysts were frequently found in children referred for wrist MRI. (orig.)

  12. File list: Oth.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: ALL.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: ALL.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: ALL.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  16. File list: ALL.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  17. File list: Oth.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  18. File list: Oth.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  19. File list: Oth.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  20. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    Science.gov (United States)

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  1. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    Science.gov (United States)

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  2. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  3. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    Science.gov (United States)

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  4. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    Full Text Available Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%-0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr, and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.

  5. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease

    International Nuclear Information System (INIS)

    Leinsinger, G.; Teipel, S.; Pruessner, J.; Hampel, H.; Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M.

    2003-01-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with 18 FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [de

  6. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  7. Sphenopalatine ganglion neuromodulation in migraine

    DEFF Research Database (Denmark)

    Khan, Sabrina; Schoenen, Jean; Ashina, Messoud

    2014-01-01

    OBJECTIVE: The objective of this article is to review the prospect of treating migraine with sphenopalatine ganglion (SPG) neurostimulation. BACKGROUND: Fuelled by preliminary studies showing a beneficial effect in cluster headache patients, the potential of treating migraine with neurostimulation...

  8. Radiographically ossified ganglion cyst of finger in a swimmer

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J.; Anavim, A. [Department of Radiological Sciences, University of California, Orange (United States); Lin, F. [Department of Pathology, University of California, Irvine Medical Center, Orange (Canada)

    1998-12-01

    Ganglion cysts are fibrous-walled cystic lesions closely associated with joint or tendon sheaths and contain gelatinous mucinous fluid. The radiographic appearance is usually normal. Calcification or ossification in these cysts is extremely unusual. We report on an unusual appearing ganglion cyst of the little finger in a swimmer with ossification resembling myositis ossificans. (orig.) With 3 figs., 8 refs.

  9. File list: NoD.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: NoD.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: NoD.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: NoD.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  13. Electromagnetic solitons in degenerate relativistic electron–positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V I; Shatashvili, N L; Tsintsadze, N L

    2015-01-01

    The existence of soliton-like electromagnetic (EM) distributions in a fully degenerate electron–positron plasma is studied applying relativistic hydrodynamic and Maxwell equations. For a circularly polarized wave it is found that the soliton solutions exist both in relativistic as well as nonrelativistic degenerate plasmas. Plasma density in the region of soliton pulse localization is reduced considerably. The possibility of plasma cavitation is also shown. (invited comment)

  14. File list: InP.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: InP.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  16. File list: InP.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  17. File list: InP.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  18. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  19. Petrosal Ganglion: a more complex role than originally imagined.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-12-01

    Full Text Available The petrosal ganglion is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties petrosal ganglion neurons can be ascribed to one of two categories: i neurons with action potentials presenting an inflection (hump on its repolarizing phase and ii neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite cells that prevents the formation of chemical or electrical synapses between neurons. Thus, petrosal ganglion neurons are regarded as mere wires that communicate the periphery (i.e., carotid body and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of petrosal ganglion neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  20. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    Science.gov (United States)

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-04-13

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  1. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  2. MR-guided perineural injection of the ganglion impar: technical considerations and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Marker, David R.; Carrino, John A.; Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Baltimore, MD (United States); U-Thainual, Paweena [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Ungi, Tamas; Fichtinger, Gabor [Queen' s University, School of Computing, Kingston, ON (Canada); Flammang, Aaron J. [Siemens Corporate Research, Center for Applied Medical Imaging, Baltimore, MD (United States); Iordachita, Iulian I. [Johns Hopkins University, Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Baltimore, MD (United States)

    2016-05-15

    Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation. (orig.)

  3. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Warfvinge, K; Kruse, L S

    2016-01-01

    modify the neurogenic inflammatory response in the trigeminal ganglion. METHODS: Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were...... investigated using immunohistochemistry and Western blot. FINDINGS: Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. CONCLUSIONS......: This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates....

  4. Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans

    Directory of Open Access Journals (Sweden)

    Živković Vladimir

    2008-01-01

    Full Text Available Background/Aim. Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC (postganglionic sympathetic cell bodies of superior cervical ganglion in humans during ageing. Methods. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive sections 5 μm thick were made and stained with hematoxylin and eosin method (HE, silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Results. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent, unipolar type (lipofuscin granules were grouped at the end of the cell, bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell, annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one. Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells

  5. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  6. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  7. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  8. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  9. Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury.

    Science.gov (United States)

    Akiyama, Goichi; Azuchi, Yuriko; Guo, Xiaoli; Noro, Takahiko; Kimura, Atsuko; Harada, Chikako; Namekata, Kazuhiko; Harada, Takayuki

    2017-09-01

    To assess the therapeutic potential of edaravone, a free radical scavenger that is used for the treatment of acute brain infarction and amyotrophic lateral sclerosis, in a mouse model of optic nerve injury (ONI). Two microliters of edaravone (7.2 mM) or vehicle were injected intraocularly 3 minutes after ONI. Optical coherence tomography, retrograde labeling of retinal ganglion cells (RGCs), histopathology, and immunohistochemical analyses of phosphorylated apoptosis signal-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinase (MAPK) in the retina were performed after ONI. Reactive oxygen species (ROS) levels were assessed with a CellROX Green Reagent. Edaravone ameliorated ONI-induced ROS production, RGC death, and inner retinal degeneration. Also, activation of the ASK1-p38 MAPK pathway that induces RGC death following ONI was suppressed with edaravone treatment. The results of this study suggest that intraocular administration of edaravone may be a useful treatment for posttraumatic complications.

  10. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  11. Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties

    Directory of Open Access Journals (Sweden)

    Romain Bachy

    2014-12-01

    Full Text Available We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.

  12. Tibial nerve intraneural ganglion cyst in a 10-year-old boy

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Judy H. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati, OH (United States); Emery, Kathleen H.; Johnson, Neil [Cincinnati Children' s Hospital Medical Center, Division of Radiology, Cincinnati, OH (United States); Sorger, Joel [Cincinnati Children' s Hospital Medical Center, Division of Orthopedics, Cincinnati, OH (United States)

    2014-04-15

    Intraneural ganglion cysts are uncommon cystic lesions of peripheral nerves that are typically encountered in adults. In the lower extremity, the peroneal nerve is most frequently affected with involvement of the tibial nerve much less common. This article describes a tibial intraneural ganglion cyst in a 10-year-old boy. Although extremely rare, intraneural ganglion cysts of the tibial nerve should be considered when a nonenhancing cystic structure with intra-articular extension is identified along the course of the nerve. This report also details the unsuccessful attempt at percutaneous treatment with US-guided cyst aspiration and steroid injection, an option recently reported as a viable alternative to open surgical resection. (orig.)

  13. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis.

    Science.gov (United States)

    Erlich-Malona, Natalie; Mendoza-Santiesteban, Carlos E; Hedges, Thomas R; Patel, Nimesh; Monaco, Caitlin; Cole, Emily

    2016-12-01

    To determine whether a pattern of altitudinal ganglion cell loss, as detected and measured by optical coherence tomography (OCT), can be used to distinguish non-arteritic ischaemic optic neuropathy (NAION) from optic neuritis (ON) during the acute phase, and whether the rate or severity of ganglion cell loss differs between the two diseases. We performed a retrospective, case-control study of 44 patients (50 eyes) with ON or NAION and 44 age-matched controls. Non-arteritic ischaemic optic neuropathy and ON patients had OCT at presentation and four consecutive follow-up visits. Controls had OCT at one point in time. The ganglion cell complex (GCC) was evaluated in the macula, and the retinal nerve fibre layer (RNFL) was evaluated in the peripapillary region. Ganglion cell complex thickness, RNFL thickness and GCC mean superior and inferior hemispheric difference were compared between NAION and ON patients at each time-point using unpaired t-tests and between disease and control subjects at first measurement using paired t-tests. Mean time from onset of symptoms to initial presentation was 10.7 ± 6.6 days in NAION and 11.7 ± 8.6 days in ON (p = 0.67). There was a significantly greater vertical hemispheric difference in GCC thickness in NAION patients than ON patients at all time-points (5.5-10.7 μm versus 3.1-3.6 μm, p = 0.01-0.049). Mean GCC thickness was significantly decreased at less than 2 weeks after onset in NAION compared to age-matched controls (72.1 μm versus 82.1 μm, p < 0.001), as well as in ON compared to age-matched controls (74.3 μm versus 84.5 μm, p < 0.001). Progression and severity of GCC and RNFL loss did not differ significantly between NAION and ON. A quantitative comparison of mean superior and inferior hemispheric GCC thickness with OCT may be used to distinguish NAION from ON. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    Science.gov (United States)

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  15. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models.

    Science.gov (United States)

    Tan, Pan-Pan; Yuan, Hai-Hong; Zhu, Xu; Cui, Yong-Yao; Li, Hui; Feng, Xue-Mei; Qiu, Yu; Chen, Hong-Zhuan; Zhou, Wei

    2014-03-01

    Muscarinic acetylcholine receptor agonist pilocarpine reduces intraocular pressure (IOP) of glaucoma mainly by stimulating ciliary muscle contraction and then increasing aqueous outflow. It is of our great interest to know whether pilocarpine has the additional properties of retinal neuroprotection independent of IOP lowering in vitro and in vivo models. In rat primary retinal cultures, cell viability was measured using an MTT assay and the trypan blue exclusion method, respectively. Retinal ganglion cells (RGCs) were identified by immunofluorescence and quantified by flow cytometry. For the in vivo study, the retinal damage after retinal ischemia/reperfusion injury in rats was evaluated by histopathological study using hematoxylin and eosin staining, transmission electron microscopy, and immunohistochemical study on cleaved caspase-3, caspase-3, and ChAT. Pretreatment of pilocarpine attenuated glutamate-induced neurotoxicity of primary retinal neurons in a dose-dependent manner. Protection of pilocarpine in both retinal neurons and RGCs was largely abolished by the nonselective muscarinic receptor antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. After ischemia/reperfusion injury in retina, the inner retinal degeneration occurred including ganglion cell layer thinning and neuron lost, and the optic nerve underwent vacuolar changes. These degenerative changes were significantly lessened by topical application of 2% pilocarpine. In addition, the protective effect of pilocarpine on the ischemic rat retina was favorably reflected by downregulating the expression of activated apoptosis marker cleaved caspase-3 and caspase-3 and upregulating the expression of cholinergic cell marker ChAT. Taken together, this highlights pilocarpine through the activation of muscarinic receptors appear to afford significant protection against retinal neurons damage and optic nerve degeneration at clinically relevant concentrations. These data also

  16. Posterior Lattice Degeneration Characterized by Spectral Domain Optical Tomography

    OpenAIRE

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G.; Duker, Jay S.

    2011-01-01

    PURPOSE: To utilize high-resolution spectral domain optical coherence tomography (SD-OCT) in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. METHODS: A cross-sectional, retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. SD-OCT images taken through the region of latti...

  17. Ganglion of the Flexor Tendon Sheath at the A2 Pulley - Case Report

    Directory of Open Access Journals (Sweden)

    P Gunaseelan

    2015-03-01

    Full Text Available There are few reported cases of flexor tendon sheath ganglion arising from the A2 pulley. We report a case of a flexor tendon sheath ganglion in a 17-year old female who presented with pain, triggering and a swelling at the base of her right ring finger. During the excision biopsy, a ganglion measuring 0.5×0.8×0.4 cm in size was removed from the A2 pulley area.

  18. Effect of Extracellular Zinc Chelator on Rat Retinal Ganglion Cell Number, and Taurine and Zinc Transporters in These Cells

    Directory of Open Access Journals (Sweden)

    Asarí Márquez García

    2017-05-01

    Full Text Available Zinc deficiency in humans causes decreased antioxidants in the retina and is related with abnormal darkness adaptation, cataracts, blindness, and macular degeneration. There is little information about the effects of zinc on the taurine system in mammalian retinal cells. Therefore, we studied the effect of zinc on the taurine transporter (TAUT and zinc transporters (ZnT-1 and 3 using the extracellular zinc chelator, diethylenetriaminepentaacetic acid (DTPA by fluorescence immunocytochemistry and immunohistochemistry in the ganglion cells (CG and cell layers of the retina of rats. Three days after administration of DTPA (10µM primary antibodies and secondary antibodies conjugated with rhodamine or fluorescein isothiocyanate (FITC were used as required. For immunocytochemical labeling approximately three hundred cells per condition were counted. For immunohistochemical labeling, the fluorescence intensity was measured as integrated optical density (DOI in four areas for each layer of tissue. DTPA produced a decrease of 32 % and 29 % in GC of the total cells labeled with antibody against glycoprotein Thy 1.1 and γ-synuclein, respectively. It also produced a significant decrease in TAUT localization in 27 and 28 % compared to controls. DTPA produced a decrease in the localization of ZnT-1 and ZnT-3 in the retina layers (ganglion cells, GCC and the outer and inner plexiform, CEP and CIP. The study of these molecules in the retina is relevant to understanding the interactions of taurine and zinc in this structure.

  19. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    Science.gov (United States)

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  20. MRI diagnosis of soft ganglion cyst in the foot and ankle

    International Nuclear Information System (INIS)

    Zhang Zhaohui; Liang Manqiu; Li Zhuhao

    2011-01-01

    Objective: To explore the clinical and MR imaging features of soft tissue ganglion cyst in the foot and ankle. Methods: Clinical and MR imaging data of 12 patients (male to female ratio 1:5, mean age 47 years) with soft tissue ganglion cysts in the feet and ankles were retrospectively analyzed. Results: The 12 ganglion cysts were located near the first metatarsophalangeal joint (2), in the medial dorsum of foot (4), in the ankle (5) and in the heel (1). Compared with muscle, all lesions showed homogeneous slight T 1 hypointensity and T 2 hyperintensity with thin mural enhancement following the injection of Gd-DTPA. Ten cases were multilocular, and 5 showed mild pericystic edema. Conclusion: Soft tissue ganglion cyst of the foot and ankle are more common in middle aged women. They are frequently located in the ankle and medial dorsum of foot. On MRI they usually appear as multilocular cysts with homogeneous slightly low signal intensity relative to muscle on T 1 WI, high signal intensity on T 2 WI and contrast enhancement of the thin wall. (authors)

  1. The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis.

    Science.gov (United States)

    Grober, M S; Bass, A H; Burd, G; Marchaterre, M A; Segil, N; Scholz, K; Hodgson, T

    1987-12-08

    Immunocytochemistry and retrograde horseradish peroxidase (HRP) transport were used to study the ganglion of the nervus terminalis in the American eel, Anguilla rostrata. Luteinizing hormone releasing hormone (LHRH) like immunoreactivity was found in large, ganglion-like cells located ventromedially at the junction of the telencephalon and olfactory bulb and in fibers within the retina and olfactory epithelium. HRP transport from the retina demonstrated direct connections with both the ipsi- and contralateral populations of these ganglion-like cells. Given the well-documented role of both olfaction and vision during migratory and reproductive phases of the life cycle of eels, the robust nature of a nervus terminalis system in these fish may present a unique opportunity to study the behavioral correlates of structure-function organization in a discrete population of ganglion-like cells.

  2. X-ray and CT diagnosis of intraosseous ganglion

    International Nuclear Information System (INIS)

    Gong Xiangyang; Zhang Weimin; Yan Shigui

    2002-01-01

    Objective: To investigate the pathogenesis, clinical manifestations, imaging features, and differential diagnosis of intraosseous ganglion. Methods: Clinical and imaging features of 15 cases (5 men, 10 women; mean age 39.7 years) with intraosseous ganglia were retrospectively analyzed. There were 17 lesions, including 6 acetabular, 4 lunate, 3 proximal ends of tibia, 1 major tuberculum of humeral, 1 femoral head, 1 scaphoid, and 1 phalange. Results: ( 1 ) Common radiological features included a unilocular or multilocular cyst surrounded by a full and thin rim of sclerotic: bone in the subchondral epiphysis without any signs of degenerative joint disease. (2) Lesions were displayed as well-defined round radiolucent defect or multi-cystic changes with surrounding bony sclerosis or cystic and expansile change with irregular shape on CT scans. (3) CT showed an intraosseous ganglion communicating with adjacent joint in 1 patient. (4) CT values of the lesions were between 15 - 80 HU. (5) Gas in the cyst could be seen in 3 cases. Conclusion: Combined with patient's age, lesion distribution, clinical manifestations, and imaging features, it is possible to make a correct diagnosis of intraosseous ganglion

  3. The molecular basis of retinal ganglion cell death in glaucoma.

    Science.gov (United States)

    Almasieh, Mohammadali; Wilson, Ariel M; Morquette, Barbara; Cueva Vargas, Jorge Luis; Di Polo, Adriana

    2012-03-01

    Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection. Copyright © 2011. Published by Elsevier Ltd.

  4. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Directory of Open Access Journals (Sweden)

    Rastrilla Ana M

    2006-12-01

    Full Text Available Abstract Background Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1 the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2 the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3 the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. Methods The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1 noradrenaline in the ganglion compartment; 2 LH in the ovarian compartment; and 3 noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline was also measured in the ovarian compartment by HPLC. Results The most relevant result concerning the action of noradrenaline in the celiac ganglion

  5. Assessment of Intervertebral Disc Degeneration With Magnetic Resonance Single-Voxel Spectroscopy

    Science.gov (United States)

    Zuo, Jin; Saadat, Ehsan; Romero, Adan; Loo, Kimberly; Li, Xiaojuan; Link, Thomas M.; Kurhanewicz, John; Majumdar, Sharmila

    2014-01-01

    This study examined the feasibility of using short-echo water-suppressed point-resolved spectroscopy (PRESS) on a clinical 3T magnetic resonance (MR) scanner for evaluating biochemical changes in degenerated bovine and cadaveric human inter-vertebral discs. In bovine discs (N = 17), degeneration was induced with papain injections. Degeneration of human cadaveric discs (N = 27) was assessed using the Pfirrmann grading on T2-weighted images. Chemicals in the carbohydrate region (Carb), the choline head group (Cho), the N-acetyl region (N-acetyl), and the lipid and lactate region (Lac+Lip) were quantified using 1H PRESS, and were compared between specimens with different degrees of degeneration. The correlation between the spectroscopic findings and glycosaminoglycan (GAG) quantification using biochemical assays was determined. Significant differences were found between the ratios (N-acetyl/Cho, N-acetyl/Lac+Lip) acquired before and after papain injection in bovine discs. For human cadaveric discs, significant differences in the ratios (N-acetyl/Carb, N-acetyl/Lac+Lip) were found between discs having high and low Pfirrmann scores. Significant correlations were found between N-acetyl/Lac+Lip and GAG content in bovine discs (R = 0.77, P = 0.0007) and cadaveric discs (R = 0.83, P < 0.0001). Significant correlation between N-acetyl/Cho and GAG content was also found in cadaver discs (R = 0.64, P = 0.0039). This study demonstrates for the first time that short-echo PRESS on a clinical 3T MR scanner can be used to noninvasively and can reproducibly quantify metabolic changes associated with degeneration of intervertebral discs. PMID:19780173

  6. Target recognition and synapse formation by ciliary-ganglion neurons in tissue culture

    NARCIS (Netherlands)

    Stevens, W.F.; Slaaf, D.W.; Hooisma, J.; Magchielse, T.; Meeter, E.

    1978-01-01

    A less complicated source of neurons suitable for this type of studies is the parasympathetic ciliary ganglion. In the pigeon and in the chick this ganglion is known to contain only two classes of neurons, both of which are cholinoceptive and cholinergic and that innervate the muscle fibres of the

  7. An autoradiographic analysis of the development of the chick trigeminal ganglion

    International Nuclear Information System (INIS)

    Amico-Martel, A.D; Noden, D.M.

    1980-01-01

    The avian trigeminal ganglion, which is embryonically derived from the neural crest and epidermal placodes, consists of two topographically segregated classes of immature neurons, large and small, during the second week of incubation, and two neuronal cell types, dark and light, interspersed throughout the mature ganglion. In order to establish the times of terminal mitosis of trigeminal sensory neurons, embryos were treated with [ 3 H]thymidine during the first week of incubation and their ganglia fixed on embryonic day 11. The embryonically large, distal, placodal-derived neurons were generated between days 2 and 5, while the small, proximal, neural crest-derived neurons were formed mostly between days 4 and 7. By comparing the locations of labelled cells in ganglia treated with isotope but fixed on day 18 on incubation with their 11-day counterparts, it was shown that there are no morpho-genetic rearrangements of neurons during the final week of incubation. Thus, no unique relationship exists between the two neuron types in the mature ganglion and the two cell classes in the immature trigeminal. Therefore, both the light and the dark neurons in the mature trigeminal ganglion arise from neural crest as well as placodal primordia. (author)

  8. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification.

    Directory of Open Access Journals (Sweden)

    Takashi Ohnishi

    Full Text Available Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region.

  9. Ganglion impar block in patients with chronic coccydynia

    Directory of Open Access Journals (Sweden)

    Nitesh Gonnade

    2017-01-01

    Full Text Available Introduction: Coccydynia refers to pain in the terminal segment of the spinecaused by abnormal sitting and standing posture. Coccydynia is usually managed conservatively, however in nonresponsive patients, ganglion impar block is used as a good alternate modality for pain relief. This article studies the effect of ganglion impar block in coccydynia patients who were not relieved by conservative management. Materials and Methods: The study was carried out at the pain clinic in the departments of Physical Medicine and Rehabilitation and Radiology in a tertiary centre in India.It was a prospective hospital-based study, in which 35 patients with coccydynia were considered for fluoroscopy-guided trans-sacro-coccygeal ganglion impar block. The outcome assessment was done using Numerical Rating Scale (NRS and Oswestry Disability Index (ODI scores for a follow-up period of 6 months. Of the 35 patients, 4 were lost to follow-up. Analysis was done usingthe data from the remaining 31 patients. Results: The mean age of the patients suffering from chronic coccydynia was 42.9 ± 8.39 years, and patients' age range was 28–57 years. The mean score of NRS and ODI before the procedure was 7.90 ± 0.16 and 48.97 ± 1.05, respectively. The interquartile range (IQR of NRS score remained almost unchanged during pre and postprocedure, however, IQR of ODI varied during the pre and post procedural events. The NRS and ODI scores immediately after the procedure decreased drastically showing significant pain relief in patients, and the difference of scores till the end of study was statistically significant. Conclusion: This study recommends the trans-sacro-coccygeal “needle inside needle” technique for local anesthetic block of the ganglion impar for pain relief in patients with coccydynia. This should be integrated with rehabilitative measures including ergonomical modification for prolonging pain free period.

  10. Ganglionic cysts related to the scapula: MR findings

    International Nuclear Information System (INIS)

    Jeong, Ae Kyeong; Kim, Sung Moon; Kim, Kyung Sook; Shin, Myung Jin; Chun, Jae Myeung; Ahn, Joong Mo

    1999-01-01

    To evaluate the magnetic resonance (MR) imaging characteristics of ganglionic cysts related to the scapula. We retrospectively reviewed 15 ganglionic cysts diagnosed by MR imaging in 14 patients who subsequently underwent surgical excision (n=8) or needle aspiration (n=1). Five other patients whose lesion-related symptoms were not too severe to manage underwent conservative treatment. We analyzed MR findings with regard to the size, shape and presence of internal septa, the location and signal intensity of the lesion, and associated findings such as change of rotator cuff muscle, labral tear and bone erosion. We also evaluated the presence of tear of rotator cuff tendon, tendinosis, and subacromial enthesophyte. The diameter of ganglionic cysts was 0.5-5.5 (mean, 2.8)cm, and they were round (n=2), ovoid (n=6), or elongated (n=7). Where internal septa were present (n=13), cysts were lobulated. Lesions were located in both scapular and spinoglenoid notches (n=9), only in the scapular notch (n=2), only in the spinoglenoid notch (n=2) or within the bone (n=2). In eleven cases they were very close to the superoposterior aspect of the glenoid labrum (n=11). On T1-weighted images, all lesions were seen to be iso- or hypointense to muscle, while on T2-weighted images, they were hyperintense, resembling joint fluid (n=14), except in one patient with hemorrhage. Associated findings were edema of the infraspinatus muscle (n=4), pressure erosion of the scapular neck (n=1), and labral tear (n=1). A torn supraspinatus tendon (n=2), supraspinatus tendinosis (n=3), and subacromial enthesophyte (n=2) were also present. MR imaging was helpful in diagnosing ganglionic cysts and detecting associated lesions

  11. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes.

    Directory of Open Access Journals (Sweden)

    Sun Young Kim

    Full Text Available Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains.

  12. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  13. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    Science.gov (United States)

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  14. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    Science.gov (United States)

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  15. Enteric Neuron Imbalance and Proximal Dysmotility in Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse ModelSummary

    Directory of Open Access Journals (Sweden)

    Melissa A. Musser

    2015-01-01

    Full Text Available Background & Aims: In Hirschsprung disease (HSCR, neural crest-derived progenitors (NCPs fail to completely colonize the intestine so that the enteric nervous system is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. Methods: Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wild-type controls. Results: Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as calretinin+ and neuronal nitric oxide synthase (nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4 weeks of age; at 6 weeks of age, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6 weeks of age had little or no colonic inflammation when compared with wild-type littermates, suggesting that these changes in gastrointestinal motility are neurally mediated. Conclusions: The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects gastrointestinal motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification. Keywords: Aganglionosis, Enteric Nervous System, Neural Crest

  16. Kinematic control of robot with degenerate wrist

    Science.gov (United States)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  17. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  18. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Teppei Noda

    2018-02-01

    Full Text Available Primary auditory neurons (PANs play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs, comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs. The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.

  19. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-05-01

    Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ganglion block. When and how?

    International Nuclear Information System (INIS)

    Bale, R.

    2015-01-01

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [de

  1. Expression of Fos protein in the rat central nervous system in response to noxious stimulation: effects of chronic inflammation of the superior cervical ganglion

    Directory of Open Access Journals (Sweden)

    Laudanna A.

    1998-01-01

    Full Text Available The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

  2. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    La Morgia, C; Ross-Cisneros, F.N.; Sadun, A.A.

    2010-01-01

    Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal...... ganglion cells containing the photopigment melanopsin. These cells give origin to the retinohypothalamic tract and support the non-image-forming visual functions of the eye, which include the photoentrainment of circadian rhythms, light-induced suppression of melatonin secretion and pupillary light reflex...... subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case...

  3. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Directory of Open Access Journals (Sweden)

    Lin Yanhua

    2012-02-01

    Full Text Available Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD and retinitis pigmentosa (RP, are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2 subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD. We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1 and postsynaptic density protein 95 (PSD-95, were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.

  4. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis

    Directory of Open Access Journals (Sweden)

    Brambilla Roberta

    2012-09-01

    Full Text Available Abstract Background Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis. Methods To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE. Results We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction. On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(PH oxidase subunit upregulation. Conclusions Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription

  5. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  6. Polarization-resolved degenerate four-wave mixing of CdS nanocrystals in a nonresonant region

    International Nuclear Information System (INIS)

    Ma, S.M.; Seo, J.T.; Yang, Q.; Creemore, L.; Battle, R.; Tabibi, B.; Yu, W.

    2006-01-01

    The third-order susceptibilities of various concentrations of TOPO-passivated CdS nanocrystals (NCs) with the size near the Bohr radius were investigated using polarization-resolved degenerate four-wave mixing (DFWM) in a nonresonant excitation region with 532 nm wavelength and 8 ns pulse width. The second hyperpolarizabilities left angle γ h xxxx right angle and left angle γ h xyyx right angle of the CdS NCs were ∝1.25 x 10 -42 m 5 /V 2 and ∝3.66 x 10 -43 m 5 /V 2 , respectively. The ratio (left angle γ h xyyx right angle / left angle γ h xxxx right angle) of the hyperpolarizabilities was ∝0.29 that indicated a large contribution of electronic polarization process to the third-order nonlinearity of CdS NCs. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  8. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    Science.gov (United States)

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  9. 4-Repeat Tauopathy Neuroimaging Initiative - Cycle 2

    Science.gov (United States)

    2018-05-01

    Corticobasal Degeneration (CBD); Corticobasal Syndrome (CBS); Cortical-basal Ganglionic Degeneration (CBGD); Progressive Supranuclear Palsy (PSP); Nonfluent Variant Primary Progressive Aphasia (nfvPPA); Oligosymptomatic/Variant Progressive Supranuclear Palsy (o/vPSP)

  10. Melanopsin retinal ganglion cell loss in Alzheimer's disease

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Koronyo, Yosef

    2015-01-01

    OBJECTIVE: Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer's disease (AD). We investigated mRGCs in AD, hypothesizing their contribution to circadian dysfunction. METHODS: We assessed retinal nerve...

  11. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    Science.gov (United States)

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  12. Macular degeneration (image)

    Science.gov (United States)

    ... macula in the back of the eye. The macula is important for clear central vision, allowing an individual to see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  13. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  14. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  15. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    Science.gov (United States)

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  16. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  17. MR imaging of central nervous system white matter tract degeneration (Wallerian degeneration)

    International Nuclear Information System (INIS)

    Kuhn, M.J.; Johnson, K.A.; Davis, K.R.

    1987-01-01

    Wallerian degeneration is readily demonstrated by MR imaging. Twenty-one patients with MR signal abnormalities in various central nervous system (CNS) white matter tracts were evaluated with regard to (1) nature of signal abnormality, (2) MR anatomy of the involved tract, and (3) primary pathology (e.g., infarct, tumor, hemorrhage). Most examples of wallerian degeneration result in a thin, continuous band of long T1, long T2 signal abnormality conforming to the known anatomic pathway of a CNS axonal tract. Old, large cortical infarcts have the greatest propensity to show subsequent white-matter tract degeneration. Corticospinal tract degeneration is the type most readily visualized, often seen extending completely from the cerebral cortex through the medulla

  18. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off

  19. Ganglion cysts of the cruciate ligaments: a series of 31 cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Mao Yongtao

    2012-08-01

    Full Text Available Abstract Background A case series for ganglion cyst of the cruciate ligament with MRI findings, clinical presentation, and management options along with review of literature is presented. Methods Of 8663 consecutive patients referred for knee MR imaging, 31 were diagnosed with ganglion cysts of the cruciate ligaments, including 21 men and 10 women of ages 12 to 73 years (mean: 37. A review of charts revealed that knee pain was the chief complaint in all cases. Arthroscopic debridement of ganglion cyst was performed in 11 patients. Results MRI proved to be a valuable tool in diagnosing and deciding management of these cases. All 11 patients who underwent arthroscopic treatment were symptom-free on a minimum follow-of one year. Conclusion Cyst formation associated with cruciate ligament of the knee is an infrequent cause of knee pain. MR imaging was important in confirming the cyst lesions and provided useful information prior to arthroscopy. Arthroscopic debridement of ganglion cyst produced excellent outcome without recurrence. This study describes the pertinent MRI and intraoperative findings of ganglion cyst.

  20. Revalidation of a modified and safe approach of stellate ganglion block

    Directory of Open Access Journals (Sweden)

    Ashok Jadon

    2011-01-01

    Full Text Available Stellate ganglion block (SGB is very effective in management of chronic regional pain syndrome (CRPS-1. However, serious complication may occur due to accidental intravascular (intra-arterial injection of local anaesthetic agents. Abdi and others, has suggested a modified technique in which fluoroscopy-guided block is given at the junction of uncinate process and body of vertebra at C7 level. In this approach vascular structures remain away from the trajectory of needle and thus avoid accidental vascular injection. We have used this technique of SGB in nine patients who were treated for CRPS-I. The blocks were effective in all the patients all the time without any vascular or other serious complication.

  1. An iterative method for selecting degenerate multiplex PCR primers.

    Science.gov (United States)

    Souvenir, Richard; Buhler, Jeremy; Stormo, Gary; Zhang, Weixiong

    2007-01-01

    Single-nucleotide polymorphism (SNP) genotyping is an important molecular genetics process, which can produce results that will be useful in the medical field. Because of inherent complexities in DNA manipulation and analysis, many different methods have been proposed for a standard assay. One of the proposed techniques for performing SNP genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. To automate a portion of this particular method, it is necessary to select a set of primers for the experiment. Selecting these primers can be formulated as the Multiple Degenerate Primer Design (MDPD) problem. The Multiple, Iterative Primer Selector (MIPS) is an iterative beam-search algorithm for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared with the limits of degenerate primer design. Furthermore, MIPS outperforms an existing algorithm that was designed for a related degenerate primer selection problem.

  2. Pseudotumoral ganglion cyst of a finger with unexpected remote origin: multimodality imaging

    International Nuclear Information System (INIS)

    Bouilleau, Loic; Malghem, Jacques; Omoumi, Patrick; Simoni, Paolo; Vande Berg, Bruno C.; Lecouvet, Frederic E.; Barbier, Olivier

    2010-01-01

    The case of a ganglion cyst in the pulp of a fifth finger in an elderly woman initially mimicking a soft tissue tumor is described. Most typical sites of ganglion cysts are well documented at the wrist and in the vicinity of inter-phalangeal and metacarpo-phalangeal joints. In this case, ultrasonography (US) and magnetic resonance imaging (MRI) demonstrated a cystic lesion within the pulp of the fifth finger and indicated carpal osteoarthritis as the distant - and unexpected - origin of the lesion. The suggested diagnosis of ganglion cyst was confirmed by computed tomography arthrography (CT arthrography) of the wrist, which showed opacification of the cyst on delayed acquisitions after intra-articular injection into the mid-carpal joint, through the fifth flexor digitorum tendon sheath. The communications between the degenerative carpal joint, the radio-ulnar bursa, the fifth flexor digitorum tendon sheath and the pedicle of the cyst were well demonstrated. (orig.)

  3. Retinal genes are differentially expressed in areas of primary versus secondary degeneration following partial optic nerve injury.

    Directory of Open Access Journals (Sweden)

    Wissam Chiha

    Full Text Available Partial transection (PT of the optic nerve is an established experimental model of secondary degeneration in the central nervous system. After a dorsal transection, retinal ganglion cells (RGCs with axons in ventral optic nerve are intact but vulnerable to secondary degeneration, whereas RGCs in dorsal retina with dorsal axons are affected by primary and secondary injuries. Using microarray, we quantified gene expression changes in dorsal and ventral retina at 1 and 7 days post PT, to characterize pathogenic pathways linked to primary and secondary degeneration.In comparison to uninjured retina Cryba1, Cryba2 and Crygs, were significantly downregulated in injured dorsal retina at days 1 and 7. While Ecel1, Timp1, Mt2A and CD74, which are associated with reducing excitotoxicity, oxidative stress and inflammation, were significantly upregulated. Genes associated with oxygen binding pathways, immune responses, cytokine receptor activity and apoptosis were enriched in dorsal retina at day 1 after PT. Oxygen binding and apoptosis remained enriched at day 7, as were pathways involved in extracellular matrix modification. Fewer changes were observed in ventral retina at day 1 after PT, most associated with the regulation of protein homodimerization activity. By day 7, apoptosis, matrix organization and signal transduction pathways were enriched. Discriminant analysis was also performed for specific functional gene groups to compare expression intensities at each time point. Altered expression of selected genes (ATF3, GFAP, Ecel1, TIMP1, Tp53 and proteins (GFAP, ECEL1 and ATF3 were semi-quantitatively assessed by qRT-PCR and immunohistochemistry respectively.There was an acute and complex primary injury response in dorsal retina indicative of a dynamic interaction between neuroprotective and neurodegenerative events; ventral retina vulnerable to secondary degeneration showed a delayed injury response. Both primary and secondary injury resulted in the

  4. Enlarged superior cervical sympathetic ganglion mimicking a metastatic lymph node in the retropharyngeal space: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Jin Na; Kim, Se Hoon; Choi, Eun Chang [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The superior cervical sympathetic ganglion, the largest and most cranial of the three cervical sympathetic ganglia, transfers sympathetic signals to specific targets on the head and neck. This ganglion is located just lateral to the retropharyngeal space along the medial margin of the carotid sheath. Located thus, an enlarged superior cervical sympathetic ganglion can mimic a metastatic lymph node in the retropharyngeal space of the suprahyoid neck in head and neck cancer patients. However, this is often disregarded by radiologists due to lack of interest in its anatomic location. We present a case of an enlarged superior cervical sympathetic ganglion mimicking a retropharyngeal metastatic lymph node in a 42-year-old man with oral tongue cancer.

  5. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2007-03-01

    Full Text Available Abstract Background Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease. To determine if genetic background influences susceptibility to optic nerve damage, leading to ganglion cell death, we performed optic nerve crush on 15 different inbred lines of mice and measured ganglion cell loss. Resistant and susceptible strains were used in a reciprocal breeding strategy to examine the inheritance pattern of the resistance phenotype. Because earlier studies had implicated Bax as a susceptibility allele for ganglion cell death in the chronic neurodegenerative disease glaucoma, we conducted allelic segregation analysis and mRNA quantification to assess this gene as a candidate for the cell death phenotype. Results Inbred lines showed varying levels of susceptibility to optic nerve crush. DBA/2J mice were most resistant and BALB/cByJ mice were most susceptible. F1 mice from these lines inherited the DBA/2J phenotype, while N2 backcross mice exhibited the BALB/cByJ phenotype. F2 mice exhibited an intermediate phenotype. A Wright Formula calculation suggested as few as 2 dominant loci were linked to the resistance phenotype, which was corroborated by a Punnett Square analysis of the distribution of the mean phenotype in each cross. The levels of latent Bax mRNA were the same in both lines, and Bax alleles did not segregate with phenotype in N2 and F2 mice. Conclusion Inbred mice show different levels of resistance to optic nerve crush. The resistance phenotype is heritable in a dominant fashion involving

  6. What Is Age-Related Macular Degeneration?

    Science.gov (United States)

    ... Eye Health / Eye Health A-Z Age-Related Macular Degeneration Sections What Is Macular Degeneration? How is AMD ... What Does Macular Degeneration Look Like? What Is Macular Degeneration? Leer en Español: ¿Qué es la degeneración macular ...

  7. [Progression of nerve fiber layer defects in retrobulbar optic neuritis by the macular ganglion cell complex].

    Science.gov (United States)

    Hong, D; Bosc, C; Chiambaretta, F

    2017-11-01

    Recent studies with SD OCT had shown early axonal damage to the macular ganglion cell complex (which consists of the three innermost layers of the retina: Inner Plexiform Layer [IPL], Ganglion Cell Layer [GCL], Retinal Nerve Fibre layer [RNFL]) in optic nerve pathology. Retrobulbar optic neuritis (RBON), occurring frequently in demyelinating diseases, leads to atrophy of the optic nerve fibers at the level of the ganglion cell axons, previously described in the literature. The goal of this study is to evaluate the progression of optic nerve fiber defects and macular ganglion cell complex defects with the SPECTRALIS OCT via a reproducible method by calculating a mean thickness in each quadrant after an episode of retrobulbar optic neuritis. This is a prospective monocentric observational study including 8 patients at the Clermont-Ferrand university medical center. All patients underwent ocular examination with macular and disc OCT analysis and a Goldmann visual field at the time of inclusion (onset or recurrence of RBON), at 3 months and at 6 months. Patients were 40-years-old on average at the time of inclusion. After 6 months of follow-up, there was progression of the atrophy of the macular ganglion cell complex in the affected eye on (11.5% or 11μm) predominantly inferonasally (13.9% or 16μm) and superonasally (12.9% or 14μm) while the other eye remained stable. The decrease in thickness occurred mainly in the most internal 3 layers of the retina. On average, the loss in thickness of the peripapillary RNFL was predominantly inferotemporal (24.9% or 39μm) and superotemporal (21.8% or 28μm). In 3 months of progression, the loss of optic nerve fibers is already seen on macular and disc OCT after an episode of RBON, especially in inferior quadrants in spite of the improvement in the Goldmann visual field and visual acuity. Segmentation by quadrant was used here to compare the progression of the defect by region compared to the fovea in a global and reproducible

  8. Splitting deformations of degenerations of complex curves towards the classification of atoms of degenerations

    CERN Document Server

    2006-01-01

    The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from the singular fiber. These "barking deformations" are related to deformations of surface singularities (in particular, cyclic quotient singularities) as well as the mapping class groups of Riemann surfaces (complex curves) via monodromies. Important applications, such as the classification of atomic degenerations, are also explained.

  9. Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas

    Science.gov (United States)

    Mamun, A. A.

    2018-02-01

    The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.

  10. A Learning Model for L/M Specificity in Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  11. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    Science.gov (United States)

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  12. Anterior cruciate ligament ganglion: case report

    Directory of Open Access Journals (Sweden)

    André Pedrinelli

    Full Text Available CONTEXT: A ganglion is a cystic formation close to joints or tendinous sheaths, frequently found in the wrist, foot or knee. Intra-articular ganglia of the knee are rare, and most of them are located in the anterior cruciate ligament. The clinical picture for these ganglia comprises pain and movement restrictions in the knee, causing significant impairment to the patient. Symptoms are non-specific, and anterior cruciate ligament ganglia are usually diagnosed through magnetic resonance imaging or arthroscopy. Not all ganglia diagnosed through magnetic resonance imaging need to undergo surgical treatment: only those that cause clinical signs and symptoms do. Surgical results are considered good or excellent in the vast majority of cases. CASE REPORT: A 29-year-old male presented with pain in the left knee during a marathon race. Physical examination revealed limitation in the maximum range of knee extension and pain in the posterior aspect of the left knee. Radiographs of the left knee were normal, but magnetic resonance imaging revealed a multi-lobed cystic structure adjacent to the anterior cruciate ligament, which resembled a ganglion cyst. The mass was removed through arthroscopy, and pathological examination revealed a synovial cyst. Patient recovery was excellent, and he resumed his usual training routine five months later.

  13. Omitting histopathology in wrist ganglions. A risky proposition

    Science.gov (United States)

    Zubairi, Akbar J.; Kumar, Santosh; Mohib, Yasir; Rashid, Rizwan H.; Noordin, Shahryar

    2016-01-01

    Objectives: To identify incidence and utility of histopathology in wrist ganglions. Methods: A retrospective study of 112 patients operated for wrist swellings between January 2009 and March 2014 at Aga Khan University Hospital, Karachi, Pakistan, was conducted. Medical records were reviewed for demographics, history, location and associated symptoms, provisional diagnosis and operative details. Histopathology reports were reviewed to confirm the final diagnosis. Results: One hundred and twelve patients were included in the study (34 males and 78 females) with a mean age of 28 ± 12 years. Ninety-five percent of ganglia were dorsally located and 85% were solitary in nature. Histopathology reports confirmed 107 as ganglion cysts, whereas 3 had giant cell tumor of tendon sheath and 2 were reported to be tuberculous tenosynovitis. Conclusion: Although most of the time, the clinical diagnosis conforms to the final diagnosis, the possibility of an alternate diagnosis cannot be ignored (4% in this study). We suggest routine histopathological analysis so that such diagnoses are not missed. PMID:27464871

  14. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  15. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    Science.gov (United States)

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  16. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans.

    Science.gov (United States)

    Jindahra, Panitha; Petrie, Aviva; Plant, Gordon T

    2012-02-01

    Following damage to the human post-geniculate visual pathway retrograde trans-synaptic degeneration of the optic nerve fibres occurs. It has been known for some time from investigations carried out in primates that a decline in the number of retinal ganglion cells follows occipital lobectomy. However, this is not detectable in all species studied and whether this occurs in humans was controversial until recent studies that have shown that following lesions of the occipital lobe, the retinal nerve fibre layer thickness measured by optical coherence tomography is reduced and corresponding shrinkage of the optic tract can be demonstrated by magnetic resonance imaging. The time course of the degeneration in humans is, however, unknown. In the present study, we have used optical coherence tomography to demonstrate for the first time progressive thinning of the retinal nerve fibre layer following occipital lobe/optic radiation damage due to stroke. First, in a group of 38 patients the measurement was taken on a single occasion at a known time interval since the stroke, ranging from 6 days to 67 years. Here, a negative straight line relationship (linear regression r = 0.54, P < 0.001) was found between nerve fibre layer thickness and elapsed time since injury in log years, giving a rate of decline of 9.08 µm per log year after adjusting for age. This indicates a decelerating rate of loss that differs from the rate of decline found with chronological age in this same group, which shows a steady rate of thinning by 0.4 µm per year (P = 0.006) after adjusting for duration of the disease. In a second study serial measurements were taken following the acute event in a group of seven patients with homonymous hemianopia; here a negative straight line relationship was found between time and nerve fibre layer thickness in micrometres over a period of data collection beginning at a mean of 36.9 days post-stroke (range 5-112) and ending at a mean of 426.6 days post

  17. MR imaging findings of neurosarcoidosis of the gasserian ganglion: an unusual presentation

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Mercedes; Iglesias, Alfonso; Vila, Oscar; Brasa, Jose [Unidad de Resonancia Magnetica (MEDTEC), Hospital Xeral-Cies, 36204 Vigo (Spain); Conde, Cesareo [Servicio de Neurocirugia, Hospital Xeral-Cies, 36204 Vigo (Spain)

    2002-11-01

    We report the MR imaging findings of an unusual case of neurosarcoidosis of the gasserian ganglion associated with trigeminal neuralgia. No other neurological or extraneurological localization was found. Magnetic resonance imaging demonstrated a mass in the Meckel's diverticulum that was isointense on T1-weighted images and hypointense on T2-weighted images. Gadolinium-enhanced MR imaging showed heterogeneous enhancement. Although rare, sarcoid infiltration of the gasserian ganglion must be considered in the differential diagnosis of an isolated mass in this localization in patients with trigeminal neuralgia. (orig.)

  18. MR imaging findings of neurosarcoidosis of the gasserian ganglion: an unusual presentation

    International Nuclear Information System (INIS)

    Arias, Mercedes; Iglesias, Alfonso; Vila, Oscar; Brasa, Jose; Conde, Cesareo

    2002-01-01

    We report the MR imaging findings of an unusual case of neurosarcoidosis of the gasserian ganglion associated with trigeminal neuralgia. No other neurological or extraneurological localization was found. Magnetic resonance imaging demonstrated a mass in the Meckel's diverticulum that was isointense on T1-weighted images and hypointense on T2-weighted images. Gadolinium-enhanced MR imaging showed heterogeneous enhancement. Although rare, sarcoid infiltration of the gasserian ganglion must be considered in the differential diagnosis of an isolated mass in this localization in patients with trigeminal neuralgia. (orig.)

  19. Common Variants in the COL4A4 Gene Confer Susceptibility to Lattice Degeneration of the Retina

    OpenAIRE

    Meguro, Akira; Ideta, Hidenao; Ota, Masao; Ito, Norihiko; Ideta, Ryuichi; Yonemoto, Junichi; Takeuchi, Masaki; Uemoto, Riyo; Nishide, Tadayuki; Iijima, Yasuhito; Kawagoe, Tatsukata; Okada, Eiichi; Shiota, Tomoko; Hagihara, Yuta; Oka, Akira

    2012-01-01

    Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite...

  20. Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation

    Science.gov (United States)

    Estacion, M.; Vohra, B. P. S; Liu, S.; Hoeijmakers, J.; Faber, C. G.; Merkies, I. S. J.; Lauria, G.; Black, J. A.

    2015-01-01

    Gain-of-function missense mutations in voltage-gated sodium channel Nav1.7 have been linked to small-fiber neuropathy, which is characterized by burning pain, dysautonomia and a loss of intraepidermal nerve fibers. However, the mechanistic cascades linking Nav1.7 mutations to axonal degeneration are incompletely understood. The G856D mutation in Nav1.7 produces robust changes in channel biophysical properties, including hyperpolarized activation, depolarized inactivation, and enhanced ramp and persistent currents, which contribute to the hyperexcitability exhibited by neurons containing Nav1.8. We report here that cell bodies and neurites of dorsal root ganglion (DRG) neurons transfected with G856D display increased levels of intracellular Na+ concentration ([Na+]) and intracellular [Ca2+] following stimulation with high [K+] compared with wild-type (WT) Nav1.7-expressing neurons. Blockade of reverse mode of the sodium/calcium exchanger (NCX) or of sodium channels attenuates [Ca2+] transients evoked by high [K+] in G856D-expressing DRG cell bodies and neurites. We also show that treatment of WT or G856D-expressing neurites with high [K+] or 2-deoxyglucose (2-DG) does not elicit degeneration of these neurites, but that high [K+] and 2-DG in combination evokes degeneration of G856D neurites but not WT neurites. Our results also demonstrate that 0 Ca2+ or blockade of reverse mode of NCX protects G856D-expressing neurites from degeneration when exposed to high [K+] and 2-DG. These results point to [Na+] overload in DRG neurons expressing mutant G856D Nav1.7, which triggers reverse mode of NCX and contributes to Ca2+ toxicity, and suggest subtype-specific blockade of Nav1.7 or inhibition of reverse NCX as strategies that might slow or prevent axon degeneration in small-fiber neuropathy. PMID:26156380

  1. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  2. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion.

    Science.gov (United States)

    Hadj-Saïd, Wahiba; Froger, Nicolas; Ivkovic, Ivana; Jiménez-López, Manuel; Dubus, Élisabeth; Dégardin-Chicaud, Julie; Simonutti, Manuel; Quénol, César; Neveux, Nathalie; Villegas-Pérez, María Paz; Agudo-Barriuso, Marta; Vidal-Sanz, Manuel; Sahel, Jose-Alain; Picaud, Serge; García-Ayuso, Diego

    2016-09-01

    Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion. We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water. Spectral-domain optical coherence tomography (SD-OCT) and electroretinograms (ERG) were performed on animals after 2 months of GES treatment administered through the drinking water. Retinas were dissected as wholemounts and immunodetection of Brn3a (RGC), S-opsin (S-cones), and L-opsin (L-cones) was performed. The number of Brn3a+ RGCs, and L- and S-opsin+ cones was automatically quantified and their retinal distribution studied using isodensity maps. The treatment resulted in a significant reduction in plasma taurine levels and a profound dysfunction of visual performance as shown by ERG recordings. Optical coherence tomography analysis revealed that the retina was thinner in the taurine-depleted group. S-opsin+cones were more affected (36%) than L-opsin+cones (27%) with greater cone cell loss in the dorsal area whereas RGC loss (12%) was uniformly distributed. This study confirms that taurine depletion causes RGC and cone loss. Electroretinograms results show that taurine depletion induces retinal dysfunction in photoreceptors and in the inner retina. It establishes a gradient of cell loss depending on the cell type from S-opsin+cones, L-opsin+cones, to RGCs. The greater cell loss in the dorsal retina and of the S-cone population may underline different cellular mechanisms of cellular degeneration and suggests that S-cones may be more sensitive to light-induced retinal toxicity enhanced by the taurine depletion.

  3. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-02

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage.

  4. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  5. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  6. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    Science.gov (United States)

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  7. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  8. Gasserian Ganglion and Retrobulbar Nerve Block in the Treatment of Ophthalmic Postherpetic Neuralgia: A Case Report.

    Science.gov (United States)

    Huang, Jie; Ni, Zhongge; Finch, Philip

    2017-09-01

    Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.

  9. Alterations in NMDA receptor expression during retinal degeneration in the RCS rat.

    Science.gov (United States)

    Gründer, T; Kohler, K; Guenther, E

    2001-01-01

    To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A-2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NRI immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NRI immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NRI immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.

  10. Retinal Information Processing for Minimum Laser Lesion Detection and Cumulative Damage

    Science.gov (United States)

    1992-09-17

    macula and especially the fovea. This is the region where information processing is most important, as it must make up for the poor optical quality of the...the fovea and portions of the central macula leave the retina with only large receptive field ganglion cells. In these cases, the ordinary mechanical... degeneration or failure of neurons following laser exposure without subsequent therapy. As the research progressed, significant progress was made in cat

  11. Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

    Directory of Open Access Journals (Sweden)

    Kenneth S. Shindler

    2009-11-01

    Full Text Available A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

  12. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas.

    Science.gov (United States)

    Chintalapudi, Sumana R; Djenderedjian, Levon; Stiemke, Andrew B; Steinle, Jena J; Jablonski, Monica M; Morales-Tirado, Vanessa M

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2(hi)CD48(neg)CD15(neg)CD57(neg) surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases.

  13. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    Science.gov (United States)

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases. PMID:27242509

  14. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Science.gov (United States)

    Meguro, Akira; Ideta, Hidenao; Ota, Masao; Ito, Norihiko; Ideta, Ryuichi; Yonemoto, Junichi; Takeuchi, Masaki; Uemoto, Riyo; Nishide, Tadayuki; Iijima, Yasuhito; Kawagoe, Tatsukata; Okada, Eiichi; Shiota, Tomoko; Hagihara, Yuta; Oka, Akira; Inoko, Hidetoshi; Mizuki, Nobuhisa

    2012-01-01

    Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6), OR = 0.63 and Pc = 1.0 × 10(-5), OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  15. Common variants in the COL4A4 gene confer susceptibility to lattice degeneration of the retina.

    Directory of Open Access Journals (Sweden)

    Akira Meguro

    Full Text Available Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4 gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6, OR = 0.63 and Pc = 1.0 × 10(-5, OR = 0.69 in a total of 574 patients and 608 controls, respectively. Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.

  16. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Law, Travis; Anthony, Marina-Portia; Kim, Mina; Khong, Pek-Lan; Chan, Queenie; Samartzis, Dino

    2013-01-01

    The purpose of this study was to report the feasibility of the ultrashort time-to-echo (UTE) MRI technique to assess cartilaginous endplate (CEP) defects in humans in vivo and to assess their relationship with intervertebral disc (IVD) degeneration. Nine volunteer subjects (mean age=43.9 years; range=22–61 years) were recruited, representing 54 IVDs and 108 CEPs. The subjects underwent T2-weighted and UTE MRI to assess for the presence and severity of IVD degeneration, and for the presence of CEP defects, respectively, from T12 to S1. IVD degeneration was graded according to the Schneiderman et al. classification on T2-weighted MRI. CEP defects were defined on UTE MRI as discontinuity of high signal over four consecutive images and were independently assessed by two observers. Thirty-seven out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (P=0.008). Multivariate logistic regression revealed that lower body mass index (P=0.009) and younger (P=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration (P=0.036). A higher prevalence of degenerated IVDs with CEP defects was found at L4/5 and L5/S1, while degenerated IVDs with no CEP defects were found throughout the whole lumbar region. Mean IVD degeneration scores of the L4/5 and L5/S1 levels with CEP defects were higher in comparison with those with no CEP defects. Our study demonstrates the feasibility of using UTE MRI in humans in vivo to assess the integrity of the CEP. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration. In the lower lumbar region, more severe degeneration was found to occur in the IVDs with CEP defects than in those without defects.

  17. Indian hedgehog contributes to human cartilage endplate degeneration.

    Science.gov (United States)

    Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei

    2015-08-01

    To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.

  18. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  19. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature.

    Science.gov (United States)

    Nelson, Erik G; Hinojosa, Raul

    2006-09-01

    The purpose of this retrospective case review was to identify patterns of cochlear element degeneration in individuals with presbycusis exhibiting downward sloping audiometric patterns of hearing loss and to correlate these findings with those reported in the literature to clarify conflicting concepts regarding the association between hearing loss and morphologic abnormalities. Archival human temporal bones from individuals with presbycusis were selected on the basis of strict audiometric criteria for downward-sloping audiometric thresholds. Twenty-one temporal bones that met these criteria were identified and compared with 10 temporal bones from individuals with normal hearing. The stria vascularis volumes, spiral ganglion cell populations, inner hair cells, and outer hair cells were quantitatively evaluated. The relationship between the severity of hearing loss and the degeneration of cochlear elements was analyzed using univariate linear regression models. Outer hair cell loss and ganglion cell loss was observed in all individuals with presbycusis. Inner hair cell loss was observed in 18 of the 21 individuals with presbycusis and stria vascularis loss was observed in 10 of the 21 individuals with presbycusis. The extent of degeneration of all four of the cochlear elements evaluated was highly associated with the severity of hearing loss based on audiometric thresholds at 8,000 Hz and the pure-tone average at 500, 1,000, and 2,000 Hz. The extent of ganglion cell degeneration was associated with the slope of the audiogram. Individuals with downward-sloping audiometric patterns of presbycusis exhibit degeneration of the stria vascularis, spiral ganglion cells, inner hair cells, and outer hair cells that is associated with the severity of hearing loss. This association has not been previously reported in studies that did not use quantitative methodologies for evaluating the cochlear elements and strict audiometric criteria for selecting cases.

  20. Anti-Epileptic Drugs Delay Age-Related Loss of Spiral Ganglion Neurons via T-type Calcium Channel

    Science.gov (United States)

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P.; Hood, Aizhen Yang; Bao, Jianxin

    2011-01-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Cav3.1, Cav3.2, and Cav3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Cav3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. PMID:21640179

  1. The clinico-anatomic explanation for tibial intraneural ganglion cysts arising from the superior tibiofibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, Robert J. [Mayo Clinic, Department of Neurologic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Anatomy, Rochester, Minnesota (United States); Mokhtarzadeh, Ali; Schiefer, Terry K. [Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Krishnan, Kartik G. [Carl Gustav Carus University Hospital, Department of Neurological Surgery, Dresden (Germany); Kliot, Michel [University of Washington, Department of Neurosurgery, Seattle, Washington (United States); Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, Minnesota (United States)

    2007-04-15

    To demonstrate that tibial intraneural ganglia in the popliteal fossa are derived from the posterior portion of the superior tibiofibular joint, in a mechanism similar to that of peroneal intraneural ganglia, which have recently been shown to arise from the anterior portion of the same joint. Retrospective clinical study and prospective anatomic study. The clinical records and MRI findings of three patients with tibial intraneural ganglion cysts were analyzed and compared with those of one patient with a tibial extraneural ganglion cyst and one volunteer. Seven cadaveric limbs were dissected to define the articular anatomy of the posterior aspect of the superior tibiofibular joint. The condition of the three patients with intraneural ganglia recurred because their joint connections were not identified initially. In two patients there was no cyst recurrence when the joint connection was treated at revision surgery; the third patient did not wish to undergo additional surgery. The one patient with an extraneural ganglion had the joint connection identified at initial assessment and had successful surgery addressing the cyst and the joint connection. Retrospective evaluation of the tibial intraneural ganglion cysts revealed stereotypic features, which allowed their accurate diagnosis and distinction from extraneural cases. The intraneural cysts had tubular (rather than globular) appearances. They derived from the postero-inferior portion of the superior tibiofibular joint and followed the expected course of the articular branch on the posterior surface of the popliteus muscle. The cysts then extended intra-epineurially into the parent tibial nerves, where they contained displaced nerve fascicles. The extraneural cyst extrinsically compressed the tibial nerve but did not directly involve it. All cadaveric specimens demonstrated a small single articular branch, which derived from the tibial nerve to the popliteus. The branch coursed obliquely across the posterior

  2. [Vitreomacular adhesion in HD-OCT images in the age-related macular degeneration].

    Science.gov (United States)

    Latalska, Małgorzata; Swiech-Zubilewicz, Anna; Mackiewicz, Jerzy

    2013-01-01

    The aim of this study was to evaluate an incidence of the vitreomacular adhesion in patients with age-related macular degeneration. We examined 472 eyes in 241 patients (136 W/ 105 M) in age of 54-92 years (mean 62.6 years +/- 8.5) with dry or wet age-related macular degeneration using Cirrus HD-OCT (Zeiss) macular cube 512x128 program or 5-line pro-gram. Vitreomacular adhesion was observed in 139 eyes with dry age-related macular degeneration (29.4%, p=0.000*), in 101 eyes with drusen (21.4%, p=0.000*), in 38 eyes with retinal pigment epithelium alterations (8%, p=0.202), in 278 eyes with wet age-related macular degeneration (58.9%, p=0.001*), in 21 eyes with pigment epithelial detachment (4.4%, p=0.303), in 161 eyes with choroidal neovascularzation (34. 1%, p=0.031*/ and in 96 eyes with scar (20.4%, p=0.040*). Probably, vitreomacular adhesion alone is not able to induce age-related macular degeneration, but it may be associated with choroidal neovascularization development, it can contribute to exudate formation and choroidal neovascularization, it may induces or sustains a chronic low-grade inflammation in the macula region.

  3. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila.

    Science.gov (United States)

    Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B

    1992-01-01

    Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615

  4. Neuronavigated percutaneous approach to the sphenopalatine ganglion.

    Science.gov (United States)

    Benedetto, Nicola; Perrini, Paolo

    2017-02-01

    The sphenopalatine ganglion (SPG) has been assumed to be involved in the genesis of several types of facial pain, including Sluder's neuralgia, trigeminal neuralgia, persistent idiopathic facial pain, cluster headache, and atypical facial pain. The gold standard treatments for SPG-related pain are percutaneous procedures performed with the aid of fluoroscopy or CT. In this technical note the authors present, for the first time, an SPG approach using the aid of a neuronavigator.

  5. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons.

    Science.gov (United States)

    Schwieger, Jana; Esser, Karl-Heinz; Lenarz, Thomas; Scheper, Verena

    2016-08-01

    Sensorineural deafness is mainly caused by damage to hair cells and degeneration of the spiral ganglion neurons (SGN). Cochlear implants can functionally replace lost hair cells and stimulate the SGN electrically. The benefit from cochlear implantation depends on the number and excitability of these neurons. To identify potential therapies for SGN protection, in vitro tests are carried out on spiral ganglion cells (SGC). A glial cell-reduced and neuron-enhanced culture of neonatal rat SGC under mitotic inhibition (cytarabine (AraC)) for up to seven days is presented. Serum containing and neurotrophin-enriched cultures with and without AraC-addition were analyzed after 4 and 7 days. The total number of cells was significantly reduced, while the proportion of neurons was greatly increased by AraC-treatment. Cell type-specific labeling demonstrated that nearly all fibroblasts and most of the glial cells were removed. Neither the neuronal survival, nor the neurite outgrowth or soma diameter were negatively affected. Additionally neurites remain partly free of surrounding non-neuronal cells. Recent culture conditions allow only for short-term cultivation of neonatal SGC and lack information on the influence of non-neuronal cells on SGN and of direct contact of neurites with test-materials. AraC-addition reduces the number of non-neuronal cells and increases the ratio of SGN in culture, without negative impact on neuronal viability. This treatment allows longer-term cultivation of SGC and provides deeper insight into SGN-glial cell interaction and the attachment of neurites on test-material surfaces. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Sphenopalatine ganglion treatment with radiofrequency in a Sluder syndrome young patient

    Directory of Open Access Journals (Sweden)

    Carmelo Costa

    2014-12-01

    Full Text Available Sluder's neuralgia or sphenopalatine ganglion neuralgia is a pain syndrome first described by Sluder in 1908. The clinical picture is characterised by pain starting around the eye and the route of nose. Typically the pain is accompanied by parasympathetic disautonomic signs such as lacrimation and/or rhinorrhea. However, many official headache classifications do not mention the Sluder's neuralgia at all, which is instead classified as a cluster headache (CH. In case of resistance to pharmacological management pain the physician could recur to sphenopalatine ganglion (GSP neurolytic block with continuous radiofrequency (CRF or its no ablative alternative with pulsed radiofrequency (PRF. We are presenting a case of a 16-year-old woman who suffered from a typical Sluder's neuralgia successfully treated with GSP PRF.

  7. TOPOGRAPHIC ORGANIZATION AND SPECIALIZED AREAS IN THE RETINA OF Callopistes palluma: GANGLION CELL LAYER

    OpenAIRE

    Inzunza, Oscar; Barros B., Zitta; Bravo, Hermes

    1998-01-01

    In this paper we analyze the topographic distribution and cell body size of neurons (ganglion and displaced amacrine) of layer 8 of the retina in the chilean reptile Callopistes palluma; using whole mount retinaswith nissl stain. Callopistes palluma retina has an area centralis without fovea in which the ganglion cell density amounts 20.000 cells / µm2 while the displaced amacrine neurons is about 7.000 cells / µm2. This neural density decreased gradually towards the peripheral retina. A hor...

  8. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2013-06-01

    Full Text Available Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia and 25 did not exhibit the phenomenon. The syndrome of semantic dementia was relatively over-represented among the musicophilic subgroup. A VBM analysis revealed significantly increased regional grey matter volume in left posterior hippocampus in the musicophilic subgroup relative to the non-musicophilic group (p<0.05 corrected for regional comparisons; at a relaxed significance threshold (P<0.001 uncorrected across the brain volume musicophilia was associated with additional relative sparing of regional grey matter in other temporal lobe and prefrontal areas and atrophy of grey matter in posterior parietal and orbitofrontal areas. The present findings suggest a candidate brain substrate for musicophilia as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social stimuli, with some specificity for particular neurodegenerative pathologies.

  9. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  10. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    Science.gov (United States)

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma.

    Science.gov (United States)

    Kimura, Atsuko; Guo, Xiaoli; Noro, Takahiko; Harada, Chikako; Tanaka, Kohichi; Namekata, Kazuhiko; Harada, Takayuki

    2015-02-19

    Valproic acid (VPA) is widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. It exerts its therapeutic benefits through modulation of multiple mechanisms including regulation of gamma-aminobutyric acid and glutamate neurotransmissions, activation of pro-survival protein kinases and inhibition of histone deacetylase. The evidence for neuroprotective properties associated with VPA is emerging. Herein, we investigated the therapeutic potential of VPA in a mouse model of normal tension glaucoma (NTG). Mice with glutamate/aspartate transporter gene deletion (GLAST KO mice) demonstrate progressive retinal ganglion cell (RGC) loss and optic nerve degeneration without elevated intraocular pressure, and exhibit glaucomatous pathology including glutamate neurotoxicity and oxidative stress in the retina. VPA (300mg/kg) or vehicle (PBS) was administered via intraperitoneal injection in GLAST KO mice daily for 2 weeks from the age of 3 weeks, which coincides with the onset of glaucomatous retinal degeneration. Following completion of the treatment period, the vehicle-treated GLAST KO mouse retina showed significant RGC death. Meanwhile, VPA treatment prevented RGC death and thinning of the inner retinal layer in GLAST KO mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment observed in vehicle-treated GLAST KO mice was ameliorated with VPA treatment, clearly establishing that VPA beneficially affects both histological and functional aspects of the glaucomatous retina. We found that VPA reduces oxidative stress induced in the GLAST KO retina and stimulates the cell survival signalling pathway associated with extracellular-signal-regulated kinases (ERK). This is the first study to report the neuroprotective effects of VPA in an animal model of NTG. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be a novel candidate for treatment of glaucoma. Copyright © 2015 Elsevier

  12. Role of the tau gene region chromosome inversion in progressive supranuclear palsy, corticobasal degeneration, and related disorders.

    Science.gov (United States)

    Webb, Amy; Miller, Bruce; Bonasera, Stephen; Boxer, Adam; Karydas, Anna; Wilhelmsen, Kirk C

    2008-11-01

    An inverted region on chromosome 17 has been previously linked to many Pick complex diseases. Due to the inversion, an exact causal locus has been difficult to identify, but the microtubule-associated protein tau gene is a likely candidate gene for its involvement in these diseases with tau inclusion. To search for variants that confer susceptibility to 4 tauopathies and clinically related disorders. Genomewide association study. University research laboratory. A total of 231 samples were genotyped from an unrelated white population of patients with progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), frontotemporal dementia, and frontotemporal dementia with amyotrophy. Unaffected individuals from the same population were used as controls. The results from an inverted region of chromosome 17 that contains the MAPT gene. Genotypes of cases and controls were compared using a Fisher exact test on a marker-by-marker basis. Haplotypes were determined by visually inspecting genotypes. Comparing any particular disease and controls, the association was constant across the inverted chromosome segment. Significant associations were seen for PSP and PSP combined with CBD. Of the 2 haplotypes seen in the region, H1 was overrepresented in PSP and CBD cases compared with controls. As expected, the markers are highly correlated and the association is seen across the entire region, which makes it difficult to narrow down a disease-causing variant or even a possible candidate gene. However, considering the pathologic abnormalities of these diseases and the involvement of tau mutations seen in familial forms, the MAPT gene represents the most likely cause driving the association.

  13. Rac1 selective activation improves retina ganglion cell survival and regeneration.

    Directory of Open Access Journals (Sweden)

    Erika Lorenzetto

    Full Text Available In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.

  14. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  15. Striatonigral Degeneration

    Science.gov (United States)

    ... See More About Research The NINDS supports and conducts research on disorders of the brain and nervous system such as striatonigral degeneration. This research ... Publications Definition Striatonigral ...

  16. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    OpenAIRE

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.; Chintala, Shravan K.

    2011-01-01

    The functional effect of curcumin, a free radical scavenger and an herbal medicine from Indian yellow curry spice, Curcuma longa, on protease-mediated retinal ganglion cell death was investigated. These results show, for the first time, that curcumin indeed prevents the protease-mediated death of RGCs, both in vitro and in vivo.

  17. [Lattice degeneration of the retina].

    Science.gov (United States)

    Boĭko, E V; Suetov, A A; Mal'tsev, D S

    2014-01-01

    Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.

  18. Regional cerebral glucose metabolism in frontotemporal lobar degeneration

    International Nuclear Information System (INIS)

    Park, J.M.; Cho, S.S.; Lee, K.-H.; Choi, Y.; Choe, Y.S.; Kim, B.-T.; Kim, S.E.; Kwon, J.C.; Na, D.L.

    2002-01-01

    Purpose: Frontotemporal lobar degeneration (FTLD) is the third most common cause of dementia, following Alzheimer's disease and Lewy body disease. Four prototypic neuro behavioral syndromes can be produced by FTLD: frontotemporal dementia (FTD), frontotemporal dementia with motor neuron disease (MND), semantic dementia (SD), and progressive aphasia (PA). We investigated patterns of metabolic impairment in patients with FTLD presented with four different clinical syndromes. Methods: We analyzed glucose metabolic patterns on FDG PET images obtained from 34 patients with a clinical diagnosis of FTLD (19 FTD, 6 MND, 6 SD, and 3 PA, according to a consensus criteria for clinical syndromes associated with FTLD) and 7 age-matched healthy controls using SPM99. Results: Patients with FTD had metabolic deficit in the left frontal cortex and bilateral anterior temporal cortex. Hypometabolism in the bilateral pre-motor area was shown in patients with MND. Patients with SD had metabolic deficit in the left posterior temporal cortex including Wernicke's area, while hypometabolism in the bilateral inferior frontal gyrus including Broca's area and left angular gyrus was seen in patients with PA. These metabolic patterns were well correlated with clinical and neuropsychological features of FTLD syndromes. Conclusion: These data provide a biochemical basis of clinical classification of FTLD. FDG PET may help evaluate and classify patients with FTLD

  19. The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain

    Science.gov (United States)

    C.Lacalli, T.

    1998-01-01

    The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes

  20. Protective effect of oestradiol in the coeliac ganglion against ovarian apoptotic mechanism on dioestrus.

    Science.gov (United States)

    Cynthia, Bronzi; Cristina, Daneri Becerra; Adriana, Vega Orozco; Belén, Delsouc María; María, Rastrilla Ana; Marilina, Casais; Zulema, Sosa

    2013-05-01

    The aims of this work were to investigate if oestradiol 10(-8)M in the incubation media of either the ovary alone (OV) or the ganglion compartment of an ex vivo coeliac ganglion-superior ovarian nerve-ovary system (a) modifies the release of ovarian progesterone (P4) and oestradiol (E2) on dioestrus II, and (b) modifies the ovarian gene expression of 3β-HSD and 20α-HSD enzymes and markers of apoptosis. The concentration of ovarian P4 release was measured in both experimental schemes, and ovarian P4 and E2 in the ex vivo system by RIA at different times. The expression of 3β-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and antiapoptotic bcl-2 and proapoptotic bax by RT-PCR were determined. E2 added in the coeliac ganglion caused an increase in the ovarian release of the P4, E2 and 3β-HSD, while in the ovary incubation alone it decreased P4 and 3β-HSD but increased and 20α-HSD and bax/bcl-2 ratio. It is concluded that through a direct effect on the ovary, E2 promotes luteal regression in DII rats, but the addition of E2 in the coeliac ganglion does not have the same effect. The peripheral nervous system, through the superior ovarian nerve, has a protective effect against the apoptotic mechanism on DII. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Association of HTRA1 rs11200638 with age-related macular degeneration (AMD) in Brazilian patients.

    Science.gov (United States)

    Lana, Tamires Prates; da Silva Costa, Sueli Matilde; Ananina, Galina; Hirata, Fábio Endo; Rim, Priscila Hae Hyun; Medina, Flávio MacCord; de Vasconcellos, José Paulo Cabral; de Melo, Mônica Barbosa

    2018-01-01

    Age-related macular degeneration is a multifactorial disease that can lead to vision impairment in older individuals. Although the etiology of age-related macular degeneration remains unknown, risk factors include age, ethnicity, smoking, hypertension, obesity, and genetic factors. Two main loci have been identified through genome-wide association studies, on chromosomes 1 and 10. Among the variants located at the 10q26 region, rs11200638, located at the HTRA1 gene promoter, has been associated with age-related macular degeneration in several populations and is considered the main polymorphism. We conducted a replication case-control study to analyze the frequency and participation of rs11200638 in the etiology of age-related macular degeneration in a sample of patients and controls from the State of São Paulo, Brazil, through polymerase chain reaction and enzymatic digestion. The frequency of the A allele was 57.60% in patients with age-related macular degeneration and 36.45% in controls (p value age-related macular degeneration group compared to the control group (p = 1.21 e-07 and 0.0357, respectively). No statistically significant results were observed after stratification in dry versus wet types or advanced versus non-advanced forms. To our knowledge, this is the first time the association between rs11200638 and overall age-related macular degeneration has been reported in South America.

  2. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available The direction of image motion is coded by direction-selective (DS ganglion cells in the retina. Particularly, the ON DS ganglion cells project their axons specifically to terminal nuclei of the accessory optic system (AOS responsible for optokinetic reflex (OKR. We recently generated a knock-in mouse in which SPIG1 (SPARC-related protein containing immunoglobulin domains 1-expressing cells are visualized with GFP, and found that retinal ganglion cells projecting to the medial terminal nucleus (MTN, the principal nucleus of the AOS, are comprised of SPIG1+ and SPIG1(- ganglion cells distributed in distinct mosaic patterns in the retina. Here we examined light responses of these two subtypes of MTN-projecting cells by targeted electrophysiological recordings. SPIG1+ and SPIG1(- ganglion cells respond preferentially to upward motion and downward motion, respectively, in the visual field. The direction selectivity of SPIG1+ ganglion cells develops normally in dark-reared mice. The MTN neurons are activated by optokinetic stimuli only of the vertical motion as shown by Fos expression analysis. Combination of genetic labeling and conventional retrograde labeling revealed that axons of SPIG1+ and SPIG1(- ganglion cells project to the MTN via different pathways. The axon terminals of the two subtypes are organized into discrete clusters in the MTN. These results suggest that information about upward and downward image motion transmitted by distinct ON DS cells is separately processed in the MTN, if not independently. Our findings provide insights into the neural mechanisms of OKR, how information about the direction of image motion is deciphered by the AOS.

  3. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study

    NARCIS (Netherlands)

    Driessen, Antoine H. G.; Berger, Wouter R.; Krul, Sébastien P. J.; van den Berg, Nicoline W. E.; Neefs, Jolien; Piersma, Femke R.; Chan Pin Yin, Dean R. P. P.; de Jong, Jonas S. S. G.; van Boven, WimJan P.; de Groot, Joris R.

    2016-01-01

    Patients with long duration of atrial fibrillation (AF), enlarged atria, or failed catheter ablation have advanced AF and may require more extensive treatment than pulmonary vein isolation. The aim of this study was to investigate the efficacy and safety of additional ganglion plexus (GP) ablation

  4. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  5. Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

    Science.gov (United States)

    Osborne, Andrew; Aldarwesh, Amal; Rhodes, Jeremy D.; Broadway, David C.; Everitt, Claire; Sanderson, Julie

    2015-01-01

    Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina. PMID:25635827

  6. Neuroprotection of the rat’s retinal ganglion cells against glutamate-induced toxicity

    Directory of Open Access Journals (Sweden)

    Kariman M.A El-Gohari

    2016-01-01

    Conclusion Taurine protects the retina against glutamate excitotoxicity and could have clinical implications in protecting the ganglion cells from several ophthalmic diseases such as glaucoma and diabetic retinopathy.

  7. Cerebellar Degeneration

    Science.gov (United States)

    ... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...

  8. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  9. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  10. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, N.

    2011-01-01

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  11. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, Niklas

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  12. Second order degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-08-01

    Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs

  13. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    Science.gov (United States)

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.

  14. Real-Time Imaging of Retinal Ganglion Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Timothy E. Yap

    2018-06-01

    Full Text Available Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.

  15. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis

    OpenAIRE

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon; Chen, Hung-Chou; Rau, Chi-Lun

    2016-01-01

    Background Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated ...

  16. Matrix Remodeling During Intervertebral Disc Growth and Degeneration Detected by Multichromatic FAST Staining

    Science.gov (United States)

    Leung, Victor Y.L.; Chan, Wilson C.W.; Hung, Siu-Chun; Cheung, Kenneth M.C.; Chan, Danny

    2009-01-01

    Various imaging techniques have been used to assess degeneration of the intervertebral disc, including many histological methods, but cartilage-oriented histological stains do not clearly show the comparatively complex structures of the disc. In addition, there is no integrated method to assess efficiently both the compartmental organization and matrix composition in disc samples. In this study, a novel histological method, termed FAST staining, has been developed to investigate disc growth and degeneration by sequential staining with fast green, Alcian blue, Safranin-O, and tartrazine to generate multichromatic histological profiles (FAST profiles). This identifies the major compartments of the vertebra-disc region, including the cartilaginous endplate and multiple zones of the annulus fibrosus, by specific FAST profile patterns. A disc degeneration model in rabbit established using a previously described puncture method showed gradual but profound alteration of the FAST profile during disc degeneration, supporting continual alteration of glycosaminoglycan. Changes of the FAST profile pattern in the nucleus pulposus and annulus fibrosus of the postnatal mouse spine suggested matrix remodeling activity during the growth of intervertebral discs. In summary, we developed an effective staining method capable of defining intervertebral disc compartments in detail and showing matrix remodeling events within the disc. The FAST staining method may be used to develop a histopathological grading system to evaluate disc degeneration or malformation. (J Histochem Cytochem 57:249–256, 2009) PMID:19001641

  17. Female-specific wing degeneration caused by ecdysteroid in the Tussock Moth, Orgyia recens: Hormonal and developmental regulation of sexual dimorphism

    Directory of Open Access Journals (Sweden)

    Saori Lobbia

    2003-04-01

    Full Text Available Females of the tussock moth Orgyia recens have vestigial wings, whereas the males have normal wings. During early pupal development, female wings degenerate drastically compared with those of males. To examine whether ecdysteroid is involved in this sex-specific wing development, we cultured pupal wings just after pupation with ecdysteroid (20-hydroxyecdysone, 20E. In the presence of 20E, the female wings degenerated to about one-fifth their original size. In contrast, the male wings cultured with 20E showed only peripheral degeneration just outside the bordering lacuna, as in other butterflies and moths. TUNEL analysis showed that apoptotic signals were induced by 20E over the entire region of female wings, but only in the peripheral region of male wings. Semi-thin sections of the wings cultured with ecdysteroid showed that phagocytotic hemocytes were observed abundantly throughout the female wings, but in only peripheral regions of male wings. These observations indicate that both apoptotic events and phagocytotic activation are triggered by ecdysteroid, in sex-specific and region-specific manners.

  18. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  19. Subchondral synovial cysts (intra-osseous ganglion)

    International Nuclear Information System (INIS)

    Graf, L.; Freyschmidt, J.

    1988-01-01

    Twelve cases of subchondral synovial cysts (intra-osseous ganglion) have been seen and their clinical features, radiological findings and differential diagnosis are described. The lesion is a benign cystic tumour-like mass in the subchondral portion of a synovial joint. Our findings in respect of age, sex and localisation are compared with those of other authors. The aetiology and pathogenesis of the lesion is not completely understood. There is an increased incidence in middle life and joints with high dynamic and static stress are favoured, particularly in the lower extremities. Chronic stress or microtrauma, causing damage to the involved joint, therefore appears to be a plausible explanation. (orig.) [de

  20. Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Hypothesis: Intratympanic steroid treatment prevents hearing loss and cochlear damage in a rat model of pneumococcal meningitis. Background: Sensorineural hearing loss is a long-term complication of meningitis affecting up to a third of survivors. Streptococcus pneumoniae is the bacterial species...... for 3 days. Hearing loss and cochlear damage were assessed by distortion product otoacoustic emissions, auditory brainstem response at 16 kHz, and spiral ganglion neuron density. Results: Fifty-six days after infection, auditory brainstem response showed no significant differences between groups...... in the spiral ganglion compared with both intratympanic and systemic saline (p = 0.0082 and p = 0.0089; Mann-Whitney test). Histology revealed fibrosis of the tympanic membrane and cavity in steroid-treated animals, which plausibly caused the low-frequency hearing loss. Conclusion: Intratympanic betamethasone...

  1. Macular degeneration

    Science.gov (United States)

    The macula is the part of the retina that distinguishes fine details at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating layer between the retina and the choroid layer of ...

  2. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    Science.gov (United States)

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion

  3. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1, preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN, superior colliculus, and accessory optic system (AOS. In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs. Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.

  4. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    Science.gov (United States)

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  5. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  6. Total absorption by degenerate critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Jessica R., E-mail: jrylan@stanford.edu; Liu, Victor; Fan, Shanhui, E-mail: shanhui@stanford.edu [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  7. Many-Body Green Function of Degenerate Systems

    International Nuclear Information System (INIS)

    Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel

    2009-01-01

    A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

  8. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  9. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  10. Degenerated differential pair with controllable transconductance

    NARCIS (Netherlands)

    Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram

    1998-01-01

    A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are

  11. Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow

    International Nuclear Information System (INIS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-01-01

    Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversal in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.

  12. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y

    2008-01-01

    Occupational overuse syndrome (OOS) can present as Guyon\\'s canal syndrome in computer keyboard users. We report a case of Guyon\\'s canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS.

  13. Spatial consequences of bleaching adaptation in cat retinal ganglion cells.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C

    1981-01-01

    1. Experiments were conducted to study the effects of localized bleaching on the centre responses of rod-driven cat retinal ganglion cells. 2. Stimulation as far as 2 degrees from the bleaching site yielded responses which were reduced nearly as much as those generated at the bleaching site. Bleaching in the receptive field middle reduced responsiveness at a site 1 degrees peripheral more than bleaching at that peripheral site itself. 3. The effectiveness of a bleach in reducing centre responsiveness is related to the sensitivity of the region in which the bleach is applied. 4. Response reduction after a 0.2 degree bleach followed the same temporal pattern for concentric test spots of from 0.2 to 1.8 degrees in diameter, implying a substantially uniform spread of adaptation within these bounds. 5. A linear trade-off between fraction of rhodopsin and area bleached over a range of 8:1 yields the same pattern of response reduction, implying that the non-linear nature of bleaching adaptation is a property of the adaptation pool rather than independent photoreceptors. PMID:7320894

  14. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    Science.gov (United States)

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  15. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury.

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    Full Text Available Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2, is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs. We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO. mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.

  16. Outcomes of Open Dorsal Wrist Ganglion Excision in Active-Duty Military Personnel.

    Science.gov (United States)

    Balazs, George C; Donohue, Michael A; Drake, Matthew L; Ipsen, Derek; Nanos, George P; Tintle, Scott M

    2015-09-01

    To examine the most common presenting complaints of active-duty service members with isolated dorsal wrist ganglions and to determine the rate of return to unrestricted duty after open excision. Surgical records at 2 military facilities were screened to identify male and female active duty service members undergoing isolated open excision of dorsal wrist ganglions from January 1, 2006 to January 1, 2014. Electronic medical records and service disability databases were searched to identify the most common presenting symptoms and to determine whether patients returned to unrestricted active duty after surgery. Postoperative outcomes examined were pain persisting greater than 4 weeks after surgery, stiffness requiring formal occupational therapy treatment, surgical wound complications, and recurrence. A total of 125 active duty military personnel (Army, 54; Navy, 43; and Marine Corps, 28) met criteria for inclusion. Mean follow-up was 45 months. Fifteen percent (8 of 54) of the Army personnel were given permanent waivers from performing push-ups owing to persistent pain and stiffness. Pain persisting greater than 4 weeks after surgery was an independent predictor of eventual need for a permanent push-up waiver. The overall recurrence incidence was 9%. No demographic or perioperative factors were associated with recurrence. Patients whose occupation or activities require forceful wrist extension should be counseled on the considerable risk of residual pain and functional limitations that may occur after open dorsal wrist ganglion excision. Therapeutic IV. Published by Elsevier Inc.

  17. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    Science.gov (United States)

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  18. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.

    Science.gov (United States)

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann

    2014-09-15

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.

  19. Phakic retinal detachment associated with atrophic hole of lattice degeneration of the retina.

    Science.gov (United States)

    Murakami-Nagasako, F; Ohba, N

    1983-01-01

    Forty patients with phakic nontraumatic retinal detachment caused by atrophic retinal hole of lattice degeneration were reviewed. The condition was characterized by insidious, slowly developing shallow detachment, with frequent formation of demarcation lines. Often, the patients did not recognize their visual problems until the detachment had extended to the macular region. Young patients under 40 years of age were more common than older patients. Myopic refractive errors were frequently associated. The results of surgical repair were favorable. The risk of retinal detachment in lattice degeneration with atrophic holes was estimated to be about 1 in 90 patients, and prophylactic treatment for this common anomaly is not readily recommended.

  20. Malignant degeneration of multiple cartilaginous exostosis. Diagnostic significance of MRT

    International Nuclear Information System (INIS)

    Bair, H.J.; Schmitt, R.; Moos, P.; Fellner, F.; Dvorak, O.; Rupprecht, H.; Lenz, M.

    1997-01-01

    In summary it can be said that diagnostic radiology, and particularly MRT, for evaluation of malignant degeneration of cartilaginous extoses is of high importance, also because of the difficulties posed by a biopsy for verification of malignancy. Cases of malignant cartilaginous extosis have a good prognosis at the early stages of the disease, when the extosis still is restricted to the focal region. (Orig./AJ) [de

  1. Sciatica and claudication caused by ganglion cyst.

    Science.gov (United States)

    Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen

    2013-12-15

    Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.

  2. Activation of Satellite Glial Cells in Rat Trigeminal Ganglion after Upper Molar Extraction

    International Nuclear Information System (INIS)

    Gunjigake, Kaori K.; Goto, Tetsuya; Nakao, Kayoko; Kobayashi, Shigeru; Yamaguchi, Kazunori

    2009-01-01

    The neurons in the trigeminal ganglion (TG) are surrounded by satellite glial cells (SGCs), which passively support the function of the neurons, but little is known about the interactions between SGCs and TG neurons after peripheral nerve injury. To examine the effect of nerve injury on SGCs, we investigated the activation of SGCs after neuronal damage due to the extraction of the upper molars in rats. Three, 7, and 10 days after extraction, animals were fixed and the TG was removed. Cryosections of the ganglia were immunostained with antibodies against glial fibrillary acidic protein (GFAP), a marker of activated SGCs, and ATF3, a marker of damaged neurons. After tooth extraction, the number of ATF3-immunoreactive (IR) neurons enclosed by GFAP-IR SGCs had increased in a time-dependent manner in the maxillary nerve region of the TG. Although ATF3-IR neurons were not detected in the mandibular nerve region, the number of GFAP-IR SGCs increased in both the maxillary and mandibular nerve regions. Our results suggest that peripheral nerve injury affects the activation of TG neurons and the SGCs around the injured neurons. Moreover, our data suggest the existence of a neuronal interaction between maxillary and mandibular neurons via SGC activation

  3. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  4. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    Science.gov (United States)

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....

  6. Lattice degeneration of the retina and retinal detachment.

    Science.gov (United States)

    Semes, L P

    1992-01-01

    Lattice retinal degeneration is considered the most significant peripheral retinal disorder potentially predisposing to retinal breaks and retinal detachment. Lattice degeneration affects the vitreous and inner retinal layers with secondary changes as deep as the retinal pigment epithelium and perhaps the choriocapillaris. Variations in clinical appearance are the rule; geographically, lattice lesions favor the vertical meridians between the equator and the ora serrata. Lattice degeneration begins early in life and has been reported in sequential generations of the same family. Along with its customary bilateral occurrence, lattice shares other characteristics of a dystrophy. The association between the vitreous and retina in lattice lesions may be responsible for the majority of lattice-induced retinal detachments. The tumultuous event of posterior vitreous separation in the presence of abnormally strong vitreoretinal adherence is the trigger for a retinal tear that, in turn, may lead to retinal detachment. Although retinal holes in young patients with lattice degeneration may play a role in the evolution of retinal detachment, the clinical course of lattice degeneration seems to be one of dormancy rather than of progressive change. This discussion outlines the pathophysiology of lattice retinal degeneration and the relationship of pathophysiology to clinical presentation. The epidemiology of lattice degeneration is summarized, as are the possible precursors to retinal detachment. A clinical characterization of the natural history of lattice degeneration is offered, and interventions for complications are described. To conclude, management strategies from a primary-care standpoint are reviewed.

  7. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Patients With Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Obara, Elisabeth Anne; Hannibal, Jens; Heegaard, Steffen

    2017-01-01

    Purpose: Photo-entrainment of the circadian clock is mediated by melanopsin-expressing retinal ganglion cells (mRGCs) located in the retina. Patients suffering from diabetic retinopathy (DR) show impairment of light regulated circadian activity such as sleep disorders, altered blood pressure...

  8. Treatment of patients with painful blind eye using stellate ganglion block

    Directory of Open Access Journals (Sweden)

    Tatiana Vaz Horta Xavier

    2016-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: management of pain in painful blind eyes is still a challenge. Corticosteroids and hypotensive agents, as well as evisceration and enucleation, are some of the strategies employed so far that are not always effective and, depending on the strategy, cause a deep emotional shock to the patient. Given these issues, the aim of this case report is to demonstrate a new and viable option for the management of such pain by treating the painful blind eye with the stellate ganglion block technique, a procedure that has never been described in the literature for this purpose. CASE REPORT: six patients with painful blind eye, all caused by glaucoma, were treated; in these patients, VAS (visual analogue scale for pain assessment, in which 0 is the absence of pain and 10 is the worst pain ever experienced ranged from 7 to 10. We opted for weekly sessions of stellate ganglion block with 4 mL of bupivacaine (0.5% without vasoconstrictor and clonidine 1 mcg/kg. Four patients had excellent results at VAS, ranging between 0 and 3, and two remained asymptomatic (VAS = 0, without the need for additional medication. The other two used gabapentin 300 mg every 12 h. CONCLUSION: currently, there are several therapeutic options for the treatment of painful blind eye, among which stand out the retrobulbar blocks with chlorpromazine, alcohol and phenol. However, an effective strategy with low rate of serious complications, which is non-mutilating and improves the quality of life of the patient, is essential. Then, stellate ganglion block arises as a demonstrably viable and promising option to meet this demand.

  9. Degenerate conformal theories on higher-genus surfaces

    International Nuclear Information System (INIS)

    Gerasimov, A.A.

    1989-01-01

    Two-dimensional degenerate field theories on higher-genus surfaces are investigated. Objects are built on the space of moduli, whose linear combinations are hypothetically conformal blocks in degenerate theories

  10. [Ropivacaine use in transnasal sphenopalatine ganglion block for post dural puncture headache in obstetric patients - case series].

    Science.gov (United States)

    Furtado, Inês; Lima, Isabel Flor de; Pedro, Sérgio

    2018-02-02

    Sphenopalatine ganglion block is widely accepted in chronic pain; however it has been underestimated in post dural puncture headache treatment. The ganglion block does not restore normal cerebrospinal fluid dynamics but effectively reduces symptoms associated with resultant hypotension. When correctly applied it may avoid performance of epidural blood patch. The transnasal approach is a simple and minimally invasive technique. In the cases presented, we attempted to perform and report the ganglion block effectiveness and duration, using ropivacaine. We present four obstetrics patients with post dural puncture headache, after epidural or combined techniques, with Tuohy needle 18G that underwent a safe and successful Sphenopalatine ganglion block. We performed the block 24-48h after dural puncture, with 4mL of ropivacaine 0.75% in each nostril. In three cases pain recurred within 12-48h, although less intense. In one patient a second block was performed with complete relief and without further recurrence. In the other two patients a blood patch was performed without success. All patients were asymptomatic within 7 days. The average duration of analgesic effect of the block remains poorly defined. In the cases reported, blocking with ropivacaine was a simple, safe and effective technique, with immediate and sustained pain relief for at least 12-24h. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.

    Science.gov (United States)

    Liu, Qing; Manis, Paul B; Davis, Robin L

    2014-08-01

    One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.

  12. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    International Nuclear Information System (INIS)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes; Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire; Giestal-de-Araujo, Elizabeth

    2016-01-01

    Ouabain is a steroid hormone that binds to the enzyme Na + , K + – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  13. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    Energy Technology Data Exchange (ETDEWEB)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil); Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire [Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Fisiologia e Farmacodinâmica, Av., no 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ (Brazil); Giestal-de-Araujo, Elizabeth, E-mail: egiestal@vm.uff.br [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2016-09-09

    Ouabain is a steroid hormone that binds to the enzyme Na{sup +}, K{sup +} – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  14. Synaptic Remodeling Generates Synchronous Oscillations in the Degenerated Outer Mouse Retina

    Directory of Open Access Journals (Sweden)

    Wadood eHaq

    2014-09-01

    Full Text Available During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs establish contacts with remnant cone photoreceptors (cones as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs, we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from HCs. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.

  15. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  16. Age-related auditory pathology in the CBA/J mouse

    Science.gov (United States)

    Sha, Su-Hua; Kanicki, Ariane; Dootz, Gary; Talaska, Andra E.; Halsey, Karin; Dolan, David; Altschuler, Richard; Schacht, Jochen

    2008-01-01

    Commercially obtained aged male CBA/J mice presented a complex pattern of hearing loss and morphological changes. A significant threshold shift in auditory brainstem responses (ABR) occurred at 3 months of age at 4 kHz without apparent loss of hair cells, rising slowly at later ages accompanied by loss of apical hair cells. A delayed high-frequency deficit started at 24 kHz around the age of 12 months. At 20 to 26 months, threshold shifts at 12 and 24 kHz and the accompanying hair cell loss at the base of the cochlea were highly variable with some animals appearing almost normal and others showing large deficits. Spiral ganglion cells degenerated by 18 months in all regions of the cochlea, with cell density reduced by approximately 25%. There was no degeneration of the stria vascularis and the endocochlear potential remained stable from 3 to 25 months of age regardless of whether the animals had normal or highly elevated ABR thresholds. The slow high frequency hearing loss combined with a modest reduction of ganglion cell density and an unchanged endocochlear potential suggest sensorineural presbycusis. The superimposed early hearing loss at low frequencies, which is not seen in animals bred in-house, may complicate the use of these animals as a presbycusis model. PMID:18573325

  17. Degenerate r-Stirling Numbers and r-Bell Polynomials

    Science.gov (United States)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  18. Ultrasound-guided stellate ganglion blocks combined with pharmacological and occupational therapy in Complex Regional Pain Syndrome (CRPS): a pilot case series ad interim.

    Science.gov (United States)

    Wei, Karin; Feldmann, Robert E; Brascher, Anne-Kathrin; Benrath, Justus

    2014-12-01

    This preliminary and retrospective pilot case series examines a treatment concept consisting of ultrasound-guided stellate ganglion blocks (SGBs) combined with pharmacological and occupational therapy in patients with complex regional pain syndrome (CRPS) of the hand. Efficacy of combined treatment concepts and safety of ultrasound-guided SGB have not been sufficiently investigated yet. A total number of 156 blocks were evaluated in 16 patients with CRPS in a retrospective analysis. All patients received pharmacotherapy and a standard regimen of occupational therapy offered simultaneously to the SGBs. Changes in both spontaneous and evoked pain levels were assessed by numerical pain rating score before and after the last blockade of a series. Side effects were documented. The overall mean pain reduction was 63.2% regarding spontaneous and 45.3% regarding evoked pain. Mild complications, such as hoarseness or dysphagia, occurred in 13.5% of the blocks (21 SGBs). Serious complications, such as plexus paresis or accidental puncture of vessels or other structures, did not occur. Time between symptom onset and start of treatment did not affect the extent of pain reduction. The combination of ultrasound-guided SGB and simultaneous pharmacological and occupational therapy showed encouraging treatment results under conditions of this pilot case series. Assessment of efficacy of this combined treatment concept and safety of ultrasound-guided SGB require further prospective clinical studies with larger number of participants. Wiley Periodicals, Inc.

  19. [Peripheral retinal degenerations--treatment recommendations].

    Science.gov (United States)

    Joussen, A M; Kirchhof, B

    2004-10-01

    This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.

  20. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Hennessy Michael J

    2008-02-01

    Full Text Available Abstract Background Occupational overuse syndrome (OOS can present as Guyon's canal syndrome in computer keyboard users. We report a case of Guyon's canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS. Case presentation A 54-year-old female secretary was referred with a six-month history of right little finger weakness and difficulty with adduction. Prior to her referral, she was diagnosed by her general practitioner and physiotherapist with a right ulnar nerve neuropraxia at the level of the Guyon's canal. This was thought to be secondary to computer keyboard use and direct pressure exerted on a wrist support. There was obvious atrophy of the hypothenar eminence and the first dorsal interosseous muscle. Both Froment's and Wartenberg's signs were positive. A nerve conduction study revealed that both the abductor digiti minimi and the first dorsal interosseus muscles showed prolonged motor latency. Ulnar conduction across the right elbow was normal. Ulnar sensory amplitude across the right wrist to the fifth digit was reduced while the dorsal cutaneous nerve response was normal. Magnetic resonance imaging of the right wrist showed a ganglion in Guyon's canal. Decompression of the Guyon's canal was performed and histological examination confirmed a ganglion. The patient's symptoms and signs resolved completely at four-month follow-up. Conclusion Clinical history, occupational history and examination alone could potentially lead to misdiagnosis of OOS when a computer user presents with these symptoms and we recommend that nerve conduction or imaging studies be performed.

  1. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  2. Degeneration of articular cartilage in osteonecrosis of the femoral head begins at the necrotic region after collapse: a preliminary study using T1 rho MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, Kazuhiko; Motomura, Goro; Nakashima, Yasuharu [Kyushu University, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan); Kawanami, Satoshi; Takayama, Yukihisa; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan); Yamamoto, Takuaki [Fukuoka University, Department of Orthopaedic Surgery, Faculty of Medicine, Jonan-ku, Fukuoka (Japan)

    2017-04-15

    The purpose of this study is to evaluate the role of collapse on the degeneration of articular cartilage in patients with osteonecrosis of the femoral head (ONFH). Sixteen hips in 12 patients (four men, eight women; mean age, 34.8 years) with a history of systemic corticosteroid treatment were studied using T1 rho magnetic resonance imaging (MRI). Six hips had collapsed ONFH, five had non-collapsed ONFH, and five had no osteonecrosis (controls). Using oblique coronal images, we divided the articular surface of necrotic femoral heads into a region just above the necrotic bone (necrotic zone) and another above the living bone (living zone). T1 rho value was evaluated for each zone. The mean T1 rho value in the necrotic zone was significantly higher in the collapsed ONFH group (48.4 ± 2.7 ms) than in the non-collapsed ONFH group (41.0 ± 0.9 ms). In the collapsed ONFH group, the mean T1 rho value was significantly higher in the necrotic zone (48.4 ± 2.7 ms) than in the living zone (43.5 ± 2.5 ms). In the non-collapsed ONFH group, there was no significant difference between the mean T1 rho values of the necrotic and living zones. In the collapsed ONFH group, the mean T1 rho value of the necrotic zone and the interval from pain onset to the MRI examination were positively correlated. The current T1 rho MRI study suggested that the degeneration of articular cartilage in ONFH begins at the necrotic region after collapse. (orig.)

  3. Progressive neuronal degeneration of childhood with liver disease

    International Nuclear Information System (INIS)

    Kendall, B.E.; Boyd, S.G.; Egger, J.; Harding, B.N.

    1987-01-01

    The clinical, electrophysiological and neuroradiological features of thirteen patients suffering from progressive neuronal degeneration of childhood with liver failure are presented. The disease commonly presents very early in life with progressive mental retardation, followed by intractable epilepsy, and should be suspected clinically especially if there is a family history of similar disorder in a sibling. On computed tomography there are low density regions, particularly in the occipital and posterior temporal lobes, involving both cortex and white matter, combined with or followed by progressive atrophy. Typical EEG findings may be confirmatory. (orig.)

  4. Coding properties of three intrinsically distinct retinal ganglion cells under periodic stimuli: a computational study

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-09-01

    Full Text Available As the sole output neurons in the retina, ganglion cells play significant roles in transforming visual information into spike trains, and then transmitting them to the higher visual centers. However, coding strategies that retinal ganglion cells (RGCs adopt to accomplish these processes are not completely clear yet. To clarify these issues, we investigate the coding properties of three types of RGCs (repetitive spiking, tonic firing, and phasic firing by two different measures (spike-rate and spike-latency. Model results show that for periodic stimuli, repetitive spiking RGC and tonic RGC exhibit similar spike-rate patterns. Their spike-rates decrease gradually with increased stimulus frequency, moreover, variation of stimulus amplitude would change the two RGCs’ spike-rate patterns. For phasic RGC, it activates strongly at medium levels of frequency when the stimulus amplitude is low. While if high stimulus amplitude is applied, phasic RGC switches to respond strongly at low frequencies. These results suggest that stimulus amplitude is a prominent factor in regulating RGCs in encoding periodic signals. Similar conclusions can be drawn when analyzes spike-latency patterns of the three RGCs. More importantly, the above phenomena can be accurately reproduced by Hodgkin’s three classes of neurons, indicating that RGCs can perform the typical three classes of firing dynamics, depending on the distinctions of ion channel densities. Consequently, model results from the three RGCs may be not specific, but can also applicable to neurons in other brain regions which exhibit part(s or all of the Hodgkin’s three excitabilities.

  5. Neurogenic inflammation: a study of rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Edvinsson, Lars

    2010-01-01

    Calcitonin gene-related peptide (CGRP) is linked to neurogenic inflammation and to migraine. Activation of the trigeminovascular system plays a prominent role during migraine attacks with the release of CGRP. The trigeminal ganglion (TG) contains three main cell types: neurons, satellite glial...... cells (SGC) and Schwann cells; the first two have before been studied in vitro separately. Culture of rat TG provides a method to induce inflammation and the possibility to evaluate the different cell types in the TG simultaneously. We investigated expression levels of various inflammatory cytokines...

  6. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE ARE PREFERENTIALLY OVERLUMINOUS

    International Nuclear Information System (INIS)

    Fisher, Robert; Jumper, Kevin

    2015-01-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario

  7. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    Science.gov (United States)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  8. Frontotemporal Degeneration in a Child.

    Science.gov (United States)

    Terrill, Tyler; Pascual, Juan M

    2017-07-01

    There is a predilection for the frontal and temporal lobes in certain cases of dementia in the adult, leading to the syndrome of frontotemporal dementia. However, this syndrome has seemed to elude the developing brain until now. We describe an example of apparently selective neurodegeneration of the frontal and temporal regions during development associated with some of the clinical, magnetic resonance imaging, and fludeoxyglucose positron emission tomography (FDG PET) scan features of canonical frontotemporal dementia in the adult. This patient does not have any of the common frontotemporal dementia-causing mutations or known progressive brain disorders of children. This patient illustrates that symptomatic, selective, and progressive vulnerability of the frontal and temporal lobes is not restricted to adulthood, expanding the phenotype of frontotemporal degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. [Lattice degeneration of the peripheral retina: ultrastructural study].

    Science.gov (United States)

    Bec, P; Malecaze, F; Arne, J L; Mathis, A

    1985-01-01

    The ultrastructural study of a case of snail track degeneration shows the presence of lipid inclusions in both the glial and the macrophage cells in every layer of the retina, and the existence of intraretinal fibers different from collagen fibers appearing to be glial filaments similar to those found in astrocytic gliomes and to the Rosenthal fibers observed in senile nervous cells. Other features were thinning of the retina and absence of blood vessels in the retina. There are no abnormalities of the vitreo-retinal juncture. All the lesions are in agreement with those observed by Daicker [Ophthalmologica, Basel 165: 360-365, 1972; Klin. Mbl. Augenheilk. 172: 581-583, 1978] with some differences, however. They are different from those found in lattice degeneration. They show that snail track degeneration is a specific form of peripheral retinal degeneration which is quite different from lattice degeneration and must not be considered similar.

  10. Dissection of the sentry ganglion by laparoscopic boarding in patients with cervix uterine cancer clinical stages IA2 at IIB

    International Nuclear Information System (INIS)

    Valdez U, J.J.; Pichardo M, P.A.; Cortes M, G.; Escudero de los Rios, P.

    2005-01-01

    The obtained results in presently study demonstrate that the feasibility of the detection of the sentry ganglion in cervix uterine cancer using a boarding by laparoscopic via, being necessary the use of twice labelled as much with patent blue and radioisotope (colloid of labelled rhenium with 99m Tc, total dose of 3 MCi) to achieve the identification of the ganglion. (Author)

  11. Human disc degeneration is associated with increased MMP 7 expression.

    Science.gov (United States)

    Le Maitre, C L; Freemont, A J; Hoyland, J A

    2006-01-01

    During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.

  12. Pathological evaluation of ganglion cells in biopsies from upper side of the dentate line in patients with perianal problems

    Directory of Open Access Journals (Sweden)

    Marjan Joudi

    2014-07-01

    Full Text Available Introduction: Constipation is one of the most common complaints of individuals, which may present with complication like hemorrhoid and fissure. Hirschsprung is a disease presenting with chronic constipation and its diagnosis may be delayed until adulthood. It is diagnosed by biopsies from anorectal transitional zone. This study aimed to evaluate the association between Hirschsprung and anorectal problems. Method: Sixty three patients with anorectal problems who underwent surgery enrolled in this study. Some consecutive biopsies were obtained from anal canal at 2, 4 and 6 cm above the dentate line. Biopsies were assessed for ganglion cells changes. Patients' data and biopsies results were analyzed with SPSS version18. Results: Out of 63 patients 29 (46 % patients were female and 34 (54 % were male with the mean of 32.65 ± 13.73 years. Fifty six (73 % patients complained from constipation with the mean time of 57.65 ± 45.21 months. Aganglionic zone were reported in six patients with the mean length of 43.33 mm. There was not any relation between anal ganglion cells pathology and constipation (p=0.363, but there was a significant relation between duration of constipation and pathologic changes (p=0.001. The ratio of constipation duration to age was related to anal ganglion cell pathology (p=0.001. Hemorrhoid degree was also affected anal ganglion cells pathology (p=0.037. Conclusion: The relation between Hirschsprung's disease and anorectal problems in adults were significant. The pathologic findings were more presented in younger patients, and those with longer history of constipation and lower degree hemorrhoids. Key words: Anal ganglion cells, Hemorrhoids, Constipation  

  13. Notochord Cells in Intervertebral Disc Development and Degeneration

    Science.gov (United States)

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  14. Notochord Cells in Intervertebral Disc Development and Degeneration

    Directory of Open Access Journals (Sweden)

    Matthew R. McCann

    2016-01-01

    Full Text Available The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.

  15. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    Science.gov (United States)

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  16. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Lee, John J; Miller, Donald T

    2017-11-28

    Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging-using predominately singly scattered light-to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: ( i ) marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; ( ii ) performing 3D subcellular image registration to avoid motion blur; and ( iii ) using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease. Copyright © 2017 the Author(s). Published by PNAS.

  17. Computed tomography of Wallerian degeneration

    International Nuclear Information System (INIS)

    Uchino, Akira; Maeda, Fumihiko

    1986-01-01

    CT findings of wallerian degeneration of the pyramidal tract at the midbrain (atrophy of cerebral peduncle following cerebrovascular accident) were studied in 34 patients (44 CT scans) with old cerebrovascular accidents. Severe atrophy of cerebral peduncle was noted when the ipsilateral motor cortex was involved. However, when the posterior limb of the internal capsule was involved, atrophy of the ipsilateral cerebral peduncle was mild. In this series, the shortest interval between cerebrovascular accident and wallerian degeneration was 8 month. (author)

  18. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  19. Transfer of accelerated presbycusis by transplantation of bone marrow cells from senescence-accelerated mice.

    Science.gov (United States)

    Baba, Susumu; Iwai, Hiroshi; Inaba, Muneo; Kawamoto, Kohei; Omae, Mariko; Yamashita, Toshio; Ikehara, Susumu

    2006-11-20

    Until now, there has been no effective therapy for chronic sensorineural hearing impairment. This study investigated the role of bone marrow cells (BMCs) in cochlear dysfunction. BALB/c mice (2 months of age), a non-presbycusis-prone mouse strain, were lethally irradiated and then transplanted with BMCs from SAMP1 mice (2 months of age), a presbycusis-prone mouse strain. Acceleration of age-related hearing loss, early degeneration of spiral ganglion cells (SGCs) and impairment of immune function were observed in the recipient mice as well as in the SAMP1 mice. However, no spiral ganglion cells of donor (SAMP1) origin were detected in the recipient mice. These results indicated that accelerated presbycusis, cochlear pathology, and immune dysfunction of SAMP1 mice can be transferred to BALB/c recipient mice using allogeneic bone marrow transplantation (BMT). However, although the BMCs themselves cannot differentiate into the spiral ganglion cells (SGCs), they indirectly cause the degeneration of the SGCs. Further studies into the relationship between the inner ear cells and BMCs are required.

  20. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we

  1. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always

    DEFF Research Database (Denmark)

    Georg, Birgitte; Ghelli, Anna; Giordano, Carla

    2017-01-01

    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties...

  2. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  3. Analysis the macular ganglion cell complex thickness in monocular strabismic amblyopia patients by Fourier-domain OCT

    Directory of Open Access Journals (Sweden)

    Hong-Wei Deng

    2014-11-01

    Full Text Available AIM: To detect the macular ganglion cell complex thickness in monocular strabismus amblyopia patients, in order to explore the relationship between the degree of amblyopia and retinal ganglion cell complex thickness, and found out whether there is abnormal macular ganglion cell structure in strabismic amblyopia. METHODS: Using a fourier-domain optical coherence tomography(FD-OCTinstrument iVue®(Optovue Inc, Fremont, CA, Macular ganglion cell complex(mGCCthickness was measured and statistical the relation rate with the best vision acuity correction was compared Gman among 26 patients(52 eyesincluded in this study. RESULTS: The mean thickness of the mGCC in macular was investigated into three parts: centrial, inner circle(3mmand outer circle(6mm. The mean thicknesses of mGCC in central, inner and outer circle was 50.74±21.51μm, 101.4±8.51μm, 114.2±9.455μm in the strabismic amblyopia eyes(SAE, and 43.79±11.92μm,92.47±25.01μm, 113.3±12.88μm in the contralateral sound eyes(CSErespectively. There was no statistically significant difference among the eyes(P>0.05. But the best corrected vision acuity had a good correlation rate between mGcc thicknesses, which was better relative for the lower part than the upper part.CONCLUSION:There is a relationship between the amblyopia vision acuity and the mGCC thickness. Although there has not statistically significant difference of the mGCC thickness compared with the SAE and CSE. To measure the macular center mGCC thickness in clinic may understand the degree of amblyopia.

  4. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dzierzega, K; Pokrzywka, B; Pellerin, S

    2004-01-01

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  5. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration

    NARCIS (Netherlands)

    Baseler, Heidi A.; Gouws, Andre; Haak, Koen V.; Racey, Christopher; Crossland, Michael D.; Tufail, Adnan; Rubin, Gary S.; Cornelissen, Frans W.; Morland, Antony B.

    The occipital lobe contains retinotopic representations of the visual field. The representation of the central retina in early visual areas (V1-3) is found at the occipital pole. When the central retina is lesioned in both eyes by macular degeneration, this region of visual cortex at the occipital

  6. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne

    2013-01-01

    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilatera......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...... in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia....

  7. Risk factors of age-related macular degeneration in Argentina

    Directory of Open Access Journals (Sweden)

    María Eugenia Nano

    2013-04-01

    Full Text Available PURPOSES: To assess the risk factors of age-related macular degeneration in Argentina using a case-control study. METHODS: Surveys were used for subjects' antioxidant intake, age/gender, race, body mass index, hypertension, diabetes (and type of treatment, smoking, sunlight exposure, red meat consumption, fish consumption, presence of age-related macular degeneration and family history of age-related macular degeneration. Main effects models for logistic regression and ordinal logistic regression were used to analyze the results. RESULTS: There were 175 cases and 175 controls with a mean age of 75.4 years and 75.5 years, respectively, of whom 236 (67.4% were female. Of the cases with age-related macular degeneration, 159 (45.4% had age-related macular degeneration in their left eyes, 154 (44.0% in their right eyes, and 138 (39.4% in both eyes. Of the cases with age-related macular degeneration in their left eyes, 47.8% had the dry type, 40.3% had the wet type, and the type was unknown for 11.9%. The comparable figures for right eyes were: 51.9%, 34.4%, and 13.7%, respectively. The main effects model was dominated by higher sunlight exposure (OR [odds ratio]: 3.3 and a family history of age-related macular degeneration (OR: 4.3. Other factors included hypertension (OR: 2.1, smoking (OR: 2.2, and being of the Mestizo race, which lowered the risk of age-related macular degeneration (OR: 0.40. Red meat/fish consumption, body mass index, and iris color did not have an effect. Higher age was associated with progression to more severe age-related macular degeneration. CONCLUSION: Sunlight exposure, family history of age-related macular degeneration, and an older age were the significant risk factors. There may be other variables, as the risk was not explained very well by the existing factors. A larger sample may produce different and better results.

  8. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  9. Anatomic and Molecular Development of Corticostriatal Projection Neurons in Mice

    OpenAIRE

    Sohur, U. Shivraj; Padmanabhan, Hari K.; Kotchetkov, Ivan S.; Menezes, Joao R.L.; Macklis, Jeffrey D.

    2012-01-01

    Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally...

  10. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    Science.gov (United States)

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage.

  11. Magnetic resonance imaging of intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.

    1993-01-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)

  12. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  13. Risk of retinal detachment in patients with lattice degeneration.

    Science.gov (United States)

    Sasaki, K; Ideta, H; Yonemoto, J; Tanaka, S; Hirose, A; Oka, C

    1998-01-01

    To determine the risk of retinal detachment in patients with lattice degeneration of the retina, we statistically analyzed the incidence of retinal detachment in these patients. The data of hospital patients with retinal detachment associated with lattice degeneration in Kumamoto Prefecture, Japan, in 1990 were collected. The prevalence of lattice degeneration in Kumamoto was reported to be 9.5% in 1980. Based on population data from the 1990 census, the cumulative incidence of retinal detachment associated with lattice degeneration was calculated in this study. Among 1,840,000 residents in Kumamoto, there were 110 patients with retinal detachment associated with lattice degeneration; 72 with detachment resulting from tractional tears (tears), and 38 with detachment from atrophic holes. The cumulative incidence of retinal detachment from atrophic holes was 1.5% at the age of 40 years; from tears it was 3.6% at the age of 80 years. The cumulative incidence of detachment from both atrophic holes and tears was 5.3% at the age of 80 years. The results of this study are useful for clarifying the natural course of lattice degeneration.

  14. Wallerian degeneration of the corticodescending tract in the cerebral peduncle following a supratentorial cerebrovascular lesion detected by MRI; The relationship between Wallerian degeneration at the center of the cerebral peduncle and functional recovery of paresis

    Energy Technology Data Exchange (ETDEWEB)

    Waragai, Masaaki; Iwabuchi, Sadamu (Nanasawa Rehabilitation Hospital, Kanagawa (Japan))

    1993-11-01

    We studied Wallerian degeneration of the corticodescending tract in the cerebral peduncle following a supratentorial cerebrovascular lesion by MRI. A total of 57 patients with palsy following a supratenotorial cerebrovascular lesion were prospectively studied. Wallerian degeneration was detected as a high signal intensity (HSI) in 37 patients between 70 days and 100 days after the onset, but not detected in the remaining 27 patients. Patient with as HSI in all areas of the cerebral peduncle had a large lesion involving the hemisphere. Patient with an HSI at the center of the cerebral peduncle had a lesion confined to the paracentral gyrus, precentral gyrus, corona radiata or posterior limb of the internal capsule. Patient with an HSI at the lateral side of the cerebral peduncle had a lesion of parietal lobe or temporal lobe which spares the corticospinal tract originating from the paracentral gyrus, precentral gyrus, corona radiata or posterior limb of the internal capsule. These findings suggest that as HSI at the center of the cerebral peduncle may reveal Wallerian degeneration of the corticospinal tract, and an HSI at the lateral side of the cerebral peduncle may show Wallerian degeneration of the corticopontine tract. The functional recovery of paresis was poor in all patients with an HSI at the center of the cerebral peduncle, while it was good in all patients without an HSI in that region. Our data suggested that somatotopical localization of the corticodescending tract in the cerebral peduncle may be identified by detecting Wallerian degeneration following a supratentorial lesion, and the functional recovery of patients with paresis could be predicted according to presence or absence of Wallerian degeneration at the center of the cerebral peduncle. (author).

  15. Naturalness of nearly degenerate neutrinos

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    1999-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Δm sol 2 atm 2 hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all observations

  16. Genetics and molecular pathology of Stargardt-like macular degeneration.

    Science.gov (United States)

    Vasireddy, Vidyullatha; Wong, Paul; Ayyagari, Radha

    2010-05-01

    Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3

  17. [3H]acetylcholine synthesis in cultured ciliary ganglion neurons: effects of myotube membranes

    International Nuclear Information System (INIS)

    Gray, D.B.; Tuttle, J.B.

    1987-01-01

    Avian ciliary ganglion neurons in cell culture were examined for the capacity to synthesize acetylcholine (ACh) from the exogenously supplied precursor, choline. Relevant kinetic parameters of the ACh synthetic system in cultured neurons were found to be virtually the same as those of the ganglionic terminals in the intact iris. Neurons were cultured in the presence of and allowed to innervate pectoral muscle; this results in an capacity for ACh synthesis. In particular, the ability to increase ACh synthesis upon demand after stimulation is affected by interaction with the target. This effect is shown to be an acceleration of the maturation of the cultured neurons. Lysed and washed membrane remnants of the muscle target were able to duplicate, in part, this effect of live target tissue on neuronal transmitter metabolism. Culture medium conditioned by muscle, and by the membrane remnants of muscle, was without significant effect. Thus, substances secreted into the medium do not play a major role in this interaction. Neurons cultured with either muscle or muscle membrane remnants formed large, elongate structures on the target membrane surface. These were not seen in the absence of the target at the times examined. This morphological difference in terminal-like structures may parallel the developmental increases in size and vesicular content of ciliary ganglion nerve terminals in the chick iris, and may relate to the increased ACh synthetic activity. The results suggest that direct contact with an appropriate target membrane has a profound, retrograde influence upon neuronal metabolic and morphological maturation

  18. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    Science.gov (United States)

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The role of NgR-Rhoa-Rock signal pathway in retinal ganglion cell apoptosis of early diabetic rats

    Directory of Open Access Journals (Sweden)

    Yun-Jie Fu

    2014-09-01

    Full Text Available AIM: To study the function and mechanism of the NgR-Rhoa-Rock signal pathways which exists in the retinal ganglion cells apoptosis in diabetes mellitus(DMrats. METHODS: Some healthy SD rats were operated by means of single intraperitoneal injection of 1% streptozotocin based on the standard of 50mg/kg wight, after that the blood sugar value was greater than 16.7mmol/L as DM model, then randomly divided into 3 groups, each group was 10 rats. In addition to take 10 healthy SD rats as control group. Four groups of rats were bilaterally eyeball intravitreal injection in turn with NgR-siRNA virus 10μL(siRNA group, NgR-siRNA virus diluted 10μL(DM group, NgR-siRNA virus-negative-control solution 10μL(siRNA blank group, NgR-siRNA virus diluted 10μL(normal control group, and fed normally. During that time, some life indexes like blood glucose, body mass, etc. were measured and recorded. After 12wk, the expression of NgR and Rhoa, HE staining, and TUNNEL staining were detected by Western blot analysis. RESULTS: Western blot analysis: compared with normal control group, the expression of NgR and Rhoa in DM group and siRNA blank group increased significantly(PP>0.05; compared with DM group and siRNA blank group, the expression of those proteins significantly lowered in siRNA group. HE staining: compared with normal control group, some extent ganglion cells arranged disorder, irregular shape, spacing not consistent were all found in three groups of model rats; compared with DM group and siRNA blank group, there was some improvement in siRNA group of ganglion cells about the order and shape size. TUNEL staining: compared with normal control group, there were retinal ganglion cells apoptosis in all of three groups of model rats. Compared with DM group and siRNA blank group, the number of retinal ganglion cells apoptotic cells was less, and the shape of cells had improved significantly in siRNA group. CONCLUSION: In the DM phase, the expression of NgR and

  1. The prognosis of retinal detachment due to lattice degeneration.

    Science.gov (United States)

    Benson, W E; Morse, P H

    1978-09-01

    In a series of 553 consecutive retinal detachments, 29% (120) were due to lattice degeneration. Forty-five percent of these were due to atrophic holes in the lattice degeneration and 55% were due to tears caused by traction posterior to or at the end of a patch of lattice. In phakic patients, retinal detachments due to atrophic holes were most common in young myopes. Detachments due to traction tears were seen in older, less myopic patients. The incidence of massive periretinal proliferation was less (5%) in detachments due to lattice degeneration than in detachments not due to lattice degeneration (6.5%).

  2. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.

    Science.gov (United States)

    Briggs, C E; Rucinski, D; Rosenfeld, P J; Hirose, T; Berson, E L; Dryja, T P

    2001-09-01

    To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.

  3. Disk degeneration in 14 year old children

    International Nuclear Information System (INIS)

    Erkintalo, M.; Salminen, J.J.; Paajanen, H.; Terho, P.; Kormano, M.

    1989-01-01

    This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood

  4. Effectiveness of Stellate Ganglion Block Under Fuoroscopy or Ultrasound Guidance in Upper Extremity CRPS.

    Science.gov (United States)

    Imani, Farnad; Hemati, Karim; Rahimzadeh, Poupak; Kazemi, Mohamad Reza; Hejazian, Kokab

    2016-01-01

    Stellate Ganglion Block (SGB) is an effective technique which may be used to manage upper extremities pain due to Chronic Regional Pain Syndrome (CRPS), in this study we tried to evaluate the effectiveness of this procedure under two different guidance for management of this syndrome. The purpose of this study was to evaluate the effectiveness of ultrsound guide SGB by comparing it with the furoscopy guided SGB in upper extermities CRPS patients in reducing pain & dysfuction of the affected link. Fourteen patients with sympathetic CRPS in upper extremities in a randomized method with block randomization divided in two equal groups (with ultrasound or fluoroscopic guidance). First group was blocked under fluoroscopic guidance and second group blocked under ultrasound guidance. After correct positioning of the needle, a mixture of 5 ml bupivacaine 0.25% and 1 mL of triamcinolone was injected. These data represent no meaningful statistical difference between the two groups in terms of the number of pain attacks before the blocks, a borderline correlation between two groups one week and one month after the block and a significant statistical correlation between two groups three month after the block. These data represent no meaningful statistical difference between the patients of any group in terms of the pain intensity (from one week to six months after block), p-value = 0.61. These data represent a meaningful statistical difference among patients of any group and between the two groups in terms of the pain intensity (before the block until six months after block), p-values were 0.001, 0.031 respectively. According the above mentioned data, in comparison with fluoroscopic guidance, stellate ganglion block under ultrasound guidance is a safe and effective method with lower complication and better improvement in patient's disability indexes.

  5. Progression of Fatty Muscle Degeneration in Atraumatic Rotator Cuff Tears.

    Science.gov (United States)

    Hebert-Davies, Jonah; Teefey, Sharlene A; Steger-May, Karen; Chamberlain, Aaron M; Middleton, William; Robinson, Kathryn; Yamaguchi, Ken; Keener, Jay D

    2017-05-17

    The purpose of this prospective study was to examine the progression of fatty muscle degeneration over time in asymptomatic shoulders with degenerative rotator cuff tears. Subjects with an asymptomatic rotator cuff tear in 1 shoulder and pain due to rotator cuff disease in the contralateral shoulder were enrolled in a prospective cohort. Subjects were followed annually with shoulder ultrasonography, which evaluated tear size, location, and fatty muscle degeneration. Tears that were either full-thickness at enrollment or progressed to a full-thickness defect during follow-up were examined. A minimum follow-up of 2 years was necessary for eligibility. One hundred and fifty-six shoulders with full-thickness rotator cuff tears were potentially eligible. Seventy shoulders had measurable fatty muscle degeneration of at least 1 rotator cuff muscle at some time point. Patients with fatty muscle degeneration in the shoulder were older than those without degeneration (mean, 65.8 years [95% confidence interval (CI), 64.0 to 67.6 years] compared with 61.0 years [95% CI, 59.1 to 62.9 years]; p tears at baseline was larger in shoulders with degeneration than in shoulders that did not develop degeneration (13 and 10 mm wide, respectively, and 13 and 10 mm long; p Tears with fatty muscle degeneration were more likely to have enlarged during follow-up than were tears that never developed muscle degeneration (79% compared with 58%; odds ratio, 2.64 [95% CI, 1.29 to 5.39]; p muscle degeneration occurred more frequently in shoulders with tears that had enlarged (43%; 45 of 105) than in shoulders with tears that had not enlarged (20%; 10 of 51; p tears with enlargement and progression of muscle degeneration were more likely to extend into the anterior supraspinatus than were those without progression (53% and 17%, respectively; p tear size (p = 0.56). The median time from tear enlargement to progression of fatty muscle degeneration was 1.0 year (range, -2.0 to 6.9 years) for the

  6. Neuroprotection in Glaucoma: A Review

    African Journals Online (AJOL)

    Alasia Datonye

    retinal cell ganglion death independent of IOP.It therefore presents an exciting ... A lack of appropriate target-derived trophic support causes cells to undergo apoptotic degeneration. ... Misfolded proteins such as amyloid (A ) are a prominent.

  7. [Clinical features and prognosis of retinal lattice degeneration].

    Science.gov (United States)

    Guo, X R

    1990-07-01

    110 cases (110 eyes) of retinal lattice degeneration were clinically observed and followed up for 3-8 years. Most lesions were located in the superotemporal quadrant, band-shaped, and parallel to the ora serrata. 80.9% of the lesions presented various degrees of pigmentation, 67.1% yellowish white spots, and 83.6% white lines. 32.9% of the eyes developed retinal holes. Most lattice degenerations were accompanied by vitreous degeneration and vitreoretinal traction. The disease progressed only slowly, though in a few cases it tended to expand.

  8. Diagnostic imaging of tibial periosteal ganglion

    International Nuclear Information System (INIS)

    Valls, R.; Melloni, P.; Darnell, A.; Munoz, J.; Canalies, J.

    1997-01-01

    A case of a soft tissue tumor situated in the anterior surface of the proximal end of the tibia in an adult patient is demonstrated by conventional radiographs, CT, and MRI. The lesion was well defined with respect to the adjacent soft tissue. The CT exam showed a soft tissue mass with external cortical erosion and thick spicules by periosteal reaction. On T1-weighted images the mass was homogeneous and of low signal intensity, whereas on T2-weighted images it showed a high signal intensity, with some septa in the mass. The differential considerations include a periosteal chondroma, a lipoma, a subperiosteal hematoma, an inflammatory process, a giant cell tumor of tendon sheath, and a parosteal osteosarcoma. The CT and MR features of these entities are reviewed as an aid in differential diagnosis of the periosteal ganglion. (orig.). With 4 figs

  9. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    Science.gov (United States)

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (Poxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An unusual variant of intraneural ganglion of the common peroneal nerve

    International Nuclear Information System (INIS)

    Bonar, S. Fiona; Viglione, Wayne; Schatz, Julie; Scolyer, Richard A.; McCarthy, Stanley W.

    2006-01-01

    A highly unusual variant of an intraneural ganglion of the common peroneal nerve in a 30-year-old male is presented. There was extrusion of the contents of the cyst into the substance of the nerve, dissecting between the fibres and expanding the nerve in such a way that it mimicked an intraneural tumour clinically, radiologically and histologically. A comprehensive review of the entity is undertaken. (orig.)

  11. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  12. Hamiltonization of theories with degenerate coordinates

    International Nuclear Information System (INIS)

    Gitman, D.M.; Tyutin, I.V.

    2002-01-01

    We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta

  13. Hamiltonization of theories with degenerate coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. E-mail: gitman@fma.if.usp.br; Tyutin, I.V. E-mail: tyutin@lpi.ru

    2002-05-27

    We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta.

  14. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies.

    Science.gov (United States)

    Rivera, José Carlos; Holm, Mari; Austeng, Dordi; Morken, Tora Sund; Zhou, Tianwei Ellen; Beaudry-Richard, Alexandra; Sierra, Estefania Marin; Dammann, Olaf; Chemtob, Sylvain

    2017-08-22

    Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.

  15. Stimulation of the sphenopalatine ganglion in intractable cluster headache

    DEFF Research Database (Denmark)

    Jürgens, Tim P; Schoenen, Jean; Rostgaard, Jørgen

    2014-01-01

    , but only very few randomized controlled studies exist in the field of neuromodulation for the treatment of drug-refractory headaches. Based on the prominent role of the cranial parasympathetic system in acute cluster headache attacks, high-frequency sphenopalatine ganglion (SPG) stimulation has been shown...... patients and the first commercially available CE-marked SPG neurostimulator system has been introduced for cluster headache, patient selection and care should be standardized to ensure maximal efficacy and safety. As only limited data have been published on SPG stimulation, standards of care based...

  16. Melanopsin-expressing retinal ganglion cells: implications for human diseases

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Hannibal, Jens

    2011-01-01

    In the last decade, there was the seminal discovery of melanopsin-expressing retinal ganglion cells (mRGCs) as a new class of photoreceptors that subserve the photoentrainment of circadian rhythms and other non-image forming functions of the eye. Since then, there has been a growing research...... interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i...

  17. Arthroscopic Resection of Wrist Ganglion Arising from the Lunotriquetral Joint

    OpenAIRE

    Mak, Michael C. K.; Ho, Pak-cheong; Tse, W. L.; Wong, Clara W. Y.

    2013-01-01

    The dorsal wrist ganglion is the most common wrist mass, and previous studies have shown that it arises from the scapholunate interval in the vast majority of cases. Treatment has traditionally been open excision, and more recently arthroscopic resection has been established as an effective and less invasive treatment method. However, application of this technique to ganglia in atypical locations has not been reported, where open excision is the usual practice. This report describes two cases...

  18. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...... of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC....

  19. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease; MR-Volumetrie zur Darstellung von Verteilung und zeitlicher Abfolge neokortikaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Leinsinger, G. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Institut fuer Klinische Radiologie, LMU Muenchen, Ziemssenstrasse 1, 80336, Muenchen (Germany); Teipel, S.; Pruessner, J.; Hampel, H. [Klinik fuer Psychiatrie, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany)

    2003-07-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with {sup 18}FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [German] Volumetrische Analyse des Corpus callosum und Hippokampus mittels MRT bei der Alzheimer-Erkrankung (AD), mit dem Ziel die regionale Verteilung und Progression der neokortikalen relativ zur allokortikalen Neurodegeneration zu erfassen. In mehreren Studienabschnitten wurden Patienten mit AD und gesunde Kontrollen untersucht. Als Grundlage fuer die Volumetrie diente eine sagittale 3D-T1w-Gradientenechosequenz. Die Vermessung des Corpus callosum (CC) erfolgte in der mittsagittalen Schicht, wobei 5 Subregionen definiert wurden. Die Volumetrie des Hippokampus-Amygdala-Komplexes (HAK) wurde durch Segmentierung an koronar reorientierten Schichten durchgefuehrt. Bei Patienten mit AD fand sich eine signifikante Atrophie in Rostrum und Splenium des CC. Dabei zeigte sich

  20. Macular degeneration - age-related

    Science.gov (United States)

    ... AMD occurs when the blood vessels under the macula become thin and brittle. Small yellow deposits, called drusen, form. Almost all people with macular degeneration start with the dry form. Wet AMD occurs ...

  1. The prevalence of sacroiliac joint degeneration in asymptomatic adults.

    Science.gov (United States)

    Eno, Jonathan-James T; Boone, Christopher R; Bellino, Michael J; Bishop, Julius A

    2015-06-03

    Degenerative changes of the sacroiliac joint have been implicated as a cause of lower back pain in adults. The purpose of this study was to determine the prevalence of sacroiliac joint degeneration in asymptomatic patients. Five hundred consecutive pelvic computed tomography (CT) scans, made at a tertiary-care medical center, of patients with no history of pain in the lower back or pelvic girdle were retrospectively reviewed and analyzed for degenerative changes of the sacroiliac joint. After exclusion criteria were applied, 373 CT scans (746 sacroiliac joints) were evaluated for degenerative changes. Regression analysis was used to determine the association between age and the degree of sacroiliac joint degeneration. The prevalence of sacroiliac joint degeneration was 65.1%, with substantial degeneration occurring in 30.5% of asymptomatic subjects. The prevalence steadily increased with age, with 91% of subjects in the ninth decade of life displaying degenerative changes. Radiographic evidence of sacroiliac joint degeneration is highly prevalent in the asymptomatic population and is associated with age. Caution must be exercised when attributing lower back or pelvic girdle pain to sacroiliac joint degeneration seen on imaging. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  2. Correlation between the Appearance of Neuropeptides in the Rat Trigeminal Ganglion and Reinnervation of the Healing Root Socket after Tooth Extraction

    International Nuclear Information System (INIS)

    Gunjigake, Kaori K.; Goto, Tetsuya; Nakao, Kayoko; Konoo, Tetsuro; Kobayashi, Shigeru; Yamaguchi, Kazunori

    2006-01-01

    The neuropeptide substance P (SP) modulates bone metabolism. This study examined the temporal appearance of the neuropeptides SP and brain-derived nerve growth factor (BDNF) and their receptors (neurokinin-1 receptor (NK 1 -R) and Trk B, respectively) in the rat trigeminal ganglion to investigate the role of neuropeptides in healing after tooth extraction. Rats were anesthetized and their upper right first molars were extracted; the rats were sacrificed 3 hours and 1–21 days after extraction. Their trigeminal ganglion and maxilla were removed, and cryosections were prepared and immunostained using specific antibodies against SP, BDNF, NK 1 -R, and Trk B. In the tooth sockets after extraction, new bone and a few SP-immunoreactive nerve fibers were first seen at day 7, and bone completely filled the sockets at day 21. In the trigeminal ganglion, the proportions of NK 1 -R-, BDNF-, and Trk B-immunoreactive neurons changed similarly, i.e., they initially decreased, increased rapidly to maximum levels by day 3, and then decreased gradually to control levels until 21 days. These findings suggest that the appearance of neuropeptides in the trigeminal ganglion, the reinnervation of SP-immunoreactive nerve fibers, and bone repair in the tooth socket during healing after extraction were correlated

  3. Comparison of frequency of recurrence following aspiration and injection of steroid versus surgical excision in the treatment of wrist ganglion

    International Nuclear Information System (INIS)

    Butt, M.W.; Mian, M.A.; Ahmed, N.; Aziz, U.B.A.

    2014-01-01

    To compare the frequency of recurrence following aspiration and injection of steroid versus surgical excision in the treatment of wrist ganglion. Study Design: Randomized controlled trial.Place and Duration of Study: General surgical department, Combined Military Hospital, Rawalpindi, Pakistan, from Jan 2010 to Dec 2010. Material and Methods: Sixty patients of clinically diagnosed wrist ganglia were randomized into groups 'A' and 'B' with 30 patients in each group. After approval by the hospital ethical committee, patients in group 'A' were subjected to aspiration and injection of methyl-prednisolone acetate 40 mg/ml and those in group 'B' underwent surgical excision of the ganglion. Patients were explained the procedure they were subjected to and they were also counselled about the risk of recurrence after a particular procedure and after that informed written consent was obtained from them. Patients were followed up at intervals of 2 weeks, 6 weeks, 3 months and 6 months after the procedure to look for recurrence in both groups. Results: On follow up at 6 months, 12 (40%) patients in group A while only 2 (6.66%) patients in group B had recurrence of the ganglion. No complications were noted. This difference was found to be statistically significant (p=0.0023). Conclusion: Recurrence of wrist ganglion is considerably less in patients treated with surgical excision and should be preferred over aspiration and steroid injection. (author)

  4. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    Science.gov (United States)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  5. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    Science.gov (United States)

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  6. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...

  7. MRI and MR tractography in bilateral hypertrophic olivary degeneration.

    Science.gov (United States)

    Sen, Debraj; Gulati, Yoginder S; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra

    2014-10-01

    Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.

  8. MRI and MR tractography in bilateral hypertrophic olivary degeneration

    International Nuclear Information System (INIS)

    Sen, Debraj; Gulati, Yoginder S.; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra

    2014-01-01

    Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted

  9. Intramuscular degeneration process in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Hasegawa, Takeshi; Matsumra, Kiichiro; Hashimoto, Takahiro; Ikehira, Hiroo; Fukuda, Hiroshi; Tateno, Yukio.

    1992-01-01

    Intramuscular degeneration process of Duchenne dystrophy skeletal muscles was investigated by longitudinal skeletal muscle imaging with high-field-strength NMR-CT of 1.5 Tesla. Thigh muscles in 10 cases ranging in age from 4 to 19 years were examined by T 1 -weighted longitudinal images (TR=215∼505 ms, TE=19∼20 ms). The following results were obtained. Skeletal muscle degeneration was depicted as high signal intensity area reflecting its high fat contents. These high signal intensity areas had a longitudinally streaky appearance in parallel direction with myofibers. These findings were more prominent toward myotendon junction than muscle bellies. Skeletal muscle degeneration progressed rapidly between 7 to 10 years of age, and reached a plateau after that. (author)

  10. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  11. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Science.gov (United States)

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  12. New treatment strategies for canine intervertebral disc degeneration

    NARCIS (Netherlands)

    Smolders, L.A.

    2013-01-01

    Degeneration of the intervertebral disc (IVD) is a common problem in dogs and humans. IVD degeneration can lead to herniation of the IVD with subsequent compression of neural structures and various clinical signs, including back pain. Current treatment of IVD disease is conservative or surgical.

  13. Acquired Nonpigmented Vitreous Cyst Associated With Lattice Degeneration.

    Science.gov (United States)

    Lu, Jing; Mai, Guiying; Liu, Ruyuan; Luo, Yan; Lu, Lin

    2017-10-01

    A 63-year-old male presented with a round-shaped floater and visual obscuration in the right eye. Clinical evaluation showed a nonpigmented vitreous cyst connected to a lattice degeneration by a stalk. Immunostaining of the vitreous cyst obtained from vitrectomy showed its origin of retinal neuroepithelium. The cyst was formed by continuous vitreous traction, which might tear up the disrupted retina at the area of lattice degeneration. This report added the lattice degeneration to the list of causes for the acquired vitreous cyst. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:856-858.]. Copyright 2017, SLACK Incorporated.

  14. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  15. MRI and MR tractography in bilateral hypertrophic olivary degeneration

    Directory of Open Access Journals (Sweden)

    Debraj Sen

    2014-01-01

    Full Text Available Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.

  16. Activity patterns of cochlear ganglion neurones in the starling.

    Science.gov (United States)

    Manley, G A; Gleich, O; Leppelsack, H J; Oeckinghaus, H

    1985-09-01

    Spontaneous activity and responses to simple tonal stimuli were studied in cochlear ganglion neurones of the starling. Both regular and irregular spontaneous activity were recorded. Non-auditory cells have their origin in the macula lagenae. Mean spontaneous rate for auditory cells (all irregularly spiking) was 45 spikes s-1. In half the units having characteristic frequencies (CFs) less than 1.5 kHz, time-interval histograms (TIHs) of spontaneous activity showed regularly-spaced peaks or 'preferred' intervals. The spacing of the peak intervals was, on average, 15% greater than the CF-period interval of the respective units. In TIH of lower-frequency cells without preferred intervals, the modal interval was also on average about 15% longer than the CF-period interval. Apparently, the resting oscillation frequency of these cells lies below their CF. Tuning curves (TCs) of neurones to short tone bursts show no systematic asymmetry as in mammals. Below CF 1 kHz, the low-frequency flanks of the TCs are, on average, steeper than the high-frequency flanks. Above CF 1 kHz, the reverse is true. The cochlear ganglion and nerve are tonotopically organized. Low-frequency fibres arise apically in the papilla basilaris and are found near non-auditory (lagenar) fibres. Discharge rates to short tones were monotonically related to sound pressure level. Saturation rates often exceeded 300 spikes s-1. 'On-off' responses and primary suppression of spontaneous activity were observed. A direct comparison of spontaneous activity and tuning-curve symmetry revealed that, apart from quantitative differences, fundamental qualitative differences exist between starling and guinea-pig primary afferents.

  17. Transcriptome changes in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Whitmore S Scott

    2012-02-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a debilitating, common cause of visual impairment. While the last decade has seen great progress in understanding the pathophysiology of AMD, the molecular changes that occur in eyes with AMD are still poorly understood. In the current issue of Genome Medicine, Newman and colleagues present the first systematic transcriptional profile analysis of AMD-affected tissues, providing a comprehensive set of expression data for different regions (macula versus periphery, tissues (retina versus retinal pigment epithelium (RPE/choroid, and disease state (control versus early or advanced AMD. Their findings will serve as a foundation for additional systems-level research into the pathogenesis of this blinding disease. Please see related article: http://genomemedicine.com/content/4/2/16

  18. Value of computed tomography arthrography with delayed acquisitions in the work-up of ganglion cysts of the tarsal tunnel: report of three cases

    International Nuclear Information System (INIS)

    Omoumi, Patrick; Gheldere, Antoine de; Leemrijse, Thibaut; Galant, Christine; Van den Bergh, Peter; Malghem, Jacques; Simoni, Paolo; Berg, Bruno C.V.; Lecouvet, Frederic E.

    2010-01-01

    Ganglion cysts are a common cause of tarsal tunnel syndrome. As in other locations, these cysts are believed to communicate with neighboring joints. The positive diagnosis and preoperative work-up of these cysts require identification and location of the cyst pedicles so that they may be excised and the risk of recurrence decreased. This can be challenging with ultrasonography and magnetic resonance (MR) imaging. We present three cases of symptomatic ganglion cysts of the tarsal tunnel, diagnosed by MR imaging, where computed tomography (CT) arthrography with delayed acquisitions helped to confirm the diagnosis and identify precisely the topography of the communication with the subtalar joint. These cases provide new evidence of the articular origin of ganglion cysts developing in the tarsal tunnel. (orig.)

  19. Sphenopalatine ganglion treatment with radiofrequency in a Sluder syndrome young patient

    OpenAIRE

    Carmelo Costa; Marilina Schembari

    2014-01-01

    Sluder's neuralgia or sphenopalatine ganglion neuralgia is a pain syndrome first described by Sluder in 1908. The clinical picture is characterised by pain starting around the eye and the route of nose. Typically the pain is accompanied by parasympathetic disautonomic signs such as lacrimation and/or rhinorrhea. However, many official headache classifications do not mention the Sluder's neuralgia at all, which is instead classified as a cluster headache (CH). In case of resistance to pharmaco...

  20. [Current concepts in pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  1. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.

    Science.gov (United States)

    Crozier, Robert A; Davis, Robin L

    2014-07-16

    Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information. Copyright © 2014 the authors 0270-6474/14/349688-15$15.00/0.

  2. MR findings of degenerating parenchymal neurocysticercosis

    International Nuclear Information System (INIS)

    Lee, Yul; Chung, Eun A; Yang, Ik; Park, Hae Jung; Chung, Soo Young

    1996-01-01

    To evaluate MR imaging findings of degenerating parenchymal neurocysticercosis and to determine the characteristics which distinguish it from other brain diseases. MR imagings of 19 patients (56 lesions) of degenerating parenchymal neurocysticercosis were retrospectively evaluated, focusing on the size and location of lesions signal intensity patterns of cyst fluid and wall, the extent of the surrounding edema and features of contrast enhancement. Degenerating parenchymal neurocysticercosis was located in gray or subcortical while matter in 89.3% of 56 lesions (50/56) ; most of these (98.2%) were smaller than 2 cm in diameter. Cyst fluid signal was hyperintense relative to CSF on T1 and proton density weighted images (92.9%). A hypointense signal rim of the cyst wall was noted in the lesions on proton density (92.9%) and T2 weighted (98.2%) images, Surrounding edema was mostly mild. Peripheral rim enhancement was noted in all lesions, and this was frequently irregular and lobulated (67.9%) with a focal defect in the enhancing rim(41.1%). Findings which could be helpful in distinguishing degenerating parencymal neurocysticercosis from other brain diseases are as follows : small, superficial lesions ; hyperintense signal of the cyst fluid on T1 and proton density weighted images ; hypointense signal of the cyst wall on proton density and T2 weighted images ; relatively mild extent of surrounding edema, and peripheral rim enhancement which is frequently irregular and lobulated with a focal defect in the enhancing rim

  3. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-12-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  5. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients.

    Science.gov (United States)

    Garcia-Martin, Elena; Pueyo, Victoria; Almarcegui, Carmen; Martin, Jesus; Ara, Jose R; Sancho, Eva; Pablo, Luis E; Dolz, Isabel; Fernandez, Javier

    2011-11-01

    To quantify structural and functional degeneration in the retinal nerve fibre layer (RNFL) of patients with multiple sclerosis (MS) over a 2-year time period, and to analyse the effect of prior optic neuritis (ON) as well as the duration and incidence of MS relapses. 166 MS patients and 120 healthy controls underwent assessment of visual acuity and colour vision, visual field examination, optical coherence tomography, scanning laser polarimetry and visual evoked potentials (VEPs). All subjects were re-evaluated after a period of 12 and 24 months. Changes in the optic nerve were detected by structural measurements but not by functional assessments. Changes registered in MS patients were greater than changes in healthy controls (p<0.05). Eyes with previous ON showed a greater reduction of parameters in the baseline evaluation, but RNFL atrophy was not significantly greater in the longitudinal study. Patients with MS relapses showed a greater reduction of RNFL thickness and VEP amplitude compared with non-relapsing cases. Patients with and without treatment showed similar measurement reduction, but the non-treated group had a significantly higher increase in Expanded Disability Status Scale (p=0.029). MS causes progressive axonal loss in the optic nerve, regardless of a history of ON. This ganglion cell atrophy occurs in all eyes but is more marked in MS eyes than in healthy eyes.

  6. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  7. CT of sarcomatous degeneration in neurofibromatosis

    International Nuclear Information System (INIS)

    Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.

    1983-01-01

    Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents

  8. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    Science.gov (United States)

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  9. MR imaging of patellar cartilage degeneration at 0.02 T

    International Nuclear Information System (INIS)

    Koskinen, S.K.; Komu, M.; Aho, H.J.; Kormano, M.; Turku University Hospital

    1991-01-01

    MR imaging with a 0.02 T resistive magnet was used to establish the correlation between the histologic grading of patellar cartilage degeneration and fat water separation images or T1- and T2-relaxation times. We examined 23 cadaveric patellae. There was a positive correlation between histologically graded cartilage degeneration and T1-relaxation time. Patellar cartilage was well differentiated from surrounding structures on chemical shift water proton images, and an evaluation of cartilage degeneration was possible. No correlation was found between cartilage degeneration damage and T2-relaxation time. Chemical shift imaging at 0.02 T is easy to perform and gives further information of cartilage disorders. (orig.)

  10. [Intra-osseous ganglion cyst of the carpal bones. A review of the literature underlining the importance of systematic computed tomography].

    Science.gov (United States)

    Dumas, P; Georgiou, C; Chignon-Sicard, B; Balaguer, T; Lebreton, E; Dumontier, C

    2013-02-01

    The intraosseous ganglion cyst (IOGC) is a benign and lytic bone tumor affecting mostly the metaphyseal and epiphyseal regions of long bones. Its location on the short bones, including the carpal bones has been little reported in the literature. Our review of the literature shows consensus about the surgical techniques to use, but there is currently no real consensus about its pathophysiology, and its diagnostic work-up. Complications related to this lesion (mainly the risk of pathologic fracture) are potentially serious, and can cause irreversible damage. They therefore require accurate assessment to guide the choice of medical or surgical treatment, including a CT scan, which - we believe - is essential. Copyright © 2012. Published by Elsevier SAS.

  11. Relationship of Tear Size and Location to Fatty Degeneration of the Rotator Cuff

    Science.gov (United States)

    Kim, H. Mike; Dahiya, Nirvikar; Teefey, Sharlene A.; Keener, Jay D.; Galatz, Leesa M.; Yamaguchi, Ken

    2010-01-01

    Background: Fatty degeneration of the rotator cuff muscles may have detrimental effects on both anatomical and functional outcomes following shoulder surgery. The purpose of this study was to investigate the relationship between tear geometry and muscle fatty degeneration in shoulders with a deficient rotator cuff. Methods: Ultrasonograms of both shoulders of 262 patients were reviewed to assess the type of rotator cuff tear and fatty degeneration in the supraspinatus and infraspinatus muscles. The 251 shoulders with a full-thickness tear underwent further evaluation for tear size and location. The relationship of tear size and location to fatty degeneration of the supraspinatus and infraspinatus muscles was investigated with use of statistical comparisons and regression models. Results: Fatty degeneration was found almost exclusively in shoulders with a full-thickness rotator cuff tear. Of the 251 shoulders with a full-thickness tear, eighty-seven (34.7%) had fatty degeneration in either the supraspinatus or infraspinatus, or both. Eighty-two (32.7%) of the 251 full-thickness tears had a distance of 0 mm between the biceps tendon and anterior margin of the tear. Ninety percent of the full-thickness tears with fatty degeneration in both muscles had a distance of 0 mm posterior from the biceps, whereas only 9% of those without fatty degeneration had a distance of 0 mm. Tears with fatty degeneration had significantly greater width and length than those without fatty degeneration (p Tears with fatty degeneration had a significantly shorter distance posterior from the biceps than those without fatty degeneration (p tear width and length were found to be the most important predictors for infraspinatus fatty degeneration. Conclusions: Fatty degeneration of the rotator cuff muscles is closely associated with tear size and location. The finding of this study suggests that the integrity of the anterior supraspinatus tendon is important to the development of fatty

  12. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  13. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    International Nuclear Information System (INIS)

    Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens

    2017-01-01

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  14. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  15. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    Science.gov (United States)

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  16. Prevalence of age-related macular degeneration in elderly Caucasians

    DEFF Research Database (Denmark)

    Erke, Maja G; Bertelsen, Geir; Peto, Tunde

    2012-01-01

    To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD).......To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD)....

  17. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Directory of Open Access Journals (Sweden)

    Elena Baldascino

    2017-12-01

    Full Text Available The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase. Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i potential roles of the various molecules

  18. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Science.gov (United States)

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  19. [Myopia: frequency of lattice degeneration and axial length].

    Science.gov (United States)

    Martín Sánchez, M D; Roldán Pallarés, M

    2001-05-01

    To evaluate the relationship between lattice retinal degeneration and axial length of the eye in different grades of myopia. A sample of 200 eyes from 124 myopic patients was collected by chance. The average age was 34.8 years (20-50 years) and the myopia was between 0.5 and 20 diopters (D). The eyes were grouped according to the degree of refraction defect, the mean axial length of each group (Scan A) and the frequency of lattice retinal degeneration and the relationship between these variables was studied. The possible influence of age on our results was also considered. For the statistical analysis, the SAS 6.07 program with the variance analysis for quantitative variables, and chi(2) test for qualitative variables with a 5% significance were used. A multivariable linear regression model was also adjusted. The highest frequency of lattice retinal degeneration occurred in those myopia patients having more than 15 D, and also in the group of myopia patients between 3 and 6 D, but this did not show statistical significance when compared with the other myopic groups. If the axial length is assessed, a greater frequency of lattice retinal degeneration is also found when the axial length is 25-27 mm and 29-30 mm, which correspond, respectively, to myopias between 3-10 D and more than 15 D. When the multivariable linear regression model was adjusted, the axial length showed the existence of lattice retinal degeneration (beta 0.41 mm; p=0.08) adjusted by the number of diopters (beta 0.38 mm; plattice retinal degeneration was found for myopias with axial eye length between 29-30 mm (more than 15 D), and 25-27 mm (between 3-10 D).

  20. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  1. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  2. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon; Chen, Hung-Chou; Rau, Chi-Lun

    2016-01-01

    Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity. We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment. Nine randomized and four quasi-randomized controlled trials were included. Eleven trials had good methodological quality with a Physiotherapy Evidence Database (PEDro) score of ≥6, whereas the remaining two trials had a PEDro score of <6. The meta-analysis results revealed that the efficacy of noninvasive SGB on 100-mm visual analog pain score is higher than that of a placebo or active control (weighted mean difference, -21.59 mm; 95% CI, -34.25, -8.94; p = 0.0008). Noninvasive SGB performed using PAMs effectively relieves pain of

  3. Cesare Lombroso: an anthropologist between evolution and degeneration.

    Science.gov (United States)

    Mazzarello, Paolo

    2011-01-01

    Cesare Lombroso (1835-1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration, a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the "born delinquent" whose development had stopped at an early stage, making them the most "atavistic" types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of "biological compensation" for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso's anthropological ideas fuelled a heated debate on the biological determinism of human behaviour.

  4. Therapeutic Approaches to Histone Reprogramming in Retinal Degeneration.

    Science.gov (United States)

    Berner, Andre K; Kleinman, Mark E

    2016-01-01

    Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina.

  5. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  6. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.

    2016-02-01

    We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p osteoarthritis (0-2 years, p  0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.

  7. The Sphenopalatine Ganglion: Anatomy, Pathophysiology, and Therapeutic Targeting in Headache.

    Science.gov (United States)

    Robbins, Matthew S; Robertson, Carrie E; Kaplan, Eugene; Ailani, Jessica; Charleston, Larry; Kuruvilla, Deena; Blumenfeld, Andrew; Berliner, Randall; Rosen, Noah L; Duarte, Robert; Vidwan, Jaskiran; Halker, Rashmi B; Gill, Nicole; Ashkenazi, Avi

    2016-02-01

    The sphenopalatine ganglion (SPG) has attracted the interest of practitioners treating head and face pain for over a century because of its anatomical connections and role in the trigemino-autonomic reflex. In this review, we discuss the anatomy of the SPG, as well as what is known about its role in the pathophysiology of headache disorders, including cluster headache and migraine. We then address various therapies that target the SPG, including intranasal medication delivery, new SPG blocking catheter devices, neurostimulation, chemical neurolysis, and ablation procedures. © 2015 American Headache Society.

  8. Bose-Einstein condensate & degenerate Fermi cored dark matter halos

    Science.gov (United States)

    Chung, W.-J.; Nelson, L. A.

    2018-06-01

    There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.

  9. Callosal degeneration topographically correlated with cognitive function in amnestic mild cognitive impairment and Alzheimer's disease dementia.

    Science.gov (United States)

    Wang, Pei-Ning; Chou, Kun-Hsien; Chang, Ni-Jung; Lin, Ker-Neng; Chen, Wei-Ta; Lan, Gong-Yau; Lin, Ching-Po; Lirng, Jiing-Feng

    2014-04-01

    Degeneration of the corpus callosum (CC) is evident in the pathogenesis of Alzheimer's disease (AD). However, the correlation of microstructural damage in the CC on the cognitive performance of patients with amnestic mild cognitive impairment (aMCI) and AD dementia is undetermined. We enrolled 26 normal controls, 24 patients with AD dementia, and 40 single-domain aMCI patients with at least grade 1 hippocampal atrophy and isolated memory impairment. Diffusion tensor imaging (DTI) with fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) were measured. The entire CC was parcellated based on fiber trajectories to specific cortical Brodmann areas using a probabilistic tractography method. The relationship between the DTI measures in the subregions of the CC and cognitive performance was examined. Although the callosal degeneration in the patients with aMCI was less extended than in the patients with AD dementia, degeneration was already exhibited in several subregions of the CC at the aMCI stage. Scores of various neuropsychological tests were correlated to the severity of microstructural changes in the subregional CC connecting to functionally corresponding cortical regions. Our results confirm that CC degeneration is noticeable as early as the aMCI stage of AD and the disconnection of the CC subregional fibers to the corresponding Brodmann areas has an apparent impact on the related cognitive performance. Copyright © 2013 Wiley Periodicals, Inc.

  10. Relationship between full-thickness macular hole and retinal break/lattice degeneration.

    Science.gov (United States)

    Zhang, Jinglin; Li, Yonghao; Zhao, Xiujuan; Cai, Yu; Yu, Xiling; Lu, Lin

    2015-12-01

    The purpose is to investigate the relationship between full-thickness macular hole (MH) and retinal break (RB) and/or lattice degeneration. Patients diagnosed as full-thickness MH and referred to Dr. Lin Lu from January 2009 to December 2013 were evaluated. All patients underwent general ophthalmologic examinations, fundus examination and optical coherence tomography (OCT). The RB and/or lattice degeneration were recorded. Totally 183 eyes of 167 patients were included. The sex ratio of men to women was 1:2.88. A total of 17 eyes were pseudophakic and 166 eyes were phakic. RB and/or lattice degeneration were found in 62 eyes (33.88%). The prevalence of RB and/or lattice degeneration was similar between men and women (P = 0.344 > 0.05). There was no statistical difference between the pseudophakic eyes and phakic eyes (P = 0.138 > 0.05). All of the RB and/or lattice degeneration were located near or anterior to the equator. The inferior quadrants and the vertical meridian were affected more often than the superior quadrants and the horizontal meridian. We identified a high incidence of RB/lattice degeneration in cases of full-thickness MH. Carefully examination of the peripheral retina and prophylactic treatment of RB and/or lattice degeneration are critical.

  11. Orofacial neuropathic pain induced by oxaliplatin: downregulation of KCNQ2 channels in V2 trigeminal ganglion neurons and treatment by the KCNQ2 channel potentiator retigabine.

    Science.gov (United States)

    Ling, Jennifer; Erol, Ferhat; Viatchenko-Karpinski, Viacheslav; Kanda, Hirosato; Gu, Jianguo G

    2017-01-01

    Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.

  12. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    Science.gov (United States)

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  13. Wallerian degeneration of the corticodescending tract in the cerebral peduncle following a supratentorial cerebrovascular lesion detected by MRI

    International Nuclear Information System (INIS)

    Waragai, Masaaki; Iwabuchi, Sadamu

    1993-01-01

    We studied Wallerian degeneration of the corticodescending tract in the cerebral peduncle following a supratentorial cerebrovascular lesion by MRI. A total of 57 patients with palsy following a supratenotorial cerebrovascular lesion were prospectively studied. Wallerian degeneration was detected as a high signal intensity (HSI) in 37 patients between 70 days and 100 days after the onset, but not detected in the remaining 27 patients. Patient with as HSI in all areas of the cerebral peduncle had a large lesion involving the hemisphere. Patient with an HSI at the center of the cerebral peduncle had a lesion confined to the paracentral gyrus, precentral gyrus, corona radiata or posterior limb of the internal capsule. Patient with an HSI at the lateral side of the cerebral peduncle had a lesion of parietal lobe or temporal lobe which spares the corticospinal tract originating from the paracentral gyrus, precentral gyrus, corona radiata or posterior limb of the internal capsule. These findings suggest that as HSI at the center of the cerebral peduncle may reveal Wallerian degeneration of the corticospinal tract, and an HSI at the lateral side of the cerebral peduncle may show Wallerian degeneration of the corticopontine tract. The functional recovery of paresis was poor in all patients with an HSI at the center of the cerebral peduncle, while it was good in all patients without an HSI in that region. Our data suggested that somatotopical localization of the corticodescending tract in the cerebral peduncle may be identified by detecting Wallerian degeneration following a supratentorial lesion, and the functional recovery of patients with paresis could be predicted according to presence or absence of Wallerian degeneration at the center of the cerebral peduncle. (author)

  14. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    OpenAIRE

    Mathew, David J.; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were al...

  15. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development

    Directory of Open Access Journals (Sweden)

    Housley Gary D

    2011-10-01

    Full Text Available Abstract Background The mechanisms that consolidate neural circuitry are a major focus of neuroscience. In the mammalian cochlea, the refinement of spiral ganglion neuron (SGN innervation to the inner hair cells (by type I SGNs and the outer hair cells (by type II SGNs is accompanied by a 25% loss of SGNs. Results We investigated the segregation of neuronal loss in the mouse cochlea using β-tubulin and peripherin antisera to immunolabel all SGNs and selectively type II SGNs, respectively, and discovered that it is the type II SGN population that is predominately lost within the first postnatal week. Developmental neuronal loss has been attributed to the decline in neurotrophin expression by the target hair cells during this period, so we next examined survival of SGN sub-populations using tissue culture of the mid apex-mid turn region of neonatal mouse cochleae. In organotypic culture for 48 hours from postnatal day 1, endogenous trophic support from the organ of Corti proved sufficient to maintain all type II SGNs; however, a large proportion of type I SGNs were lost. Culture of the spiral ganglion as an explant, with removal of the organ of Corti, led to loss of the majority of both SGN sub-types. Brain-derived neurotrophic factor (BDNF added as a supplement to the media rescued a significant proportion of the SGNs, particularly the type II SGNs, which also showed increased neuritogenesis. The known decline in BDNF production by the rodent sensory epithelium after birth is therefore a likely mediator of type II neuron apoptosis. Conclusion Our study thus indicates that BDNF supply from the organ of Corti supports consolidation of type II innervation in the neonatal mouse cochlea. In contrast, type I SGNs likely rely on additional sources for trophic support.

  16. Lumbar disc degeneration was not related to spine and hip bone mineral densities in Chinese: facet joint osteoarthritis may confound the association.

    Science.gov (United States)

    Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue

    2017-12-01

    A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P  0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.

  17. Coexisting secondary intraneural and vascular adventitial ganglion cysts of joint origin: a causal rather than a coincidental relationship supporting an articular theory

    International Nuclear Information System (INIS)

    Spinner, Robert J.; Scheithauer, Bernd W.; Desy, Nicholas M.; Rock, Michael G.; Holdt, Frederik C.; Amrami, Kimberly K.

    2006-01-01

    To introduce the clinical entity of an intraneural ganglion cyst coexisting with a vascular adventitial cyst arising from the same joint. Retrospective review. Two patients presented with predominantly deep peroneal neuropathy due to complex superior tibiofibular joint-related cysts. In addition to having peroneal intraneural ganglion cysts, these patients had vascular adventitial cysts: one involving a capsular arterial branch, the other a capsular vein [as well as a large, recurrent, intramuscular (extraneural) ganglion]. We then reviewed MRIs of 12 other consecutive cases of intraneural ganglia (10 peroneal and 2 tibial) arising from the superior tibiofibular joint that we treated, as well as other reported cases in the literature to determine if there were other (unrecognized) examples supporting the combination of clinical findings and radiographic patterns. Retrospective analysis of MRIs in the two surgically proven cases of peroneal intraneural ganglia with vascular adventitial cyst extension showed a common imaging pattern that we have termed ''the wishbone sign,'' consisting of the connection of the ascending limb of the peroneal intraneural ganglion and the longitudinal limb of the vascular adventitial cyst in the axial plane. Our review suggests that vascular adventitial cyst extension occurs in a large proportion of cases of peroneal intraneural ganglia. A similar growth pattern was noted in a case of a tibial intraneural ganglion. The combination of intraneural and vascular adventitial cysts is understandable given our knowledge of normal and pathologic anatomy of para-articular cysts. The combination of intraneural ganglia and vascular adventitial cysts broadens the spectrum of clinical presentations of these cysts and suggests that cysts and their content can dissect from a joint along neurovascular bundles. These cases provide important evidence to support the articular theory for the pathogenesis of not only neural but vascular adventitial cysts as

  18. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  19. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report

    Science.gov (United States)

    Ozturk, Cengiz; Kanat, Ayhan; Aydin, Mehmet Dumlu; Yolas, Coskun; Kabalar, Mehmet Esref; Gundogdu, Betul; Duman, Aslihan; Kanat, Ilyas Ferit; Gundogdu, Cemal

    2015-01-01

    Context: Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. Aims: The goal of this study was to study the effects Adamkiewicz artery (AKA) vasospasm in lumbar subarachnoid hemorrhage (SAH) on bowel dilatation severity. Settings and Design: An experimental rabbit study. Materials and Methods: The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13), serum saline (SS) (SS; N = 7) and control (N = 5) groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical Analysis Used: Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois). Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. Results: The mean volume of imaginary descending colons was estimated as 93 ± 12 cm3 in the control group and 121 ± 26 cm3 in the SS group and 176 ± 49 cm3 in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05). Conclusion: An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies. PMID:25972712

  20. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report

    Directory of Open Access Journals (Sweden)

    Cengiz Ozturk

    2015-01-01

    Full Text Available Context: Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. Aims: The goal of this study was to study the effects Adamkiewicz artery (AKA vasospasm in lumbar subarachnoid hemorrhage (SAH on bowel dilatation severity. Settings and Design: An experimental rabbit study. Materials and Methods: The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13, serum saline (SS (SS; N = 7 and control (N = 5 groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical Analysis Used: Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois. Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. Results: The mean volume of imaginary descending colons was estimated as 93 ± 12 cm 3 in the control group and 121 ± 26 cm 3 in the SS group and 176 ± 49 cm 3 in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05. Conclusion: An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  1. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report.

    Science.gov (United States)

    Ozturk, Cengiz; Kanat, Ayhan; Aydin, Mehmet Dumlu; Yolas, Coskun; Kabalar, Mehmet Esref; Gundogdu, Betul; Duman, Aslihan; Kanat, Ilyas Ferit; Gundogdu, Cemal

    2015-01-01

    Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. The goal of this study was to study the effects Adamkiewicz artery (AKA) vasospasm in lumbar subarachnoid hemorrhage (SAH) on bowel dilatation severity. An experimental rabbit study. The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13), serum saline (SS) (SS; N = 7) and control (N = 5) groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois). Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. The mean volume of imaginary descending colons was estimated as 93 ± 12 cm(3) in the control group and 121 ± 26 cm(3) in the SS group and 176 ± 49 cm(3) in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05). An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  2. Bounded search for de novo identification of degenerate cis-regulatory elements

    Directory of Open Access Journals (Sweden)

    Khetani Radhika S

    2006-05-01

    Full Text Available Abstract Background The identification of statistically overrepresented sequences in the upstream regions of coregulated genes should theoretically permit the identification of potential cis-regulatory elements. However, in practice many cis-regulatory elements are highly degenerate, precluding the use of an exhaustive word-counting strategy for their identification. While numerous methods exist for inferring base distributions using a position weight matrix, recent studies suggest that the independence assumptions inherent in the model, as well as the inability to reach a global optimum, limit this approach. Results In this paper, we report PRISM, a degenerate motif finder that leverages the relationship between the statistical significance of a set of binding sites and that of the individual binding sites. PRISM first identifies overrepresented, non-degenerate consensus motifs, then iteratively relaxes each one into a high-scoring degenerate motif. This approach requires no tunable parameters, thereby lending itself to unbiased performance comparisons. We therefore compare PRISM's performance against nine popular motif finders on 28 well-characterized S. cerevisiae regulons. PRISM consistently outperforms all other programs. Finally, we use PRISM to predict the binding sites of uncharacterized regulons. Our results support a proposed mechanism of action for the yeast cell-cycle transcription factor Stb1, whose binding site has not been determined experimentally. Conclusion The relationship between statistical measures of the binding sites and the set as a whole leads to a simple means of identifying the diverse range of cis-regulatory elements to which a protein binds. This approach leverages the advantages of word-counting, in that position dependencies are implicitly accounted for and local optima are more easily avoided. While we sacrifice guaranteed optimality to prevent the exponential blowup of exhaustive search, we prove that the error

  3. The influence of stellate ganglion transcutaneous electrical nerve stimulation on signal quality of pulse oximetry in prehospital trauma care.

    Science.gov (United States)

    Barker, Renate; Lang, Thomas; Hager, Helmut; Steinlechner, Barbara; Hoerauf, Klaus; Zimpfer, Michael; Kober, Alexander

    2007-05-01

    Accurate monitoring of the peripheral arterial oxygen saturation has become an important tool in the prehospital emergency medicine. This monitoring requires an adequate plethysmographic pulsation. Signal quality is diminished by cold ambient temperature due to vasoconstriction. Blockade of the stellate ganglion can improve peripheral vascular perfusion and can be achieved by direct injection or transcutaneous electrical nerve stimulation (TENS) stimulation. We evaluated whether TENS on the stellate ganglion would reduce vasoconstriction and thereby improve signal detection quality of peripheral pulse oximetry. In our study, 53 patients with minor trauma who required transport to the hospital were enrolled. We recorded vital signs, including core and skin temperature before and after transport to the hospital. Pulse oximetry sensors were attached to the patient's second finger on both hands. TENS of the stellate ganglion was started on one side after the beginning of the transport. Pulse oximeter alerts, due to poor signal detection, were recorded for each side separately. On the hand treated with TENS we detected a significant reduction of alerts compared to the other side (mean alerts TENS 3.1 [1-15] versus control side 8.8 [1-28] P signal quality of pulse oximeters in the prehospital setting.

  4. A dam for retrograde axonal degeneration in multiple sclerosis?

    NARCIS (Netherlands)

    Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A.F.S.

    2014-01-01

    Objective: Trans-synaptic axonal degeneration is a mechanism by which neurodegeneration can spread from a sick to a healthy neuron in the central nervous system. This study investigated to what extent trans-synaptic axonal degeneration takes place within the visual pathway in multiple sclerosis

  5. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    Science.gov (United States)

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  6. Median nerve neuropathy in the forearm due to recurrence of anterior wrist ganglion that originates from the scaphotrapezial joint: Case Report

    Directory of Open Access Journals (Sweden)

    Okada Kiyoshi

    2012-01-01

    Full Text Available Abstract Background Median nerve neuropathy caused by compression from a tumor in the forearm is rare. Cases with anterior wrist ganglion have high recurrence rates despite surgical treatment. Here, we report the recurrence of an anterior wrist ganglion that originated from the Scaphotrapezial joint due to incomplete resection and that caused median nerve neuropathy in the distal forearm. Case presentation A 47-year-old right-handed housewife noted the appearance of soft swelling on the volar aspect of her left distal forearm, and local resection surgery was performed twice at another hospital. One year after the last surgery, the swelling reappeared and was associated with numbness and pain in the radial volar aspect of the hand. Magnetic resonance imaging revealed that the multicystic lesion originated from the Scaphotrapezial joint and had expanded beyond the wrist. Exploration of the left median nerve showed that it was compressed by a large ovoid cystic lesion at the distal forearm near the proximal end of the carpal tunnel. We resected the cystic lesion to the Scaphotrapezial joint. Her symptoms disappeared 1 week after surgery, and complications or recurrent symptoms were absent 13 months after surgery. Conclusions A typical median nerve compression was caused by incomplete resection of an anterior wrist ganglion, which may have induced widening of the cyst. Cases with anterior wrist ganglion have high recurrence rates and require extra attention in their treatment.

  7. Ecological transition predictably associated with gene degeneration.

    Science.gov (United States)

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart.

    Science.gov (United States)

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Ardell, Jeffrey L; Armour, J Andrew

    2009-01-28

    Ganglionated plexuses (GPs) are major constituents of the intrinsic cardiac nervous system, the final common integrator of regional cardiac control. We hypothesized that nicotinic stimulation of individual GPs exerts divergent regional influences, affecting atrial as well as ventricular functions. In 22 anesthetized canines, unipolar electrograms were recorded from 127 atrial and 127 ventricular epicardial loci during nicotine injection (100 mcg in 0.1 ml) into either the 1) right atrial (RA), 2) dorsal atrial, 3) left atrial, 4) inferior vena cava-inferior left atrial, 5) right ventricular, 6) ventral septal ventricular or 7) cranial medial ventricular (CMV) GP. In addition to sinus and AV nodal function, neural effects on atrial and ventricular repolarization were identified as changes in the area subtended by unipolar recordings under basal conditions and at maximum neurally-induced effects. Animals were studied with intact AV node or following ablation to achieve ventricular rate control. Atrial rate was affected in response to stimulation of all 7 GPs with an incidence of 50-95% of the animals among the different GPs. AV conduction was affected following stimulation of 6/7 GP with an incidence of 22-75% among GPs. Atrial and ventricular repolarization properties were affected by atrial as well as ventricular GP stimulation. Distinct regional patterns of repolarization changes were identified in response to stimulation of individual GPs. RAGP predominantly affected the RA and posterior right ventricular walls whereas CMVGP elicited biatrial and biventricular repolarization changes. Spatially divergent and overlapping cardiac regions are affected in response to nicotinic stimulation of neurons in individual GPs.

  9. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints.

    Science.gov (United States)

    Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan

    2009-03-01

    Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0

  10. Antidepressant Imipramine Protects Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Coactivation of TrkA and TrkB.

    Science.gov (United States)

    Guo, Jianrong; Wang, Huan; Tao, Qiang; Sun, Shiyu; Liu, Li; Zhang, Jianping; Yang, Dawei

    2017-11-01

    In our work, we used an in vitro culture model to investigate whether antidepressant imipramine (Ip) may protect bupivacaine (Bv)-induced neurotoxicity in mouse dorsal root ganglion (DRG). Adult mouse DRG was treated with 5 mM Bv in vitro to induce neurotoxicity. DRG was then pre-treated with Ip, prior to Bv, to examine its effects on protecting Bv-induced DRG apoptosis and neurite degeneration. Ip-induced dynamic changes in Trk receptors, including TrkA/B/C and phosphor (p-)TrkA/B/C, were examined by qPCR and Western blot. TrkA and TrkB were inhibited by siRNAs to further investigate their functional role in Ip- and Bv-treated DRG. Ip protected Bv-induced apoptosis and neurite loss in DRG. Ip did not alter TrkA/B/C expressions, whereas significantly augmented protein productions of p-TrkA and p-TrkB, but not p-TrkC. SiRNA-mediated TrkA or TrkB downregulation inhibited Trk receptors, and reduced p-TrkA and p-TrkB in DRG. TrkA or TrkB downregulation alone had no effect on Ip-induced protection in Bv-injured DRG. However, co-inhibition of TrkA and TrkB significantly ameliorated the protective effect of Ip on Bv-induced apoptosis and neurite loss in DRG. Imipramine protected bupivacaine-induced neurotoxicity in DRG, likely via the co-activation of TrkA and TrkB signaling pathways. J. Cell. Biochem. 118: 3960-3967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Self-reported optometric practise patterns in age-related macular degeneration.

    Science.gov (United States)

    Ly, Angelica; Nivison-Smith, Lisa; Zangerl, Barbara; Assaad, Nagi; Kalloniatis, Michael

    2017-11-01

    The use of advanced imaging in clinical practice is emerging and the use of this technology by optometrists in assessing patients with age-related macular degeneration is of interest. Therefore, this study explored contemporary, self-reported patterns of practice regarding age-related macular degeneration diagnosis and management using a cross-sectional survey of optometrists in Australia and New Zealand. Practising optometrists were surveyed on four key areas, namely, demographics, clinical skills and experience, assessment and management of age-related macular degeneration. Questions pertaining to self-rated competency, knowledge and attitudes used a five-point Likert scale. Completed responses were received from 127 and 87 practising optometrists in Australia and New Zealand, respectively. Advanced imaging showed greater variation in service delivery than traditional techniques (such as slitlamp funduscopy) and trended toward optical coherence tomography, which was routinely performed in age-related macular degeneration by 49 per cent of respondents. Optical coherence tomography was also associated with higher self-rated competency, knowledge and perceived relevance to practice than other modalities. Most respondents (93 per cent) indicated that they regularly applied patient symptoms, case history, visual function results and signs from traditional testing, when queried about their management of patients with age-related macular degeneration. Over half (63 per cent) also considered advanced imaging, while 31 per cent additionally considered all of these as well as the disease stage and clinical guidelines. Contrary to the evidence base, 68 and 34 per cent rated nutritional supplements as highly relevant or relevant in early age-related macular degeneration and normal aging changes, respectively. These results highlight the emergence of multimodal and advanced imaging (especially optical coherence tomography) in the assessment of age-related macular degeneration

  12. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  13. Localized thermonuclear runaways and volcanoes on degenerate dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Shara, M.M.

    1982-10-15

    Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.

  14. Modulation of release of [3H]acetylcholine in the major pelvic ganglion of the rat.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1993-06-01

    Cholinergic modulation of [3H]acetylcholine release evoked by electrical stimulation was studied in the rat major pelvic ganglion, which was prelabeled with [3H]choline. Acetylcholine (ACh) release was independent of the frequency of stimulation; 0.3 Hz produced the same volley output as 10 Hz. Tetrodotoxin (1 microM) or omission of Ca2+ from the medium abolished ACh release. The M1 receptor agonist (4-hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride (McN-A 343, 50 microM) increased release (by 136%), whereas the M2 muscarinic agonist oxotremorine (1 microM) decreased ACh release (by 22%). The muscarinic antagonists, atropine (1 microM) or pirenzepine (M1 selective, 1 microM), did not change ACh release. However, pirenzepine (1 microM) blocked the facilitatory effect of McN-A 343, and atropine (1 microM) blocked the inhibitory effect of oxotremorine. The cholinesterase inhibitor physostigmine (1-5 microM), the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10 microM), and the nicotinic antagonist D-tubocurarine (50 microM) did not change ACh release. 4-Aminopyridine, a K+ channel blocker, significantly increased the release (by 146%). Seven days after decentralization of the major pelvic ganglion, the evoked release of ACh was abolished. It is concluded that release of ACh occurs from the preganglionic nerve terminals rather than from the cholinergic cell bodies and is not modulated by actions of endogenous ACh on either muscarinic or nicotinic autoreceptors. These data confirm and extend previous electrophysiological findings indicating that synapses in the major pelvic ganglion have primarily a relay function.

  15. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Xialin Zuo

    2018-05-01

    Full Text Available Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO in Sprague-Dawley (SD rats and cathepsin (Cath B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl-L-isoleucyl-L-proline methyl ester (CA-074Me would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA or pseudorabies virus (PRV 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.

  16. [Combination surgery for wet age-related macular degeneration and chronic peripheral uveitis].

    Science.gov (United States)

    Zapuskalov, I V; Krivosheina, O I; Khoroshikh, Yu I

    2016-01-01

    To develop a combination surgery for wet age-related macular degeneration and concurrent chronic peripheral uveitis that would include intravitreal injection of Lucentis and cryocerclage of the peripheral retina. A total of 75 patients were examined and divided into 2 groups: the main group (37 patients) and the controls (38 patients). Patients from the main group underwent the new combination surgery, while the controls received intravitreal Lucentis alone (peripheral uveitis was managed therapeutically). It has been found that the new combination method provides a significant and stable improvement in visual acuity (by a factor of 10) and a decrease in the area of central scotoma (by a factor of 2.95) in the postoperative period. The period needed for recovery in the central retinal thickness is also 1.6 times shorter. The new combination surgery for wet age-related macular degeneration and concurrent chronic peripheral uveitis provides rapid reduction of inflammation in the extreme periphery of the fundus and a 1.5 times faster (as compared to traditional methods) primary restoration of topographic anatomy of the retina in the macular region.

  17. Retinal nerve fiber layer and ganglion cell complex thickness assessment in patients with Alzheimer disease and mild cognitive impairment. Preliminary results

    Directory of Open Access Journals (Sweden)

    A. S. Tiganov

    2014-07-01

    Full Text Available Purpose: to investigate the retinal nerve fiber layer (RNFL and the macular ganglion cell complex (GCC in patients with Alzheimer`s disease and mild cognitive impairment.Methods: this study included 10 patients (20 eyes with Alzheimer`s disease, 10 patients with mild cognitive impairment and 10 age- and sex-matched healthy controls that had no history of dementia. All the subjects underwent psychiatric examination, including the Mini-Mental State Examination (MMSE, and complete ophthalmological examination, comprising optical coherence tomography and scanning laser polarimetry.Results: there was a significant decrease in GCC thickness in patients with Alzheimer`s disease compared to the control group, global loss volume of ganglion cells was higher than in control group. there was no significant difference among the groups in terms of RNFL thickness. Weak positive correlation of GCC thickness and MMSE results was observed.Conclusion: Our data confirm the retinal involvement in Alzheimer`s disease, as reflected by loss of ganglion cells. Further studies will clear up the role and contribution of dementia in pathogenesis of optic neuropathy.

  18. Selective neuronal degeneration in the retrosplenial cortex impairs the recall of contextual fear memory.

    Science.gov (United States)

    Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo

    2016-05-01

    The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.

  19. [Depression in Patients with Age-Related Macular Degeneration].

    Science.gov (United States)

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  20. Age-Related Macular Degeneration.

    Science.gov (United States)

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  2. Degeneration of Bethe subalgebras in the Yangian of gl_n

    Science.gov (United States)

    Ilin, Aleksei; Rybnikov, Leonid

    2018-04-01

    We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.

  3. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  4. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  5. Genetics of lattice degeneration of the retina.

    Science.gov (United States)

    Murakami, F; Ohba, N

    1982-01-01

    First-degree relatives of proband patients with lattice degeneration of the retina revealed a significantly higher prevalence of the disease than the prevalence in the general population: the former had the disease about three times as frequently as the latter. The observed data were analyzed in terms of their accordance with recognized genetic models. The inheritance pattern did not fit well to a monogenic mode of inheritance, and it was hypothesized that a polygenic or multifactorial mode of inheritance is the most likely for lattice degeneration of the retina.

  6. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  7. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    Science.gov (United States)

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  8. PATTERNS OF FUNDUS AUTOFLUORESCENCE DEFECTS IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION SUBTYPES.

    Science.gov (United States)

    Ozkok, Ahmet; Sigford, Douglas K; Tezel, Tongalp H

    2016-11-01

    To test define characteristic fundus autofluorescence patterns of different exudative age-related macular degeneration subtypes. Cross-sectional study. Fifty-two patients with choroidal neovascularization because of three different neovascular age-related macular degeneration subtypes were included in the study. Macular and peripheral fundus autofluorescence patterns of study subjects were compared in a masked fashion. Fundus autofluorescence patterns of all three neovascular age-related macular degeneration subtypes revealed similar patterns. However, peripapillary hypo-autofluorescence was more common among patients with polypoidal choroidal vasculopathy (88.2%) compared with patients with retinal angiomatous proliferation (12.5%) and patients without retinal angiomatous proliferation and polypoidal choroidal vasculopathy (21.1%) (P autofluorescence defects in neovascular age-related macular degeneration maybe suggestive of polypoidal choroidal vasculopathy as a variant of neovascular age-related macular degeneration.

  9. Sequential changes in MR imaging of human wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Orita, Tetsuji; Tsurutani, Tohru; Izumihara, Akifumi; Kajiwara, Koji (Shuto General Hospital, Yamaguchi (Japan)); Matsunaga, Tokio

    1994-05-01

    MRI of wallerian degeneration of the pyramidal tract in the brainstem was repeatedly performed on the same coronal slice in 10 patients, who had infarction or hemorrhage of the basal ganglia and had the exact onset of hemiparesis. The processes of wallerian degeneration were divided into four stages by proton-density weighted images. In stage 1, the axon began to degenerate and was destroyed. It occurred during the first 0.7 month and resulted in no signal intensity abnormality. In stage 2, axon debris disappeared from degenerating tracts. Myelin structure was preserved and myelin lipid remained intact. The lipid water ratio in the tissue became large and the tissue was more hydrophobic. From 0.7 to 2.0 months, low signal intensity was observed. In stage 3, subsequent myelin lipid breakdown began and the lipid/water ratio in the tissue tended to be small. There was no abnormal signal intensity. In stage 4, lipid began to be removed from the tissue. The lipid/water ratio became smaller and the tissue became hydrophilic. Gliosis was more prominent. High signal intensity was observed. (author).

  10. Sequential changes in MR imaging of human wallerian degeneration

    International Nuclear Information System (INIS)

    Orita, Tetsuji; Tsurutani, Tohru; Izumihara, Akifumi; Kajiwara, Koji; Matsunaga, Tokio.

    1994-01-01

    MRI of wallerian degeneration of the pyramidal tract in the brainstem was repeatedly performed on the same coronal slice in 10 patients, who had infarction or hemorrhage of the basal ganglia and had the exact onset of hemiparesis. The processes of wallerian degeneration were divided into four stages by proton-density weighted images. In stage 1, the axon began to degenerate and was destroyed. It occurred during the first 0.7 month and resulted in no signal intensity abnormality. In stage 2, axon debris disappeared from degenerating tracts. Myelin structure was preserved and myelin lipid remained intact. The lipid water ratio in the tissue became large and the tissue was more hydrophobic. From 0.7 to 2.0 months, low signal intensity was observed. In stage 3, subsequent myelin lipid breakdown began and the lipid/water ratio in the tissue tended to be small. There was no abnormal signal intensity. In stage 4, lipid began to be removed from the tissue. The lipid/water ratio became smaller and the tissue became hydrophilic. Gliosis was more prominent. High signal intensity was observed. (author)

  11. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    International Nuclear Information System (INIS)

    Nutku, Yavuz

    2003-01-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

  12. Natural history of seminiferous tubule degeneration in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Wikström, Anne M; Rajpert-De Meyts, Ewa

    2006-01-01

    Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates dramatic......Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates...... summarize current knowledge on the development of the classical endocrinological and histological features of 47,XXY males from fetus to adulthood and review the literature concerning the degeneration of the seminiferous tubules in this syndrome....

  13. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated.A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot.Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD.Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  14. Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of Posttraumatic Stress Disorder (PTSD) Symptoms among Active Duty Military Members

    Science.gov (United States)

    2017-03-01

    as well as active  engagement through social media channels. We also are exploring the placement of paid  advertisements  in local  newspapers , both...Page 1 of 2 AWARD NUMBER: W81XWH-15-2-0015 TITLE: Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of...SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-2-0015 Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of

  15. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  16. A computational study of intervertebral disc degeneration in relation to changes in regional tissue composition and disc nutrition

    OpenAIRE

    Ruiz Wills, Carlos

    2015-01-01

    Up to 85% of the world population suffers from low back pain, a clinical condition often related to the intervertebral disc (IVD) degeneration (DD). Altered disc cell nutrition affects cell viability and can generate catabolic cascades that degrade the extracellular matrix (ECM). Also, a major degenerative biochemical change in the disc is the proteoglycan (PG) loss, which affects the osmotic pressure and hydration that is critical for cell nutrition. However, the relationship between biochem...

  17. Association of suprascapular neuropathy with rotator cuff tendon tears and fatty degeneration.

    Science.gov (United States)

    Shi, Lewis L; Boykin, Robert E; Lin, Albert; Warner, Jon J P

    2014-03-01

    The mutual influence of suprascapular neuropathy (SSN) and rotator cuff tendon tears on muscle pathology is unclear. Debate continues as to how retracted cuff tears can lead to SSN and whether SSN or tendon retraction causes muscle fatty degeneration. A cohort of 87 patients suspected of having SSN was identified from a prospectively collected registry. All underwent electromyography/nerve conduction velocity study (EMG/NCV) and magnetic resonance imaging (MRI) of their shoulders. EMG/NCVs were performed and interpreted by electrodiagnosticians, and MRI cuff tendon quality and muscle fatty degeneration were interpreted by two surgeons. Out of 87 patients, 32 patients had SSN on EMG/NCV, and 55 patients had normal suprascapular nerve. MRI showed that 59 of 87 supraspinatus had no fatty degeneration or mild fatty streaks (Goutallier grades 0 and 1), and 28 patients had significant fatty degeneration (grades 2-4); infraspinatus fatty degeneration was similar. Review of supraspinatus tendon showed 41 patients with intact tendons or partial tears, and 46 with full tears. Infraspinatus tendons pathology was similar. Tendon pathology and fatty degeneration were related (P-valuetears were associated with SSN (P = .01), but SSN was not related to fatty degeneration of either supraspinatus or infraspinatus (P-values .65, .54). The exact association and etiology of SSN in patients with rotator cuff pathology remain unclear. SSN is correlated to tendon tear size, but it does not have significant influence on fatty degeneration of either supraspinatus or infraspinatus. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. Genetic association of apolipoprotein E with age-related macular degeneration

    NARCIS (Netherlands)

    M. Kliffen (Mike); C.M. van Duijn (Cornelia); M. Cruts (Marc); D.E. Grobbee (Diederick); P.T.V.M. de Jong (Paulus); C.C.W. Klaver (Caroline); C. van Broeckhoven (Christine); A. Hofman (Albert)

    1998-01-01

    textabstractAge-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an

  19. Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Yeon Hee Lee

    Full Text Available To compare the patterns of retinal ganglion cell damage between primary open-angle glaucoma (POAG and non-arteritic anterior ischaemic optic neuropathy (NAION.In total, 35 eyes with unilateral NAION, and 70 age- and average peripapillary retinal nerve fibre layer (RNFL thickness-matched eyes with POAG, were enrolled as disease groups; 35 unaffected fellow eyes of the NAION, and 70 age- and refractive error-matched normal subjects for the POAG, were enrolled as their control groups, respectively. The peripapillary RNFL thickness and macular ganglion cell plus inner plexiform layer (GCIPL thickness were compared between the disease groups and their controls, and between the two disease groups.Mean RNFL thicknesses at the 1 and 2 o'clock (superonasal positions were thinner in NAION than in POAG (both p < 0.05. Mean RNFL thickness at 7 o'clock (inferotemporal was thinner in POAG than in NAION (p = 0.001. Although there was no significant difference between NAION and POAG in average GCIPL thickness, all of the sectoral GCIPL thicknesses were thinner in NAION (all p < 0.05, except in the inferior and inferotemporal sectors. The ranges of the clock-hour RNFL with damage greater than the average RNFL thickness reduction, versus fellow eyes and control eyes, were 7 hours in NAION and 4 hours in POAG.The more damaged clock-hour RNFL regions differed between NAION (1 and 2 o'clock and POAG (7 o'clock. Most sectoral GCIPL thicknesses were thinner in NAION than in POAG.

  20. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  1. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  2. Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice.

    Science.gov (United States)

    Meira, Lisiane B; Moroski-Erkul, Catherine A; Green, Stephanie L; Calvo, Jennifer A; Bronson, Roderick T; Shah, Dharini; Samson, Leona D

    2009-01-20

    Vision loss affects >3 million Americans and many more people worldwide. Although predisposing genes have been identified their link to known environmental factors is unclear. In wild-type animals DNA alkylating agents induce photoreceptor apoptosis and severe retinal degeneration. Alkylation-induced retinal degeneration is totally suppressed in the absence of the DNA repair protein alkyladenine DNA glycosylase (Aag) in both differentiating and postmitotic retinas. Moreover, transgenic expression of Aag activity restores the alkylation sensitivity of photoreceptors in Aag null animals. Aag heterozygotes display an intermediate level of retinal degeneration, demonstrating haploinsufficiency and underscoring that Aag expression confers a dominant retinal degeneration phenotype.

  3. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    Science.gov (United States)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  4. [Development of specific and degenerated primers to CesA genes encoding flax (Linum usitatissimum L.) cellulose synthase].

    Science.gov (United States)

    Grushetskaia, Z E; Lemesh, V A; Khotyleva, L V

    2010-01-01

    Cellulose synthase catalytic subunit genes, CesA, have been discovered in several higher plant species, and it has been shown that the CesA gene family has multiple members. HVR2 fragment of these genes determine the class specificity of the CESA protein and its participation in the primary or secondary cell wall synthesis. The aim of this study was development of specific and degenerated primers to flax CesA gene fragments leading to obtaining the class specific HVR2 region of the gene. Two pairs of specific primers to the certain fragments of CesA-1 and CesA-6 genes and one pair of degenerated primers to HVR2 region of all flax CesA genes were developed basing on comparison of six CesA EST sequences of flax and full cDNA sequences of Arabidopsis, poplar, maize and cotton plants, obtained from GenBank. After amplification of flax cDNA, the bands of expected size were detected (201 and 300 b.p. for the CesA-1 and CesA-6, and 600 b.p. for the HVR2 region of CesA respectively). The developed markers can be used for cloning and sequencing of flax CesA genes, identifying their number in flax genome, tissue and stage specificity.

  5. Sphenopalatine ganglion block for postdural puncture headache in ambulatory setting

    Directory of Open Access Journals (Sweden)

    José Miguel Cardoso

    Full Text Available Abstract Background and objectives: Postdural puncture headache (PDPH is a common complication following subarachnoid blockade and its incidence varies with the size of the needle used and the needle design. Suportive therapy is the usual initial approach. Epidural blood patch (EBP is the gold-standard when supportive therapy fails but has significant risks associated. Sphenopalatine ganglion block (SPGB may be a safer alternative. Case report: We observed a 41 year-old female patient presenting with PDPH after a subarachnoid blockade a week before. We administrated 1 l of crystalloids, Dexamethasone 4 mg, parecoxib 40 mg, acetaminophen 1 g and caffeine 500 mg without significant relief after 2 hours. We performed a bilateral SPGB with a cotton-tipped applicator saturated with 0.5% Levobupivacaine under standard ASA monitoring. Symptoms relief was reported 5 minutes after the block. The patient was monitored for an hour after which she was discharged and prescribed acetaminophen 1 g and ibuprofen 400 mg every 8 hours for the following 2 days. She was contacted on the next day and again after a week reporting no pain in both situation. Conclusions: SPGB may attenuate cerebral vasodilation induced by parasympathetic stimulation transmitted through neurons that have synapses in the sphenopalatine ganglion. This would be in agreement with the Monro-Kellie concept and would explain why caffeine and sumatriptan can have some effect in the treatment of PDPH. Apparently, SPGB has a faster onset than EBP with better safety profile. We suggest that patients presenting with PDPH should be considered primarily for SPGB. Patients may have a rescue EBP if needed.

  6. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    Science.gov (United States)

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  7. Myelin-induced inhibition in a spiral ganglion organ culture - Approaching a natural environment in vitro.

    Science.gov (United States)

    Kramer, Benedikt; Tropitzsch, Anke; Müller, Marcus; Löwenheim, Hubert

    2017-08-15

    The performance of a cochlear implant depends on the defined interaction between afferent neurons of the spiral ganglion and the inserted electrode. Neurite outgrowth can be induced by neurotrophins such as brain-derived neurotrophic factor (BDNF) via tropomyosin kinase receptor B (TrkB). However, neurotrophin signaling through the p75 neurotrophin receptor (p75) inhibits neurite outgrowth in the presence of myelin. Organotypic cultures derived from postnatal (P3-5) mice were used to study myelin-induced inhibition in the cochlear spiral ganglion. Neurite outgrowth was analyzed and quantified utilizing an adapted Sholl analysis. Stimulation of neurite outgrowth was quantified after application of BDNF, the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and a selective inhibitor of the Rho-associated kinase (Y27632), which inhibits the p75 pathway. Myelin-induced inhibition was assessed by application of myelin-associated glycoprotein (MAG-Fc) to stimulate the inhibitory p75 pathway. Inhibition of neurite outgrowth was achieved by the selective TrkB inhibitor K252a. Stimulation of neurite outgrowth was observed after treatment with BDNF, 7,8 DHF and a combination of BDNF and Y27632. The 7,8-DHF-induced growth effects could be inhibited by K252a. Furthermore, inhibition of neurite outgrowth was observed after supplementation with MAG-Fc. Myelin-induced inhibition could be overcome by 7,8-DHF and the combination of BDNF and Y27632. In this study, myelin-induced inhibition of neurite outgrowth was established in a spiral ganglion model. We reveal that 7,8-DHF is a viable novel compound for the stimulation of neurite outgrowth in a myelin-induced inhibitory environment. The combination of TrkB stimulation and ROCK inhibition can be used to overcome myelin inhibition. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Genetics Home Reference: Stargardt macular degeneration

    Science.gov (United States)

    ... recognizing faces. In most people with Stargardt macular degeneration , a fatty yellow pigment (lipofuscin) builds up in cells underlying the macula. Over time, the abnormal accumulation of this substance ...

  9. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment.

    Science.gov (United States)

    Wilkinson, Charles P

    2014-09-05

    Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials

  10. K-causality and degenerate spacetimes

    Science.gov (United States)

    Dowker, H. F.; Garcia, R. S.; Surya, S.

    2000-11-01

    The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.

  11. Late complications following cryotherapy of lattice degeneration.

    Science.gov (United States)

    Benson, W E; Morse, P H; Nantawan, P

    1977-10-01

    We observed 341 patients who had received cryotherapy for lattice degeneration in order to identify possible late complications. Sequelae such as retinal tears posterior to an operculum or flap tears within treated areas showed that treatment did not necessarily prevent subsequent vitreous traction. Moreover, the newly created flap tears may extend beyond the treated area and can cause retinal detachment. Even scleral buckling did not necesserily prevent further traction. Therefore, we concluded that when cryotherapy is used to treat lattice degeneration, an adequate margin of surrounding retina should be treated and the treatment should extend to the ora serrata.

  12. Degenerate Fermi gas in a combined harmonic-lattice potential

    International Nuclear Information System (INIS)

    Blakie, P. B.; Bezett, A.; Buonsante, P.

    2007-01-01

    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices

  13. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  14. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  15. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment.

    Science.gov (United States)

    Mathew, David J; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V

    2016-07-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.

  16. Molecular imaging of serotonin degeneration in mild cognitive impairment.

    Science.gov (United States)

    Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I

    2017-09-01

    Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic

  17. Degree of tendon degeneration and stage of rotator cuff disease.

    Science.gov (United States)

    Jo, Chris Hyunchul; Shin, Won Hyoung; Park, Ji Wan; Shin, Ji Sun; Kim, Ji Eun

    2017-07-01

    While tendon degeneration has been known to be an important cause of rotator cuff disease, few studies have objectively proven the association of tendon degeneration and rotator cuff disease. The purpose of this study was to investigate changes of tendon degeneration with respect to the stage of rotator cuff disease. A total of 48 patients were included in the study: 12 with tendinopathy, 12 with a partial-thickness tear (pRCT), 12 with a full-thickness tear (fRCT), and 12 as the control. A full-thickness supraspinatus tendon sample was harvested en bloc from the middle portion between the lateral edge and the musculotendinous junction of the tendon using a biopsy punch with a diameter of 3 mm. Harvested samples were evaluated using a semi-quantitative grading scale with 7 parameters after haematoxylin and eosin staining. There was no significant difference in age, gender, symptom duration, and Kellgren-Lawrence grade between the groups except for the global fatty degeneration index. All of the seven parameters were significantly different between the groups and could be categorized as follows: early responders (fibre structure and arrangement), gradual responder (rounding of the nuclei), after-tear responders (cellularity, vascularity, and stainability), and late responder (hyalinization). The total degeneration scores were not significantly different between the control (6.08 ± 1.16) and tendinopathy (6.67 ± 1.83) (n.s.). However, the score of pRCT group (10.42 ± 1.31) was greater than that of tendinopathy (P rotator cuff disease progresses from tendinopathy to pRCT, and then to fRCT. The degree of degeneration of tendinopathy was not different from that of normal but aged tendons, and significant tendon degeneration began from the stage of pRCT. The clinical relevance of the study is that strategies and goals of the treatment for rotator cuff disease should be specific to its stage, in order to prevent disease progression for tendinopathy and pRCT, as

  18. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    Science.gov (United States)

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  19. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  20. Relativistic many-body XMCD theory including core degenerate effects

    Science.gov (United States)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.