WorldWideScience

Sample records for gamma oscillations driven

  1. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  2. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  3. Spatial computation with gamma oscillations

    Science.gov (United States)

    Engelhard, Ben; Vaadia, Eilon

    2014-01-01

    Gamma oscillations in cortex have been extensively studied with relation to behavior in both humans and animal models; however, their computational role in the processing of behaviorally relevant signals is still not clear. One oft-overlooked characteristic of gamma oscillations is their spatial distribution over the cortical space and the computational consequences of such an organization. Here, we advance the proposal that the spatial organization of gamma oscillations is of major importance for their function. The interaction of specific spatial distributions of oscillations with the functional topography of cortex enables select amplification of neuronal signals, which supports perceptual and cognitive processing. PMID:25249950

  4. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  5. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  6. Neocortical gamma oscillations in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter

    2016-01-01

    Objective: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A c-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike...... decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal...

  7. A coupled-oscillator model of olfactory bulb gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-11-01

    Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.

  8. Driven damped harmonic oscillator resonance with an Arduino

    Science.gov (United States)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  9. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    Science.gov (United States)

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  10. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  11. Analytical insights on theta-gamma coupled neural oscillators.

    Science.gov (United States)

    Fontolan, Lorenzo; Krupa, Maciej; Hyafil, Alexandre; Gutkin, Boris

    2013-08-14

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30-100 Hz) range, coupled to a delta/theta frequency (1-8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes.

  12. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  13. Magnetically Driven Oscillator and Resonance: A Teaching Tool

    Science.gov (United States)

    Erol, M.; Çolak, I. Ö.

    2018-01-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an…

  14. Phase-space treatment of the driven quantum harmonic oscillator

    Indian Academy of Sciences (India)

    2017-02-22

    Feb 22, 2017 ... Phase-space treatment of the driven quantum harmonic oscillator. DIÓGENES CAMPOS1,2,∗. 1Universidad La Gran .... whereas some other treatments deal with the coordi- nate representation of the Schrödinger ...... Im[ +(q,p,t)] a structure of leaves that gradually appears over time and, for the values of (q ...

  15. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    Science.gov (United States)

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  16. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD.

    Directory of Open Access Journals (Sweden)

    Lanting Huang

    Full Text Available NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP and long-term depression (LTD. LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer's disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs' therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations.

  17. Electron-beam driven relaxation oscillations in ferroelectric nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nathaniel; Ahluwalia, Rajeev [Institute of High Performance Computing, Singapore 138632 (Singapore); Kumar, Ashok [CSIR-National Physical Laboratory, Delhi 110012 (India); Srolovitz, David J. [Department of Materials Science and Engineering and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Chandra, Premala [Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 (United States); Scott, James F. [Department of Physics, Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews YX16 9ST (United Kingdom)

    2015-10-12

    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems, and possible applications of gated versions are discussed.

  18. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    Kondrashov, V.; Petersone, I.

    2002-01-01

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  19. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  20. Electrical current nanogeneration driven by spontaneous nanofluidic oscillations.

    Science.gov (United States)

    Gimenez, R; Mercuri, M; Berli, C L A; Bellino, M G

    2018-02-15

    Exploiting natural phenomena is a central route for providing electricity to sustainably drive wearable electronics. Here we report a nano-scale water-driven energy generator that produces tiny electrical currents from spontaneous wetting-drying oscillations in mesoporous thin films. The system was fabricated with a wormlike mesoporous silica film, which was packed in between Cu and silicon contacts. The nanogenerator runs autonomously when a water droplet is laid over the film close to the Cu electrode, as water infiltration into the film under the electrode produces a direct-current. Wetting-drying cycles, which are spontaneously triggered by water evaporation, are perfectly correlated to the generated electrical current. The autonomous water displacement through the film yields a sustained energy conversion until the droplet reservoir vanishes. This novel water-driven nanogenerator opens new alternatives for versatile, mobile and cost-effective self-powering of nanosystems and nanodevices.

  1. Plasma driven neutron/gamma generator

    Science.gov (United States)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  2. Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Shore, K. Alan

    2006-01-01

    An analytical study of optically driven laser diodes (LDs) has been undertaken to meet the requirement for a theoretical treatment for chaotic drive and synchronization occurring in the injection-locked LDs with strong injection. A small-signal analysis is performed for the sets of rate equations for the injection-locked LDs driven by a sinusoidal optical signal. In particular, as a model of chaotic driving signals from LD dynamics, an optical signal caused by direct modulation to the master LD is assumed, oscillating both in field amplitude and phase as is the case with chaotic driving signals. Consequently, we find conditions that allow reduction in the degrees of freedom of the driven LD. Under these conditions, the driven response is approximated to a simple form which is found to be equivalent to driven damped linear oscillators. The validity of the application of this theory to previous work on the synchronization of chaos and related phenomena occurring in the injection-locked LDs is demonstrated

  3. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.

    Science.gov (United States)

    Betterton, Ruth T; Broad, Lisa M; Tsaneva-Atanasova, Krasimira; Mellor, Jack R

    2017-06-01

    Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad-spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose-dependent manner by acting primarily through muscarinic M1 receptors. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  5. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    Science.gov (United States)

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  6. Oscillating two-stream instability of laser wakefield-driven plasma ...

    Indian Academy of Sciences (India)

    Keywords. Oscillating two-stream instability; plasma wave; laser wakefield accelerator. Abstract. The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump ...

  7. Intraburst versus interburst locking in networks of driven nonidentical oscillators

    Science.gov (United States)

    Waddell, Jack; Zochowski, Michal

    2007-11-01

    We investigate the effect of common periodic drive applied to mean-field coupled oscillators and observe a specific realization of synchronization for particular ranges of drive frequency. This synchronization occurs when the phase difference variability between a pair of oscillators on a given cycle is larger than that between consecutive cycles. This synchrony may have implications for neural systems, in which case the apparent locking between neurons based on the magnitude of their interspike intervals may not be consistent with their dynamical locking.

  8. Phase-space treatment of the driven quantum harmonic oscillator

    Indian Academy of Sciences (India)

    A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the ...

  9. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    Science.gov (United States)

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  10. Reduced Gamma Oscillations in a Mouse Model of Intellectual Disability: A Role for Impaired Repetitive Neurotransmission?

    Czech Academy of Sciences Publication Activity Database

    Powell, A. D.; Saintot, P.P.; Gill, K. K.; Bharathan, A.; Buck, S.C.; Morris, G.; Jiruška, Přemysl; Jefferys, J. G. R.

    2014-01-01

    Roč. 9, č. 5 (2014), e95871 E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : intellectual disability * gamma oscillations * synaptopathy * X-linked mental retardation Subject RIV: FH - Neurology Impact factor: 3.234, year: 2014

  11. Spatial attention modulates visual gamma oscillations across the human ventral stream.

    Science.gov (United States)

    Magazzini, Lorenzo; Singh, Krish D

    2018-02-01

    Oscillatory synchronization in the gamma frequency range has been proposed as a neuronal mechanism to prioritize processing of relevant stimuli over competing ones. Recent studies in animals found that selective spatial attention enhanced gamma-band synchronization in high-order visual areas (V4) and increased the gamma peak frequency in V1. The existence of such mechanisms in the human visual system is yet to be fully demonstrated. In this study, we used MEG, in combination with an optimised stimulus design, to record visual gamma oscillations from human early visual cortex, while participants performed a visuospatial attention cueing task. First, we reconstructed virtual sensors in V1/V2, where gamma oscillations were strongly induced by visual stimulation alone. Second, following the results of a statistical comparison between conditions of attention, we reconstructed cortical activity also in inferior occipital-temporal regions (V4). The results indicated that gamma amplitude was modulated by spatial attention across the cortical hierarchy, both in the early visual cortex and in higher-order regions of the ventral visual pathway. In contrast, we found no evidence for an increase in the gamma peak frequency in V1/V2 with attention. The gamma response tended to peak earlier in V1/V2 than in V4 by approximately 70 ms, consistent with a feed-forward role of gamma-band activity in propagating sensory representations across the visual cortical hierarchy. Together, these findings suggest that differences in experimental design or methodology can account for the inconsistencies in previous animal and human studies. Furthermore, our results are in line with the hypothesis of enhanced gamma-band synchronization as an attentional mechanism in the human visual cortex. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Response of the Strongly Driven Jaynes-Cummings Oscillator

    Science.gov (United States)

    Bishop, Lev S.; Ginossar, Eran; Girvin, S. M.

    2010-09-01

    We analyze the Jaynes-Cummings model of quantum optics, in the strong-dispersive regime. In the bad-cavity limit and on time scales short compared to the atomic coherence time, the dynamics are those of a nonlinear oscillator. A steady-state nonperturbative semiclassical analysis exhibits a finite region of bistability delimited by a pair of critical points, unlike the usual dispersive bistability from a Kerr nonlinearity. This analysis explains our quantum trajectory simulations that show qualitative agreement with recent experiments from the field of circuit quantum electrodynamics.

  13. Phase measurement for driven spin oscillations in a storage ring

    Science.gov (United States)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  14. Observation of Encapsulated Bubble Oscillations Driven by Ultrasound

    Science.gov (United States)

    Liang, Jin-Fu; Chen, Wei-Zhong; Shao, Wei-Hang; Zhou, Chao; Du, Lian-Fang; Jin, Li-Fang

    2013-12-01

    Using a long-distance microscope imaging system and a technique using a movable lock-in pulse laser, optical measurement demonstrated the behavior of a SonoVue® contrast agent microbubble exposed to a low-amplitude, 478 kHz ultrasound field. The microbubble consisted of the gas SF6 encapsulated by a polymer shell. Eighty-four frames of a microbubble oscillating in response to an ultrasound field were captured in one acoustic cycle. The experimental data on microbubble radius were fitted by the numerical calculations of the Hoff, Yasui, and Keller-Miksis models. The results showed good agreement between the data and the theoretical calculation of the Hoff model using our experimental parameters. In addition, the spectral analysis of the time-radius data indicated that the relative intensity of the second harmonic increased with the increase in acoustic pressure amplitude.

  15. Oscillating two-stream instability of laser wakefield-driven plasma ...

    Indian Academy of Sciences (India)

    Abstract. The laser wakefield-driven plasma wave in a low-density plasma is seen to be sus- ceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a ...

  16. Refinement of neuronal synchronization with gamma oscillations in the medial prefrontal cortex after adolescence.

    Directory of Open Access Journals (Sweden)

    Julián de Almeida

    Full Text Available The marked anatomical and functional changes taking place in the medial prefrontal cortex (PFC during adolescence set grounds for the high incidence of neuropsychiatric disorders with adolescent onset. Although circuit refinement through synapse pruning may constitute the anatomical basis for the cognitive differences reported between adolescents and adults, a physiological correlate of circuit refinement at the level of neuronal ensembles has not been demonstrated. We have recorded neuronal activity together with local field potentials in the medial PFC of juvenile and adult mice under anesthesia, which allowed studying local functional connectivity without behavioral or sensorial interference. Entrainment of pyramidal neurons and interneurons to gamma oscillations, but not to theta or beta oscillations, was reduced after adolescence. Interneurons were synchronized to gamma oscillations across a wider area of the PFC than pyramidal neurons, and the span of interneuron synchronization was shorter in adults than juvenile mice. Thus, transition from childhood to adulthood is characterized by reduction of the strength and span of neuronal synchronization specific to gamma oscillations in the mPFC. The more restricted and weak ongoing synchronization in adults may allow a more dynamic rearrangement of neuronal ensembles during behavior and promote parallel processing of information.

  17. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.

    Science.gov (United States)

    Hájos, Norbert; Pálhalmi, János; Mann, Edward O; Németh, Beáta; Paulsen, Ole; Freund, Tamas F

    2004-10-13

    Gamma frequency (30-100 Hz) network oscillations occur in the intact hippocampus during awake, attentive behavior. Here, we explored the underlying cellular mechanisms in an in vitro model of persistent gamma-frequency oscillations, induced by bath application of 20 microm carbachol in submerged hippocampal slices at 30 +/- 1 degrees C. Current-source density analysis of the field oscillation revealed a prominent alternating sink-source pair in the perisomatic and apical dendritic regions of CA3. To elucidate the active events generating these extracellular dipoles, we examined the firing properties of distinct neuron types. Visually guided unit recordings were obtained from individual CA3 neurons followed by intracellular labeling for anatomical identification. Pyramidal cells fired at 2.82 +/- 0.7 Hz, close to the negative peak of the oscillation (0.03 +/- 0.65 msec), and often in conjunction with a negative spike-like component of the field potential. In contrast, all phase-coupled interneurons fired after this negative peak. Perisomatic inhibitory interneurons fired at high frequency (18.1 +/- 2.7 Hz), shortly after the negative peak (1.97 +/- 0.95 msec) and were strongly phase-coupled. Dendritic inhibitory interneurons fired at lower frequency (8.4 +/- 2.4 Hz) and with less fidelity and a longer delay after the negative peak (4.3 +/- 1.1 msec), whereas interneurons with cell body in the stratum radiatum often showed no phase relationship with the field oscillation. The phase and spike time data of individual neurons, together with the current-source density analysis, support a synaptic feedback model of gamma oscillations primarily involving pyramidal cells and inhibitory cells targeting their perisomatic region.

  18. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking.

    Science.gov (United States)

    Carus-Cadavieco, Marta; Gorbati, Maria; Ye, Li; Bender, Franziska; van der Veldt, Suzanne; Kosse, Christin; Börgers, Christoph; Lee, Soo Yeun; Ramakrishnan, Charu; Hu, Yubin; Denisova, Natalia; Ramm, Franziska; Volitaki, Emmanouela; Burdakov, Denis; Deisseroth, Karl; Ponomarenko, Alexey; Korotkova, Tatiana

    2017-02-09

    Both humans and animals seek primary rewards in the environment, even when such rewards do not correspond to current physiological needs. An example of this is a dissociation between food-seeking behaviour and metabolic needs, a notoriously difficult-to-treat symptom of eating disorders. Feeding relies on distinct cell groups in the hypothalamus, the activity of which also changes in anticipation of feeding onset. The hypothalamus receives strong descending inputs from the lateral septum, which is connected, in turn, with cortical networks, but cognitive regulation of feeding-related behaviours is not yet understood. Cortical cognitive processing involves gamma oscillations, which support memory, attention, cognitive flexibility and sensory responses. These functions contribute crucially to feeding behaviour by unknown neural mechanisms. Here we show that coordinated gamma (30-90 Hz) oscillations in the lateral hypothalamus and upstream brain regions organize food-seeking behaviour in mice. Gamma-rhythmic input to the lateral hypothalamus from somatostatin-positive lateral septum cells evokes food approach without affecting food intake. Inhibitory inputs from the lateral septum enable separate signalling by lateral hypothalamus neurons according to their feeding-related activity, making them fire at distinct phases of the gamma oscillation. Upstream, medial prefrontal cortical projections provide gamma-rhythmic inputs to the lateral septum; these inputs are causally associated with improved performance in a food-rewarded learning task. Overall, our work identifies a top-down pathway that uses gamma synchronization to guide the activity of subcortical networks and to regulate feeding behaviour by dynamic reorganization of functional cell groups in the hypothalamus.

  19. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  20. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  1. Frequency-driven quantum oscillations in a graphene layer under circularly polarized ac fields

    Energy Technology Data Exchange (ETDEWEB)

    Vega Monroy, R., E-mail: ricardovega@mail.uniatlantico.edu.co; Martinez Castro, O.; Salazar Cohen, G.

    2015-06-19

    In this paper we predict a new type of quantum oscillations driven by the frequency of a circularly polarized ac field in a monolayer of graphene placed inside an optical cavity. We show that the displacement of the structure of photon-dressed electron states near the Fermi level and the electron transitions, from extended states to bound photon-dressed electron states inside an energy gap, lead to a periodic change of singularities in the electron density of states, resulting in quantum oscillations in thermodynamic, transport and other properties in graphene.

  2. Deficits in High- (> 60 Hz Gamma-Band Oscillations during Visual Processing in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Christine eGruetzner

    2013-03-01

    Full Text Available Current theories of the pathophysiology of schizophrenia have focused on abnormal temporal coordination of neural activity. Oscillations in the gamma-band range (> 25 Hz are of particular interest as they establish synchronisation with great precision in local cortical networks. However, the contribution of high gamma (> 60 Hz oscillations towards the pathophysiology is less established. To address this issue, we recorded magnetoencephalographic (MEG data from 16 medicated patients with chronic schizophrenia and 16 controls during the perception of Mooney faces. Magnetoencephalographic data were analysed in the 25-150 Hz frequency range. Patients showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces while responses to inverted stimuli were intact. Impaired processing of Mooney faces in schizophrenia patients was accompanied by a pronounced reduction in spectral power between 60-120 Hz (effect size: d = 1.26 which was correlated with disorganised symptoms (r = -.72. Our findings demonstrate that deficits in high gamma-band oscillations as measured by MEG are a sensitive marker for aberrant cortical functioning in schizophrenia, suggesting an important aspect of the pathophysiology of the disorder.

  3. Gamma and Beta Oscillations in Human MEG Encode the Contents of Vibrotactile Working Memory

    Directory of Open Access Journals (Sweden)

    Alexander H. von Lautz

    2017-12-01

    Full Text Available Ample evidence suggests that oscillations in the beta band represent quantitative information about somatosensory features during stimulus retention. Visual and auditory working memory (WM research, on the other hand, has indicated a predominant role of gamma oscillations for active WM processing. Here we reconciled these findings by recording whole-head magnetoencephalography during a vibrotactile frequency comparison task. A Braille stimulator presented healthy subjects with a vibration to the left fingertip that was retained in WM for comparison with a second stimulus presented after a short delay. During this retention interval spectral power in the beta band from the right intraparietal sulcus and inferior frontal gyrus (IFG monotonically increased with the to-be-remembered vibrotactile frequency. In contrast, induced gamma power showed the inverse of this pattern and decreased with higher stimulus frequency in the right IFG. Together, these results expand the previously established role of beta oscillations for somatosensory WM to the gamma band and give further evidence that quantitative information may be processed in a fronto-parietal network.

  4. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    Science.gov (United States)

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  5. Work fluctuations in a nonlinear micromechanical oscillator driven far from thermal equilibrium.

    Science.gov (United States)

    Zhou, P; Dong, X; Stambaugh, C; Chan, H B

    2015-05-01

    We explore fluctuation relations in a periodically driven micromechanical torsional oscillator. In the linear regime where the modulation is weak, we verify that the ratio of the work variance to the mean work is constant, consistent with conventional fluctuation theorems. We then increase the amplitude of the periodic drive so that the response becomes nonlinear and two nonequilibrium oscillation states coexist. Due to interstate transitions, the work variance exhibits a peak at the driving frequency at which the occupation of the two states is equal. Moreover, the work fluctuations depend exponentially on the inverse noise intensity. Our data are consistent with recent theories on systems driven into bistability that predict generic behaviors different from conventional fluctuation theorems.

  6. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Bak, Jeong Hyeon; Yoon, Jong Hyun; Park, Jong Hyeon [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of); Park, Jong Oh [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-12-15

    Cable-driven parallel robots (CDPRs) have many advantages over conventional link-based robot manipulators in terms of acceleration due to their low inertia. This paper concerns about under-constrained CDPRs, which have a less number of cables than six, often used favorably due to their simpler structures. Since a smaller number of cables than 6 are employed, however, their payloads have extra degrees of motion freedom and exhibit swaying motions or oscillation. In this paper, a scheme to suppress unwanted oscillatory motions of the payload of a 4-cable-driven CDPR based on a Zero-vibration (ZV) input-shaping scheme is proposed. In this method, a motion in the 3-dimensional space is projected onto the independent motions on two vertical planes perpendicular to each other. On each of the vertical plane, the natural frequency of the CDPR is computed based on a 2-cable-driven planar CDPR model. The precise dynamic model of a planar CDPR is obtained in order to find the natural frequency, which depends on the payload position. The advantage of the proposed scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-shaping scheme despite the complexity in the dynamics of the CDPR and the difficulty in computing the natural frequencies of the CDPR, which is required in any ZV input-shaping scheme. To verify the effectiveness of the proposed method, a series of computer simulations and experiments were conducted for 3- dimensional motions with a 4-cable-driven CDPR. Their results showed that the motions of the CDPR with the proposed method exhibited a significant reduction in oscillations of the payload. However, when the payload moves near the edges of its workspace, the improvement in oscillation reduction diminished as expected due to the errors in model projection.

  7. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  8. Gamma Oscillations and Neural Field DCMs Can Reveal Cortical Excitability and Microstructure

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-05-01

    Full Text Available This paper shows how gamma oscillations can be combined with neural population models and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical excitability and microstructure. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. Neural field models are used to evaluate model evidence and obtain parameter estimates using invasive and non-invasive gamma recordings. Our overview comprises two parts: in the first part, we use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on predicted responses in terms of synaptic rate constants that correspond to different timescales and distinct neurotransmitters. We focus on model predictions of conductance and convolution based field models and show that these can yield spectral responses that are sensitive to biophysical properties of local cortical circuits like synaptic kinetics and filtering; we also consider two different mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear convolution of afferent firing rates producing post synaptic potentials. In the second part of this paper, we use neural fields quantitatively—to fit empirical data recorded during visual stimulation. We present two studies of spectral responses obtained from the visual cortex during visual perception experiments: in the first study, MEG data were acquired during a task designed to show how activity in the gamma band is related to visual perception, while in the second study, we exploited high density electrocorticographic (ECoG data to study the effect of varying stimulus contrast on cortical excitability and gamma peak frequency.

  9. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    Directory of Open Access Journals (Sweden)

    Körner Ursula

    2007-04-01

    Full Text Available Abstract Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed integration processes.

  10. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex.

    Science.gov (United States)

    Cheng, Chia-Hsiung; Chan, Pei-Ying S; Niddam, David M; Tsai, Shang-Yueh; Hsu, Shih-Chieh; Liu, Chia-Yih

    2016-02-04

    Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition.

  11. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  12. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  13. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond.

    Science.gov (United States)

    Golter, D Andrew; Wang, Hailin

    2014-03-21

    Rabi oscillations and adiabatic passage of single electron spins in a diamond nitrogen vacancy center are demonstrated with two Raman-resonant optical pulses that are detuned from the respective dipole optical transitions. We show that the optical spin control is nuclear-spin selective and can be robust against rapid decoherence, including radiative decay and spectral diffusion, of the underlying optical transitions. A direct comparison between the Rabi oscillation and the adiabatic passage, along with a detailed theoretical analysis, provides significant physical insights into the connections and differences between these coherent spin processes and also elucidates the role of spectral diffusion in these processes. The optically driven coherent spin processes enable the use of nitrogen vacancy excited states to mediate coherent spin-phonon coupling, opening the door to combining optical control of both spin and mechanical degrees of freedom.

  14. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.

    Science.gov (United States)

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-06-15

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.

  15. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    International Nuclear Information System (INIS)

    Li Zhi-Xin; Cao Qing-Jie; Alain, Léger

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)

  16. The Study of a Nonlinear Duffing – Type Oscillator Driven by Two Voltage Sources

    Directory of Open Access Journals (Sweden)

    J. O. Maaita

    2013-10-01

    Full Text Available In the present work, a detailed study of a nonlinear electrical oscillator with damping and external excitation is presented. The system under study consists of a Duffing-type circuit driven by two sinusoidal voltage sources having different frequencies. The dynamical behavior of the proposed system is investigated numerically, by solving the system of state equations and simulating its behavior as a circuit using MultiSim. The tools of the theoretical approach are the bifurcation diagrams, the Poincaré sections, the phase portraits, and the maximum Lyapunov exponent. The numerical investigation showed that the system has rich complex dynamics including phenomena such as quasiperiodicity, 3-tori, and chaos.

  17. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans.

    Science.gov (United States)

    Cortes-Briones, Jose; Skosnik, Patrick D; Mathalon, Daniel; Cahill, John; Pittman, Brian; Williams, Ashley; Sewell, R Andrew; Ranganathan, Mohini; Roach, Brian; Ford, Judith; D'Souza, Deepak Cyril

    2015-08-01

    Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.

  18. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor.

    Science.gov (United States)

    Andersson, Richard; Galter, Dagmar; Papadia, Daniela; Fisahn, André

    2017-05-15

    Histamine is an aminergic neurotransmitter, which regulates wakefulness, arousal and attention in the central nervous system. Histamine receptors have been the target of efforts to develop pro-cognitive drugs to treat disorders such as Alzheimer's disease and schizophrenia. Cognitive functions including attention are closely associated with gamma oscillations, a rhythmical electrical activity pattern in the 30-80 Hz range, which depends on the synchronized activity of excitatory pyramidal cells and inhibitory fast-spiking interneurons. We set out to explore whether histamine has a role in promoting gamma oscillations in the hippocampus. Using in-situ hybridization we demonstrate that histamine receptor subtypes 1, 2 and 3 are expressed in stratum pyramidale of area CA3 in rats. We show that both pyramidal cells and fast-spiking interneurons depolarize and increase action potential firing in response to histamine in vitro. The activation of histamine receptors generates dose-dependent, transient gamma oscillations in area CA3 of the hippocampus - the locus of the gamma rhythm generator. We also demonstrate that this histamine effect is independent of muscarinic receptors. Using specific antagonists we provide evidence that histamine gamma rhythmogenesis specifically depends on the H1 receptor. Histamine also depolarized both pyramidal cells and fast-spiking interneurons and increased membrane resistance in pyramidal cells. The increased membrane resistance is potentially mediated by the inhibition of potassium channels because application of the KCNQ channel opener ICA110381 abolished the oscillations. Taken together our data demonstrate a novel and physiological mechanism for generating gamma oscillations in hippocampus and suggest a role for KCNQ channels in this cognition-relevant brain activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat.

    Directory of Open Access Journals (Sweden)

    Nicolas eFourcaud-Trocmé

    2014-07-01

    Full Text Available A prominent feature of olfactory bulb (OB dynamics is the expression of characteristic local field potential (LFP rhythms, including a slow respiration-related rhythm and two fast alternating oscillatory rhythms, beta (15-30 Hz and gamma (40-90 Hz. All of these rhythms are implicated in olfactory coding. Fast oscillatory rhythms are known to involve the mitral-granule cell loops. Although the underlying mechanisms of gamma oscillation have been studied, the origin of beta oscillation remains poorly understood. Whether these two different rhythms share the same underlying mechanism is unknown. This study uses a quantitative and detailed current-source density analysis combined with multi-unit activity recordings to shed light on this question in freely breathing anesthetized rats. In particular, we show that gamma oscillation generation involves mainly upper half of the external plexiform layer (EPL and superficial areas of granule cell layer. In contrast, the generation of beta oscillation involves the lower part of the EPL and deep granule cells. This differential involvement of sublaminar networks is neither dependent on odor quality nor on the precise frequency of the fast oscillation under study. Overall, this study demonstrates a functional sublaminar organization of the rat OB, which is supported by previous anatomical findings.

  20. Simulation and observation of driven beam oscillations with space charge in the CERN PS Booster

    CERN Document Server

    McAteer, M; Benedetto, E; Carli, C; Findlay, A; Mikulec, B; Tomás, R

    2014-01-01

    As part of the LHC Injector Upgrade project, the CERN PS Booster will be required to operate at nearly doubled intensity with little allowable increase in emittance growth or beam loss. A campaign of nonlinear optics measurements from turn-by-turn trajectory measurements, with the goal of characterizing and then compensating for higher-order resonances, is planned for after Long Shutdown 1. The trajectory measurement system is expected initially to require high intensity beam in order to have good position measurement resolution, so understanding space charge effects will be important for optics analysis. We present the results of simulations of driven beam oscillations with space charge effects, and comparison with trial beam trajectory measurements.

  1. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  2. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    Science.gov (United States)

    Zhi-Xin, Li; Qing-Jie, Cao; Léger, Alain

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372082 and 11572096) and the National Basic Research Program of China (Grant No. 2015CB057405).

  3. Resonances driven by a neutrino gyroscope and collective neutrino oscillations in supernovae

    International Nuclear Information System (INIS)

    Wu Mengru; Qian Yongzhong

    2011-01-01

    We show that flavor evolution of a system of neutrinos with continuous energy spectra as in supernovae can be understood in terms of the response of individual neutrino flavor-isospins (NFIS's) to the mean field. In the case of a system initially consisting of ν e and ν e with the same energy spectrum but different number densities, the mean field is very well approximated by the total angular momentum of a neutrino gyroscope. Assuming that NFIS evolution is independent of the initial neutrino emission angle, the so-called single-angle approximation, we find that the evolution is governed by two types of resonances driven by precession and nutation of the gyroscope, respectively. The net flavor transformation crucially depends on the adiabaticity of evolution through these resonances. We show that the results for the system of two initial neutrino species can be extended to a system of four species with the initial number densities of ν e and ν e significantly larger than those of ν x and ν x . Further, we find that when the dependence on the initial neutrino emission angle is taken into account in the multiangle approximation, nutation of the mean field is quickly damped out and can be neglected. In contrast, precession-driven resonances still govern the evolution of NFIS's with different energy and emission angles just as in the single-angle approximation. Our pedagogical and analytic study of collective neutrino oscillations in supernovae provides some insights into these seemingly complicated yet fascinating phenomena.

  4. Millisecond precision temporal encoding of stimulus features during cortically generated gamma oscillations in the rat somatosensory cortex.

    Science.gov (United States)

    Bessaih, Thomas; Higley, Michael J; Contreras, Diego

    2018-02-01

    Rodents explore their immediate environment using their whiskers. Such exploration leads to micromotions, which contain many high-frequency (50-200 Hz) components. High-frequency whisker motion is represented faithfully in the temporal structure of the spike trains of trigeminal neurons. However, the representation of high-frequency sensory inputs in cortex is not fully understood. By combining extracellular and intracellular recordings in the rat somatosensory cortex and thalamus, we show that high-frequency sensory inputs, either sinusoidal or white noise, elicit internally generated gamma (20-60 Hz) band oscillations in cortical networks. Gamma oscillations modulate cortical spike probability while preserving sub-millisecond phase relations with high-frequency sensory inputs. Consequently, our results indicate that millisecond precision stimulus-locked spiking activity and sensory-induced gamma oscillation can constitute independent multiplexed coding schemes at the single-cell level. In the natural environment, tactile exploration often leads to high-frequency vibrations at the level of the sensory organs. Single-unit recordings of cortical neurons have pointed towards either a rate or a temporal code for representing high-frequency tactile signals. In cortical networks, sensory processing results from the interaction between feedforward inputs relayed from the thalamus and internally generated activity. However, how the emergent activity represents high-frequency sensory input is not fully understood. Using multisite single-unit, local field potential and intracellular recordings in the somatosensory cortex and thalamus of lightly sedated male rats, we measured neuronal responses evoked by sinusoidal and band-pass white noise whisker stimulation at frequencies that encompass those observed during texture exploration (50-200 Hz). We found that high-frequency sensory inputs relayed from the thalamus elicit both sub-millisecond stimulus-locked responses and

  5. High-gamma oscillations in the motor cortex during visuo-motor coordination: A tACS interferential study.

    Science.gov (United States)

    Santarnecchi, E; Biasella, A; Tatti, E; Rossi, A; Prattichizzo, D; Rossi, S

    2017-05-01

    While the role of beta (∼20Hz), theta (∼5Hz) and alpha (∼10Hz) oscillations in the motor areas have been repeatedly associated with defined properties of motor performance, the investigation of gamma (∼40-90Hz) oscillatory activity is a more recent and still not fully understood component of motor control physiology, despite its potential clinical relevance for motor disorders. We have implemented an online neuromodulation paradigm based on transcranial alternating current stimulation (tACS) of the dominant motor cortex during a visuo-motor coordination task. This approach would allow a better understanding of the role of gamma activity, as well as that of other oscillatory bands, and their chronometry throughout the task. We tested the effects of 5Hz, 20Hz, 60Hz (mid-gamma) 80Hz (high-gamma) and sham tACS on the performance of a sample of right-handed healthy volunteers, during a custom-made unimanual tracking task addressing several randomly occurring components of visuo-motor coordination (i.e., constant velocity or acceleration pursuits, turns, loops). Data showed a significant enhancement of motor performance during high-gamma stimulation - as well as a trending effect for mid-gamma - with the effect being prominent between 200 and 500ms after rapid changes in tracking trajectory. No other effects during acceleration or steady pursuit were found. Our findings posit a role for high-frequency motor cortex gamma oscillations during complex visuo-motor tasks involving the sudden rearrangement of motor plan/execution. Such a "prokinetic" effect of high-gamma stimulation might be worth to be tested in motor disorders, like Parkinson's disease, where the switching between different motor programs is impaired. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts

    Science.gov (United States)

    Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.

    2018-01-01

    The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.

  7. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock.

    Directory of Open Access Journals (Sweden)

    Benoît Kornmann

    2007-02-01

    Full Text Available The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBalpha represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs.

  8. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Directory of Open Access Journals (Sweden)

    Yosef London

    2017-04-01

    Full Text Available An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  9. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    Science.gov (United States)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  10. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    International Nuclear Information System (INIS)

    Rastogi, N.K.

    2005-01-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity

  11. Parametric oscillation of a moving mirror driven by radiation pressure in a superconducting Fabry-Perot resonator system

    International Nuclear Information System (INIS)

    Chiao, Raymond Y; Martinez, Luis A; Minter, Stephen J; Trubarov, Alexey

    2012-01-01

    A moving pellicle superconducting mirror, which is driven by radiation pressure on its one side and the Coulomb force on its other side, can become a parametric oscillator that can generate microwaves when placed within a high-Q superconducting Fabry-Perot resonator system. A paraxial-wave analysis shows that the fundamental resonator eigenmode needed for parametric oscillation is the TM 011 mode. A double Fabry-Perot structure is introduced to resonate the pump and idler modes, but reject the parasitic anti-Stokes mode. The threshold for oscillation is estimated based on the radiation-pressure coupling of the pump to the signal and idler modes and indicates that the experiment is feasible to perform.

  12. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations.

    Science.gov (United States)

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Choudhury, Naseem; Realpe-Bonilla, Teresa; Roesler, Cynthia; Benasich, April A

    2017-08-01

    Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx), over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx) or maturation alone (Naïve Control, NC). Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD) elicited greater Theta-band (4-6Hz) activity in Right Auditory Cortex (RAC), as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV) elicited larger responses in Left Auditory Cortex (LAC). PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33-37Hz) activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  14. Attenuation of beta and gamma oscillations in schizophrenia spectrum patients following hand posture perturbation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Mørup, Morten; Thalbitzer, Jørgen

    2011-01-01

    Several electroencephalographic (EEG) studies in schizophrenia report that the patients have reduced evoked gamma activity following visual and auditory stimulation. Somatosensory gamma activity has not previously been examined. It has been suggested that a dysfunction basic to schizophrenia spec...

  15. Three-minute Sunspot Oscillations Driven by Magnetic Reconnection in a Light Bridge

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Kwak, Hannah; Kano, Ryouhei; Yurchyshyn, Vasyl; Moon, Yong-Jae; Lim, Eun-Kyung; Lee, Jeongwoo

    2017-12-01

    We report a different type of three-minute chromospheric oscillation above a sunspot in association with a small-scale impulsive event in a light bridge (LB). During our observations, we found a transient brightening in the LB. The brightening was composed of elementary bursts that may be a manifestation of fast repetitive magnetic reconnections in the LB. Interestingly, the oscillations in the nearby sunspot umbra were impulsively excited when the intensity of the brightening reached its peak. The initial period of the oscillations was about 2.3 minutes and then gradually increased to 3.0 minutes with time. In addition, we found that the amplitude of the excited oscillations was twice the amplitude of oscillations before the brightening. Based on our results, we propose that magnetic reconnection occurring in an LB can excite oscillations in the nearby sunspot umbra.

  16. Comparison of EEG and MEG in source localization of induced human gamma-band oscillations during visual stimulus.

    Science.gov (United States)

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2015-08-01

    High frequency gamma oscillations are indications of information processing in cortical neuronal networks. Recently, non-invasive detection of these oscillations have become one of the main research areas in magnetoencephalography (MEG) and electroencephalography (EEG) studies. The aim of this study, which is a continuation of our previous MEG study, is to compare the capability of the two modalities (EEG and MEG) in localizing the source of the induced gamma activity due to a visual stimulus, using a spatial filtering technique known as dynamic imaging of coherent sources (DICS). To do this, the brain activity was recorded using simultaneous MEG and EEG measurement and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head modeling technique, such as, the three-shell concentric spheres and an overlapping sphere (local sphere) have been used as a forward model to calculate the external electromagnetic potentials and fields recorded by the EEG and MEG, respectively. Our results from the time-frequency analysis, at the sensor level, revealed that the parieto-occipital electrodes and sensors from both modalities showed a clear and sustained gamma-band activity throughout the post-stimulus duration and that both modalities showed similar strongest gamma-band peaks. It was difficult to interpret the spatial pattern of the gamma-band oscillatory response on the scalp, at the sensor level, for both modalities. However, the source analysis result revealed that MEG3 sensor type, which measure the derivative along the longitude, showed the source more focally and close to the visual cortex (cuneus) as compared to that of the EEG.

  17. Phase-locking phenomena and excitation of damped and driven nonlinear oscillators

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker

    2009-01-01

    Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable...

  18. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus.

    Directory of Open Access Journals (Sweden)

    Katrina E Furth

    Full Text Available Alterations in the function of the medial prefrontal cortex (mPFC and its major thalamic source of innervation, the mediodorsal (MD thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c. while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870 had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997 in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both

  19. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    Science.gov (United States)

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  20. Measurements on a guitar string as an example of a physical nonlinear driven oscillator

    Science.gov (United States)

    Carlà, Marcello; Straulino, Samuele

    2017-08-01

    An experimental study is described to characterize the oscillation of a guitar string around resonance. A periodic force was applied to the string, generated by the electromagnetic interaction between an alternating current flowing in the string and a magnetic field. The oscillation was studied by measuring the voltage induced in the string itself, which is proportional to the velocity. Accurate quantitative data were obtained for the velocity, both modulus and phase, with a time resolution of 3 ms, corresponding to the oscillation period. The measuring instrument was a personal computer with its sound card and an electronic amplifier, both used to generate the excitation current and record the velocity signal, while performing the required frequency sweep. The study covered an excitation force range more than two and half decades wide (51 dB). The experimental results showed very good agreement with the theoretical behavior of a Duffing oscillator with nonlinear damping over about two decades.

  1. Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Karine Abitbol

    Full Text Available Circadian clocks drive biological rhythms with a period of approximately 24 hours and keep in time with the outside world through daily resetting by environmental cues. While this external entrainment has been extensively investigated in the suprachiasmatic nuclei (SCN, the role of internal systemic rhythms, including daily fluctuations in core temperature or circulating hormones remains debated. Here, we show that lactating mice, which exhibit dampened systemic rhythms, possess normal molecular clockwork but impaired rhythms in both heat shock response gene expression and electrophysiological output in their SCN. This suggests that body rhythms regulate SCN activity downstream of the clock. Mathematical modeling predicts that systemic feedback upon the SCN functions as an internal oscillator that accounts for in vivo and ex vivo observations. Thus we are able to propose a new bottom-up hierarchical organization of circadian timekeeping in mammals, based on the interaction in the SCN between clock-dependent and system-driven oscillators.

  2. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding

    NARCIS (Netherlands)

    Lowet, E.P.; Roberts, M.J.; Hadjipapas, A.; Peter, A.; Eerden, J. van der; Weerd, P. de

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range ( approximately 25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma

  3. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    Science.gov (United States)

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-09-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.

  4. Ultrafast laser-driven Rabi oscillations of a trapped atomic vapor.

    Science.gov (United States)

    Lee, Han-gyeol; Kim, Hyosub; Ahn, Jaewook

    2015-02-15

    We consider the Rabi oscillation of an atom ensemble of Gaussian spatial distribution interacting with ultrafast laser pulses. Based on an analytical model calculation, we show that its dephasing dynamics is solely governed by the size ratio between the atom ensemble and the laser beam, and that every oscillation peak of the inhomogeneously broadened Rabi flopping falls on the homogeneous Rabi oscillation curve. The results are verified experimentally with a cold rubidium vapor in a magneto-optical trap. As a robust means to achieve higher-fidelity population inversion of the atom ensemble, we demonstrate a spin-echo type R(x)(π/2)R(y)(π)R(x)(π/2) composite interaction as well.

  5. Equatorial annual oscillation with QBO-driven 5-year modulation in NCEP data

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2007-02-01

    Full Text Available An analysis is presented of the stratospheric zonal wind and temperature variations supplied by the National Center for Environmental Prediction (NCEP. The derived zonal-mean variations are employed. Stimulated by modeling studies, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to study the 12-month annual oscillation (AO and the quasi-biennial oscillation (QBO. For data samples that cover as much as 40 years, the zonal wind results reveal a pronounced 5-year modulation of the symmetric AO in the lower stratosphere, which is confined to equatorial latitudes. This modulation is also seen in the temperature variations but extends to high latitudes, qualitatively consistent with published model results. A comparison between different time intervals of the data indicates that the signature of the 5-year oscillation is larger when the QBO of 30 months is more pronounced. Thus there is circumstantial evidence that this particular QBO period is involved in generating the oscillation as was shown in a modeling study (Mayr et al., 2000. In agreement with the model, the spectral analysis also reveals a weak anti-symmetric 5-year oscillation in the zonal wind data, which could interact with the strong anti-symmetric AO to produce the modulation of the symmetric AO. The 30-month QBO is well suited to be synchronized by, and phase-locked to, the equatorial semi-annual oscillation (SAO, and this may explain why this QBO periodicity and its 5-year spin-off are observed to persist for many cycles.

  6. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  7. Rabi oscillations between atomic and molecular condensates driven with coherent one-color photoassociation.

    Science.gov (United States)

    Yan, Mi; DeSalvo, B J; Huang, Ying; Naidon, P; Killian, T C

    2013-10-11

    We demonstrate coherent one-color photoassociation of a Bose-Einstein condensate, which results in Rabi oscillations between atomic and molecular condensates. We attain atom-molecule Rabi frequencies that are comparable to decoherence rates by driving photoassociation of atoms in an ^{88}Sr condensate to a weakly bound level of the metastable 1S0+3P1 molecular potential, which has a long lifetime and a large Franck-Condon overlap integral with the ground scattering state. Transient shifts and broadenings of the excitation spectrum are clearly seen at short times, and they create an asymmetric excitation profile that only displays Rabi oscillations for blue detuning from resonance.

  8. Damping-free collective oscillations of a driven two-component Bose gas in optical lattices

    Science.gov (United States)

    Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.

    2018-04-01

    We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.

  9. Theta and gamma oscillations predict encoding and retrieval of declarative memory

    NARCIS (Netherlands)

    Osipova, D.; Takashima, A.; Oostenveld, R.; Fernandez, G.S.E.; Maris, E.G.G.; Jensen, O.

    2006-01-01

    Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a

  10. Theta and gamma oscillations predict encoding and retrieval of declarative memory.

    NARCIS (Netherlands)

    Osipova, D.; Takashima, A.; Oostenveld, R.; Fernandez, G.S.E.; Maris, E.G.G.; Jensen, O.

    2006-01-01

    Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a

  11. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    NARCIS (Netherlands)

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in

  12. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    NARCIS (Netherlands)

    van Kerkoerle, T; Self, M.W.; Dagnino, B.; Gariel-Mathis, M.A.; Poort, J.; van der Togt, C.; Roelfsema, P.R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in

  13. Impact of head modeling and sensor types in localizing human gamma-band oscillations.

    Science.gov (United States)

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2014-01-01

    An effective mechanism in neuronal communication is oscillatory neuronal synchronization. The neuronal gamma-band (30-100 Hz) synchronization is associated with attention which is induced by a certain visual stimuli. Numerous studies have shown that the gamma-band activity is observed in the visual cortex. However, impact of different head modeling techniques and sensor types to localize gamma-band activity have not yet been reported. To do this, the brain activity was recorded using 306 magnetoencephalography (MEG) sensors, consisting of 102 magnetometers and 102 pairs of planar gradiometers (one measuring the derivative of the magnetic field along the latitude and the other along the longitude), and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head models with a single-shell and overlapping spheres (local sphere) have been used as a forward model for calculating the external magnetic fields generated from the gamma-band activity. For each sensor type, the subject-specific frequency range of the gamma-band activity was obtained from the spectral analysis. The identified frequency range of interest with the highest gamma-band activity is then localized using a spatial-filtering technique known as dynamic imaging of coherent sources (DICS). The source analysis for all the subjects revealed that the gradiometer sensors which measure the derivative along the longitude, showed sources close to the visual cortex (cuneus) as compared to the other gradiometer sensors which measure the derivative along the latitude. However, using the magnetometer sensors, it was not possible to localize the sources in the region of interest. When comparing the two head models, the local-sphere model helps in localizing the source more focally as compared to the single-shell head model.

  14. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations.

    Science.gov (United States)

    Dynesius, M; Jansson, R

    2000-08-01

    We suggest Milankovitch climate oscillations as a common cause for geographical patterns in species diversity, species' range sizes, polyploidy, and the degree of specialization and dispersability of organisms. Periodical changes in the orbit of the Earth cause climatic changes termed Milankovitch oscillations, leading to large changes in the size and location of species' geographical distributions. We name these recurrent changes "orbitally forced species' range dynamics" (ORD). The magnitude of ORD varies in space and time. ORD decreases gradual speciation (attained by gradual changes over many generations), increases range sizes and the proportions of species formed by polyploidy and other "abrupt" mechanisms, selects against specialization, and favor dispersability. Large ORD produces species prone neither to extinction nor gradual speciation. ORD increases with latitude. This produces latitudinal patterns, among them the gradient in species diversity and species' range sizes (Rapoport's rule). Differential ORD and its evolutionary consequences call for new conservation strategies on the regional to global scale.

  15. Synchronization phenomenon in the de-tuned rotor driven by regular or chaotic oscillations

    Science.gov (United States)

    Szmit, Zofia; Warmiński, Jerzy

    2018-01-01

    The aim of the paper is to analyze the synchronization phenomenon of a rotating structure composed of three beams attached to a rigid hub. It is assumed in the calculations that one beam is 10% thicker comparing to the remaining ones. Furthermore, two possible variants of excitation are considered: (a) torque given by harmonic function or (b) torque produced by a chaotic oscillator. Next, the equations have been solved numerically and the resonance curves and time series have been analyzed in terms of synchronized motion of the hub and blades of the rotor. The influence of hub's mass moment of inertia have been checked as well. For the system with chaotic Duffing oscillator Poincaré maps have been obtained.

  16. Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator

    OpenAIRE

    Yanhe Zhu; Xiaolu Wang; Jizhuang Fan; Sajid Iqbal; Dongyang Bie; Jie Zhao

    2014-01-01

    Articulated caterpillar robot has various locomotion patterns—which make it adaptable to different tasks. Generally, the researchers have realized undulatory (transverse wave) and simple rolling locomotion. But many motion patterns are still unexplored. In this paper, peristaltic locomotion and various additional rolling patterns are achieved by employing sinusoidal oscillator with fixed phase difference as the joint controller. The usefulness of the proposed method is verified using simulati...

  17. Gamma Oscillations and Spontaneous Network Activity in the Hippocampus Are Highly Sensitive to Decreases in pO2 and Concomitant Changes in Mitochondrial Redox State

    Czech Academy of Sciences Publication Activity Database

    Huchzermeyer, Ch.; Albus, K.; Gabriel, H.-J.; Otáhal, Jakub; Taubenberger, N.; Heinemann, U.; Kovács, R.; Kann, O.

    2008-01-01

    Roč. 28, č. 5 (2008), s. 1153-1162 ISSN 0270-6474 Institutional research plan: CEZ:AV0Z50110509 Keywords : gamma oscillations * pO2 * hippocampus Subject RIV: FH - Neurology Impact factor: 7.452, year: 2008

  18. Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator

    Directory of Open Access Journals (Sweden)

    Yanhe Zhu

    2014-05-01

    Full Text Available Articulated caterpillar robot has various locomotion patterns—which make it adaptable to different tasks. Generally, the researchers have realized undulatory (transverse wave and simple rolling locomotion. But many motion patterns are still unexplored. In this paper, peristaltic locomotion and various additional rolling patterns are achieved by employing sinusoidal oscillator with fixed phase difference as the joint controller. The usefulness of the proposed method is verified using simulation and experiment. The design parameters for different locomotion patterns have been calculated that they can be replicated in similar robots immediately.

  19. Time-translation-symmetry breaking in a driven oscillator: From the quantum coherent to the incoherent regime

    Science.gov (United States)

    Zhang, Yaxing; Gosner, J.; Girvin, S. M.; Ankerhold, J.; Dykman, M. I.

    2017-11-01

    We study the breaking of the discrete time-translation symmetry in small periodically driven quantum systems. These systems are intermediate between large closed systems and small dissipative systems, which both display such symmetry breaking but have qualitatively different dynamics. As a nontrivial example, strongly different from the familiar case of parametric resonance, we consider period tripling in a quantum nonlinear oscillator. We develop theoretical methods of the analysis of period tripling, including the theory of multiple-state resonant tunneling in phase space with the account taken of the involved geometric phase. For moderately strong driving, the period tripling persists for a time, which is exponentially long compared with all dynamical times. This time is further extended by an even weak decoherence.

  20. Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect

    International Nuclear Information System (INIS)

    Siracusano, G.; Puliafito, V.; Giordano, A.; Azzerboni, B.; Finocchio, G.; Tomasello, R.; La Corte, A.; Carpentieri, M.

    2015-01-01

    This paper micromagnetically studies the magnetization dynamics driven by the spin-Hall effect in a Platinum/Permalloy bi-layer. For a certain field and current range, the excitation of a uniform mode, characterized by a power with a spatial distribution in the whole ferromagnetic cross section, is observed. We suggest to use the ferromagnet of the bi-layer as basis for the realization of an array of spin-torque oscillators (STOs): the Permalloy ferromagnet will act as shared free layer, whereas the spacers and the polarizers are built on top of it. Following this strategy, the frequency of the uniform mode will be the same for the whole device, creating an intrinsic synchronization. The synchronization of an array of parallely connected STOs will allow to increase the output power, as necessary for technological applications

  1. Rogue waves driven by polarization instabilities in a long ring fiber oscillator

    Science.gov (United States)

    Kolpakov, S. A.; Kbashi, Hani; Sergeyev, Sergey

    2017-05-01

    We present an experimental and theoretical results of a study of a complex nonlinear polarization dynamics in a passively self-mode-locked erbium-doped fiber oscillator implemented in a ring configuration and operating near lasing threshold. The theoretical model consists of seven coupled non-linear equations and takes into account both orthogonal states of polarizations in the fiber. The experiment confirmed the existence of seven eigenfrequencies, predicted by the model due to polarization instability near lasing threshold. By adjusting the state of polarization of the pump and in-cavity birefringence we changed some eigenfrequencies from being different (non-degenerate state) to matching (degenerate state). The non-degenerate states of oscillator lead to the L-shaped probability distribution function and true rogue wave regime with a positive dominant Lyapunov exponent value between 1.4 and 2.6. Small detuning from partially degenerate case also leads to L-shaped probability distribution function with the tail trespassing eight standard deviations threshold, giving periodic patterns of pulses along with positive dominant Lyapunov exponent of a filtered signal between 0.6 and 3.2. The partial degeneration, in turn, guides to quasi-symmetric distribution and the value of dominant Lyapunov exponent of 42 which is a typical value for systems with a source of the strongly nonhomogeneous external noise.

  2. Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study

    International Nuclear Information System (INIS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2014-01-01

    Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained

  3. Oscillating two-stream instability of laser wakefield-driven plasma ...

    Indian Academy of Sciences (India)

    v0 at (ω0, k0) produces nonlinear density perturbations nNL. 1,2 at (ω1,2, k1,2) that drive the sidebands. In §2, the local theory of OTSI of laser wakefield-driven plasma wave is discus- sed. In §3, the nonlocal effects are studied. Section 4 summarizes the conclusion. 158. Pramana – J. Phys., Vol. 86, No. 1, January 2016 ...

  4. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics

    Science.gov (United States)

    Guerrier, Claire; Hayes, John A.; Fortin, Gilles; Holcman, David

    2015-01-01

    How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation. We also show that a two-step SD process allows activity in the network to synchronize (bursts) and generate a population refractory period (silence). The model was validated against an array of experimental conditions, which recapitulate several processes the preBötC may experience. Consistent with the modeling assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur at preBötC synapses on timescales that influence rhythmic population activity. We conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in a randomly connected network are sufficient to give rise to regular respiratory-like rhythmic network activity and lability, which may play an important role in generating the rhythm for breathing and other coordinated motor activities in mammals. PMID:26195782

  5. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation

    Science.gov (United States)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; van der Werf, Guido R.; Giglio, Louis; Randerson, James T.

    2017-12-01

    The El Niño/Southern Oscillation (ENSO) has a pronounced influence on year-to-year variations in climate1. The response of fires to this forcing2 is complex and has not been evaluated systematically across different continents. Here we use satellite data to create a climatology of burned-area and fire-emissions responses, drawing on six El Niño and six La Niña events during 1997-2016. On average, reductions in precipitation and terrestrial water storage increased fire emissions in pan-tropical forests by 133% during and following El Niño as compared with La Niña. Fires peaked in equatorial Asia early in the ENSO cycle when El Niño was strengthening (Aug-Oct), before moving to southeast Asia and northern South America (Jan-Apr), Central America (Mar-May) and the southern Amazon (Jul-Oct) during the following year. Large decreases in fire occurred across northern Australia during Sep-Oct of the second year from a reduced fuel availability. Satellite observations of aerosols and carbon monoxide provided independent confirmation of the spatiotemporal evolution of fire anomalies. The predictable cascade of fire across different tropical continents described here highlights an important time delay in the Earth system's response to precipitation redistribution. These observations help to explain why the growth rate of atmospheric CO2 increases during El Niño3 and may contribute to improved seasonal fire forecasts.

  6. Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis.

    Science.gov (United States)

    Balconi, Michela; Lucchiari, Claudio

    2008-01-01

    It remains an open question whether it is possible to assign a single brain operation or psychological function for facial emotion decoding to a certain type of oscillatory activity. Gamma band activity (GBA) offers an adequate tool for studying cortical activation patterns during emotional face information processing. In the present study brain oscillations were analyzed in response to facial expression of emotions. Specifically, GBA modulation was measured when twenty subjects looked at emotional (angry, fearful, happy, and sad faces) or neutral faces in two different conditions: supraliminal (10 ms) vs subliminal (150 ms) stimulation (100 target-mask pairs for each condition). The results showed that both consciousness and significance of the stimulus in terms of arousal can modulate the power synchronization (ERD decrease) during 150-350 time range: an early oscillatory event showed its peak at about 200 ms post-stimulus. GBA was enhanced by supraliminal more than subliminal elaboration, as well as more by high arousal (anger and fear) than low arousal (happiness and sadness) emotions. Finally a left-posterior dominance for conscious elaboration was found, whereas right hemisphere was discriminant in emotional processing of face in comparison with neutral face.

  7. Hearing and seeing meaning in noise: Alpha, beta, and gamma oscillations predict gestural enhancement of degraded speech comprehension.

    Science.gov (United States)

    Drijvers, Linda; Özyürek, Asli; Jensen, Ole

    2018-05-01

    During face-to-face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued-recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand-area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low- and high-frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low- and high-frequency oscillations in predicting the integration of auditory and visual information at a semantic level. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. From neural oscillations to reasoning ability: Simulating the effect of the theta-to-gamma cycle length ratio on individual scores in a figural analogy test.

    Science.gov (United States)

    Chuderski, Adam; Andrelczyk, Krzysztof

    2015-02-01

    Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex

  9. The study of the wedge-shaped vibration-driven robot motion in a viscous fluid forced by different oscillation laws of the internal mass

    Science.gov (United States)

    Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.

    2016-11-01

    A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.

  10. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    International Nuclear Information System (INIS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-01-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E GABA ). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g GABA-extra ) and experimentally identified, seizure-induced changes in g GABA-extra and E GABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g GABA-extra reduced the frequency and coherence of FS-BC firing when E GABA was shunting (−74 mV), but failed to alter average FS-BC frequency when E GABA

  11. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  12. Resonances of an Oscillating Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…

  13. Supramodal Theta, Gamma, and Sustained Fields Predict Modality-specific Modulations of Alpha and Beta Oscillations during Visual and Tactile Working Memory.

    Science.gov (United States)

    van Ede, Freek; Jensen, Ole; Maris, Eric

    2017-08-01

    Flexible control over currently relevant sensory representations is an essential feature of primate cognition. We investigated the neurophysiological bases of such flexible control in humans during an intermodal working memory task in which participants retained visual or tactile sequences. Using magnetoencephalography, we first show that working memory retention engages early visual and somatosensory areas, as reflected in the sustained load-dependent suppression of alpha and beta oscillations. Next, we identify three components that are also load dependent but modality independent: medial prefrontal theta synchronization, frontoparietal gamma synchronization, and sustained parietal event-related fields. Critically, these domain-general components predict (across trials and within load conditions) the modality-specific suppression of alpha and beta oscillations, with largely unique contributions per component. Thus, working memory engages multiple complementary frontoparietal components that have discernible neuronal dynamics and that flexibly modulate retention-related activity in sensory areas in a manner that tracks the current contents of working memory.

  14. Laser-Wakefield driven compact Compton scattering gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Froula, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hartemann, F. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joshi, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-04-13

    We propose to demonstrate a novel x-ray and gamma-ray light source based on laser-plasma electron acceleration and Compton scattering at the Jupiter Laser Facility at LLNL. This will provide a new versatile and compact light source capability at the laboratory with very broad scientific applications that are of interest to many disciplines. The source’s synchronization with the seed laser system at a femtosecond time scale (i-e, at which chemical reactions occur) will allow scientists to perform pump-probe experiments with x-ray and gamma-ray beams. Across the laboratory, this will be a new tool for nuclear science, high energy density physics, chemistry, biology, or weapons studies.

  15. Compact FEL-driven inverse compton scattering gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Di Mitri, S., E-mail: simone.dimitri@elettra.eu [Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste (Italy); Pellegrini, C. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); University of California, Los Angeles, CA 90095 (United States); Penn, G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-05-21

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4×22 m{sup 2} footprint system.

  16. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient.

    Science.gov (United States)

    Jamali, Shahab; Fujioka, Takako; Ross, Bernhard

    2014-06-01

    Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve

  17. Self-Exited Oscillation in a Combustion Chamber Driven by Phase Change in the Liquid Fuel Feed System

    OpenAIRE

    C. Hassa; J. Heinze; U. Meier; Ch Heeger; Ph Trunk; A. Dreizler

    2011-01-01

    A new mechanism for the generation of a self-exited oscillation of combustion in a generic combustion chamber typical for aeroengine combustors is described. The cause of the oscillation is the phase change from liquid to vapour which happens when the preheat temperature of the air flowing through the burner exceeds the boiling temperature at the operating pressure and the fuel flow is so low that heat transfer to the liquid fuel causes evaporation within the fuel channels of the burner. Liqu...

  18. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.

    Science.gov (United States)

    Huchzermeyer, Christine; Albus, Klaus; Gabriel, Hans-Jürgen; Otáhal, Jakub; Taubenberger, Nando; Heinemann, Uwe; Kovács, Richard; Kann, Oliver

    2008-01-30

    Gamma oscillations have been implicated in higher cognitive processes and might critically depend on proper mitochondrial function. Using electrophysiology, oxygen sensor microelectrode, and imaging techniques, we investigated the interactions of neuronal activity, interstitial pO2, and mitochondrial redox state [NAD(P)H and FAD (flavin adenine dinucleotide) fluorescence] in the CA3 subfield of organotypic hippocampal slice cultures. We find that gamma oscillations and spontaneous network activity decrease significantly at pO2 levels that do not affect neuronal population responses as elicited by moderate electrical stimuli. Moreover, pO2 and mitochondrial redox states are tightly coupled, and electrical stimuli reveal transient alterations of redox responses when pO2 decreases within the normoxic range. Finally, evoked redox responses are distinct in somatic and synaptic neuronal compartments and show different sensitivity to changes in pO2. We conclude that the threshold of interstitial pO2 for robust CA3 network activities and required mitochondrial function is clearly above the "critical" value, which causes spreading depression as a result of generalized energy failure. Our study highlights the importance of a functional understanding of mitochondria and their implications on activities of individual neurons and neuronal networks.

  19. Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola–Kanai oscillator driven by a time-dependent force

    International Nuclear Information System (INIS)

    Medjber, Salim; Bekkar, Hacene; Menouar, Salah; Ryeol Choi, Jeong

    2016-01-01

    The relationship between quantum mechanics and classical mechanics is investigated by taking a Gaussian-type wave packet as a solution of the Schrödinger equation for the Caldirola–Kanai oscillator driven by a sinusoidal force. For this time-dependent system, quantum properties are studied by using the invariant theory of Lewis and Riesenfeld. In particular, we analyze time behaviors of quantum expectation values of position and momentum variables and compare them to those of the counterpart classical ones. Based on this, we check whether the Ehrenfest theorem which was originally developed in static quantum systems can be extended to such time-varying systems without problems. (paper)

  20. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: Separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons

    Directory of Open Access Journals (Sweden)

    Dorea Vierling-Claassen

    2010-11-01

    Full Text Available Selective optogenetic drive of fast spiking interneurons (FS leads to enhanced local field potential (LFP power across the traditional gamma frequency band (20-80Hz; Cardin et al., 2009. In contrast, drive to regular-spiking pyramidal cells (RS enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS and low-threshold-spiking (LTS interneurons. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time-constant of GABAA inhibition induced by synchronous FS activity. Lower frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing.

  1. Self-Exited Oscillation in a Combustion Chamber Driven by Phase Change in the Liquid Fuel Feed System

    Directory of Open Access Journals (Sweden)

    C. Hassa

    2011-12-01

    Full Text Available A new mechanism for the generation of a self-exited oscillation of combustion in a generic combustion chamber typical for aeroengine combustors is described. The cause of the oscillation is the phase change from liquid to vapour which happens when the preheat temperature of the air flowing through the burner exceeds the boiling temperature at the operating pressure and the fuel flow is so low that heat transfer to the liquid fuel causes evaporation within the fuel channels of the burner. Liquid fuel and vapour alternatively enter the airstream of the burner. This leads to an unstable situation for the flame. Measurements of chemiluminescence and liquid fuel show nearly complete extinction and re-ignition for the limit cycle. Prevention of the oscillation is possible by better thermal management of the fuel path.

  2. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  3. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations.

    Science.gov (United States)

    Zarka, David; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Dan, Bernard; Cheron, Guy

    2014-01-01

    Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR). We analyzed event related potentials (ERP), the event related spectral perturbation (ERSP) and the inter-trial coherence (ITC) from high-density EEG recording during video display onset (-200-600 ms) and the steady state visual evoked potentials (SSVEP) inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images); and Uncoordinated (pseudo-randomly mixed images). We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.

  4. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations.

    Directory of Open Access Journals (Sweden)

    David eZarka

    2014-09-01

    Full Text Available Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR. We analyzed event related potentials (ERP, the event related spectral perturbation (ERSP and the inter-trial coherence (ITC from high-density EEG recording during video display onset (-200 to 600 ms and the steady state visual evoked potentials (SSVEP inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images; and Uncoordinated (pseudo-randomly mixed images. We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.

  5. Gamma band oscillations in parietooccipital areas during performance of a sensorimotor integration task: a qEEG coherence study

    Directory of Open Access Journals (Sweden)

    S Teixeira

    2011-01-01

    Full Text Available This study aimed to elucidate cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object through quantitative electroencephalogram (qEEG. For this reason, we used coherence that represents a measurement of linear covariation between two signals in the frequency domain. In addition, we investigated gamma-band (30-100 Hz activity that is related to cognitive and somatosensory processes. We hypothesized that gamma coherence will be increase in both parietal and occipital areas during moment after ball drop, due to their involvement in manipulation of objects, visuospatial processing, visual perception, stimuli identification and attention processes. We confirmed our hypothesis, an increase in gamma coherence on P3-P4 (t= -2.15; p=0.033 and PZ-OZ (t= -2.16; p=0.034 electrode pairs was verified for a paired t-test. We conclude that to execute tasks involving anticipatory movements (feedforward mechanisms, like our own task, probably, there is no need of a strong participation of visual areas in the process of information organization to manipulate objects and to process visuospatial information regarding the contact hand-object.

  6. Overstability for surface tension and coupled buoyancy-driven instability in a horizontal liquid layer - Toward the understanding of thermal lens oscillations

    Science.gov (United States)

    Gouesbet, G.; Maquet, J.

    1987-06-01

    The overstability for surface tension and coupled buoyancy-driven instability in a horizontal liquid layer, with very general conditions, is studied. A linear formulation to compute the critical quantities is established. Numerical results are given and compared with overstability experiments in which a free surface is heated by a controlled hot-wire located near and below it. When correctly presented in terms of well chosen reduced quantities, theoretical and experimental results agree very well, showing that there is an analogy between the theoretical problem (horizontal liquid layer, basic conductive state) and the experimental situation (hot-wire heating, basic convective state). Disagreements are pointed out to stress the limitations of the analogy. The original motivation of the work is the understanding of thermal lens oscillations produced when heating below the free surface is carried out using a laser beam.

  7. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    Science.gov (United States)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  8. Determination of the static spring constant of electrically-driven quartz tuning forks with two freely oscillating prongs

    International Nuclear Information System (INIS)

    González, Laura; Oria, Roger; Botaya, Luis; Puig-Vidal, Manel; Otero, Jorge

    2015-01-01

    Quartz tuning forks have become popular in nanotechnology applications, especially as sensors for scanning probe microscopy. The sensor’s spring constant and the oscillation amplitude are required parameters to evaluate the tip-sample forces; however, there is certain controversy within the research community as to how to arrive at a value for the static spring constant of the device when working in shear mode. Here, we present two different methods based on finite element simulations, to determine the value of the spring constant of the sensors: the amplitude and Cleveland methods. The results obtained using these methods are compared to those using the geometrical method, and show that the latter overestimates the spring constant of the device. (paper)

  9. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  10. Brain Oscillations, Hypnosis, and Hypnotizability

    Science.gov (United States)

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761

  11. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  12. Thermal analysis studies using oscillation DSC to determine changes in LD ethene/butene copolymer induced by gamma radiation treatment

    International Nuclear Information System (INIS)

    Haelldahl, Lars; Olofsson, Birgitta

    1995-01-01

    A polymeric material is used in one part of a container for an eye-drop solution. The material is sterilized by ionizing radiation. The effect of exposure to different doses was studied by thermal analysis. The technique used is called oscillating DSC. The DSC signal can be separated into two components, reflecting reversible reactions and non-reversible reactions respectively. The sum of these two components makes up the conventional DSC signal. The conventional DSC signal showed no variation in the enthalpy for a melting reaction. However, the two components showed very clear changes, which could be correlated to dose. The most significant changes were found in the non-reversible component during heating of the samples

  13. EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis.

    Science.gov (United States)

    Park, Cheolsoo; Plank, Markus; Snider, Joseph; Kim, Sanggyun; Huang, He Crane; Gepshtein, Sergei; Coleman, Todd P; Poizner, Howard

    2014-09-01

    The neural dynamics underlying the coordination of spatially-directed limb and eye movements in humans is not well understood. Part of the difficulty has been a lack of signal processing tools suitable for the analysis of nonstationary electroencephalographic (EEG) signals. Here, we use multivariate empirical mode decomposition (MEMD), a data-driven approach that does not employ predefined basis functions. High-density EEG, and arm and eye movements were synchronously recorded in 10 subjects performing time-constrained reaching and/or eye movements. Subjects were allowed to move both the hand and the eyes, only the hand, or only the eyes following a 500-700 ms delay interval where the hand and gaze remained on a central fixation cross. An additional condition involved a nonspatially-directed "lift" movement of the hand. The neural activity during a 500 ms delay interval was decomposed into intrinsic mode functions (IMFs) using MEMD. Classification analysis revealed that gamma band (30 Hz) IMFs produced more classifiable features differentiating the EEG according to the different upcoming movements. A benchmark test using conventional algorithms demonstrated that MEMD was the best algorithm for extracting oscillatory bands from EEG, yielding the best classification of the different movement conditions. The gamma rhythm decomposed using MEMD showed a higher correlation with the eventual movement accuracy than any other band rhythm and than any other algorithm.

  14. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats.

    Directory of Open Access Journals (Sweden)

    Xiaxia Xu

    Full Text Available Changes of neural oscillations at a variety of physiological rhythms are effectively associated with cognitive performance. The present study investigated whether the directional indices of neural information flow (NIF could be used to symbolize the synaptic plasticity impairment in hippocampal CA3-CA1 network in a rat model of melamine. Male Wistar rats were employed while melamine was administered at a dose of 300 mg/kg/day for 4 weeks. Behavior was measured by the Morris water maze(MWMtest. Local field potentials (LFPs were recorded before long-term potentiation (LTP induction. Generalized partial directed coherence (gPDC and phase-amplitude coupling conditional mutual information (PAC_CMI were used to measure the unidirectional indices in both theta and low gamma oscillations (LG, ~ 30-50 Hz. Our results showed that melamine induced the cognition deficits consistent with the reduced LTP in CA1 area. Phase locking values (PLVs showed that the synchronization between CA3 and CA1 in both theta and LG rhythms was reduced by melamine. In both theta and LG rhythms, unidirectional indices were significantly decreased in melamine treated rats while a similar variation trend was observed in LTP reduction, implying that the effects of melamine on cognitive impairment were possibly mediated via profound alterations of NIF on CA3-CA1 pathway in hippocampus. The results suggested that LFPs activities at these rhythms were most likely involved in determining the alterations of information flow in the hippocampal CA3-CA1 network, which might be associated with the alteration of synaptic transmission to some extent.

  15. Analysis of the power flow in nonlinear oscillators driven by random excitation using the first Wiener kernel

    Science.gov (United States)

    Hawes, D. H.; Langley, R. S.

    2018-01-01

    Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.

  16. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  17. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Science.gov (United States)

    Corsi, A.; Cenko, S. B.; Kasliwal, M. M.; Quimby, R.; Kulkarni, S. R.; Frail, D. A.; Goldstein, A. M.; Blagorodnova, N.; Connaughton, V.; Perley, D. A.; Singer, L. P.; Copperwheat, C. M.; Fremling, C.; Kupfer, T.; Piascik, A. S.; Steele, I. A.; Taddia, F.; Vedantham, H.; Kutyrev, A.; Palliyaguru, N. T.; Roberts, O.; Sollerman, J.; Troja, E.; Veilleux, S.

    2017-09-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  18. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: Changes in neural mass activity after training

    Science.gov (United States)

    Heim, Sabine; Keil, Andreas; Choudhury, Naseem; Friedman, Jennifer Thomas; Benasich, April A.

    2013-01-01

    Children with language-learning impairment (LLI) have consistently shown difficulty with tasks requiring precise, rapid auditory processing. Remediation based on neural plasticity assumes that the temporal precision of neural coding can be improved by intensive training protocols. Here, we examined the extent to which early oscillatory responses in auditory cortex change after audio-visual training, using combined source modeling and time-frequency analysis of the human electroencephalogram (EEG). Twenty-one elementary school students diagnosed with LLI underwent the intervention for an average of 32 days. Pre- and post-training assessments included standardized language/literacy tests and EEG recordings in response to fast-rate tone doublets. Twelve children with typical language development were also tested twice, with no intervention given. Behaviorally, improvements on measures of language were observed in the LLI group following completion of training. During the first EEG assessment, we found reduced amplitude and phase-locking of early (45–75 ms) oscillations in the gamma-band range (29–52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. Amplitude reduction for the second tone was no longer evident for the LLI children post-intervention, although these children still exhibited attenuated phase-locking. Our findings suggest that specific aspects of inefficient sensory cortical processing in LLI are ameliorated after training. PMID:23352997

  19. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  20. Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: Thermoacoustic instabilities as an example

    Science.gov (United States)

    Bonciolini, Giacomo; Boujo, Edouard; Noiray, Nicolas

    2017-06-01

    The problem of output-only parameter identification for nonlinear oscillators forced by colored noise is considered. In this context, it is often assumed that the forcing noise is white, since its actual spectral content is unknown. The impact of this white-noise forcing assumption upon parameter identification is quantitatively analyzed. First, a Van-der-Pol oscillator forced by an Ornstein-Uhlenbeck process is considered. Second, the practical case of thermoacoustic limit cycles in combustion chambers with turbulence-induced forcing is investigated. It is shown that in both cases, the system parameters are accurately identified if time signals are appropriately band-pass-filtered around the oscillator eigenfrequency.

  1. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  2. Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America

    NARCIS (Netherlands)

    Holmgren, M.; Lopez, B.C.; Gutierrez, J.R.; Squeo, F.A.

    2006-01-01

    While climatic extremes are predicted to increase with global warming, we know little about the effect of climatic variability on biome distribution. Here, we show that rainy El Niño Southern Oscillation (ENSO) events can enhance tree recruitment in the arid and semiarid ecosystems of north-central

  3. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  4. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  5. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...

  6. Morning nutrition and executive function processes in preadolescents: modulation of frontal event-related theta, beta and gamma EEG oscillations during a go/ no-go task

    Science.gov (United States)

    Executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action) have been linked to frontal brain regions and to covariations in oscillatory brain activity, e.g., theta and gamma activity. We studied the effects of morning nutritional status on executive function rel...

  7. Gamma band activity in the reticular activating system (RAS

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano

    2012-01-01

    Full Text Available This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by preconscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the

  8. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  9. Neutrino Oscillations

    Indian Academy of Sciences (India)

    Neutrino Oscillations: New Windows to the Particle World. General Article Volume 21 Issue 10 ... Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in ...

  10. Chemical Oscillations

    Indian Academy of Sciences (India)

    The law of mass-action led chemists to the belief that reactions approach equilibrium steadily. So the discovery of chemical oscillations came as a surprise. Now chemists are very familiar with reactions that oscillate in time and/or space. Experimental and theoretical studies of such reac- tions showing temporal and spatial ...

  11. Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

    Science.gov (United States)

    Hasan Sagor, Rakibul; Ruhul Amin, Md.

    2017-10-01

    An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

  12. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  13. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    Science.gov (United States)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (I) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (II) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (III) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (IV) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  14. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  15. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  16. Gamma gamma technology group

    Indian Academy of Sciences (India)

    The gamma gamma community are concerned that in the rush to prepare for the e+e− machine, allowance is not being made for a future upgrade of the photon linear collider. References. [1] ECFA/DESY Photon Collider Working Group: B Badelek et al, TESLA Technical. Design Report, Part VI, Chapter 1: Photon collider at ...

  17. Chemical Oscillations

    Indian Academy of Sciences (India)

    behaviour of a few complex chemical systems. We observed that these chemical oscillators are basically .... Kutta fourth order integration method to solve the Lotka-. Volterra equation as per the Fortran program given in ... This is known as the phase plane represen- tation. We have obtained these plots using the software.

  18. Chemical Oscillations

    Indian Academy of Sciences (India)

    relevant species is zero. So, oscillations can appear only if the inhibition step is somehow .... the value of such an experimental parameter can possi- bly move the system between the steady states. Per- ... states for different values of [X], obtained far from equilibrium. Figure 2. System showing. The concentrations [X] ...

  19. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    Science.gov (United States)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  20. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  1. Gamma flicker elicits positive affect without awareness

    NARCIS (Netherlands)

    Heerebout, B.T.; Tap, A.E.Y; Rotteveel, M.; Phaf, R.H.

    2013-01-01

    High-frequency oscillations emerged as a neural code for both positive affect and fluent attentional processing from evolutionary simulations with artificial neural networks. Visual 50 Hz flicker, which entrains neural oscillations in the gamma band, has been shown to foster attentional switching,

  2. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  3. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  4. Differential Gamma Interferon- and Tumor Necrosis Factor Alpha-Driven Cytokine Response Distinguishes Acute Infection of a Metatherian Host with Toxoplasma gondii and Neospora caninum

    Science.gov (United States)

    Donahoe, Shannon L.; Phalen, David N.; McAllan, Bronwyn M.; O'Meally, Denis; McAllister, Milton M.; Ellis, John

    2017-01-01

    ABSTRACT Toxoplasma gondii and Neospora caninum (both Apicomplexa) are closely related cyst-forming coccidian parasites that differ significantly in their host ranges and ability to cause disease. Unlike eutherian mammals, Australian marsupials (metatherian mammals) have long been thought to be highly susceptible to toxoplasmosis and neosporosis because of their historical isolation from the parasites. In this study, the carnivorous fat-tailed dunnart (Sminthopsis crassicaudata) was used as a disease model to investigate the immune response and susceptibility to infection of an Australian marsupial to T. gondii and N. caninum. The disease outcome was more severe in N. caninum-infected dunnarts than in T. gondii-infected dunnarts, as shown by the severity of clinical and histopathological features of disease and higher tissue parasite burdens in the tissues evaluated. Transcriptome sequencing (RNA-seq) of spleens from infected dunnarts and mitogen-stimulated dunnart splenocytes was used to define the cytokine repertoires. Changes in mRNA expression during the time course of infection were measured using quantitative reverse transcription-PCR (qRT-PCR) for key Th1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), Th2 (interleukin 4 [IL-4] and IL-6), and Th17 (IL-17A) cytokines. The results show qualitative differences in cytokine responses by the fat-tailed dunnart to infection with N. caninum and T. gondii. Dunnarts infected with T. gondii were capable of mounting a more effective Th1 immune response than those infected with N. caninum, indicating the role of the immune response in the outcome scenarios of parasite infection in this marsupial mammal. PMID:28348050

  5. Studies on mechanisms of interferon-gamma action in pancreatic cancer using a data-driven and model-based approach

    Directory of Open Access Journals (Sweden)

    Pöhland Ralf

    2011-02-01

    Full Text Available Abstract Background Interferon-gamma (IFNγ is a multifunctional cytokine with antifibrotic and antiproliferative efficiency. We previously found that pancreatic stellate cells (PSC, the main effector cells in cancer-associated fibrosis, are targets of IFNγ action in the pancreas. Applying a combined experimental and computational approach, we have demonstrated a pivotal role of STAT1 in IFNγ signaling in PSC. Using in vivo and in vitro models of pancreatic cancer, we have now studied IFNγ effects on the tumor cells themselves. We hypothesize that IFNγ inhibits tumor progression through two mechanisms, reduction of fibrogenesis and antiproliferative effects on the tumor cells. To elucidate the molecular action of IFNγ, we have established a mathematical model of STAT1 activation and combined experimental studies with computer simulations. Results In BALB/c-nu/nu mice, flank tumors composed of DSL-6A/C1 pancreatic cancer cells and PSC grew faster than pure DSL-6A/C1 cell tumors. IFNγ inhibited the growth of both types of tumors to a similar degree. Since the stroma reaction typically reduces the efficiency of therapeutic agents, these data suggested that IFNγ may retain its antitumor efficiency in PSC-containing tumors by targeting the stellate cells. Studies with cocultures of DSL-6A/C1 cells and PSC revealed a modest antiproliferative effect of IFNγ under serum-free conditions. Immunoblot analysis of STAT1 phosphorylation and confocal microscopy studies on the nuclear translocation of STAT1 in DSL-6A/C1 cells suggested that IFNγ-induced activation of the transcription factor was weaker than in PSC. The mathematical model not only reproduced the experimental data, but also underscored the conclusions drawn from the experiments by indicating that a maximum of 1/500 of total STAT1 is located as phosphorylated STAT1 in the nucleus upon IFNγ treatment of the tumor cells. Conclusions IFNγ is equally effective in DSL-6A/C1 tumors with and

  6. Behavior of forced asymmetric oscillators at resonance

    Directory of Open Access Journals (Sweden)

    C. Fabry

    2000-12-01

    Full Text Available This article collects recent results concerning the behavior at resonance of forced oscillators driven by an asymmetric restoring force, with or without damping. This synthesis emphasizes the key role played by a function denoted by $Phi_{alpha,eta,p}$, which is, up to a sign reversal of its argument, a correlation product of the forcing term $p$ and of a function representing a free oscillation for theundamped equation. The theoretical results are accompanied by graphical representations illustrating the behavior of the damped and undamped oscillators. In particular, the damped oscillator is considered, with a forcing term whose frequency is close to the frequency of the free oscillations. For that problem, frequency-response curves are studied, both theoretically and through numerical computations, revealing a hysteresis phenomenon, when $Phi_{alpha,eta,p}$ is of constant sign.

  7. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  8. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  9. Right-lateralized brain oscillations in human spatial navigation.

    Science.gov (United States)

    Jacobs, Joshua; Korolev, Igor O; Caplan, Jeremy B; Ekstrom, Arne D; Litt, Brian; Baltuch, Gordon; Fried, Itzhak; Schulze-Bonhage, Andreas; Madsen, Joseph R; Kahana, Michael J

    2010-05-01

    During spatial navigation, lesion and functional imaging studies suggest that the right hemisphere has a unique functional role. However, studies of direct human brain recordings have not reported interhemisphere differences in navigation-related oscillatory activity. We investigated this apparent discrepancy using intracranial electroencephalographic recordings from 24 neurosurgical patients playing a virtual taxi driver game. When patients were virtually moving in the game, brain oscillations at various frequencies increased in amplitude compared with periods of virtual stillness. Using log-linear analysis, we analyzed the region and frequency specificities of this pattern and found that neocortical movement-related gamma oscillations (34-54 Hz) were significantly lateralized to the right hemisphere, especially in posterior neocortex. We also observed a similar right lateralization of gamma oscillations related to searching for objects at unknown virtual locations. Thus, our results indicate that gamma oscillations in the right neocortex play a special role in human spatial navigation.

  10. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  11. Diffractive Photon Production in $\\gamma p$ and $\\gamma \\gamma$ Interactions

    CERN Document Server

    Evanson, N G

    1999-01-01

    We study the diffractive production of photons in gamma-p and gamma-gamma collisions. We specifically compute the rates for gamma*-p -> gamma-X and for gamma*-gamma* -> gamma-gamma, where X denotes the proton dissociation. We focus on the rates at large momentum transfers, -t >> Lambda^2, where we are most confident in the use of QCD perturbation theory. However, our calculations do allow us to study the -t -> 0 behaviour of the gamma*-gamma*-> gamma-gamma process in the region where the incoming photons are sufficiently virtual.

  12. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  13. Stochastic Oscillations of General Relativistic Disks Described by a ...

    Indian Academy of Sciences (India)

    A generalized Langevin equation driven by fractional Brownian motion is used to describe the vertical oscillations of general relativistic disks. By means of numerical calculation method, the displacements, velocities and luminosities of oscillating disks are explicitly obtained for different Hurst exponent H . The results show ...

  14. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...

  15. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    2012-03-02

    Mar 2, 2012 ... Abstract. We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter α and the ...

  16. Single and multiple vibrational resonance in a quintic oscillator with monostable potentials.

    Science.gov (United States)

    Jeyakumari, S; Chinnathambi, V; Rajasekar, S; Sanjuan, M A F

    2009-10-01

    We analyze the occurrence of vibrational resonance in a damped quintic oscillator with three cases of single well of the potential V(x)=1/2omega(0)(2)x(2)+1/4betax(4)+1/6gammax(6) driven by both low-frequency force f cos omegat and high-frequency force g cos Omegat with Omega > omega. We restrict our analysis to the parametric choices (i) omega(0)(2), beta, gamma > 0 (single well), (ii) omega(0)(2), gamma > 0, beta 0, beta arbitrary, gamma choice (i) at most one resonance occur while for the other two choices (ii) and (iii) multiple resonance occur. Further, g(VR) is found to be independent of the damping strength d while omega(VR) depends on d. The theoretical predictions are found to be in good agreement with the numerical result. We illustrate that the vibrational resonance can be characterized in terms of width of the orbit also.

  17. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  18. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  19. Star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  20. Gamma scanning equipment for nuclear safeguards

    International Nuclear Information System (INIS)

    De Grandi, G.; Stanchi, L.

    1975-01-01

    Many reasons justify the use of gamma techniques in the field of nuclear safeguards. The paper describes electronic equipment for gamma-scanning of non-irradiated fuel elements. The control of the operation is completely digital and driven by a minicomputer and gives more accurate results in respect of an analog chain which has been successfully used in fuel element manufacturing plants

  1. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  2. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  3. A Tiny Quadrature Oscillator Using Low-Q Series LC Tanks

    NARCIS (Netherlands)

    Tohidian, M.; Ahmadi-Mehr, S.A.R.; Staszewski, R.B.

    2015-01-01

    A new quadrature oscillator topology is proposed, which arranges four low-Q series LC tanks in a ring structure driven by inverters operating in class-D. With a very small area of 0.007 mm^2 that is comparable to conventional ring oscillators, this oscillator has 7–20 dB better phase noise FoM of

  4. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  5. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  6. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  7. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  8. Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during L-H Transition and at H-mode Pedestal of a New Small-ELM Regime in EAST

    DEFF Research Database (Denmark)

    Xu, G.; Wang, H.; Guo, H.

    Small-amplitude edge localized oscillations have been observed, for the first time, in EAST preceding the L-H transition at marginal input power, which manifest themselves as dithering in the divertor D signals at a frequency under 4 kHz, much lower than the GAM frequency. Detailed measurements...... providing a direct evidence of the zonal flows for the L-H transition at marginal input power. Furthermore, near the transition threshold sawtooth heat pulses appear to periodically enhance the dithering, finally triggering the L-H transition after a big sawtooth crash. The zonal flow induced limit...... link between them. A novel predator-prey model, incorporating the evolution of zonal flows, pressure gradient and turbulences at two different frequency ranges, has been developed and successfully reproduced the key features of this newly observed small-ELM regime....

  9. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Witzel, Thomas; Hämäläinen, Matti S; Dale, Anders M; Belliveau, John W; Stufflebeam, Steven M

    2004-10-01

    This paper presents a computationally efficient source estimation algorithm that localizes cortical oscillations and their phase relationships. The proposed method employs wavelet-transformed magnetoencephalography (MEG) data and uses anatomical MRI to constrain the current locations to the cortical mantle. In addition, the locations of the sources can be further confined with the help of functional MRI (fMRI) data. As a result, we obtain spatiotemporal maps of spectral power and phase relationships. As an example, we show how the phase locking value (PLV), that is, the trial-by-trial phase relationship between the stimulus and response, can be imaged on the cortex. We apply the method to spontaneous, evoked, and driven cortical oscillations measured with MEG. We test the method of combining MEG, structural MRI, and fMRI using simulated cortical oscillations along Heschl's gyrus (HG). We also analyze sustained auditory gamma-band neuromagnetic fields from MEG and fMRI measurements. Our results show that combining the MEG recording with fMRI improves source localization for the non-noise-normalized wavelet power. In contrast, noise-normalized spectral power or PLV localization may not benefit from the fMRI constraint. We show that if the thresholds are not properly chosen, noise-normalized spectral power or PLV estimates may contain false (phantom) sources, independent of the inclusion of the fMRI prior information. The proposed algorithm can be used for evoked MEG/EEG and block-designed or event-related fMRI paradigms, or for spontaneous MEG data sets. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain can provide further understanding of large-scale neural activity and communication between different brain regions.

  10. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  11. Parity measurements of nuclear dipole excitations using FEL-generated gamma-rays at HI gamma S

    CERN Document Server

    Pietralla, N; Litvinenko, V N; Ahmed, M W; Tonchev, A P

    2002-01-01

    First Nuclear Resonance Fluorescence (NRF) experiments were performed at the storage ring FEL-driven High Intensity Gamma Source (HI gamma S) at the DFELL. Azimuthal NRF intensity ratios were measured around the polarized HI gamma S beam. Electric character was deduced for 18 dipole excitations in sup 1 sup 3 sup 8 Ba . The measurements demonstrate the superior performance of the HI gamma S facility in making such measurements. We report here on the performance of this set-up.

  12. Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis.

    Science.gov (United States)

    Nottage, Judith F; Stone, James; Murray, Robin M; Sumich, Alex; Bramon-Bosch, Elvira; Ffytche, Dominic; Morrison, Paul D

    2015-02-01

    An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21-45 Hz) was investigated (n = 13 pairs + 4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n = 15). In the resting state, there was a significant condition × frequency interaction (p = 0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21-27 Hz] and increased low gamma [27-45 Hz]). There was also a condition × frequency × location interaction (p = 0.006), such that the reduction in 21-27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27-45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r = 0.429, p = 0.042). In the motor task, there was a main effect of THC to increase 65-130-Hz ERS (p = 0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85-130-Hz band (p = 0.02) and not the 65-85-Hz band. The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state.

  13. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  14. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  15. Gamma Knife

    Science.gov (United States)

    ... tested on a regular basis to ensure the safety of patients and medical staff. top of page This page ... Brain Tumor Treatment Introduction to Cancer Therapy (Radiation Oncology) Cerebral ... to Gamma Knife Sponsored by Please ...

  16. High-resolution gamma imaging; Imagerie gamma haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, M.; Pousse, A.; Tamba, N.; Chavanelle, J.; Bakkali, A.; Kastler, B. [Centre Hospitalier Universitaire, Lab. Imagerie et Ingenierie pour la Sante, Faculte de Medecine, 25 - Besancon (France)

    2004-01-01

    Gamma imaging involves two-dimensional images of the volume distribution of a radioactive tracer previously injected into the organ under functional exploration. Our Besancon laboratory developed a gamma imager with a spatial resolution three or four times higher than a classic device, which is very useful for functional explorations on small animal, as recently demonstrated by work on myocyte apoptosis and necrosis scintigraphy in the rat. We expect progress in this promising medical imaging technology to be driven by developments in scintillating crystals and position-sensitive photomultiplier tubes, and by medical demand in applications such as early detection of breast cancer. (authors)

  17. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  18. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  19. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  20. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  1. A Parametric Oscillator Experiment for Undergraduates

    Science.gov (United States)

    Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay

    We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.

  2. Magnetic molecule on a microcantilever: quantum magnetomechanical oscillations.

    Science.gov (United States)

    Jaafar, Reem; Chudnovsky, E M

    2009-06-05

    We study the quantum dynamics of a system consisting of a magnetic molecule placed on a microcantilever. The amplitude and frequencies of the coupled magnetomechanical oscillations are computed. Parameter-free theory shows that the existing experimental techniques permit observation of the driven coupled oscillations of the spin and the cantilever, as well as of the splitting of the mechanical modes of the cantilever caused by spin tunneling.

  3. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    In this talk, I shall try to give a bird's eye view of the current status of neutrino oscillations. ..... the night effect. An asymmetry between the night and day rates would be an unambiguous signal for neutrino oscillations independent of the details of the solar ... It is particularly important to see the effect of the core of the earth [19].

  4. Active-bridge oscillator

    Science.gov (United States)

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  5. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  6. Local hysteresis in relaxation oscillators

    International Nuclear Information System (INIS)

    Alstroem, P.; Christiansen, B.; Levinsen, M.T.

    1988-01-01

    Relaxation oscillations or 'integrate and fire' phenomena are very commonly found in nature. When modulated by an external force a global hysteresis connected with chaos is often encountered. Besides this kind of hysteresis a local form is found in some systems. We describe briefly the difference and the circumstances under which to observe local hysteresis. A specific system treated in detail is the Fohlmeister model, originally derived to describe a neuronal encoder. In the limit of small damping an analytical solution is obtained. Furthermore, we derive an upper limit to the hysteresis. The results are compared to numerical calculations on the full system and agree quite well. In contrast to e.g. the driven damped pendulum equation the hysteresis is limited in size as compared to the phase-locked region. (orig.)

  7. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  8. Gamma camera

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    The light pulse output of a scintillator, on which incident collimated gamma rays impinge, is detected by an array of photoelectric tubes each having a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to outputs of the phototubes develops the scintillation event position coordinate electrical signals with good linearity and with substantial independence of the spacing between the scintillator and photocathodes so that the phototubes can be positioned as close to the scintillator as is possible to obtain less distortion in the field of view and improved spatial resolution as compared to conventional planar photocathode gamma cameras

  9. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  10. What does gamma coherence tell us about inter-regional neural communication?

    Science.gov (United States)

    Buzsáki, György; Schomburg, Erik W

    2015-04-01

    Neural oscillations have been measured and interpreted in multitudinous ways, with a variety of hypothesized functions in physiology, information processing and cognition. Much attention has been paid in recent years to gamma-band (30-100 Hz) oscillations and synchrony, with an increasing interest in 'high gamma' (>100 Hz) signals as mesoscopic measures of inter-regional communication. The biophysical origins of the measured variables are often difficult to precisely identify, however, making their interpretation fraught with pitfalls. Here we discuss how measurements of inter-regional gamma coherence can be prone to misinterpretation and suggest strategies for deciphering the roles that synchronized oscillations across brain networks may play in neural function.

  11. PROSPECT - A precision oscillation and spectrum experiment

    Science.gov (United States)

    Langford, T. J.; PROSPECT Collaboration

    2015-08-01

    Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays (IBD) and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.

  12. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  13. Gamma watermarking

    Science.gov (United States)

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  14. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  15. Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices

    Science.gov (United States)

    Zaspel, C. E.

    2013-02-01

    Magnetic vortices formed at a nanocontact undergo gyrotropic oscillations when driven by a spin-torque providing potential applications as microwave nano-oscillators; however, to increase the power output it is necessary to use an array of synchronized oscillators. Here a theory is developed for two nanocontact oscillators that are interacting through an intermediate antivortex. The confining potential for the two vortices formed at each nanocontact as well as the antivortex is the Oersted-Ampere field about each nanocontact. Solution of the Thiele equation for this system indicates that the nanocontact vortex oscillators will be phase locked over a wide range of nanocontact currents.

  16. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  17. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  18. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  19. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  20. Direct Numerical Simulation of Driven Cavity Flows

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.

    Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been

  1. Gamma flicker elicits positive affect without awareness.

    Science.gov (United States)

    Heerebout, Bram T; Tap, A E Yoram; Rotteveel, Mark; Phaf, R Hans

    2013-03-01

    High-frequency oscillations emerged as a neural code for both positive affect and fluent attentional processing from evolutionary simulations with artificial neural networks. Visual 50 Hz flicker, which entrains neural oscillations in the gamma band, has been shown to foster attentional switching, but can it also elicit positive affect? A three-faces display (2-female/1-male or 2-male/1-female) was preceded by a 50, 25, or 0 Hz flicker on the position of the odd-one-out (i.e., the target). Participants decided on the gender (Block 1) or on the subjective valence (Block 2) of this neutral target in an approach-avoidance task, which served as an implicit affective measure. Only the detection of 25 Hz flicker, but not of 50 Hz flicker, was above chance (Block 3). Faces primed by invisible 50 Hz flicker were explicitly evaluated more positively than with 25 Hz or 0 Hz. This gamma flicker also facilitated approach reactions, and inhibited avoidance reactions relative to 25 Hz and 0 Hz flicker in Blocks 1 and 2. Attentional switching was, moreover, enhanced by the 50 Hz flicker. According to the Affect-Gamma hypothesis, also in biological neural networks, high-frequency gamma oscillations may code for positive affect. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Oscillating fluid power generator

    Science.gov (United States)

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  3. Fluctuations in LC Oscillators

    Directory of Open Access Journals (Sweden)

    O. Ondracek

    1994-03-01

    Full Text Available An analysis of the phase and amplitude fluctuations in oscillators with simple resonant circuit is presented. Negative feedback is used to minimize effect of the inherent noise produced by bipolar transistor on fluctuation characteristics.

  4. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  5. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  6. Neutrino oscillations with LSND

    International Nuclear Information System (INIS)

    Stancu, Ion

    2000-01-01

    The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) has conducted searches for ν-bar μ → ν-bar e oscillations using ν-bar μ from μ + decay at rest (DAR) and for ν μ → ν e oscillations using ν μ from π + decay in flight (DIF). For the 1993-1995 data taking period, significant beam-excess events have been found in both oscillation channels. For the DAR search, a total excess of 51.8 +18.7 -16.9 ± 8.0 events from the ν-bar e p → e + n inverse β-decay reaction is observed, with e + energies between 20-60 MeV. For the DIF search, a total excess of 18.1 ± 6.6 ± 4.0 events from the ν e C → e - X inclusive reaction is observed, with e - energies between 60-200 MeV. If interpreted as neutrino oscillations, these excesses correspond to oscillation probabilities of (3.1±1.2±0.5) x 10 -3 and (2.6 ± 1.0 ± 0.5) x 10 -3 , respectively. Additional data collected during the 1996-1998 runs has been preliminarily analyzed for the DAR channel and yields very good agreement with the previously obtained results, for a combined oscillation probability of (3.3±0.9±0.5) x 10 -3

  7. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats

    Directory of Open Access Journals (Sweden)

    Jennifer A. Guidera

    2017-07-01

    Full Text Available Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs within the prefrontal cortex (PFC, parietal cortex (PC, and central thalamus (CT in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12–40 Hz power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC–CT and PFC–PFC LFP beta/low gamma coherence increased. Loss of movement (LOM coincided with an abrupt decrease in beta/low gamma PFC–CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1–4 Hz oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.

  8. Gamma camera

    International Nuclear Information System (INIS)

    Reiss, K.H.; Kotschak, O.; Conrad, B.

    1976-01-01

    A gamma camera with a simplified setup as compared with the state of engineering is described permitting, apart from good localization, also energy discrimination. Behind the usual vacuum image amplifier a multiwire proportional chamber filled with trifluorine bromium methane is connected in series. Localizing of the signals is achieved by a delay line, energy determination by means of a pulse height discriminator. With the aid of drawings and circuit diagrams, the setup and mode of operation are explained. (ORU) [de

  9. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  10. Gamma teletopography

    International Nuclear Information System (INIS)

    Simonet, G.

    1987-06-01

    The mapping of gamma sources radiation emission in a nuclear plant is an important safety point. A remote gamma ray mapping process was developed in SPS/CEA/SACLAY. It uses the ''pinhole camera'' principle, precursor of photography. It mainly consists of a radiation proof box, with a small orifice, containing sensitive emulsions at the opposite. A first conventional photographic type emulsion photographs the area. A second photographic emulsion shows up the gamma radiations. The superim position of the two shots gives immediate informations of the precise location of each source of radiation in the observed area. To make easier the presentation and to improve the accuracy of the results for radiation levels mapping, the obtained films are digitally processed. The processing assigns a colours scale to the various levels of observed radiations. Taking account physical data and standard parameters, it gets possible to estimate the dose rate. The device is portable. Its compactness and fully independent nature make it suitable for use anywhere. It can be adapted to a remote automatic handling system, robot... so as to avoid all operator exposure when the local dose rate is too high [fr

  11. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  12. Seasonality and mechanisms of tropical intraseasonal oscillations

    Science.gov (United States)

    Hazra, Abheera; Krishnamurthy, V.

    2018-01-01

    This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.

  13. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  14. Primer on coupling collective electronic oscillations to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.C.; Biedenharn, L.C. Jr.

    1987-07-01

    On the basis of simple heuristic models, we show that atomic electrons can amplify fields observed at the nucleus, generate harmonics, and drive higher multipolarities. Considered is a model with the nucleus at the focus of a uniformly charged ellipsoid. It amplifies an oscillating external electric field and produces an oscillating electric-field gradient but no higher derivatives. The electric field has only odd harmonics and the electric-field gradient has only even harmonics. There is an optimum intensity for driving each harmonic. Commented on is the relevance of these results to the U/sup 235/ experiment and to the gamma-ray laser.

  15. Gamma teletopography

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    To set the gamma activity cartography is an important element of safety in numerous cases: intervention in hot cell, search of a radioactive source, examination of radioactive waste circuit followed by a reprocessing definition of decontamination and decommissioning processes and for all other accidents. The device presented here is like a ''black box'' with an aperture and an emulsion photosensitive to the opposite; a classical film takes photography of the place; a X-ray type emulsion gives a spot more or less contrasted and extensive corresponding to each source. Images can be processed with a microprocessor [fr

  16. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  17. Spontaneous oscillations of elastic contractile materials with turnover.

    Science.gov (United States)

    Dierkes, Kai; Sumi, Angughali; Solon, Jérôme; Salbreux, Guillaume

    2014-10-03

    Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.

  18. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  19. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  20. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  1. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  2. Stabilization of sawtooty oscillation by island heating

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Chu, T.K.

    1986-10-01

    Using the compressible resistive MHD equations in a finite aspect ratio cylinder, it is found that the m = 1 mode (the sawtooth oscillation) can saturate when the pressure inside the magnetic island is higher than that of the original core plasma. The saturation condition is of the form Δβ/sub p/ ≥ 8 ε -1 /sub q = 1/ (1 - q 0 ) 2 . This saturation effect can be used to actively stabilize sawteeth by heating the island and/or by cooling the core plasma. This mechanism together with a stabilizing toroidal effect may also explain recent lower-hybrid-wave-driven tokamak experiments where the saturation of sawteeth has been observed

  3. Phase-space treatment of the driven quantum harmonic oscillator

    Indian Academy of Sciences (India)

    2017-02-22

    Feb 22, 2017 ... force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the standard position and momentum .... Magnus expansion. In §3, the wave functions ±(q, p, t) of the simultaneous values of position q and momen- tum p are constructed in terms of pq and qp ...

  4. Remarks to the local power oscillation phenomenon at BWRs

    International Nuclear Information System (INIS)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio

    2011-01-01

    In the framework of BWR stability analysis, local neutron-flux oscillation events have attracted the attention of a number of researchers. In 1996, an unusual instability event occurred at Forsmark-1 in which superimposed on the classical, spatial mode oscillations, there were relatively large-amplitude, highly localised oscillations. Subsequent time-series analysis of the local power range monitor (LPRM) signals resulted in a space-dependent decay ratio, an inexplicable result. Furthermore, noise analysis-based localization techniques pointed towards the existence of two strong 'perturbation sources' in the two halves of the core, one of them coinciding with the radial position of an unseated bundle. In the scope of a theoretical work, the possibility of a space-dependent decay ratio was discussed but not comprehensively understood. Motivated by these findings the effect of local neutron-flux oscillations on the BWR stability behaviour is discussed and one possible interpretation is proposed which is able to explain the space dependent decay ratio and the long term oscillation pattern as well. The effect of the local neutron flux oscillating sources on the space and time dependent neutron field is described by a rigorous application of the mode expansion approach. The consequences to signal analysis are then discussed. It will be pointed out in the paper that when a BWR system is stable regarding power oscillations but driven by local neutron-flux oscillating sources, the decay ratio is on the one hand not space-dependent and on the other hand it does not indicate the real BWR stability behaviour. The RAM-ROM method is applied to the Forsmark case M2 and an operational point (KKB-B8) of NPP Brunsbüttel, where a local neutron-flux oscillation is superimposed on an unstable global power oscillation. The results of the bifurcation analysis, using BIFDD, and of the numerical integration are presented for KKB-B8 and Forsmark M2. (author)

  5. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model for thi...

  6. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  7. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  8. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  9. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  10. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  11. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  12. Charge oscillations in orbitrons

    International Nuclear Information System (INIS)

    Porto, M.; Gomes, L.C.

    1981-01-01

    A statistical model for the electron distribution in orbitrons is constructed where the effect of the end plates is considered. A comparison is made with the measured density of charge. The electromagnetic oscillations generated by orbitrons are calculated as pressure waves and the results obtained are compared with the data. (Author) [pt

  13. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  14. Posterior Beta and Anterior Gamma Oscillations Predict Cognitive Insight

    Science.gov (United States)

    Sheth, Bhavin R.; Sandkuhler, Simone; Bhattacharya, Joydeep

    2009-01-01

    Pioneering neuroimaging studies on insight have revealed neural correlates of the emotional "Aha!" component of the insight process, but neural substrates of the cognitive component, such as problem restructuring (a key to transformative reasoning), remain a mystery. Here, multivariate electroencephalogram signals were recorded from human…

  15. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  16. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  17. Design, construction, and electrical test results of dual phase controlled multi-megawatt oscillators for ''oscillating field current drive'' on ZT40M

    International Nuclear Information System (INIS)

    Reass, W.A.; Gribble, R.F.; Hammer, C.F.

    1985-01-01

    This paper provides the design and construction details and the electrical test results of 1 kHz, 10 MW and 20 MW phase controlled class D or E driven oscillators. To test the concept of oscillating field current drive, the 10 MW oscillator is directly coupled to the toroidal field (TF) circuits; the 20 MW oscillator to the poloidal field (PF) circuits. By maintaining the proper phase angle between PF and TF oscillators, theory shows that for reversed field pinch plasmas, discharges can be sustained without expenditure of mean magnetizing (or drive) flux. Each oscillator consists of an L-C tank circuit driven by 20 parallel ML8618 magnetically beamed triodes. Each circuit can provide up to 45 MVAR of tank circulating power when driven at its maximum rating. For the 10 MW and 20 MW load power requirements, 450 kJ, 22 kV B + capacitor banks will provide for over a 10 mS oscillating envelope. To control phase and amplitude, the grid drive waveform timing and conduction angle of the output tubes are changed. Each driver circuit consists of a fiber optic controlled hot deck with 2 ML8618s in a cathode follower configuration

  18. Aging transition in systems of oscillators with global distributed-delay coupling.

    Science.gov (United States)

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  19. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  20. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  1. Density gamma gamma logging of oil wells

    International Nuclear Information System (INIS)

    Gulin, Yu.A.

    1974-01-01

    The application of gamma-gamma density logging for the evaluation of the volume weight and porosity of terrigenous and carbonate rocks in oil and gas boreholes is discussed. A two-probe (155 and 360 mm) apparatus has been developed for this purpose and has been in serial production since 1970. It is designed for use in boreholes between 190 and 300 mm in diameter and down to 4.000 metres deep at a maximum temperature of up to 120 deg C. The radiation source is 137 Cs with an activity of up to 100 kg-eq Ra. To interpret the results, measuring grids have been compiled in accordance with the experimental measurements taken on models of the strata. For carbonate sections combination of gamma-gamma density logging and epithermal-neutron-neutron logging is recommended. A combination of gamma-gamma density logging and neutron-gamma logging is used to evaluate the clayness of terrigenous deposits

  2. Oscillation and nonoscillation of solutions to even order self-adjoint differential equations

    Directory of Open Access Journals (Sweden)

    Ondrej Dosly

    2003-11-01

    Full Text Available We establish oscillation and nonoscilation criteria for the linear differential equation $$ (-1^nig(t^alpha y^{(n}ig^{(n}- frac{gamma_{n,alpha}}{t^{2n-alpha}}y=q(ty,quad alpha otin {1, 3, dots , 2n-1}, $$ where $$ gamma_{n,alpha}=frac{1}{4^n}prod_{k=1}^n(2k-1-alpha^2 $$ and $q$ is a real-valued continuous function. It is proved, using these criteria, that the equation $$ (-1^nig(t^alpha y^{(n}ig^{(n} -ig(frac{gamma_{n,alpha}}{t^{2n-alpha}} + frac{gamma}{t^{2n-alpha}lg^2 t}igy = 0 $$ is nonoscillatory if and only if $$ gamma leq ilde gamma_{n,alpha}:= frac{1}{4^n}prod_{k=1}^n(2k-1-alpha^2 sum_{k=1}^nfrac{1}{(2k-1-alpha^2}. $$

  3. The stability of large oscillating bubbles

    Science.gov (United States)

    Blake, John; Pearson, Antony

    2002-11-01

    In a most remarkable paper, in October 1942, Penney & Price developed a theory for the stability of large oscillating bubbles; in their case they were interested in underwater explosions. Much of our current understanding on the stability of oscillating bubbles can be traced to the theoretical and experimental insight shown in this paper. While interest in this particular area continues with regard ship survivability to underwater explosions, other newer areas include the oscillatory behaviour of of seismic airgun generated bubbles. Apart from large volume oscillations with a characteristic period, the other dominant parameter is associated with buoyancy. An appropriate parameter is chosen that provides a measure of the distance of migration of a bubble over one period. An analytical and computational analysis of this class of problem reveals that this pressure gradient driven instability, normally observed in the form of a high speed liquid jet threading the bubble, is the most dominant surface instability, a characteristic feature borne out in most experimental and practical applications due to the presence of an incipient pressure gradient associated with hydrostatics, dynamics or boundaries

  4. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  5. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  6. Numerical simulation on quantum turbulence created by an oscillating object

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp

    2009-02-01

    We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.

  7. Rabi oscillations a quantum dot exposed to quantum light

    International Nuclear Information System (INIS)

    Magyarov, A.; Slepyan, G.Ya.; Maksimenko, S.A.; Hoffmann, A.

    2007-01-01

    The influence of the local field on the excitonic Rabi oscillations in an isolated quantum dot driven by the coherent state of light has been theoretically investigated. Local field is predicted to entail the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime Rabi oscillations are periodic and do not reveal collapse-revivals phenomenon, while in the second one collapse and revivals appear, showing significant difference as compared to those predicted by the standard Jaynes-Cummings model

  8. Plasma oscillations in porous samples

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillations cannot exist. They exist in samples of a thin slab shape only. However in essentially porous materials the electrostatic energy of the oscillation in a sample is considerably larger thus leading to stronger restoring force and higher frequency of the oscillation. When this frequency exceeds the Langmuir frequency, the oscillation becomes of a bulk type. .

  9. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  10. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  11. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  12. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  13. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    Science.gov (United States)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  14. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dederick, Ethan; Jackiewicz, Jason, E-mail: dederiej@nmsu.edu, E-mail: jasonj@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2017-03-10

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  15. A wavelength scannable XeCl oscillator-ring amplifier laser system

    Science.gov (United States)

    Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.

    1982-01-01

    A holographic grating at grazing angle of incidence was used to achieve tunable, narrow bandwidth (0.005 nm) operation of a XeCl oscillator for injection locking of a ring amplifier. The amplifier's narrow bandwidth output energy was constant and equal to the untuned, broadband output (approximately 15 mJ) in regions where injection locking was achieved. Scanning was provided by use of a stepping motor-driven differential micrometer on the tuning mirror. This system was used to produce a laser excitation spectrum of hydroxyl radicals (OH) in a flame.

  16. Coalescence cascade of dissipative solitons in parametrically driven systems

    Science.gov (United States)

    Clerc, M. G.; Coulibaly, S.; Gordillo, L.; Mujica, N.; Navarro, R.

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically.

  17. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  18. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  19. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  20. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  1. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  2. An Artificial Muscle Ring Oscillator

    OpenAIRE

    O’Brien, Benjamin Marc; Anderson, Iain Alexander

    2012-01-01

    Dielectric elastomer artificialmuscles have great potential for the creation of novel pumps, motors, and circuitry. Control of these devices requires an oscillator, either as a driver or clock circuit, which is typically provided as part of bulky, rigid, and costly external electronics. Oscillator circuits based on piezo-resistive dielectric elastomer switch technology provide a way to embed oscillatory behavior into artificial muscle devices. Previous oscillator circuits were not digital, ab...

  3. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  4. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  5. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  6. Photon Structure and $\\gamma -\\gamma$ Physics

    CERN Document Server

    Miller, D.J.

    1998-01-01

    The LEP experiments are making real progress in understanding the structure of the photon, though the results do not yet give such clear demonstrations of QCD in action as the proton structure has done. Other new results are reported, including QED related effects and $\\gamma \\gamma \\to Resonances$, from LEP and from CLEO II.

  7. Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic acids as fuel

    Science.gov (United States)

    Nakazumi, Tomoka; Hara, Yusuke

    2017-09-01

    We studied the transmittance self-oscillation of a polymer chain driven by an organic acid as the fuel. The self-oscillating polymer chain consists of 4-acryloylmorpholine (ACMO) and the Ru catalyst (Ru(bpy)3) of the Belousov–Zhabotinsky (BZ) reaction. The transmittance self-oscillating behavior was affected significantly by the temperature. As the amplitude of the transmittance self-oscillation, which is reflected by the aggregation state, decreased with time, the oscillation period also decreased. This trend indicates that the polymer aggregation affects the rate of the BZ reaction significantly. The activation energy of the self-oscillating value was almost the same in the normal BZ reaction, which does not include Ru(bpy)3 complexes in the polymer chains. In addition, we demonstrated the effect of one BZ substrate (sodium bromate or malonic acid) on the transmittance self-oscillation period.

  8. Colour-related oscillations in the striate cortex of awake monkeys: "reverse" observations

    NARCIS (Netherlands)

    Lamme, V.A.F.; Bondar, I.; Kruger, J.

    2001-01-01

    Gamma oscillations of 30-70 Hz in local electroencephalograms (EEGs) were observed in primary visual cortex (V1) of monkeys when they viewed coloured stimuli under conditions which were not part of a training paradigm. No oscillatory modulations were detected in simultaneously recorded spike trains,

  9. Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity

    Directory of Open Access Journals (Sweden)

    Leonid Berezansky

    2005-04-01

    Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.

  10. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  11. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  12. Damping of Rabi oscillations in quantum dots due to lattice dynamics

    OpenAIRE

    Machnikowski, Pawel; Jacak, Lucjan

    2003-01-01

    We show that the interaction between carriers confined in a quantum dot and the surrounding lattice under external driving of carrier dynamics has a dynamical, resonant character. The quality of Rabi oscillations in such a system depends on the relation between nonlinear spectral characteristics of the driven dynamics and the spectral density of effectively coupled lattice modes (phonon frequencies and density of states). For a large number of Rabi oscillations within a fixed time (allowed by...

  13. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    Science.gov (United States)

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  14. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  15. Atypical coordination of cortical oscillations in response to speech in autism

    Directory of Open Access Journals (Sweden)

    Delphine eJochaut

    2015-03-01

    Full Text Available Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations in the group with autism and to down-regulate gamma oscillations. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with the altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.

  16. Deformed su(1,1 Algebra as a Model for Quantum Oscillators

    Directory of Open Access Journals (Sweden)

    Elchin I. Jafarov

    2012-05-01

    Full Text Available The Lie algebra su(1,1 can be deformed by a reflection operator, in such a way that the positive discrete series representations of su}(1,1 can be extended to representations of this deformed algebra su(1,1_gamma. Just as the positive discrete series representations of su(1,1 can be used to model a quantum oscillator with Meixner-Pollaczek polynomials as wave functions, the corresponding representations of su(1,1_gamma can be utilized to constructmodels of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.

  17. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  18. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  19. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  20. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  1. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  2. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  3. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  4. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  5. Simulations of fully deformed oscillating flux tubes

    Science.gov (United States)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  6. GammaWorkshops Proceedings

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Straelberg, E.; Klemola, S.; Nielsen, Sven P.; Palsson, S.E.

    2012-01-01

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  7. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  8. The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation

    Science.gov (United States)

    Guo, Siu-Siu; Er, Guo-Kang

    2012-06-01

    The probabilistic solutions of nonlinear stochastic oscillators with even nonlinearity driven by Poisson white noise are investigated in this paper. The stationary probability density function (PDF) of the oscillator responses governed by the reduced Fokker-Planck-Kolmogorov equation is obtained with exponentialpolynomial closure (EPC) method. Different types of nonlinear oscillators are considered. Monte Carlo simulation is conducted to examine the effectiveness and accuracy of the EPC method in this case. It is found that the PDF solutions obtained with EPC agree well with those obtained with Monte Carlo simulation, especially in the tail regions of the PDFs of oscillator responses. Numerical analysis shows that the mean of displacement is nonzero and the PDF of displacement is nonsymmetric about its mean when there is even nonlinearity in displacement in the oscillator. Numerical analysis further shows that the mean of velocity always equals zero and the PDF of velocity is symmetrically distributed about its mean.

  9. Pure odd-order oscillators with constant excitation

    Science.gov (United States)

    Cveticanin, L.

    2011-02-01

    In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics

  10. Oscillations of atomic nuclei in crystals

    OpenAIRE

    Vdovenkov, V. A.

    2002-01-01

    Oscillations of atomic nuclei in crystals are considered in this paper. It is shown that elastic nuclei oscillations relatively electron envelops (inherent, I-oscillations) and waves of such oscillations can exist in crystals at adiabatic condition. The types and energy quantums of I-oscillations for different atoms are determined. In this connection the adiabatic crystal model is offered. Each atom in the adiabatic model is submitted as I-oscillator whose stationary oscillatory terms are sho...

  11. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  12. Developer Driven and User Driven Usability Evaluations

    DEFF Research Database (Denmark)

    Bruun, Anders

    2013-01-01

    to measure performance of usability evaluation efforts. These criteria cover thoroughness, validity, reliability, downstream utility and cost effectiveness. This leads to my overall research question: Can we provide support that enables software development practitioners and users to drive usability...... evaluations, and how do they perform with respect to the quality criteria? I studied the developer driven and user driven approaches by firstly conducting literature surveys related to each of these topics followed by artificial settings research and finally by conducting research in natural settings....... The four primary findings from my studies are: 1) The developer driven approach reveals a high level of thoroughness and downstream utility. 2) The user driven approach has higher performance regarding validity 3) The level of reliability is comparable between the two approaches. 4) The user driven...

  13. Molecular Design and Functional Control of Novel Self-Oscillating Polymers

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-02-01

    Full Text Available If we could realize an autonomous polymer system driven under biological conditions by a tailor-made molecular design, human beings could create unprecedented biomimetic functions and materials such as heartbeats, autonomous peristaltic pumps, etc. In order to achieve this objective, we have investigated the molecular design of such a polymer system. As a result, we were the first to demonstrate a self-oscillating polymer system driven in a solution where only malonic acid existed, which could convert the chemical energy of the Belousov-Zhabotinsky (BZ reaction into a change in the conformation of the polymer chain. To cause the self-oscillation in solution, we have attempted to construct a built-in system where the required BZ system substrates other than the organic acid are incorporated into the polymer itself. That is, the novel polymer chain incorporated the metal catalyst of the BZ reaction, a pH-control site and an oxidant supply site at the same time. As a result of introducing the pH control and oxidant supply sites into the conventional-type self-oscillating polymer chain, the novel polymer chain caused aggregation-disaggregation self-oscillations in the solution. We clarified that the period of the self-oscillation of the novel self-oscillating polymer chain was proportional to the concentration of the malonic acid. Therefore, the concentration of the malonic acid can be determined by measuring the period of the novel self-oscillating polymer solution. In this review, we introduce the detailed molecular design of the novel self-oscillating polymer chain and its self-oscillating behavior. Moreover, we report an autonomous self-oscillating polymer gel actuator that causes a bending-stretching motion under the constant conditions.

  14. Quantum dynamics of a strongly driven Josephson Junction

    Energy Technology Data Exchange (ETDEWEB)

    Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)

    2015-07-01

    A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.

  15. Heat transfer with oscillating pressure and oscillating flow

    Science.gov (United States)

    Kornhauser, Alan A.; Smith, Joseph L., Jr.

    Heat exchangers in Stirling engines and many other reciprocating machines operating under conditions of both oscillating pressure and oscillating flow are discussed. Experiments were done on an apparatus consisting of a piston-cylinder space connected to an annular dead-end heat exchanger space. Instantaneous heat flux and center gas temperature were measured at six locations along the heat exchanger. The results were used to test the model, with the complex Nusselt number correlated against oscillating-flow Peclet number. The experimental results showed that the complex Nusselt number was capable of predicting the heat flux, but that there was at least one other important independent variable besides oscillating-flow Peclet number. Dimensional analysis suggested that this was either the ratio of gas thermal properties to those of the wall or a measure of compressibility effects.

  16. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  17. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  18. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  19. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  20. Principal oscillation patterns

    International Nuclear Information System (INIS)

    Storch, H. von; Buerger, G.; Storch, J.S. von

    1993-01-01

    The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)

  1. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  2. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

    NARCIS (Netherlands)

    Arbab, Tara; Battaglia, Francesco P.; Pennartz, Cyriel M. A.; Bosman, Conrado A.

    2018-01-01

    Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark

  3. Bisensory stimulation increases gamma-responses over multiple cortical regions.

    Science.gov (United States)

    Sakowitz, O W; Quiroga, R Q; Schürmann, M; Başar, E

    2001-04-01

    In the framework of the discussion about gamma (approx. 40 Hz) oscillations as information carriers in the brain, we investigated the relationship between gamma responses in the EEG and intersensory association. Auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) were compared with bisensory evoked potentials (BEPs; simultaneous auditory and visual stimulation) in 15 subjects. Gamma responses in AEPs, VEPs and BEPs were assessed by means of wavelet decomposition. Overall maximum gamma-components post-stimulus were highest in BEPs (P < 0.01). Bisensory evoked gamma-responses also showed significant central, parietal and occipital amplitude-increases (P < 0.001, P < 0.01, P < 0.05, respectively; prestimulus interval as baseline). These were of greater magnitude when compared with the unisensory responses. As a correlate of the marked gamma responses to bimodal stimulation we suggest a process of 'intersensory association', i.e. one of the steps between sensory transmission and perception. Our data may be interpreted as a further example of function-related gamma responses in the EEG.

  4. Gamma ray interaction processes

    International Nuclear Information System (INIS)

    1981-01-01

    Gamma ray detection in the energy region above 1 keV involves measurements of the energy exchange or energy loss between the gamma ray and the mass of the detector. In most cases of interest, it is the kinetic energy imparted to charged particles by the gamma ray which is lost in the detector and measured in order to obtain spectral knowledge between the incident gamma ray photon and the direction of the secondary particles contains important energy information. The interaction gamma ray removal processes in matter are considered. This interaction removal process is characterized by the fact that each gamma ray is removed individually from the incident beam. The number of photons removed in this manner is proportional to the thickness of matter traversed

  5. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators

    OpenAIRE

    Ahissar, Ehud; Haidarliu, Sebastian; Zacksenhouse, Miriam

    1997-01-01

    The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in ...

  6. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  7. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    2014-11-08

    Outline of talk. Neutrino Oscillations: the context. Solar and geo neutrino physics. Reactor neutrino physics. Atmospheric and long-baseline neutrino physics. Atmospheric neutrinos and INO. Nov 8, 2014, IASc Annual Meeting, IIT-Madras, Chennai – p. 2 ...

  8. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  9. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  10. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  11. What does gamma coherence tell us about inter-regional neural communication?

    OpenAIRE

    Buzsáki, György; Schomburg, Erik W

    2015-01-01

    Neural oscillations have been measured and interpreted in multitudinous ways, with a variety of hypothesized functions in physiology, information processing and cognition. Much attention has been paid in recent years to gamma-band (30–100 Hz) oscillations and synchrony, with an increasing interest in ‘high gamma’ (>100 Hz) signals as mesoscopic measures of inter-regional communication. The biophysical origins of the measured variables are often difficult to precisely identify, however, making...

  12. The gamma slideshow: object-based perceptual cycles in a model of the visual cortex.

    Directory of Open Access Journals (Sweden)

    Thomas Miconi

    2010-11-01

    Full Text Available While recent studies have shed light on the mechanisms that generate gamma (>40Hz oscillations, the functional role of these oscillations (if any is still debated. Here we suggest that the purported mechanism of gamma oscillations (feedback inhibition from local interneurons, coupled with lateral connections implementing Gestalt principles of object integration, naturally leads to a decomposition of the visual input into object-based perceptual cycles, in which neuron populations representing different objects within the scene will tend to fire at successive cycles of the local gamma oscillation. We describe a simple model of V1 in which such perceptual cycles emerge automatically from the interaction between lateral excitatory connections (linking oriented cells falling along a continuous contour and fast feedback inhibition (implementing competitive firing and gamma oscillations. Despite its extreme simplicity, the model spontaneously gives rise to perceptual cycles even when faced with natural images. The robustness of the system to parameter variation and to image complexity, together with the paucity of assumptions built in the model, support the hypothesis that perceptual cycles occur in natural vision.

  13. A feedback quenched oscillator produces turing patterning with one diffuser.

    Directory of Open Access Journals (Sweden)

    Justin Hsia

    2012-01-01

    Full Text Available Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the "activator-inhibitor" models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms.

  14. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  15. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  16. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  17. Induction of self awareness in dreams through frontal low current stimulation of gamma activity.

    Science.gov (United States)

    Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A

    2014-06-01

    Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.

  18. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  19. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2017-01-01

    Full Text Available Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  20. Oscillations in the bistable regime of neuronal networks.

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  1. Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation.

    Science.gov (United States)

    Beard, George F; Griffin, Michael J

    2013-01-01

    Roll compensation during cornering (aligning the feet-to-head axis of the body with the resultant force) reduces lateral acceleration, but how any improvement in comfort depends on the frequency of the acceleration has not previously been investigated. Seated subjects judged the discomfort caused by lateral oscillation, roll oscillation and fully roll-compensated lateral oscillation at each of seven frequencies (0.25-1.0 Hz). Irrespective of whether it was caused by pure lateral acceleration or gravitational acceleration due to pure roll, acceleration in the plane of the seat caused similar discomfort at frequencies less than 0.4 Hz. From 0.4 to 1.0 Hz, with the same lateral acceleration in the plane of the seat, there was greater discomfort from roll oscillation than from lateral acceleration. With fully roll-compensated lateral oscillation, discomfort was less than with either the lateral component or the roll component of the motion from 0.2 to 0.5 Hz, but discomfort increased with increasing frequency and caused similar discomfort to pure roll oscillation at 1.0 Hz. Tilting can reduce passenger exposure to vehicle lateral acceleration when cornering, but how comfort depends on the frequency of motion was unknown. This study shows 'tilt-compensation' only improves comfort at frequencies less than 0.5 Hz. The findings affect tilting vehicles and the prediction of discomfort caused by low-frequency motions.

  2. Gamma-ray triangles

    DEFF Research Database (Denmark)

    Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano

    2016-01-01

    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon...

  3. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  4. Quantum simulations and experiments on Rabi oscillations of spin qubits : Intrinsic vs extrinsic damping

    NARCIS (Netherlands)

    De Raedt, Hans; Barbara, Bernard; Miyashita, Seiji; Michielsen, Kristel; Bertaina, Sylvain; Gambarelli, Serge

    2012-01-01

    Electron paramagnetic resonance experiments show that the decay of Rabi oscillations of ensembles of spin qubits depends noticeably on the microwave power, and more precisely on the Rabi frequency, an effect recently called "driven decoherence." By direct numerical solution of the time-dependent

  5. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    Science.gov (United States)

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-01-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and…

  6. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    Directory of Open Access Journals (Sweden)

    Brian R. Noga

    2017-05-01

    Full Text Available Oscillatory rhythms in local field potentials (LFPs are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA. Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA, the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN, thought to be a part of the MLR were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.

  7. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion.

    Science.gov (United States)

    Noga, Brian R; Sanchez, Francisco J; Villamil, Luz M; O'Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6-12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10-20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.

  8. Proposal for Entangling Remote Micromechanical Oscillators via Optical Measurements

    Science.gov (United States)

    Børkje, K.; Nunnenkamp, A.; Girvin, S. M.

    2011-09-01

    We propose an experiment to create and verify entanglement between remote mechanical objects by use of an optomechanical interferometer. Two optical cavities, each coupled to a separate mechanical oscillator, are coherently driven such that the oscillators are laser cooled to the quantum regime. The entanglement is induced by optical measurement and comes about by combining the output from the two cavities to erase which-path information. It can be verified through measurements of degrees of second-order coherence of the optical output field. The experiment is feasible in the regime of weak optomechanical coupling. Realistic parameters for the membrane-in-the-middle geometry suggest entangled state lifetimes on the order of milliseconds.

  9. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  10. Nonlinear effects on Turing patterns: Time oscillations and chaos

    KAUST Repository

    Aragón, J. L.

    2012-08-08

    We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems. © 2012 American Physical Society.

  11. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    A variety of stimuli can trigger intracellular calcium oscillations. Relatively little is known about the molecular mechanisms decoding these events. We show that ALG-2, a Ca2+-binding protein originally isolated as a protein associated with apoptosis, is directly linked to Ca2+ signalling. We...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  12. The Gamma Factory proposal for CERN

    CERN Document Server

    Krasny, Mieczyslaw Witold

    2015-01-01

    This year, 2015, marks the centenary of the publication of Einsteins Theory of General Relativity and it has been named the International Year of Light and light-based technologies by the UN General Assembly. It is thus timely to discuss the possibility of broadening the present CERN research program by including a new component based on a novel concept of the light source which could pave a way towards a multipurpose Gamma Factory. The proposed light source could be realized at CERN by using the infrastructure of the existing accelerators. It could push the intensity limits of the presently operating light-sources by at least 7 orders of magnitude, reaching the flux of the order of 10^17 photons/s, in the particularly interesting gamma-ray energy domain of 1 < Ephoton < 400 MeV. This domain is out of reach for the FEL-based light sources. The energy-tuned, quasi-monochromatic gamma beams, together with the gamma-beam-driven, high intensity secondary beams of polarized positrons, polarized muons, neutro...

  13. Real oscillations of virtual neutrinos

    International Nuclear Information System (INIS)

    Grimus, W.; Stockinger, P.

    1996-01-01

    We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates x searrow P and x searrow D , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|x searrow D -x searrow P |→∞ the virtual neutrinos become open-quote open-quote real close-quote close-quote and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities. copyright 1996 The American Physical Society

  14. Damping of coupled harmonic oscillators

    Science.gov (United States)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  15. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  16. GammaWorkshops Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H. (ed.) (Swedish Defence Research Agency (Sweden)); Straalberg, E. (Institute for Energy Technology, Kjeller (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority, STUK (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (Iceland))

    2012-01-15

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  17. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.

    Science.gov (United States)

    Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V

    2016-01-21

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.

  18. Application of the Lyapunov exponent to detect noise-induced chaos in oscillating microbial cultures

    International Nuclear Information System (INIS)

    Patnaik, P.R.

    2005-01-01

    Oscillating microbial processes can, under certain conditions, gravitate into chaotic behavior induced by external noise. Detection and control of chaos are important for the survival of the microorganisms and to operate a process usefully. In this study the largest Lyapunov exponent is recommended as a convenient and reliable index of chaos in continuous oscillating cultures. For the growth of Saccharomyces cerevisiae as a model system, the exponents increase with the oxygen mass transfer coefficient and decrease as the dilution rate increases. By comparing with the corresponding time-domain oscillations determined earlier, it is inferred that weakly oscillating cultures are less likely to be driven to chaotic behavior. The main carbon source, glucose, is quite robust to chaotic destabilization, thus enhancing its suitability as a manipulated variable for bioreactor control

  19. DIGITAL SELF-OSCILLATING MODULATOR

    DEFF Research Database (Denmark)

    2007-01-01

    A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises an alter......A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises...

  20. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  1. A swing driven by liquid crystals

    Science.gov (United States)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  2. The gamma function

    CERN Document Server

    Artin, Emil

    2015-01-01

    This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, ""I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus."" Generations of teachers

  3. Renormalization Group Scaling of Higgs Operators and \\Gamma(h -> \\gamma \\gamma)

    CERN Document Server

    Grojean, Christophe; Manohar, Aneesh V; Trott, Michael

    2013-01-01

    We compute the renormalization of dimension six Higgs-gauge boson operators that can modify \\Gamma(h -> \\gamma \\gamma) at tree-level. Operator mixing is shown to lead to an important modification of new physics effects which has been neglected in past calculations. We also find that the usual formula for the S oblique parameter contribution of these Higgs-gauge boson operators needs additional terms to be consistent with renormalization group evolution. We study the implications of our results for Higgs phenomenology and for new physics models which attempt to explain a deviation in \\Gamma(h -> \\gamma \\gamma). We derive a new relation between the S parameter and the \\Gamma(h -> \\gamma \\gamma) and \\Gamma(h ->Z \\gamma) decay rates.

  4. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  5. Dynamic Rabi oscillations in a quantum dot embedded in a nanobridge in the presence of surface acoustic waves

    Science.gov (United States)

    Mourokh, L.; Wixforth, A.; Beil, F.; Bichler, M.; Wegscheider, W.; Blick, R. H.

    2017-10-01

    A quantum dot is created within a suspended nanobridge containing a two-dimensional electron gas. The electron current through this dot exhibits well-pronounced Coulomb blockade oscillations. When surface acoustic waves (SAW) are driven through the nanobridge, Coulomb blockade peaks are shifted. To explain this feature, we derive the expressions for the quantum dot level populations and electron currents through these levels and show that SAW-induced Rabi oscillations lead to the observed phenomenology.

  6. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  7. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    Science.gov (United States)

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  8. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.

    Science.gov (United States)

    Senthilkumar, D V; Muruganandam, P; Lakshmanan, M; Kurths, J

    2010-06-01

    Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at (mN(c)+1)-th oscillators in the ring, where m is an integer and N(c) is the maximum number of synchronized oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can be increased considerably beyond the limit restricted by size instability. We also demonstrate that there exists an exponential relation between the number of oscillators that can support stable synchronization in the ring with the external drive and the critical coupling strength ε(c) with a scaling exponent γ. The critical coupling strength is calculated by numerically estimating the synchronization error and is also confirmed from the conditional Lyapunov exponents of the coupled systems. We find that the same scaling relation exists for m couplings between the drive and the ring. Further, we have examined the robustness of the synchronous states against Gaussian white noise and found that the synchronization error exhibits a power-law decay as a function of the noise intensity indicating the existence of both noise-enhanced and noise-induced synchronizations depending on the value of the coupling strength ε. In addition, we have found that ε(c) shows an exponential decay as a function of the number of additional couplings. These results are demonstrated using the paradigmatic models of Rössler and Lorenz oscillators.

  9. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-05-24

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner.

  10. Light-Driven Alignment

    CERN Document Server

    Antonyuk, Boris P

    2009-01-01

    This book deals with influencing the properties of solids by light-driven electron transport. The theoretical basis of these effects, light-driven ordering and self-organisation, as well as optical motors are presented. With light as a tool, new ways to produce materials are opened.

  11. GammaWorkshops Proceedings

    DEFF Research Database (Denmark)

    Strålberg, Elisabeth; Klemola, Seppo; Nielsen, Sven Poul

    to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical...

  12. Dynamic gamma knife radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Luan Shuang; Swanson, Nathan; Chen Zhe [Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 (United States); Ma Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143 (United States)], E-mail: sluan@cs.unm.edu, E-mail: nate@cs.unm.edu, E-mail: zchen@cs.unm.edu, E-mail: lijunma@radonc.ucsf.edu

    2009-03-21

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can

  13. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.

    Directory of Open Access Journals (Sweden)

    María Jesús Nicolás

    Full Text Available Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU, substantia nigra pars reticulata (SNr and subthalamic nucleus (STN in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg, and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz, high gamma (~ 80 Hz and high frequency (HFO, ~ 150 Hz bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency

  14. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  15. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  16. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  17. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  18. Sound oscillation of dropwise cluster

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Dzhumandzhi, V.A.; Romanyuk, S.N.

    2012-01-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10 2 –10 3 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  19. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  20. Shaping the gamma curtain

    International Nuclear Information System (INIS)

    Early 1996 saw the start up in Ukraine and Belarus of the Gamma-1 pilot radiation early warning system - the first phase of the Gamma Curtain, a network of monitors stretching from the Black Sea to the Baltic to enable rapid detection of any future nuclear accidents. In setting up the system, the experience of monitoring around Chernobyl was invaluable, and has implications for the west as well. (UK)

  1. Symmetry breaking in clogging for oppositely driven particles

    Science.gov (United States)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  2. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  3. The Gamma Factory — new research opportunities for CERN

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In this talk I shall discuss the recent initiative of broadening the present CERN research programme by including a new component exploiting a novel concept of the light source. The proposed, partially stripped ion beam driven, light source is the backbone of the Gamma Factory initiative. It could be realized at CERN by using the infrastructure of the already existing accelerators. It could push the intensity limits of the presently operating light-sources by at least 7 orders of magnitude, reaching the flux of the order of 10^17 photons/s, in the particularly interesting gamma-ray energy domain of 0.1 — 400 MeV. The partially stripped ion beams, the unprecedented-intensity energy-tuned gamma beams, together with the gamma-beam-driven secondary beams of polarized positrons, polarized muons, neutrinos, neutrons and radioactive ions constitute the basic research tools of the Gamma Factory. A broad spectrum of new research opportunities, in a vast domain of uncharted fundamental and applied physics territories...

  4. 40-Hz oscillations underlying perceptual binding in young and older adults.

    Science.gov (United States)

    Ross, Bernhard; Fujioka, Takako

    2016-07-01

    Auditory object perception requires binding of elementary features of complex stimuli. Synchronization of high-frequency oscillation in neural networks has been proposed as an effective alternative to binding via hard-wired connections because binding in an oscillatory network can be dynamically adjusted to the ever-changing sensory environment. Previously, we demonstrated in young adults that gamma oscillations are critical for sensory integration and found that they were affected by concurrent noise. Here, we aimed to support the hypothesis that stimulus evoked auditory 40-Hz responses are a component of thalamocortical gamma oscillations and examined whether this oscillatory system may become less effective in aging. In young and older adults, we recorded neuromagnetic 40-Hz oscillations, elicited by monaural amplitude-modulated sound. Comparing responses in quiet and under contralateral masking with multitalker babble noise revealed two functionally distinct components of auditory 40-Hz responses. The first component followed changes in the auditory input with high fidelity and was of similar amplitude in young and older adults. The second, significantly smaller in older adults, showed a 200-ms interval of amplitude and phase rebound and was strongly attenuated by contralateral noise. The amplitude of the second component was correlated with behavioral speech-in-noise performance. Concurrent noise also reduced the P2 wave of auditory evoked responses at 200-ms latency, but not the earlier N1 wave. P2 modulation was reduced in older adults. The results support the model of sensory binding through thalamocortical gamma oscillations. Limitation of neural resources for this process in older adults may contribute to their speech-in-noise understanding deficits. © 2016 Society for Psychophysiological Research.

  5. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  6. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...

  7. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  8. Parallel-Plate Electrostatic Dual Mass Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James J.; Dyck, Christopher W.; Huber, Robert J.

    1999-07-22

    A surface-micromachined two-degree-of-freedom system that was driven by parallel-plate actuation at antiresonance was demonstrated. The system consisted of an absorbing mass connected by folded springs to a drive mass. The system demonstrated substantial motion amplification at antiresonance. The absorber mass amplitudes were 0.8-0.85 pm at atmospheric pressure while the drive mass amplitudes were below 0.1 pm. Larger absorber mass amplitudes were not possible because of spring softening in the drive mass springs. Simple theory of the dual-mass oscillator has indicated that the absorber mass may be insensitive to limited variations in strain and damping. This needs experimental verification. Resonant and antiresonant frequencies were measured and compared to the designed values. Resonant frequency measurements were difficult to compare to the design calculations because of time-varying spring softening terms that were caused by the drive configuration. Antiresonant frequency measurements were close to the design value of 5.1 kHz. The antiresonant frequency was not dependent on spring softening. The measured absorber mass displacement at antiresonance was compared to computer simulated results. The measured value was significantly greater, possibly due to neglecting fringe fields in the force expression used in the simulation.

  9. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  10. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  11. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  12. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  13. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  14. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  15. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  16. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    journal of. December 2014 physics pp. 945–953. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring ... In this article, we study the difference between networks with sym- ... The dynamics of a general ith oscillator in a system of N Kuramoto oscillators is given as.

  17. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  18. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without u...

  19. On the oscillations in Mercury's obliquity

    Science.gov (United States)

    Bois, E.; Rambaux, N.

    2007-12-01

    note that the dynamically driven spin precession, which occurs when the planetary interactions are included, is more complex than the purely kinematic case. Nevertheless, in such a N-body problem, we find that the 3:2 spin-orbit resonance is really combined to a synchronism where the spin and orbit poles on average precess at the same rate while the orbit inclination and the spin axis orientation on average decrease at the same rate. As a consequence and whether it would turn out that there exists an irreducible minimum of the oscillation amplitude, quasi-periodic oscillations found in Mercury's obliquity should be to geometrically understood as librations related to these synchronisms that both follow a Cassini state. Whatever the open question on the minimal amplitude in the obliquity's oscillations and in spite of the planetary interactions indirectly acting by the solar torque on Mercury's rotation, Mercury remains therefore in a stable equilibrium state that proceeds from a 2-body Cassini state.

  20. THE EFFECTS OF MAGNETIC-FIELD GEOMETRY ON LONGITUDINAL OSCILLATIONS OF SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Luna, M.; Díaz, A. J.; Karpen, J.

    2012-01-01

    We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.

  1. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  2. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  3. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators.

    Science.gov (United States)

    Dijk, Derk-Jan; von Schantz, Malcolm

    2005-08-01

    Daily rhythms in sleep and waking performance are generated by the interplay of multiple external and internal oscillators. These include the light-dark and social cycles, a circadian hypothalamic oscillator oscillating virtually independently of behavior, and a homeostatic oscillator driven primarily by sleep-wake behavior. Both internal oscillators contribute to variation in many aspects of sleep and wakefulness (e.g., sleep timing and duration, REM sleep, non-REM sleep, REM density, sleep spindles, slow-wave sleep, electroencephalographic oscillations during wakefulness and sleep, and performance parameters, including attention and memory). The relative contribution of the oscillators varies greatly between these variables. Sleep and performance cannot be predicted by either oscillator independently but critically depend on their phase relationship and amplitude. The homeostatic oscillator feeds back onto the central pacemaker or its outputs. Thus, the amplitude of observed circadian variation in sleep and performance depends on how long we have been asleep or awake. During entrainment to external 24-h cycles, the opposing interplay between circadian and homeostatic changes in sleep propensity consolidates sleep and wakefulness. Some physiological correlates and mediators of both the circadian process (e.g., melatonin and hypocretin rhythms) and the homeostat (e.g., EEG, slow-wave activity, and adenosine release) have been established, offering targets for the development of countermeasures for circadian sleep and performance disorders. Interindividual differences in sleep timing, duration, and morning or evening preference are associated with changes of circadian or sleep homeostatic processes or both. Molecular genetic correlates, including polymorphisms in clock genes, of some of these interindividual differences are emerging.

  4. Oscillating-Linear-Drive Vacuum Compressor for CO2

    Science.gov (United States)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  5. Thermoelastic loss in microscale oscillators

    Science.gov (United States)

    Houston, B. H.; Photiadis, D. M.; Marcus, M. H.; Bucaro, J. A.; Liu, Xiao; Vignola, J. F.

    2002-02-01

    A simple model of thermoelastic dissipation is proposed for general, free standing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) oscillators. The theory defines a flexural modal participation factor, the fraction of potential energy stored in flexure, and approximates the internal friction by assuming the energy loss to occur solely via classical thermoelastic dissipation of this component of the motion. The theory is compared to the measured internal friction of a high Q mode of a single-crystal silicon double paddle oscillator. The loss at high temperature (above 150 K) is found to be in good agreement with the theoretical prediction. The importance of this dissipation mechanism as a function of scale is briefly discussed. We find that the relative importance of this mechanism scales with the size of the structure, and that for nanoscale structures it is less important than intrinsic phonon-phonon scattering.

  6. Neuronal oscillations in Parkinson's disease.

    Science.gov (United States)

    Witcher, Mark; Moran, Rosalyn; Tatter, Stephen B; Laxton, Adrian W

    2014-06-01

    Parkinson's Disease (PD), characterized by tremor, rigidity, and bradykinesia, is one of the most prevalent neurodegenerative disorders in the world. The pathological hallmark of PD is the loss of dopaminergic cells in the substantia nigra and other brain regions. The pathophysiological mechanisms by which dopaminergic cell loss leads to the motor manifestations of PD are yet to be fully elucidated. A growing body of evidence has revealed abnormal neuronal oscillations within and between multiple brain regions in PD. Unique oscillatory patterns are associated with specific motor abnormalities in PD. Therapies, such as dopaminergic medication and deep brain stimulation that disrupt these abnormal neuronal oscillatory patterns produce symptomatic improvement in PD patients. These findings emphasize the importance of abnormal neuronal oscillations in the pathophysiology of PD, making the disruption of these oscillatory patterns a promising target in the development of effective PD treatments.

  7. Neutrino oscillations in deconstructed dimensions

    International Nuclear Information System (INIS)

    Haellgren, Tomas; Ohlsson, Tommy; Seidl, Gerhart

    2005-01-01

    We present a model for neutrino oscillations in the presence of a deconstructed non-gravitational large extra dimension compactified on the boundary of a two-dimensional disk. In the deconstructed phase, sub-mm lattice spacings are generated from the hierarchy of energy scales between ∼ 1 TeV and the usual B-L breaking scale ∼ 10 15 GeV. Here, short-distance cutoffs down to ∼ 1 eV are motivated by the strong coupling behavior of gravity in local discrete extra dimensions. This could make it possible to probe the discretization of extra dimensions and non-trivial field configurations in theory spaces which have only a few sites, i.e., for coarse latticizations. Thus, the model has relevance to present and future precision neutrino oscillation experiments. (author)

  8. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  9. Design of an oscillating radial collimator for use in a neutron diffractometer

    International Nuclear Information System (INIS)

    Deshpande, S.K.; Goyal, P.S.

    2003-01-01

    An oscillating radial collimator (ORC) has been designed for use at the IUC-DAEF neutron diffractometer that is being set up at the upcoming neutron beamline at Dhruva reactor, BARC. The design incorporates cadmium-plated stainless steel blades mounted between aluminium flanges in a vertical venetian blinds type arrangement. The oscillations are driven by a stepper motor using a worm and wheel segment. The design satisfies the requirements of high visibility over the small sample region but good cut-off away from it. (author)

  10. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  11. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  12. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  13. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, Manuel

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ = S + V or Δ = V - S to zero, analytical solutions for bound states are found. The eingenenergies and their nonrelativistic limits are presented and particular cases are discussed, especially the case Σ = 0, for which pseudospin symmetry is exact

  14. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    Number Games. The defining element in the oscillation (or survival probability) is sin. 2. ∆m2. 21L/(4E) ≡ sin. 2. 1.27(∆m2. 21eV. 2) ((L/E)km/GeV OR m/MeV). .... The 90% CL contours with 10 years' simulated ICAL in comparison with results ... Simulation showing improvement in sensitivity to the unknown CP phase.

  15. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  16. Lepton asymmetries from neutrino oscillations

    International Nuclear Information System (INIS)

    Volkas, R.R.

    2000-01-01

    Reasonably large relic neutrino asymmetries can be generated by active-sterile neutrino oscillations. After briefly discussing possible applications, I describe the Quantum Kinetic Equation formalism used to compute the asymmetry growth curves. I then show how the basic features of these curves can be understood on the basis of the adiabatic limit approximation in the collision dominated epoch, and the pure MSW effect at lower temperatures (author)

  17. Coherence effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution. copyright 1995 The American Physical Society

  18. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  19. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  20. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  1. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  2. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  3. System for gamma-gamma formation density logging while drilling

    International Nuclear Information System (INIS)

    Paske, W.C.

    1991-01-01

    The patent relates to a system for logging subterranean formations for the determination of formation density by using gamma radiation. Gamma ray source and detection means are disposed within a housing adapted for positioning within a borehole for the emission and detection of gamma rays propagating through earth formations and borehole drilling fluid. The gamma ray detection means comprises first and second gamma radiation sensors geometrically disposed within the housing, the same longitudinal distance from the gamma ray source and diametrically opposed in a common plane. A formation matrix density output signal is produced in proportion to the output signal from each of the gamma ray sensors and in conjunction with certain constants established by the geometrical configuration of the sensors relative to the gamma ray source and the borehole diameter. Formation density is determined without regard to the radial position of the logging probe within the borehole in a measuring while drilling mode. 6 figs

  4. Hypernuclear gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    May, M.

    1985-01-01

    The observation of hypernuclear ..gamma.. rays pprovides a method of determining the spin dependence of the ..lambda..-nucleon interaction with a sensitivity not approachable by other means in the forseeable future. The transitions of primary interest are those between states that differ only in the orientation of the spin of the ..lambda.. particle with respect to the angular momentum of the nuclear core. The effective ..lambda..-nucleon interaction can be specified by a small number of ..gamma..-ray measurements. A program of experiments directed at this goal is in progress at Brookhaven National Laboratory. This paper reviews the status of the subject with emphasis on the recent experiment to measure ground state doublet splittings using germanium ..gamma..-ray detectors.

  5. Long-range alpha/beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods.

    Science.gov (United States)

    Simor, Péter; Gombos, Ferenc; Blaskovich, Borbála; Bódizs, Róbert

    2017-12-23

    Rapid Eye Movement (REM) sleep is characterized by the alternation of two markedly different microstates, phasic and tonic REM. These periods differ in awakening and arousal thresholds, sensory processing, and spontaneous cortical oscillations. Previous studies indicate that whereas in phasic REM, cortical activity is independent of the external environment, attentional functions and sensory processing are partially maintained during tonic periods. Large-scale synchronization of oscillatory activity, especially in the alpha and beta frequency ranges can accurately distinguish different states of vigilance and cognitive processes of enhanced alertness and attention. Therefore, we examined long-range inter-and intrahemispheric, as well as short-range EEG synchronization during phasic and tonic REM periods quantified by the weighted phase lag index. Based on the nocturnal polysomnographic data of 19 healthy, adult participants we showed that long-range inter-and intrahemispheric alpha and beta synchrony were enhanced in tonic REM states in contrast to phasic ones, and resembled alpha and beta synchronization of resting wakefulness. On the other hand, short-range synchronization within the gamma frequency range was higher in phasic as compared to tonic periods. Increased short-range synchrony might reflect local, and inwardly driven sensorimotor activity during phasic REM periods, whereas enhanced long-range synchrony might index frontoparietal activity that reinstates environmental alertness after phasic REM periods. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. Gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  7. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  8. A Multimodal Perspective on the Composition of Cortical Oscillations.

    Directory of Open Access Journals (Sweden)

    Kim C Ronnqvist

    2013-04-01

    Full Text Available An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI measures and neuronal network oscillations. Typically, integrated electroencephalography (EEG and fMRI, or parallel magnetoencephalography (MEG and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification.Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1 oscillations, using human MEG and in-vitro rodent local field potentials. We compare spontaneous activity in the ~10Hz mu and 15-30Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V (LIII/LV from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in-vitro M1, during an incision to sever lateral connections between M1 and S1 cortices.We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in SMC appears to directly influence the power of the mu rhythm in LIII.These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, cortico-cortical connectivity is reflected in the power of the SMC mu

  9. ac-dc voltage profile and four point impedance of a quantum driven system

    Science.gov (United States)

    Foieri, Federico; Arrachea, Liliana

    2010-09-01

    We investigate the behavior of the time-dependent voltage drop in a periodically driven quantum conductor sensed by weakly coupled dynamical voltages probes. We introduce the concepts of ac-dc local voltage and four point impedance in an electronic system driven by ac fields. We discuss the properties of the different components of these quantities in a simple model of a quantum pump, where two ac voltages oscillating with a phase lag are applied at the walls of a quantum dot.

  10. A computational study on altered theta-gamma coupling during learning and phase coding.

    Directory of Open Access Journals (Sweden)

    Xuejuan Zhang

    Full Text Available There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABA(A receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABA(A,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus.

  11. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer's disease, and bipolar disorder.

    Science.gov (United States)

    Başar, E; Schmiedt-Fehr, C; Mathes, B; Femir, B; Emek-Savaş, D D; Tülay, E; Tan, D; Düzgün, A; Güntekin, B; Özerdem, A; Yener, G; Başar-Eroğlu, C

    2016-05-01

    The application of the concept and methods of brain oscillations has been an important research area in neurosciences. In the last decades, besides the application in cognitive processes, the study of changes in brain oscillations in diseases has also become an important focal point of research. In the present paper, some remarkable examples in three different diseases are taken into consideration: 1) schizophrenia (SZ), 2) Alzheimer's disease (AD), 3) bipolar disorders (BD). In the current literature, decreased oscillations in cortical recordings are observed in most of the pathologies. For example, decrease of gamma activity in SZ, decrease of delta activity in almost all diseases, as well as frequency shifts in alpha and the lower frequencies were recorded. However, there are also paradoxical cases in which an increase of oscillatory activities is observed. In BD, whereas alpha activity is greatly decreased, a huge increase of beta activity is observed. Or, in SZ, a paradoxical increase of gamma activity can be observed during cognitive loading. We also observed paradoxical changes in the analysis of connectivity. In AD, we find that alpha, delta, and theta coherences between distant parts of the cortex are greatly decreased, whereas in the gamma band, event-related coherences attain very high values. The comparison of the results and paradoxical changes in diseases may lead to important conclusions related to the web of oscillations and neurotransmitters. In turn, we could gain new insights to approach "brain function", in general. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. CKM angle $\\gamma$ from LHCb

    CERN Multimedia

    Smith, Jackson

    2015-01-01

    Results of the latest $\\gamma$ combination from LHCb are presented, along with the six LHCb measurements used as inputs. In addition, the anticipated precision attainable for measuring $\\gamma$ after the LHCb Upgrade is outlined

  13. Gamma knife surgery for craniopharyngioma

    International Nuclear Information System (INIS)

    Prasad, D.; Steiner, M.; Steiner, L.

    1995-01-01

    We present our results of Gamma Knife surgery for craniopharyngioma in nine patients. The current status of surgery, radiation therapy, intracavitary instillation of radionuclides and Gamma Knife surgery in the management of craniopharyngiomas is discussed. (author)

  14. Oscillations

    Directory of Open Access Journals (Sweden)

    Qinghua Wu

    2015-01-01

    equivalent to the GMRES method proposed by Olver (2009. Moreover, the simpler GMRES does not require upper Hessenberg matrix factorization, which leads to much simpler program and requires less work. Numerical experiments are conducted to illustrate the performance of the new method and show that in some cases the simpler GMRES method could achieve higher accuracy than GMRES.

  15. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-08-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  16. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  17. Chemist's gamma-ray table

    International Nuclear Information System (INIS)

    Binder, I.; Kraus, R.; Klein, R.; Lee, D.; Fowler, M.M.

    1977-06-01

    An edited listing of gamma-ray information has been prepared. Prominent gamma rays originating from nuclides with half lives long enough to be seen in radiochemical experiments are included. Information is ordered by nuclide in one section and by energy in a second section. This shorter listing facilitates identification of nuclides responsible for gamma rays observed in experiments

  18. Gamma knife radiosurgery

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuya; Mori, Yohsimasa; Kida, Yoshihisa

    2003-01-01

    Gamma knife radiosurgery has become a new treatment modality in the field of neurosurgery since the first gamma knife was brought into Japan in 1990. Advances in applications of new indications and long-term results have been continued to evolve during the past 12 years. Based on the experience of more than 4,500 cases treated by gamma knife at Komaki City Hospital, long-term results of arteriovenous malformations (AVMs), metastatic brain tumors, acoustic neurinomas, meningiomas and trigeminal neuralgias are presented. Radiosurgery has become a novel treatment modality, especially for AVM, acoustic neurinoma and meningioma, which were once only treatable by conventional surgery, and shows a high cure rate in AVM cases and high control rate in benign tumors without major complications. The effects of radiosurgery for metastatic brain tumors have been thought to be superior to fractionated radiotherapy due to high response and control rates, and patients showed improved quality of life although no prolongation of the life span was obtained. Gamma knife treatment for trigeminal neuralgia has been shown to be effective and less invasive than microvascular decompression, and is useful for cases resistant to conventional therapies and as an initial treatment as well. (author)

  19. Industrial radiography. Gamma radiography

    International Nuclear Information System (INIS)

    Menetrier, J.

    1975-01-01

    Informations are given on gamma radiodefectology regulations, entire references and main dispositions applicable to each state of the European Economic Community. The content includes previous arrangements for source acquisition, holding and use of the sources, transport, accidents, civil liability of the source holder, person insurance against radiation hazards and contamination, property insurance, penal liability of the source holder

  20. Introscopy using gamma sources

    International Nuclear Information System (INIS)

    Gromov, Yu.V.; Leonov, B.I.; Najorov, A.N.; Smirnov, N.N.; Firstov, V.G.

    1978-01-01

    A method is described of working with standard 170 Tm, 75 Se, 192 Ir, 137 Cs and 60 Co sources at the activity of 1-4000 Ci, during television gamma introscopy of steel products. Experiments involving the RI-10T introscope are carried out to determine prospects of using various radiation sources. The results of using X-ray instruments for control of steel products are also shown for comparison. In introscopy of X-rayed steel products over 25 mm thick, spreading of the edge of the detected groove image is shown to be comparable when using X radiation and gamma radiation of standard sources. Sensitivity of control by fluorographic introscope in X-raying and gamma irradiation of products over 25 mm thick will presumably be the same owing to the detector storage capacity. The use of commercial gamma flaw detecting instruments together with a television introscope permits to reliably reveal defects of 0.5-2.0 mm in size, eliminating possible instability of operation of X-ray instruments, particularly in field conditions

  1. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  2. Marine gamma spectrometric survey

    International Nuclear Information System (INIS)

    Kostoglodov, V.V.

    1979-01-01

    Presented are theoretical problems physical and geochemical prerequisites and possibilities of practical application of the method of continuous submarine gamma-spectrometric survey and radiometric survey destined for rapid study of the surface layer of marine sediments. Shown is high efficiency and advantages of this method in comparison with traditional and widely spread in marine geology methods of bottom sediments investigation

  3. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  4. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonians contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ=S+V or Δ=V - S to zero, analytical solutions for bound states are found. The eigenenergies and their nonrelativistic limits are present and particular cases are discussed, especially the case Σ=0, for which pseudospin symmetry is exact. (author)

  5. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  6. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  7. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  8. Relaxation Oscillation and Canard Explosion

    Science.gov (United States)

    Krupa, M.; Szmolyan, P.

    2001-08-01

    We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singular cycles. The results are obtained by means of two blow-up transformations combined with standard tools of dynamical systems theory. The efficient use of various charts is emphasized. The results are applied to the van der Pol equation.

  9. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy

    NARCIS (Netherlands)

    Beeker, Willem; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Gross, P.; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer Lynn

    2010-01-01

    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground-state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum

  10. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  11. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    International Nuclear Information System (INIS)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S; Coppa, A; Foglietti, V

    2008-01-01

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide

  12. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  13. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  14. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  15. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  16. Damping elastic oscillations of digging mechanism

    Science.gov (United States)

    Kuznetsov, N. K.; Makhno, D. E.; Iov, I. A.

    2017-10-01

    The article studies methods for reducing dynamic loading and elastic oscillations of excavator buckets using dampers. The authors suggest a structural scheme for damping bucket oscillations using a damping device installed in a running gear of the traction cable. The results of numerical efficiency simulation are presented. The article shows that the system helps to reduce intensity of elastic oscillations and a transition period in acceleration and deceleration modes.

  17. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  18. Synchronization of weakly coupled canard oscillators

    OpenAIRE

    Köksal Ersöz, Elif; Desroches, Mathieu; Krupa, Martin

    2017-01-01

    International audience; Synchronization has been studied extensively in the context of weakly coupled oscillators using the so-called phase response curve (PRC) which measures how a change of the phase of an oscillator is affected by a small perturbation. This approach was based upon the work of Malkin, and it has been extended to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling assumption, leading to a criterion for the existence of synchron...

  19. Precise measurement of {gamma}(K{yields}e {nu}({gamma}))/{gamma}(K{yields}{mu} {nu}({gamma})) and study of K{yields}e {nu} {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F.; Massarotti, P.; Meola, S.; Napolitano, M. [Dipartimento di Scienze Fisiche dell' Universita ' ' Federico II' ' , Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bloise, C.; Bossi, F.; Capon, G.; Capussela, T.; Ciambrone, P.; De Lucia, E.; De Simone, P.; Dreucci, M.; Felici, G.; Gatti, C.; Giovannella, S.; Jacewicz, M.; Lanfranchi, G.; Miscetti, S.; Moulson, M.; Murtas, F.; Palutan, M.; Santangelo, P.; Sciascia, B.; Sibidanov, A.; Spadaro, T.; Venanzoni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Archilli, F. [Dipartimento di Fisica dell' Universita ' ' Tor Vergata' ' , Rome (Italy); INFN Sezione di Roma Tor Vergata, Rome (Italy); Beltrame, P.; Denig, A.; Mueller, S. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Bini, C.; De Santis, A.; De Zorzi, G.; Di Domenico, A.; Fiore, S.; Franzini, P.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' ' La Sapienza' ' , Rome (Italy); INFN Sezione di Roma, Rome (Italy); Bocchetta, S.; Ceradini, F.; Di Micco, B.; Nguyen, F. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); INFN Sezione di Roma Tre, Rome (Italy); Branchini, P.; Graziani, E.; Passeri, A.; Tortora, L. [INFN Sezione di Roma Tre, Rome (Italy); Capriotti, D. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); Di Donato, C. [INFN Sezione di Napoli, Napoli (Italy); Kulikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lee-Franzini, J. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); State University of New York, Physics Department, Stony Brook (United States); Martini, M.; Patera, V.; Versaci, R. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Energetica dell' Universita ' ' La Sapienza' ' , Rome (Italy); Valente, P. [INFN Sezione di Roma, Rome (Italy)

    2009-12-15

    We present a precise measurement of the ratio R{sub K}={gamma}(K{yields}e{nu}({gamma}))/{gamma}(K{yields}{mu}{nu}({gamma})) and a study of the radiative process K{yields}e{nu}{gamma}, performed with the KLOE detector. The results are based on data collected at the Frascati e{sup +}e{sup -} collider DA {phi}NE for an integrated luminosity of 2.2 fb{sup -1}. We find R{sub K}=(2.493{+-}0.025{sub stat}{+-}0.019{sub syst}) x 10{sup -5}, in agreement with the Standard Model expectation. This result is used to improve constraints on parameters of the Minimal Supersymmetric Standard Model with lepton flavor violation. We also measured the differential decay rate d {gamma}(K{yields}e{nu}{gamma})/dE{sub {gamma}} for photon energies 10gamma}}<250 MeV. Results are compared with predictions from theory. (orig.)

  20. Current response of ac-driven nanoelectromechanical systems in single-electron tunneling regime

    OpenAIRE

    Labadze, G.; Blanter, Ya. M.

    2010-01-01

    We investigate electric current in a single-electron tunnelling device weakly coupled to an ac-driven underdamped harmonic nanomechanical oscillator. In the linear regime, the current can respond to the external frequency in a resonant as well as in an anti-resonant fashion. The main resonance is accompanied by an additional resonance at a half of the external frequency.

  1. Pi-kinks in a parametrically driven sine-Gordon chain

    DEFF Research Database (Denmark)

    Kivshar, Yuri S.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1992-01-01

    We consider the sine-Gordon chain driven by a high-frequency parametric force in the presence of loss. Using an analytical approach based on the method of averaging in fast oscillations, we predict that such a parametric force may support propagation of π kinks, which are unstable in the standard...

  2. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  3. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse oscillat......Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  4. Rare quantum metastable states in the strongly dispersive Jaynes-Cummings oscillator

    OpenAIRE

    Mavrogordatos, Th; Barratt, F; Asari, U; Szafulski, P; Ginossar, Eran; Szymanska, M

    2018-01-01

    We present evidence of metastable rare quantum- uctuation switching for the driven dissipative Jaynes-Cummings (JC) oscillator coupled to a zero-temperature bath in the strongly dispersive regime. We show that single-atom complex amplitude bistability is accompanied by the appearance of a low-amplitude long-lived transient state, hereinafter called `dark state', having a distribution with quasi-Poissonian statistics both for the coupled qubit and cavity mode. We find that the ...

  5. Asymptotic behavior of the mean square displacement of the Brownian parametric oscillator near the singular point

    International Nuclear Information System (INIS)

    Tashiro, Tohru

    2009-01-01

    A parametric oscillator with damping driven by white noise is studied. The mean square displacement (MSD) in the long-time limit is derived analytically for the case that the static force vanishes, which was not treated in the past work (Tashiro and Morita 2007 Physica A 377 401). The formula is asymptotic but is applicable to a general periodic function. On the basis of this formula, some periodic functions reducing MSD remarkably are proposed

  6. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  7. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  8. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  9. Strengthening and damping of synchrotron oscillations

    International Nuclear Information System (INIS)

    Taratin, A.M.

    2001-01-01

    Resonance strengthening and damping of synchrotron oscillations of collider bunch halo particles was studied by simulation. It was shown that the strengthening of particle synchrotron oscillations can be highly efficient with using a resonance pulse sequence. The resonance damping of particle synchrotron oscillations is only possible when the inverse population of the accelerated bunch halo is realized. Resonance method of synchrotron oscillation strengthening can be used for the extraction of beam halo particles with a bent crystal to improve the background conditions for colliding beam experiments and to fulfill simultaneously some fixed target experiments

  10. Scleronomic holonomic constraints and conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La; Fernandez-Anaya, G

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  11. Scleronomic holonomic constraints and conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La [Universidad Autonoma de la Ciudad de Mexico, Centro Historico, Fray Servando Teresa de Mier 92, Col Centro, Del Cuauhtemoc, Mexico DF, CP 06080 (Mexico); Fernandez-Anaya, G, E-mail: rodrigo.munoz@uacm.edu.mx, E-mail: gggharper@gmail.com, E-mail: erickidc@gmail.com, E-mail: guillermo.fernandez@uia.mx [Universidad Iberoamericana, Departamento de Fisica y Matematicas, Prolongacon Paseo de de la Reforma 880, Col Lomas de Santa Fe, Del Alvaro Obregn, Mexico DF, CP 01219 (Mexico)

    2011-05-15

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  12. Reentrant transition in coupled noisy oscillators.

    Science.gov (United States)

    Kobayashi, Yasuaki; Kori, Hiroshi

    2015-01-01

    We report on a synchronization-breaking instability observed in a noisy oscillator unidirectionally coupled to a pacemaker. Using a phase oscillator model, we find that, as the coupling strength is increased, the noisy oscillator lags behind the pacemaker more frequently and the phase slip rate increases, which may not be observed in averaged phase models such as the Kuramoto model. Investigation of the corresponding Fokker-Planck equation enables us to obtain the reentrant transition line between the synchronized state and the phase slip state. We verify our theory using the Brusselator model, suggesting that this reentrant transition can be found in a wide range of limit cycle oscillators.

  13. The Driven Spinning Top

    Science.gov (United States)

    Grosu, Ioan; Featonby, David

    2016-01-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader's available time and motivation they may feel an urge to make one themselves, or simply invest a few…

  14. Constellations-driven innovation

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2011-01-01

    a particularly useful point of departure for engaging in researching innovation and didactic design of digital teaching and learning instruments such as the Theme Board that are programmed and serviced 'in the sky'. I call this approach: constellation-driven innovations....

  15. Data-driven storytelling

    CERN Document Server

    Henry Riche, Nathalie

    2018-01-01

    This book is an accessible introduction to data-driven storytelling, resulting from discussions between data visualization researchers and data journalists. This book will be the first to define the topic, present compelling examples and existing resources, as well as identify challenges and new opportunities for research.

  16. Oscillating shells and oscillating balls in AdS

    Science.gov (United States)

    Banerjee, Avik; Kundu, Arnab; Roy, Pratik; Virmani, Amitabh

    2017-07-01

    It has recently been reported that certain thin timelike shells undergo oscillatory motion in AdS. In this paper, we compute two-point function of a probe field in the geodesic approximation in such an oscillating shell background. We confirm that the two-point function exhibits an oscillatory behaviour following the motion of the shell. We show that similar oscillatory dynamics is possible when the perfect fluid on the shell has a polytropic equation of state. Moreover, we show that certain ball like configurations in AdS also exhibit oscillatory motion and comment on how such a solution can be smoothly matched to an appropriate exterior solution. We also demonstrate that the weak energy condition is satisfied for these oscillatory configurations.

  17. Oscillations of Difference Equations with Several Oscillating Coefficients

    Directory of Open Access Journals (Sweden)

    L. Berezansky

    2014-01-01

    Full Text Available We study the oscillatory behavior of the solutions of the difference equation Δx(n+∑i=1mpi(nx(τi(n=0,n∈N0[∇xn-∑i=1mpinxσin=0, n∈N] where (pi(n, 1≤i≤m are real sequences with oscillating terms, τi(n[σi(n], 1≤i≤m are general retarded (advanced arguments, and Δ[∇] denotes the forward (backward difference operator Δx(n=x(n+1-x(n[∇x(n=x(n-x(n-1]. Examples illustrating the results are also given.

  18. Gamma counter shutter assembly

    International Nuclear Information System (INIS)

    Aday, R.W. Jr.; Barber, D.G.

    1976-01-01

    A shutter assembly for a radioactivity measuring apparatus is described having a sample counting chamber, the assembly having a bulky solid lead cylinder with a sample access port extending therethrough for alignment with the sample chamber. The cylinder is rotated by a Geneva wheel arrangement having a drive wheel with a plurality of equi-angularly disposed pins perpendicular to the surface thereof engaging radially extending open-ended slots in a driven wheel secured to the lead cylinder for concurrent rotation therewith. The drive wheel is rotated at a constant speed with the driven wheel accelerating as a pin traverses the slot from the open end toward the driven wheel center and then decelerating as the pin traverses the reverse direction to provide precise positioning with adjacent pins engaging the open ends of adjacent slots in the stop position of the cylinder. 8 Claims, 3 Drawing Figures

  19. Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice

    Science.gov (United States)

    Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.

    2018-04-01

    Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.

  20. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  1. Resting Frontal Gamma Power at 16, 24 and 36 months Predicts Individual Differences in Language and Cognition at 4 and 5 years

    Science.gov (United States)

    Gou, Zhenkun; Choudhury, Naseem; Benasich, April A.

    2011-01-01

    Gamma activity has been linked to a variety of different cognitive processes and exists in both transient and persistent forms. Across studies, different brain regions have been suggested to contribute to gamma activity. Multiple studies have shown that the function of gamma oscillations may be related to temporal binding of early sensory information to relevant top-down processes. Given this hypothesis, we expected gamma oscillations to subserve general brain mechanisms that contribute to the development of cognitive and linguistic systems. The present study aims to examine the predictive relations between resting-state cortical gamma power density at a critical point in language and cognitive acquisition (i.e. 16, 24 and 36 months), and cognitive and language output at ages 4 and 5 years. Our findings show that both 24- and 36-month gamma power are significantly correlated with later language scores, notably Non-Word Repetition. Further, 16-, 24- and 36-month gamma were all significantly correlated with 4-year PLS-3 and CELF-P sentence structure scores. Although associations reported here do not reflect a direct cause and effect of early resting gamma power on later language outcomes, capacity to generate higher power in the gamma range at crucial developmental periods may index better modulation of attention and allow easier access to working memory, thus providing an advantage for overall development, particularly in the linguistic domain. Moreover, measuring abilities at times when these abilities are still emergent may allow better prediction of later outcomes. PMID:21295619

  2. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.

    1976-01-01

    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  3. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  4. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.; Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  5. How brain oscillations form memories--a processing based perspective on oscillatory subsequent memory effects.

    Science.gov (United States)

    Hanslmayr, Simon; Staudigl, Tobias

    2014-01-15

    Brain oscillations are increasingly recognized by memory researchers as a useful tool to unravel the neural mechanisms underlying the formation of a memory trace. However, the increasing numbers of published studies paint a rather complex picture of the relation between brain oscillations and memory formation. Concerning oscillatory amplitude, for instance, increases as well as decreases in various frequency bands (theta, alpha, beta and gamma) were associated with memory formation. These results cast doubt on frameworks putting forward the idea of an oscillatory signature that is uniquely related to memory formation. In an attempt to clarify this issue we here provide an alternative perspective, derived from classic cognitive frameworks/principles of memory. On the basis of Craik's levels of processing framework and Tulving's encoding specificity principle we hypothesize that brain oscillations during encoding might primarily reflect the perceptual and cognitive processes engaged by the encoding task. These processes may then lead to later successful retrieval depending on their overlap with the processes engaged by the memory test. As a consequence, brain oscillatory correlates of memory formation could vary dramatically depending on how the memory is encoded, and on how it is being tested later. Focusing on oscillatory amplitude changes and on theta-to-gamma cross-frequency coupling, we here review recent evidence showing how brain oscillatory subsequent memory effects can be modulated, and sometimes even be reversed, by varying encoding tasks, and the contextual overlap between encoding and retrieval. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Apparatus for gamma radiography

    International Nuclear Information System (INIS)

    1983-06-01

    The aim of the present standard is to fix the rules for the construction of gamma radiography instrumentation without prejudice to the present regulations. These apparatus have to be fitted with only sealed sources conformable to the experimental standard M 61-002. The present standard agrees with the international standard ISO 3999 of 1977 dealing with the same subject. Nevertheless, it is different on the three main following points: it does not accept the same limits of absorbed dose rates in the air calculated on the external surface of projectors; it precribes tightness, bending, crushing and tensile tests for some components of the gamma radiography it prescribes tests of endurance and resistance to breaking for the locking systems of the gamma radiography apparatus. The present standard also specifies the following points: symbols and indications to put on projectors and on the source-holder; identification of the source contained in the projector; and, accompanying documents. The regulation references are given in annexe [fr

  7. Gamma surgery for hemangiopericytomas

    International Nuclear Information System (INIS)

    Payne, B.R.; Prasad, D.; Steiner, M.; Steiner, L.

    2000-01-01

    A retrospective analysis of a consecutive series of 12 patients with 15 intracranial hemangiopericytomas treated at the University of Virginia using gamma surgery is presented. Clinical and radiographic follow up of 3 to 56 months is available for 10 patients with 12 tumors. There was one tumor present at the time of initial gamma surgery in each patient. Two new tumors occurred in patients previously treated. Nine of the tumors decreased in volume and three remained stable. Four of the nine tumors that shrank later progressed at an average of 22 months after treatment. Of the tumors that decreased in volume and have not progressed, the response has been for an average of 11 months. The follow-up for two tumors that remained unchanged was 10 and 34 months (average 22 months). A third tumor was unchanged at 42 months but the patient died of new disease adjacent to the treated area in the anterior skull base. There were no complications and the quality of life following the procedure was maintained or improved in every case. Gamma surgery is effective in palliating the patients by decreasing tumor volume and delaying recurrence. (author)

  8. Cortical gamma activity during auditory tone omission provides evidence for the involvement of oscillatory activity in top-down processing.

    Science.gov (United States)

    Gurtubay, I G; Alegre, M; Valencia, M; Artieda, J

    2006-11-01

    Perception is an active process in which our brains use top-down influences to modulate afferent information. To determine whether this modulation might be based on oscillatory activity, we asked seven subjects to detect a silence that appeared randomly in a rhythmic auditory sequence, counting the number of omissions ("count" task), or responding to each omission with a right index finger extension ("move" task). Despite the absence of physical stimuli, these tasks induced a 'non-phase-locked' gamma oscillation in temporal-parietal areas, providing evidence of intrinsically generated oscillatory activity during top-down processing. This oscillation is probably related to the local neural activation that takes place during the process of stimulus detection, involving the functional comparison between the tones and the absence of stimuli as well as the auditory echoic memory processes. The amplitude of the gamma oscillations was reduced with the repetition of the tasks. Moreover, it correlated positively with the number of correctly detected omissions and negatively with the reaction time. These findings indicate that these oscillations, like others described, may be modulated by attentional processes. In summary, our findings support the active and adaptive concept of brain function that has emerged over recent years, suggesting that the match of sensory information with memory contents generates gamma oscillations.

  9. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    Science.gov (United States)

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Intra- and Inter-islet Synchronization of Metabolically Driven Insulin Secretion

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    Insulin secretion from pancreatic beta-cells is pulsatile with a period of 5-10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin pro. le it is necessary that the insulin secretion from individual beta......-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible...... mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver...

  11. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    Science.gov (United States)

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  12. Phenomenology of coupled nonlinear oscillators

    Science.gov (United States)

    Estevez-Rams, E.; Estevez-Moya, D.; Aragón-Fernández, B.

    2018-02-01

    A recently introduced model of coupled nonlinear oscillators in a ring is revisited in terms of its information processing capabilities. The use of Lempel-Ziv based entropic measures allows to study thoroughly the complex patterns appearing in the system for different values of the control parameters. Such behaviors, resembling cellular automata, have been characterized both spatially and temporally. Information distance is used to study the stability of the system to perturbations in the initial conditions and in the control parameters. The latter is not an issue in cellular automata theory, where the rules form a numerable set, contrary to the continuous nature of the parameter space in the system studied in this contribution. The variation in the density of the digits, as a function of time is also studied. Local transitions in the control parameter space are also discussed.

  13. Optimal oscillation-center transformations

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1984-08-01

    A variational principle is proposed for defining that canonical transformation, continuously connected with the identity transformation, which minimizes the residual, coordinate-dependent part of the new Hamiltonian. The principle is based on minimization of the mean-square generalized force. The transformation reduces to the action-angle transformation in that part of the phase space of an integrable system where the orbit topology is that of the unperturbed system, or on primary KAM surfaces. General arguments in favor of this definition are given, based on Galilean invariance, decay of the Fourier spectrum, and its ability to include external fields or inhomogeneous systems. The optimal oscillation-center transformation for the physical pendulum, or particle in a sinusoidal potential, is constructed

  14. Oscillating spin-2 dark matter

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti; Urban, Federico R.

    2018-01-01

    The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.

  15. Quantum wormholes and harmonic oscillators

    Science.gov (United States)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  16. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  17. Oscillating and rotating sine-Gordon system

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending on...... to a Mathieu equation explaining the excitation....

  18. Phase Multistability in Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga

    2003-01-01

    along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...

  19. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/pram/070/06/1175-1198 ... Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. ... Combined theories are used to explore and compare three types of semirandom networks for their efficacy in synchronizing oscillators.

  20. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...