WorldWideScience

Sample records for gamma irradiation increases

  1. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  2. Economics of gamma irradiation processing

    International Nuclear Information System (INIS)

    Tani, Toshio

    1980-01-01

    The gamma-ray irradiation business started at the Takasaki Laboratory of Japan Atomic Energy Research Institute. The irradiation facilities were constructed thereafter at various sites. The facilities must accept various types of irradiation, and must be constructed as multi-purpose facilities. The cost of irradiation consists of the cost of gamma sources, construction expense, personnel expense, management expense, and bank interest. Most of the expenses are considered to be fixed expense, and the amount of irradiation treatment decides the original costs of work. The relation between the irradiation dose and the construction expense shows the larger facility is more economical. The increase of amount of treatment reduces the original cost. The utilization efficiency becomes important when the amount of treatment and the source intensity exceed some values. The principal subjects of gamma-ray irradiation business are the sterilization of medical tools and foods for aseptic animals, the improvement of quality of plastic goods, and the irradiation of foods. Among them, the most important subject is the sterilization of medical tools. The cost of gamma irradiation per m 3 in still more expensive than that by ethylene oxide gas sterilization. However, the demand of gamma-ray irradiation is increasing. For the improvement of quality of plastic goods, electron irradiation is more favourable than the gamma irradiation. In near future, the economical balance of gamma irradiation can be achieved. (Kato, T.)

  3. Gamma irradiation increase the sensitivity of Salmonella to antibiotics

    International Nuclear Information System (INIS)

    Ben Miloud, Najla; Barkallah, Insaf

    2008-01-01

    In order to study the effect of ionizing radiation on the resistance of Salmonella to antibiotics, four strains of Salmonella were isolated from foods, The different strains used in the present study are (S. Hadar isolate 287, S. Hadar isolate 63, S. Cerro isolate 291, S. Zanzibar isolate 1103), antibiogram analyses were made to test the in vitro-sensitivity of irradiated Salmonella isolates to different antibiotics.The analyse of Control and exposed antibiograms showed that gamma radiation have increased the sensitivity of Salmonella isolates to Cefalotin, Chloramphenicol, Nalidixic acid, Spiramycin and Gentamycin excepted S. Hadar isolate 287 that was resistant to Cefalotin and became sensitive after irradiation. Statistical analyses showed that the effect of different irradiation dose treatment on the antibiotic sensitivity is increasingly significant. The irradiation didn't induce modifications of the sensitivity to other antibiotics,probably because of their nature, of their penetration mode inside the cell or their action way

  4. Post harvest changes gamma-irradiated banana Prata

    International Nuclear Information System (INIS)

    Vilas Boas, E.V. de; Chitarra, A.B.; Chitarra, M.I.F.

    1996-01-01

    The effect of the gamma-irradiation was evaluated at 0.25 and 0.50 kGy, on the development of peel coloration, CO 2 and ethylene evolution, conversion of starch to sugars, pulp-to-peel ratio, pectic solubilization and activities of enzymes of the cell wall, pectin methylesterase (PME), and polygalacturonase (PG), during maturation of 'Prata' bananas. The gamma-irradiation did not affect the normal colour development of the fruits. An increase in the ethylene peak and a decrease in the CO 2 peak was observed. The gamma-irradiation did not affect the degradation of starch, while a delay in soluble sugar accumulation was noted on the 6 and 7 colour grades. The fruits subjected to 0.25 kGy had the highest increase in the pulp-to-peel relation, beginning with colour grade 5, due to a possible stress effect of that dose. An increase of pectin solubilization was observed. Higher PME activities were exhibited by irradiated fruits, although the gamma-irradiation suppressed the PG activity throughout the maturation period. The gamma-irradiation did not extend the post-harvest life of 'Prata' bananas. (author) [pt

  5. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  6. Gamma-irradiation of tomatoes

    International Nuclear Information System (INIS)

    Tencheva, S.; Todorov, S.

    1975-01-01

    The influence of gamma-ray on tomatoes picked in a pink-red ripening stage, good for consumption, is studied. For that purpose tomatoes of ''Pioneer 2'' variety packed in perforated 500 g plastic bags were irradiated on a gamma device (Cobalt-60) at a dose power of 1900 rad/min with doses 200 or 300 krad. Samples were stored after irradiation at room temperature (20 - 22sup(o)C). Microbiological studies demonstrated that 44 resp. 99.96 per cent of the initial number of microorganisms was destroyed after irradiation with 200 resp. 300 krad. The time required for the number of microorganisms to be restored was accordingly increased. Irradiation delayed tomato ripening by 4 to 6 days, demonstrable by the reduced content of the basic staining substances - carotene and licopine. Immediately after irradiation the ascorbic acid content was reduced by an average of 13 per cent. After 18 days the amount of ascorbic acid in irradiated tomatoes was increased to a higher than the starting level, this is attributed to reductone formation during irradiation. The elevated total sugar content shown to be invert sugar was due to further tomato ripening. (Ch.K.)

  7. Physicochemical properties of gamma-irradiated soybeans

    International Nuclear Information System (INIS)

    Lee, H.J.; Kim, J.O.; Yook, H.S.; Byun, M.W.

    1996-01-01

    Some physicochemical properties of gamma-irradiated soybeans (0-20 kCy) were investigated. Proximate components, fatty acid compositions and minerals of the soybeans irradiated at 2.5 - 20 kGy shrived no difference from the nonirradiated control. Irradiation doses above 10 kGy and long term storage caused decrease in extractable phenols and phytate content, whereas increases in acid value and organic acid content. The total amino acids content of the soybeans irradiated up to 10 kGy was not changed as compared with the nonirradiated control. Sulfur-containing amino acids, however, were changed by 10 and 20 kGy irradiaton. Gamma irradiation and long term storage caused minor changes in the color attributes of soybeans. Hunter's 'L' (lightness) and 'b' (yellowness) values were decreased whereas 'a' (redness) value was increased with increasing dose levels and the elapse of the storage period

  8. Effect of gamma irradiation on storability of Syrian walnut

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Technology

    2001-12-01

    Walnut fruits of Baladi variety were irradiated with 0, 0.5, 1.0, 1.5 and 2.0 kGy of gamma irradiation. The irradiated and unirradiated fruits were stored at room temperature (15 to 18 Centigrade) and at a relative humidity of 50 to 70%. Fungal load, proximate composition, chemical changes and sensory properties of nuts were evaluated immediately after irradiation, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the fungal load. Used doses did not cause any significant change in proximate composition of walnuts. Immediately after irradiation, gamma irradiation increased total acidity and decreased iodine value and the volatile basic nitrogen (VBN). whereas, after 12 months of storage, gamma irradiation decreased total acidity and peroxide value and increased iodine value and (VBN). Immediately after irradiation no significant differences were observed between irradiated and non-irradiated samples in flavor and aroma. Whereas, after 12 months of storage higher doses (1.5 and 2.0 kGy) had a negative effect on sensory characteristics. (author)

  9. Effect of gamma irradiation on storability of Syrian walnut

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2002-01-01

    Walnut fruits of Baladi variety were irradiated with 0, 0.5, 1.0, 1.5 and 2.0 kGy of gamma irradiation. The irradiated and unirradiated fruits were stored at room temperature (15 to 18 Centigrade) and at a relative humidity of 50 to 70%. Fungal load, proximate composition, chemical changes and sensory properties of nuts were evaluated immediately after irradiation, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the fungal load. Used doses did not cause any significant change in proximate composition of walnuts. Immediately after irradiation, gamma irradiation increased total acidity and decreased iodine value and the volatile basic nitrogen (VBN). whereas, after 12 months of storage, gamma irradiation decreased total acidity and peroxide value and increased iodine value and (VBN). Immediately after irradiation no significant differences were observed between irradiated and non-irradiated samples in flavor and aroma. Whereas, after 12 months of storage higher doses (1.5 and 2.0 kGy) had a negative effect on sensory characteristics. (author)

  10. Keeping the quality of cows' butter by gamma-irradiation

    International Nuclear Information System (INIS)

    Rady, A.H.; Badr, H.M.

    2003-01-01

    This investigation aims to study the use of gamma irradiation for keeping the quality of cows' butter. Fresh butter samples were exposed to gamma irradiation at doses of 0, 2.5 and 5 kGy followed by refrigerated storage and the effects of these treatments on the microbiological aspects and lipid characteristics of butter samples were studied. Moreover, fatty acid profiles and unsaponifiable matter constituents were determined by gas chromatographic analysis, while the stability of butter was determined by rancimat. The results indicated that gamma irradiation at 2.5 kGy dose reduced the counts of total bacteria, lipolytic bacteria, coliforms, molds and yeasts, however, these counts gradually increased during cold storage. Also irradiation at 5 kGy dose greatly reduced the total bacterial count which gradually increased upon storage, while completely eliminated the Other determined microorganisms. Irradiation treatments increased the acid value and peroxide value of butter, while the iodine number was not altered. Moreover, gas chromatographic analysis showed that gamma irradiation slightly increased the total volatile fatty acids, total saturated fatty acids and total hydrocarbons, while slightly decreased the total unsaturated fatty acids and total sterols. In addition, irradiation of butter decreased its stability as determined by rancimat and upon storage of both irradiated and non irradiated butter samples, the acid value gradually increased, while a flexuous changes in the peroxide value were observed. The present study proved that 2.5 and 5 kGy gamma irradiation doses could keep the quality of cows' butter and increased its shelf life at 4 +/- 1degreeC for 8 and 12 weeks as compared to 4 weeks for non irradiated butter (based on the visual appearance of mold growth on the surface of samples) without any effects on its sensory properties [es

  11. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  12. DNA-repair after irradiation of cells with gamma-rays and neutrons

    International Nuclear Information System (INIS)

    Altmann, H.

    1975-11-01

    The structural alterations of calf thymus DNA produced by neutron or gamma irradiation were observed by absorption spectra, sedimentation rate and viscosity measurements. Mixed neutron-gamma irradiation produced fewer single and double strand breaks compared with pure gamma irradiation. RBE-values for mixed neutron-gamma radiation were less than 1, and DNA damage decreased with increasing neutron dose rate. Repair processes of DNA occuring after irradiation were measured in mouse spleen suspensions and human lymphocytes using autoradiographic methods and gradient centrifugations. The number of labelled cells was smaller after mixed neutron-gamma irradiation than after gamma irradiation. The rejoining of strand breaks in alkaline and neutral sucrose was more efficient after gamma irradiation than after mixed neutron-gamma irradiation. Finally, the effect of detergents Tween 80 and Nonident P40 on unscheduled DNA synthesis was studied by autoradiography after mixed neutron-gamma irradiation (Dn=5 krad). The results showed that the DNA synthesis was inhibited by detergent solutions of 0.002%

  13. Effects of Acute Gamma Irradiation on Amaryllis Orange Bio gamma

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Shakinah Salleh; Shuhaimi Shamsuddin; Suhaimi Musa; Affrida Abu Hassan

    2016-01-01

    Ornamental and landscaping plants have their own demand. Color variations, shape and flower shelf life are among the important value-added characters in improvement of new varieties of ornamental plants. Mutation induction using ionizing radiation is an alternative way for obtaining plant with desirable traits. Improvement of ornamental plant Amaryllis 'Orange Bio gamma' was carried out by exposing bulbs with gamma rays at dose 0, 10, 15, 20, 25, 30, 40 and 50 Gy using Bio Beam GM8000 gamma irradiation chamber at the Malaysian Nuclear Agency. Effect of radiation on the growth of bulbs was observed. Data on shoot and root length was recorded after 6 weeks. From the observation, the increasing dose has caused a reduction in shoot length and inhibited the root production. This paper will discuss the effects of acute gamma irradiation on the plant morphology. The result and observation obtained is useful for future work on lily improvement and will be included into Bio Beam GM8000 irradiation database. (author)

  14. Improvement of rice starch by gamma irradiation

    International Nuclear Information System (INIS)

    Duan Zhiying; Wu Dianxing; Shen Shengquan; Han Juanying; Xia Yingwu

    2003-01-01

    Three types of rice cultivars, Indica, Japonica and hybrid rice, with similar intermediate apparent amylose content (AAC) as well as early Indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physico-chemical properties and starch granule structure. Four major parameters of RVA profile, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), setback viscosity (SBV) and consistence viscosity (CSV) were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in alkali spreading value (ASV) were detected after irradiation, but the peak time (PKT) were reduced with the dose level. Gel consistency (GC) were significantly increased in the tested cultivars, especially in the high AAC Indica rice, suggesting that it is promising to use gamma irradiation to improve eating and cooking quality of rice

  15. The improvement of corn starch isolation process by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.W.; Kang, I.J.; Kwon, J.H.; Lee, S.J.; Kim, S.K.

    1995-01-01

    Gamma irradiation was applied to non-glutinous and glutinous corns for improving starch isolation process. No significant changes in proximate composition of corn grains were observed by gamma irradiation. Irradiation at 1 and 5 kGy was effective for sterilizing all contaminated microorganisms of non-glutinous and glutinous corns, respectively. The moisture-uptake rate constants were increased in proportional to the steeping temperature and applied irradiation dose level. The irradiation efficacy on water absorption properties was also recognized in the corns stored for six months at room temperature. The combined use of gamma irradiation with sulfur dioxide solution was very effective for reducing steeping time. The starch yield gradually increased as irradiation dose levels increased. At 2 kGy, the sarch yield of non-glutinous and glutinous corns increased by 38% and 27%, respectively. No significant difference in Hunter's color value was observed between the starches isolated from nonirradiated and irradiated corn grains

  16. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    Directory of Open Access Journals (Sweden)

    A. Tayel

    2015-03-01

    Full Text Available The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications.

  17. Effect of gamma irradiation on storability of apples (Malus domestica L.)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M [Atomic Energy Commission (AECS), Dept. of Radiation Agriculture, Damascus (Syrian Arab Republic)

    1997-12-01

    The effects of gamma irradiation on storability of two main apple varieties in Syria, Golden Delicious and Starking, were investigated. Fruits were irradiated with 0, 0.5, 1, and 1.5 kGy and combined irradiation with 1 kGy after packaging the fruits with polyethylene or paper bags. Irradiated and unirradiated fruits were stored at 1 to 2 C deg and 80 to 90% Rh. Weight loss and spoilage were evaluated throughout the different storage periods. Firmness, coloration and pH values were estimated immediately after irradiation. The results showed that in both varieties, gamma irradiation increased the weight loss after 45 days of storage in the 1995, but not in the 1996 season. After 180 days of storage gamma irradiation had different effects on weight loss depending on the season and variety, and increased the fungal spoilage. Application of gamma irradiation prevented the growth of Aspergillus niger and the formation of skin scald in Golden Delicious fruits. Immediately after treatment, gamma irradiation increased the softening of fruits, changed their colour from green to yellow and decreased the pH value of the juice. Combined treatments decreased the rate of weight loss and skin scald in Golden Delicious fruits and increased the fungal spoilage. (author)

  18. Gamma Irradiation does not Cause Carcinogenesis of Irradiated Herbs

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch; Eamsiri, Jarurut; Pongpat, Suchada

    2009-07-01

    Full text: Microbial contamination of medicinal herbs can be effectively reduced by gamma irradiation. Since irradiation may cause carcinogenicity of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on carcinogenicity. The herbs studied were Pueraria candollei Grah., Curcuma longa Linn. Zingiber montanum, Senna alexandrina P. Miller, Eurycoma Longifolia Jack, Gymnostema pentaphylum Makino, Ginkgo biloba, Houttuynia cordata T., Andrographis paniculata, Thunbergia laurifolia L., Garcinia atroviridis G., and Cinnamomum verum J.S.Presl. The results showed that gamma irradiation at the dose of 10 and 25 kGy did not cause carcinogenicity of the irradiated herbs

  19. Effect of gamma irradiation on storability of apples (Malus Domestica L.)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2000-01-01

    The aim of this study was to investigate the effect of gamma irradiation on storability of the two main apple varieties, Golden Delicious and Starking, in Syria. The experiments were performed in 1995 and 1996. Fruits were irradiated with 0, 0.5, 1.0 and 1,5 kGy. Irradiated and unirradiated fruits were stored at 1 to 2 Centigrade and 80 to 90% Rh. Weight loss and spoilage due to physiological disorders and fungal diseases were evaluated throughout the different storage periods. firmness, coloration and Ph values were estimated immediately after irradiation. The results showed that, in both varieties, gamma irradiation increased the weight loss after 45 days of storage in apples gathered in 1995 but not in the 1996 season. After 180 days of storage, gamma irradiation had different effects on weight loss depending on the growing year and variety, and increased fungal spoilage. Application of gamma irradiation prevented the growth of Aspergillus niger and the formation of skin scald in 'Golden Delicious' fruits. Immediately after treatment, gamma irradiation increased the softening of fruits, changed their color from green to yellow and decreased the Ph value of the juice. (author)

  20. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  1. Effect of gamma irradiation on storability of strawberry (Fragaria sp)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M; Farah, S [Atomic Energy Commission, Dept. of Agriculture, Damascus (Syrian Arab Republic)

    1998-02-01

    Despite the increased production of strawberry in Syria, the storability and marketability of fruits were not well studied. The objectives of this study were to investigate the effect of gamma irradiation on storability of Senga sengana strawberry produced in Syria and the effect of gamma irradiation on fungal sp. i.e. Botrytis; Penicillium; Rhizopus. The fruits were treated with 1 , 2 and 3 KGy of gamma rays. Treated and untreated fruits were stored at 2 to 4 centigrade and 80 to 90 % relative humidity (RH). In order to investigate their marketability, the fruits where held at room temperature (25 to 30 centigrade). Weight loss, microbial decay, and total loss, juice production, pH, total soluble solids of the juice and organoleptic qualities were evaluated throughout the different storage and marketing periods. The results indicate that gamma irradiation decreased the microbial decay and increased the storability and marketability of fruits by 50 and 100% after using 2 and 3 kGy, respectively. D10 were 1.8 and 2.4 for Botrytis and Rhizopus respectively. One day after irradiation total soluble solids and its pH values were increased. Fourteen days later, irradiated fruits produced more juice with higher pH, but total soluble solids were less. Gamma irradiation did not have an effect on aroma and colour of fruits, whereas, 3 kGy of gamma irradiation had an adverse negative effect on taste. (author)

  2. Tolerance of edible flowers to gamma irradiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H.

    2011-01-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  3. Tolerance of edible flowers to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  4. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1980-01-01

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C 6 /C 1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14 C in carbon dioxide from glucose -1- 14 C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  5. Differential androgenesis in gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihyang; Yoon, Yongdal [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2002-07-01

    The Leydig cells of the testis account for at least 75% of the total testosterone produced in the normal adult male. Whereas the production of estrogen from androgen is catalyzed by aromatase cytochrome P450, which is found in many tissues, including gonad, brain, adipose tissue, bone, and heart. The gamma-irradiation causes the impairment of spermatogenesis and steroidogenesis in male mice. The present study was performed to analyze changes in testosterone concentrations and expression of steroidogenic enzyme of mice after whole body gamma-irradiation. Eight-week-old male ICR mice were irradiated with 6.5 or 10 Gy. At days 1, 2, 3, 4, and 5 after irradiation, testes were removed and processed for paraffin sections and isolation of mRNA. We calculated the gonad index from body and testis weight, and checked the testis volume. Hormonal analysis was performed by means of radioimmunoassay (RIA) in serum and intratesticular fluid. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the expression kinetics of the apoptotic gene and the cytochrome P450 aromatase gene after irradiation. In gamma-irradiated mice, the body weight reduced in comparison to that of the control group. Therefore, gonad indices increased. The testosterone concentrations in serum and intratesticular fluid were significantly reduced. RT- PCR data represented that the expression of Fas, Fas ligand, and aromatase cytochrome P450 showed the specific patterns against control groups. These results indicated that gamma- irradiation of adult mice induced the alteration of androgenesis and suggested that might counteract the spermatogenesis.

  6. Borosilicate glass for gamma irradiation fields

    Science.gov (United States)

    Baydogan, N.; Tugrul, A. B.

    2012-11-01

    Four different types of silicate glass specimens were irradiated with gamma radiation using a Co-60 radioisotope. Glass specimens, with four different chemical compositions, were exposed to neutron and mixed neutron/gamma doses in the central thimble and tangential beam tube of the nuclear research reactor. Optical variations were determined in accordance with standardisation concept. Changes in the direct solar absorbance (αe) of borosilicate glass were examined using the increase in gamma absorbed dose, and results were compared with the changes in the direct solar absorbance of the three different type silicate glass specimens. Solar absorption decreased due to decrease of penetration with absorbed dose. αe of borosilicate increased considerably when compared with other glass types. Changes in optical density were evaluated as an approach to create dose estimation. Mixed/thermal neutron irradiation on glass caused to increse αe.

  7. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  8. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  9. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo [Hokkaido Univ., Hakodate (Japan). Faculty of Fisheries; Hayashi, Toru; Yasumoto, Kyoden

    1990-10-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author).

  10. INCREASING SALT TOLERANCE OF CHICKPEA (CICER ARIETINUM) PLANTS BY INTERACTION EFFECTS OF GAMMA IRRADIATION AND GIBBERELLIC ACID

    International Nuclear Information System (INIS)

    2007-01-01

    The effect of gamma radiation on growth, photosynthetic pigments and some of the antioxidant enzymes of chickpea (Cicer arietinum L.) seeds were investigated. After irradiation with different doses of gamma radiation (20 and 40 Gy), seeds were soaked for 24 hours in either GA 3 , NaCl solution or in a mixture of both. NaCl induced reduction in growth as well as decrease in photosynthetic pigment content of the produced seedlings. However, GA 3 caused amelioration in growth inhibition and an increase in the pigment contents. Irradiated chickpea seeds treated with GA 3 evolved defence antioxidant mechanisms to combat the danger of salt stress by increasing the superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) activities while malonaldehyde (MDA) contents were decreased

  11. Termite feeding preference to four wood species after gamma irradiation

    International Nuclear Information System (INIS)

    Katsumata, N.; Yoshimura, T.; Tsunoda, K.; Imamura, Y.

    2007-01-01

    The effect of gamma irradiation at 100 kGy and at lower levels on termite resistance was examined in the laboratory by no-choice and choice feeding termite tests (Coptotermes formosanus Shiraki) using four wood species: sapwood of Cryptomeria japonica D. Don, and heartwoods of Pseudotsuga menziesii (Mirbel) Franco, Larix kaempferi (Lambert) Carriere, and Chamaecyparis obtusa Endl. The wood consumption rates in C. japonica and P. menziesii specimens were likely to increase with increases in gamma-irradiation levels, whereas little effect of gamma irradiation was seen in L. kaempferi and C. obtusa. Similar results were obtained in the two-choice test. The current results indicated that in the two-choice test with C. formosanus, 100-kGy-irradiated C. japonica and P. menziesii, which are not rich in antitermite substances, were eaten more than other wood samples with or without gamma irradiation. However, only C. japonica showed significant difference in termite feeding activity. The mass loss in 100-kGy-irradiated C. japonica was significantly higher in the multichoice test

  12. Structural evolution of defective graphene under heat treatment and gamma irradiation

    Science.gov (United States)

    Zhang, Yifei; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Zhao, Lihuan; Li, Jing; Jing, Miaolei

    2018-03-01

    We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp3 to sp2. Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 Å and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.

  13. Studies on the influences of. gamma. -ray irradiation upon food additives, (6). Radiolysis of monosodium glutamate due to. gamma. -ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, M [Shimonoseki Univ. of Fisheries, Yamaguchi (Japan); Gohya, Y; Ishio, S

    1981-08-01

    The effect of ..gamma..-ray irradiation on monosodium glutamate (MSG) in aqueous solution and in ''kamaboko'' was investigated to evaluate the rate of decomposition of MSG and to elucidate the safety of the decomposed products, under the concentration of 106.9 mmol/l aqueous solution and 1% content of MSG in ''kamaboko''. In aqueous solution, MSG was decomposed by ..gamma..-ray irradiation, and G value was estimated to be 1.24. The decomposition of MSG resulted from deamination reaction was estimated to be 40% of the total decomposition. Glutamic acid content decreased as the dose of ..gamma..-ray increased in MSG-enriched ''kamaboko'', while it increased as the dose of ..gamma..-ray increased in MSG-free ''kamaboko''. Glutamic acid was liberated from the protein in ''kamaboko'', therefore the apparent decomposition rate of MSG in ''kamaboko'' was regarded as lower than actual.

  14. Gamma irradiation-induced variation in carrots (Daucus carota L.)

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Simon, P.W.

    1996-01-01

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue cultures, were exposed to low doses of gamma irradiation. Higher doses reduced M1 plant size by 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M2 families. Less variation was observed in total carotene content and none was seen in sugar type (reducing vs. non reducing sugars). Induced variation in root color and root shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M2 somaclonal variation. Average root weight of M2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment

  15. Gamma irradiation induced variation in carrots (Daucus Carota L.)

    International Nuclear Information System (INIS)

    Al-Safady, B.; Simon, P.W.

    1999-01-01

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M 1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue culture, were exposed to low doses of gamma irradiation. Higher doses reduced M 1 plant size by > 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M 1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M 2 families. Less variation was observed in total carotene content and none was seen in sugar type [reducing vs. non reducing sugars]. Induced variation in root color and rot shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M 2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M 2 somaclonal variation. Average root weight of M 2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment (Author)

  16. Study on the physiological activities of gamma-irradiated seafood cooking drips

    International Nuclear Information System (INIS)

    Jo, Eu Ri; Kim, Yeon Joo; Choi, Jong Il; Sung, Nak Yun; Jung, Pil Moon; Kim, Jae Hun; Song, Beom Seok; Yoon, Yo Han; Lee, Ju Woon; Lee, Ju Yeoun

    2010-01-01

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lost of proteins, carbohydrates, and other functional materials. This study was conducted to investigate the effect of gamma irradiation on the biological activities of seafood cooking drips. When the cooking drips of Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus were irradiated, the antioxidant activities, whitening effect, and angiotensin I converting enzyme inhibition activity of the ethanol extract from seafood cooking drips were all increased by gamma irradiation. This was because of the increased extraction efficiency of available compounds by irradiation. These results suggested that the seafood cooking drips, wasted as by-products, can be used as functional compounds with gamma irradiation treatment

  17. Study on the physiological activities of gamma-irradiated seafood cooking drips

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Eu Ri; Kim, Yeon Joo; Choi, Jong Il; Sung, Nak Yun; Jung, Pil Moon; Kim, Jae Hun; Song, Beom Seok; Yoon, Yo Han; Lee, Ju Woon [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Ju Yeoun [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-03-15

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lost of proteins, carbohydrates, and other functional materials. This study was conducted to investigate the effect of gamma irradiation on the biological activities of seafood cooking drips. When the cooking drips of Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus were irradiated, the antioxidant activities, whitening effect, and angiotensin I converting enzyme inhibition activity of the ethanol extract from seafood cooking drips were all increased by gamma irradiation. This was because of the increased extraction efficiency of available compounds by irradiation. These results suggested that the seafood cooking drips, wasted as by-products, can be used as functional compounds with gamma irradiation treatment.

  18. Modulation of Enzymatic Activities of Dual Functional Peroxiredoxin by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Park, Chul Hong; Chung, Byung Yeoup

    2012-01-01

    Recently, enzymes have frequently been used as catalysts in various bio-industrial, commercial, and pharmaceutical applications, because they are more stable, more efficient, and less toxic than the synthetic catalysts. However, one of their major disadvantages is their low thermostability, which leads the researchers to develop new forms of industrially important enzymes with increased resistance to inactivation and aggregation. This study describes a strategy for modifying the molecular chaperone activity of peroxiredoxin (Prx) by using gamma irradiation. Prxs are a ubiquitous family of antioxidant enzymes. Upon oxidation of their peroxidatic Cys, the molecules undergo a structural conversion from a low-molecular-weight (LMW) species acting as a peroxidase to a high-molecular-weight (HMW) complex functioning as a chaperone. In the present study, we examined the effect of gamma irradiation on PP1084 with respect to its protein structure and enzymatic function. The use of gamma irradiation as a physical treatment can increase the cohesive strength of the protein by forming cross-links. The aims of the present work were (1) to improve the chaperone activity of PP1084 by gamma irradiation, (2) to identify the 'optimal' intensity of gamma irradiation, and (3) to investigate the influence of gamma irradiation on protein hydrophobicity as related to chaperone function. Following PP1084 treatment with 30 kGy gamma irradiation, the PP1084 chaperone activity enhanced by about 3-4-fold compared with nonirradiated PP1084, while the peroxidase activity decreased. Ongoing research efforts are addressing the physical modifications of PP1084 protein by gamma irradiation

  19. Characterization of blends of PP and SBS vulcanized with gamma irradiation

    International Nuclear Information System (INIS)

    Gonzalez, J.; Albano, C.; Candal, M.V.; Ichazo, M.N.; Hernandez, M.

    2005-01-01

    The present work has the objective of analyzing blends of PP with 30 wt% SBS vulcanized with gamma irradiation. In order to do so, SBS was irradiated at 10, 25 and 50 kGy with gamma rays. Results indicate that the gel fraction increases with irradiation dose, varying from 0.3% to 13.0% for the doses employed. Concerning tensile properties, it can be seen that the incorporation of SBS non-irradiated or irradiated decreases Young's modulus, while increasing elongation at break. Respect to thermal studies, it was detected that SBS decreases melting enthalpy of blends, fact that implies a decrease on crystallinity degree, being this effect more noticeable when SBS is irradiated at doses higher than 10 kGy. On the other hand, melting temperature diminishes slightly when adding SBS to PP, but does not show significant variations when SBS is irradiated. PPs MFI decreased with the addition of SBS, being the effect more notorious with irradiation dose. Finally, it can be concluded that SBS can be vulcanized by gamma irradiation, and that the crosslinking degree increases with irradiation dose

  20. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung-Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae-Young; Byung, Yeoup Chung

    2012-01-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  1. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  2. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizong [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2017-01-05

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  3. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  4. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  5. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1998-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  6. Food irradiation: Gamma processing facilities

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1997-01-01

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  7. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  8. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  9. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    International Nuclear Information System (INIS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon

    2009-01-01

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  10. Gamma irradiation influence on physical properties of milk proteins

    International Nuclear Information System (INIS)

    Ciesla, K.; Salmieri, S.; Lacroix, M.; Le Tien, C.

    2004-01-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling

  11. Gamma irradiation influence on physical properties of milk proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ciesla, K. E-mail: kciesla@orange.ichtj.waw.pl; Salmieri, S.; Lacroix, M.; Le Tien, C

    2004-10-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and {beta}-sheets, in particular from increase of {beta}-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  12. Defect formation in oxygen- and boron- implanted MOS structures after gamma irradiation

    CERN Document Server

    Kaschieva, S; Skorupa, W

    2003-01-01

    The effect of gamma irradiation on the interface states of ion-implanted MOS structures is studied by means of the thermally stimulated charge method. 10-keV oxygen- or boron- (O sup + or B sup +) implanted samples are gamma-irradiated with sup 6 sup 0 Co. Gamma irradiation creates electron levels at the SiSiO sub 2 interface of the samples in a different way depending on the type of the previously implanted atoms (O sup + or B sup +). The results demonstrate that the concentration of the shallower levels (in the silicon band gap) of oxygen-implanted samples increases more effectively after gamma irradiation. The same irradiation conditions increase more intensively the concentration of the deeper levels (in the silicon band gap) of boron-implanted samples. (orig.)

  13. Effects of Gamma Irradiation on three Egyptian potato cultivars during storage

    International Nuclear Information System (INIS)

    Gkazy, M.A.; Mahmoud, M.E.; Abd El-Galil, M.I.; Mahmoud, A.A.

    2000-01-01

    The changes in starch, reducing, non reducing, sugars and ascorbic acid (vit. C) content of three important potato cultivars (sponta, Alpha and Diamonta) grown in Egypt which were subjected to gamma irradiation (0,0.5, 1.0 and 2.0 kGy) for sprout inhibition were studied. The results indicated that gamma irradiation had adverse effect on the sprouting of potato tubers during storage at 20-24. Increasing irradiation dose, resulted in a significant increase n rotted percent (5.9-6.6%) for potato cultivars irradiated at 2 kGy and stored for 4 weeks). The sucrose content of non-and irradiated tubers increased considerably during the experimental time. The content was dependent upon irradiation dose, and the maximum sucrose content was observed at dose of 1.0 kGy in tuber stored 4 weeks at 20-24 degree. The sucrose accumulation was accompanied by decrease in starch content in irradiated potato tubers, which suggested that gamma irradiation accelerated the conversion of starch into sucrose and accumulation was not caused by direct chemical reactions but by physiological reactions

  14. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  15. Effect of gamma irradiation on the microbial load and quality characteristics of Baladi cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2001-12-01

    Baladi cheese (manufactured from raw milk) were treated with 0, 1, 2, and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined immediately after irradiation and after 12 months of storage. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased moisture, K + , Ca + , Na + , ash and free fatty acids, and increased protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on sensory characteristics of Baladi cheese. (authors)

  16. Effect of gamma irradiation on the microbial load and quality characteristics of Baladi cheese

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M; Farah, S [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Technology

    2001-12-01

    Baladi cheese (manufactured from raw milk) were treated with 0, 1, 2, and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined immediately after irradiation and after 12 months of storage. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased moisture, K{sup +}, Ca{sup +}, Na{sup +}, ash and free fatty acids, and increased protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on sensory characteristics of Baladi cheese. (authors)

  17. Effect of gamma irradiation on the microbial load and quality characteristics of Baladi cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2003-01-01

    Baladi cheese (manufactured from raw milk) were treated with 0, 1, 2, and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined immediately after irradiation and after 12 months of storage. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased moisture, K + , Ca 2+ , Na + , ash and free fatty acids, and increased protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on sensory characteristics of Baladi cheese. (authors)

  18. Portable gamma-irradiator - a modified model

    International Nuclear Information System (INIS)

    Pandev, I.N.; Christova, M.G.; Stefanov, S.D.; Gentchev, N.V.; Bakardjiev, S.T.; Christov, C.D.; Genov, D.T.

    1983-01-01

    A new modification of a portable gamma-irradiator has been designed with a relatively large irradiation volume, good homogeneity of the gamma field, small overall dimension, light biological shielding, and simple mechanics. It is possible to irradiate materials in two cylindrical volumes (3 l and 6 l) with different dose rates. 137 Cs is used as a radiation source. Depending on application, the irradiator can be charged with various total activities up to 6.66 x 10 14 Bq (18 kCi). The dose rate can be also charged up to the maximum by different positions of the source element. The gamma-irradiator can be used for scientific studies and for industrial purposes. (author)

  19. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-01-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60 cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  20. Effects of gamma-rays irradiation on tracking resistance of organic insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Du, Boxue; Suzuki, Akio; Kobayashi, Shigeo [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1996-04-01

    This paper describes the influence of gamma-rays irradiation on tracking failure of organic insulating materials by use of the IEC Publ.112 method. Tracking resistance of organic insulating materials under wet polluted condition has been studied by many investigators with a test method of the IEC Publ.112. The investigations on irradiation effects on tracking resistance should be enhanced due to the increasing usage of organic insulating materials in the radiation environments. The tracking resistance seems to be affected by gamma-irradiation, but the knowledge on the influence of gamma-irradiation is quite a few and systematic studies are needed. In this paper, modified polyphenylene oxide, polybutylene naphthalate, modified polycarbonate and polybutylene terephthalate which were irradiated in air until 1x10{sup 7}R and 1x10{sup 8}R with dose rate of 10{sup 6}R/hr using {sup 60}Co gamma-source have been employed. The total dose effects on the number of drops to tracking failure, contact angle and charges of scintillation have been studied. As the total doses are increased, the number of drops to tracking failure decreases with polybutylene terephthalate. On the other hand, the number of drops to tracking failure increases with polybutylene naphthalate and modified polycarbonate when the total doses are increased. The effects of gamma-rays irradiation on tracking failure are due to radiation-induced degradation or cross-linking of organic insulating materials. When the organic insulating materials are degraded by gamma-irradiation, the tracking resistance decreases, but for cross-linking type materials, the tracking resistance increases. (author)

  1. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    International Nuclear Information System (INIS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo; Soo Chun, Byeong; Hyun Ahn, Dong; Hwang, Young-Jeong; Kim, Duk-Jin; Kim, Gwang Hoon; Lee, Ju-Woon

    2009-01-01

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  2. Identification of. gamma. -irradiated spices by electron spin resonance (ESR) spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Sadao; Kawamura, Yoko; Saito, Yukio (National Inst. of Hygienic Sciences, Tokyo (Japan))

    1990-12-01

    The electron spin resonance (ESR) spectrometry spectra of white (WP), black (BP) and red (Capsicum annuum L. var. frutescerns L., RP) peppers each had a principal signal with a g-value of 2.0043, and the intensities of the principal signals were increased not only by {gamma}-irradiation but also by heating. Irradiated RP also showed a minor signal -30G from the principal one, and the intensity of the minor signal increased linearly with increasing dose from 10 to 50 kGy. Since the minor signal was observed in RP irradiated at 10 kGy and stored for one year, but did not appear either after heating or after exposure to this signal is unique to {gamma}-irradiated RP and should therefore be useful for the identification of {gamma}-irradiated spices of Capsicum genus, such as paprika and chili pepper. The computer simulation of the ESR spectra suggested that the minor signal should be assigned to methyl radical and the principal signal mainly to a combination of phenoxyl and peroxyl radicals. Such minor signals were found in {gamma}-irradiated allspice and cinnamon among 10 kinds of other spices. (author).

  3. Application of gamma irradiation for the microbiological safety of sliced cheddar cheese

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Song, Beom Seok; Kim, Jae Hun; Choi, Jong Ill; Lee, Ju Woon; Byun, Myung Woo [Radiation Research Center for Innovative Technology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Jo, Cheo Run [Dept. of Animal Science and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of)

    2007-05-15

    This study was conducted to establish the microbiological safety of sliced cheddar cheese with gamma irradiation. Total aerobic bacteria was 2.50 Log CFUg-1 in non-irradiated sample. No viable cells were observed in the gamma-irradiated at 1 kGy and over. D10 value for Listeria monocytogenes and Staphylococcus aureus inoculated in sliced cheddar cheese were 0.64 and 0.54 kGy, respectively. TBARS (2-thiobarbituric acid reactive substances) values were increased as irradiation dose was increased, but there was no significant difference between nonirradiated and irradiated samples at 1 kGy. Sensory evaluation showed there was no significant difference between samples irradiated at 1 kGy and non-irradiated in respect of color, odor, overall acceptability. Theses results indicated that gamma irradiation at 1 kGy was considered to be an effective treatment to ensure the microbiological safety of sliced cheddar cheese with minimal change of sensory, even though further studies should be investigated to reduce the deterioration of sensory quality induced by gamma irradiation.

  4. RADIOPROTECTIVE EFFECT OF LYCOPENE IN GAMMA IRRADIATED ALBINO RATS

    International Nuclear Information System (INIS)

    MOHAMED, M.I.; ALI, S.E.; HAGGAG, A.M.

    2007-01-01

    The present study was designed to explore the radioprotective potential of lycopene in gamma irradiated male rats. Four groups, each of sixteen rats, were assigned as follows: the first was untreated (control group), the second fed on chow diet mixed with 300 mg lycopene/kg diet (lycopene group), the third exposed to 6.5 Gy gamma radiation (irradiated group) and the fourth fed on chow mixed with 300 mg lycopene/kg and exposed to 6.5 Gy gamma radiation (irradiated and treated group). Animals exposed to ionizing radiation experienced decline in their body weights, increased ALT and AST enzymes and decreased serum albumin level. The study also showed decline in hemoglobin, total white blood cells count and blood platelets count. Bone marrow examination revealed profound hypoplasis and reduction of the cellular elements. Histological examination of liver, spleen, testis and intestine showed disruption of normal architecture of these organs. Irradiated and treated animals maintained a more or less steady body weight, and improved serum ALT, AST and albumin in comparison with those irradiated. The results also showed increased hemoglobin, total white blood cells, platelets count and partial improvement of bone marrow cellularity. Lycopene was also capable of partial preservation of normal architecture of liver, spleen, intestine and testis in gamma irradiated group.In conclusion, lycopene seems to be a useful radioprotector probably because of its potent antioxidant property

  5. Gamma-irradiation of wet corn. Microbiological aspects

    International Nuclear Information System (INIS)

    Poisson, Jeanne; Cahagnier, B.

    1973-01-01

    In the course of a survey of several years work on microbiological decontamination and control of wet corn by gamma-irradiation the following factors are studied: inhibiting and selective effect of gamma-irradiation (100 to 500krads) on the microflora of grains; evolution of residual microflora of irradiated wet grains (moisture content about 35%), during storage experiments under ventilated or airtight conditions. Two important points emerge from those studies. The microflora which develops on irradiated sample is much less varied than that of the control sample. The microbial population of an irradiated sample rises up in a few days on a level with the initial one of the control, then goes on increasing while remaining, as a rule, slightly inferior to that of the control placed under the same conditions. This greatly lowers the practical interest of irradiation, which can only be used together with another treatment able to inhibit the quick growth of the residual microflora [fr

  6. Study of gamma irradiation effect on commercial TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bello Lamo, M.P.; Williams, P.; Reece, P.; Lumpkin, G.R.; Sheppard, L.R.

    2014-01-01

    The aim of this work is to understand the effect of gamma irradiation on commercial TiO 2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO 2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO 2 is confirmed by using low and medium gamma irradiation doses. - Highlights: • Gamma irradiated TiO 2 is investigated for photocatalytic water treatment. • By low gamma doses, no change in surface properties is observed. • However, a surface defect is found for gamma irradiated TiO 2 at higher doses. • XPS measurements showed an increase of hydroxyl groups. • That may cause a variation of its adsorption capacity

  7. Increase of onion yield through low dose of gamma irradiation of its seeds

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Wiendl, F.W.; Wiendl, J.A.; Vedovatto, A.; Arthur, V.

    1995-01-01

    The increase of onions' yield could be achieved by the common farmer through the use of nuclear techniques. This report describes the results obtained with the irradiation of onion seeds, with low doses of gamma radiations (Cobalt-60), at doses of 0 (control), 150, 400 and 700 Gy. Beyond the proper onion's variety als use of low dose rates of 13.1, 39.2 and 52.3 Gy per hour were of the great importance during irradiation. The results showed to be promising both in laboratory studies and in the field, resulting in an increase of onions production: A greater number of seedlings, bulbs and a higher yield in weight per hectar were planted. In the field the most promising dose and dose rate to the variety ''Super-X'' were respectively 150 Gy and 13.1 Gy per hour, yielding an 24.9 percent heavier weight of onions than the control. The other tested variety was ''Granex-33'', which did not respond so favorable to irradiation. However, also with this variety we harvested a 2.1 percent heavier weight than its control, if the onion seeds were irradiated with the dose of 700 Gy at a dose rate of 13.1 Gy per hour. (Author)

  8. Change in the enzymatic dual function of the peroxiredoxin protein by gamma irradiation

    International Nuclear Information System (INIS)

    An, Byung Chull; Lee, Seung Sik; Lee, Jae Taek; Park, Chul-Hong; Lee, Sang Yeol; Chung, Byung Yeoup

    2012-01-01

    PP1084 protein was exposed to gamma irradiation ranging from 5 to 500 kGy. Native PAGE showed minor structural changes in PP1084 at 5 kGy, and major structural changes at >15 kGy. Size-exclusion chromatography (SEC) showed the formation of a new shoulder peak when the protein was irradiated with 15 and 30 kGy, and a double peak appeared at 100 kGy. The results of PAGE and SEC imply that PP1084 protein is degraded by gamma irradiation, with simultaneous oligomerization. PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation, and then, decreased in a dose-dependent manner with increasing gamma irradiation. However, the peroxidase activity significantly decreased following exposure to all intensities of gamma irradiation. The improvement of chaperone activity using gamma irradiation might be promoted by the oligomeric structures containing covalently cross-linked amino acids. Consequently, PP1084 modification using gamma irradiation could elevate chaperone activity by about 3–4 folds compared to the non-irradiated protein. - Highlights: ► The structure of PP1084 protein was drastically changed above 15 kGy gamma irradiation. ► PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation. ► PP1084 modification using gamma irradiation could elevate chaperone activity by about 3–4 folds.

  9. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  10. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, T.M.

    2011-01-01

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  11. Pollen-gamma irradiation on pineapple and pollination using irradiated pollen

    International Nuclear Information System (INIS)

    Benega, R.; Cisneros, A.; Martinez, J.; Arias, E.; Yabor, L.; Isidron, M.; Castillo, E.; Fernandez, J.

    1997-01-01

    In order to try to induce haploid plants, pineapple (Ananas comosus (L.) ;err.) pollen grains were gamma-rays irradiated with a Co 60 source at rates of doses from 0 to 300 Gy. The effect of gamma-rays on the generative-nucleus division and vitro pollen viability as well as, seed contents and plantlets obtained after pollinations was analysed. The were reducing in the division frequencies of generative nucleus at all assayed doses. The LD50 was achieved among 200 and 250 Gy. There were not differences on pollen viability in the rates of assayed doses. Seed contents were dose-dependent. The percentages of seed full and seed containing only embryos decreases at increasing of irradiation doses. Contrary effect was observed on the seed empty. Some plantlets regenerated from the different irradiation doses showed phenotypes with small and leaves and short inter nodes

  12. Effect of Gamma Irradiation on The Microbial Load and Quality Characteristics of Baladi Cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2004-01-01

    Baladi cheese (manufactured from raw milk) was treated with 0, 1, 2 and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined Immediately after irradiation and after 12 months of cold storage in brine. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased the the moisture content, Ca++, Na+ , K+, ash and free fatty acids, and increased the protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on the sensory characteristics of Baladi cheese. (authors)

  13. Toxicological safety evaluation of biomolecules and materials transformed by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il Jun; Jeon, Young Eun; Kang, Hyo Jin; Yun, Sung Bok

    2010-01-01

    In the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535 and TA1537, gamma irradiated hyaluronic acid (10 and 50 kGy) did not induce a significant increase in the number of revertant colonies in the presence of S9 metabolic activation system. In chromosomal aberration tests with CHO cells, gamma irradiated hyaluronic acid (10 and 50 kGy) did not result in an increase in the frequency of chromosomal aberrations. In vivo mouse micronucleus assay, gamma irradiated hyaluronic acid (10 and 50 kGy) did not show an increase in the frequency of polychromatic erythrocytes with micronuclei. These results indicate that hyaluronic acids irradiated at 10 and 50 kGy did not show any genotoxic effects under these experimental conditions. In order to evaluate their possible subacute toxicity, the male and female of ICR mouse were given to methanol extract of 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe for three months. During the experimental periods, appearance, behavior, mortality, food and water consumption of rats fed the 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe were not affected compared to the non-irradiated control. Although minor changes in biochemical parameters were observed, they were not dose dependent and not affected by gamma irradiation. These results indicate that 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe did not show any toxic effects under these experimental conditions

  14. Toxicological safety evaluation of biomolecules and materials transformed by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Jun; Jeon, Young Eun; Kang, Hyo Jin; Yun, Sung Bok

    2010-01-15

    In the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535 and TA1537, gamma irradiated hyaluronic acid (10 and 50 kGy) did not induce a significant increase in the number of revertant colonies in the presence of S9 metabolic activation system. In chromosomal aberration tests with CHO cells, gamma irradiated hyaluronic acid (10 and 50 kGy) did not result in an increase in the frequency of chromosomal aberrations. In vivo mouse micronucleus assay, gamma irradiated hyaluronic acid (10 and 50 kGy) did not show an increase in the frequency of polychromatic erythrocytes with micronuclei. These results indicate that hyaluronic acids irradiated at 10 and 50 kGy did not show any genotoxic effects under these experimental conditions. In order to evaluate their possible subacute toxicity, the male and female of ICR mouse were given to methanol extract of 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe for three months. During the experimental periods, appearance, behavior, mortality, food and water consumption of rats fed the 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe were not affected compared to the non-irradiated control. Although minor changes in biochemical parameters were observed, they were not dose dependent and not affected by gamma irradiation. These results indicate that 50 kGy irradiated red ginseng and 20 kGy irradiated water extract of mistletoe did not show any toxic effects under these experimental conditions

  15. Improving smoked herring quality by gamma irradiation

    International Nuclear Information System (INIS)

    Zahran, D.A.; Abd El-Wahab, S.A.; Hendy, B.A.

    2009-01-01

    Smoked herring which is a highly purchasable product in Egypt, was exposed to different gamma irradiation doses (1.5,3.0 and 5.0 kGy) and stored at environmental temperature (12± 2 deg C) until spoilage of the control. Microbiological, chemical and sensory analyses were performed throughout storage to monitor the quality attributes. It is worthy to mention that irradiation reduced the population of bacteria and the effect was more pronounced at the highest dose used (5.0 kGy). At the same time 1.5 kGy completely eliminated staphylococcus aureus (coagulase + ve) and coliforms. By chemical analysis, there was significant decrease in average moisture content by different gamma irradiation doses and storage. Although the average thiobarbituric acid reactive substances (TBARS) increased slightly by γ-irradiation, this increase was highly significant by storage . At the same time there was a significant (p< 0.05)decrease in the average trimethylamine (TMA) value of all irradiated samples compared with unirradiated control, this value increased significantly by storage. interestingly, the average histamine value decreased significantly in all irradiated samples. The sensory analysis revealed a highly significant difference in the average acceptability scores between different irradiation doses used and also by storage. Therefore it could be concluded that the quality of smoked herring during storage at environmental temperature (12 ± 2 deg C) could be improved by using 5.0 kGy γ -irradiation

  16. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    International Nuclear Information System (INIS)

    Li, Bin; Feng, Yi; Qian, Gang; Zhang, Jingcheng; Zhuang, Zhong; Wang, Xianping

    2013-01-01

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  17. Biosolubilization gamma irradiate ion result coal by mould trichoderma sp

    International Nuclear Information System (INIS)

    Pingkan Aditiawati; Dea Indriani Astuti; Irawan Sugoro; Dwiwahju Sasongko

    2011-01-01

    Biosolubilization of coal is process of converting solid coal to liquid fuel/chemicals by mean of microorganism. The aim of this research was to study the effect of gamma rays irradiation with varian doses of irradiation into solubilization of subbituminous coal by Trichoderma sp. The dosage used was 5, 10, and 20 kGy and unirradiated coal as control. The method was submerged culture in MSS+ medium and incubated at room temperature and agitated at 150 rpm for 21 th days. The parameters observed were colonization, pH and biosolubilization product based on absorbance value at λ 250nm and λ 450nm and GC/MS analysis for the best treatment. The results showed that coal biosolubilization could be increased by gamma irradiation. The mould could growth well in medium containing irradiated coal and the medium of pH was decreased after incubation. The biosolubilization was increased but the irradiation dosage of coal didn't affect significantly. The best dose was 20 kGy with product biosolubilization similar to gasoline and solar. Based on the result, the pre-treatment of gamma irradiation on coal has potency to increased biosolubilization. (author)

  18. EPR investigation of some gamma-irradiated medicines

    International Nuclear Information System (INIS)

    Aleksieva, Katerina; Yordanov, Nicola

    2016-01-01

    The results of EPR studies on three medical tablets – Galanthamine, Cytisine and Tribulus terrestris before and after gamma-irradiation are reported. Before irradiation Galanthamine and Cytisine tablets are EPR silent, whereas Tribulus terrestris show a broad singlet line with g factor 2.2084±0.002. The same spectrum is recorded after irradiation. After gamma-sterilization, however, Galanthamine and Cytisine tablets exhibit a typical EPR spectrum due to gamma induced free radicals in lactose used as an excipient. These stable free radicals can be used for identification of radiation processing for a long time after it. Key words: medical tablets, gamma-irradiation, EPR

  19. Gamma Irradiation on Growth and Development of Amorphophallus muelleri Blume.

    Directory of Open Access Journals (Sweden)

    Edi Santosa

    2014-09-01

    Full Text Available ABSTRACT Iles-iles (Amorphophallus muelleri Blume produces apomictic seeds lead to low genetic variation. In order to induce genetic variation, germinated seeds were exposed to Gamma irradiation (Co-60 at doses of 10 to 100 Gy. Seed irradiation was conducted at Center for the Application of Isotope and Irradiation Technology -National Nuclear Energy Agency (CAIRT, Indonesia. Morphology and yield of M1 generation were observed. Results showed that irradiation at a dose of 10 Gy close to LD50 with survival rate 56%. Gamma irradiation at a dose of 10 Gy delayed seeds germination.  Germination rates gradually increased and reached maximum at 4 weeks after planting (WAP for control plants, and 14 WAP of irradiated plants. At 16 WAP, germination rate of 10 Gy irradiated plants was 56% and 84% for those of control plants. Irradiation induced chimera as indicated by short petiole, variegated and abnornal shape of leaflets. Some irradiated plants entered dormancy at 8-10 weeks later than control ones. Prolong vegetative periode lead the plants to produce heavier corms. This study revealed the possibility to induce variation of A. muelleri by using gamma irradition. Keywords: Amorphophallus muelleri, gamma irradiation (Co-60, morphological variation, mutation breeding

  20. Gamma irradiators for radiation processing

    International Nuclear Information System (INIS)

    2006-01-01

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  1. Effect of gamma irradiation on Korean traditional multicolored paintwork

    Science.gov (United States)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  2. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  3. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  4. Effect of gamma irradiation on Korean traditional multicolored paintwork

    International Nuclear Information System (INIS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-01-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe 2 O 3 ), Jangdan (Minium; Pb 3 O 4 ), Whangyun (Crocoite; PbCrO 4 ), and Jidang (Rutile; TiO 2 ), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d’Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong. - Highlights: • Effects of gamma irradiation on the Dancheong were evaluated. • We confirmed that optical and structural properties of Dancheong were maintained. • Irradiation can contribute the

  5. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  6. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  7. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Science.gov (United States)

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  8. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2014-01-01

    Full Text Available Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC, thermal behavior (DSC, wettability (contact angle, cell viability (MTT assay, and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial.

  9. Effect of gamma-ray irradiation on starch in sweet popato roots

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoroki, S.

    1994-01-01

    Starch contents, as well as the size and molecular weight, in sweet potato roots decreased during steerage at 30 degrees C after gamma-ray irradiation, accompanying the increase of sucrose content. No change in the starch and sucrose contents was observed in unirradiated specimens. By microscopy damaged starch granules were observed only in gamma-ray irradiated root. The results suggested that starch was converted into sucrose unirradiated sweet potato roots by the enzymes responsible for starch-sugar interconversion of which the activities were enhanced by gamma-ray irradiation

  10. Treatment of tannery effluent by irradiation. [gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Roszak, W; Pekala, W

    1983-01-01

    Different samples of tannins were exposed to gamma radiation at room temperature. Some of them were aerated during irradiation.In irradiated samples the concentration of phenol and organic substances decreased and their biodegradability increased. Aerated samples had a higher decrease of phenol concentration. (E.G.M.).

  11. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    Science.gov (United States)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension.

  12. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  13. Effects of Gamma Irradiation on Antioxidant, Antimicrobial Activities and Physical Characteristics of Sargassum thunbergii Extract

    International Nuclear Information System (INIS)

    Lee, S.J.; Song, E.J.; Lee, S.Y.

    2010-01-01

    This study was carried out to determine the effect of gamma irradiation (3-20 kGy) on the antioxidant, antimicrobial activities and physical characteristics of Sargassum thunbergii (ST) extracts. When ST powder was treated by gamma irradiation, the yields and total phenolic compounds (TPC) of water extracts were increased, but radical scavenging activities were not changed. When ST extract was irradiated, the TPC and DPPH radical scavenging activities were increased. In addition, gamma irradiation of ST extract decreased viscosity and removed color. These results suggest that gamma irradiation would be a useful method for improving the physical characteristics of ST extract while maintaining native biological activities

  14. Effects of gamma irradiation on wheat quality

    International Nuclear Information System (INIS)

    Ozkaya, B.; Koksel, H.; Ozkaya, H.; Tutluer, H.

    1994-01-01

    Effect of gamma irradiation at the doses of 2.5,5.0,7.5,10.0 and 12.5 kGy on two bread wheat samples (Bezostaya and Gerek) with distinct physical and technological properties was investigated in this study.Irradiation at the levels used had no significant effect on the flour yields of both varieties.No apparent changes were observed in ash,protein and wet gluten contents of the irradiated samples and control.However,as the radiation level was increased the falling number and sedimentation values of the irradiated samples showed a steady decrease.Thiamine and riboflavin contents also decreased significantly with irradiation.Farinograph absorption increased with increasing radiation exposure.However, dough development time,stability and valorimeter values decreased as radiation levels increased.Maximum resistance to extension(Rm), resistance at constant deformation (R 5) and area(A) values of extensograms decreased in both varieties as radiation levels increased

  15. Enhanced mass transfer during solid-liquid extraction of gamma-irradiated red beetroot

    International Nuclear Information System (INIS)

    Nayak, Chetan A.; Chethana, S.; Rastogi, N.K.; Raghavarao, K.S.M.S.

    2006-01-01

    The exposure to gamma-irradiation pretreatment increases cell wall permeabilization, resulting in loss of turgor pressure, which led to the increase of extractability of betanin from red beetroot. The degree of extraction of betanin was investigated using gamma irradiation as a pretreatment prior to the solid-liquid extraction process and compared with control beetroot samples. The beetroot subjected to different doses of gamma irradiation (2.5, 5.0, 7.5, 10.0 kGy) and control was dipped in an acetic acid medium (1% v/v) to extract the betanin. The diffusion coefficients for betanin as well as ionic component were estimated considering Fickian diffusion. The results indicated an increase in the diffusion coefficient of betanin (0.302x10 -9 -0.463x10 -9 m 2 /s) and ionic component (0.248x10 -9 -0.453x10 -9 m 2 /s) as the dose rate increased (from 2.5 to 10.0 kGy). The degradation constant was found to increase (0.050-0.079 min -1 ) with an increase gamma-irradiation doses (2.5-10.0 kGy), indicating lower stability of the betanin as compared to control sample at 65 deg. C

  16. Gamma irradiation of onions and garlic

    International Nuclear Information System (INIS)

    Baraldi, D.

    1975-01-01

    Technological and economic feasibility of gamma irradiation of onions and garlic on an industrial scale are studied. Statistical data on production, consumption, exportation and losses during storage are analyzed. Traditional methods of food preservation are reviewed and gamma irradiation techniques are presented as an alternative to sprout inhibition. Requirements for the irradiation of onions and garlic on a commercial scale including a cost benefit analysis are discussed. Some conclusions are formulated on licensing and prospects

  17. Effect of Gamma Irradiation Doses on Some Chemical Characteristics of Cotton Seed Oil

    International Nuclear Information System (INIS)

    Saleh, O.I.

    2011-01-01

    Cotton Seeds c.v. Giza 85 (Gossypium hirsutum L.) were exposed to gamma irradiation doses of 0.5, 1.0 and 1.5 kGy to improve some chemical characteristics of cotton seed oil i.e. saturated and unsaturated fatty acids, gossypol and βsitosterol that were bound oil. The presented study showed that, the saturated fatty acids; lauric, palmitic and stearic increased when the cotton seeds were exposed to gamma irradiation doses of 0.5 up to 1.5 kGy, On the other hand, arachidic acid content decreased in all the irradiated treatments compared with untreated cotton seed. The unsaturated fatty acid oleic was increased in irradiated cotton seed samples compared with untreated one, while linoleic, the major unsaturated fatty acid decreased in irradiated cotton seed oil than untreated seeds. Gossypol and βsitosterol, bound oil, in irradiated cotton seeds increased gradually with gamma irradiated doses compared with untreated control samples

  18. Gamma scanning of the irradiated HANARO fuels

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  19. Influence of high energy electron irradiation and gamma irradiation on the osmotic resistance of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Moraru, Rodica; Popescu, Alina; Morariu, V. V.

    1998-01-01

    The effects of 5 MeV electrons and of gamma irradiation at 0 deg. C on the osmotic fragility of human erythrocyte membranes are presented. Both electron and gamma radiation in the range 0-400 Gy induced no hemolysis indicating that the membrane modifications due to radiation interaction do not reach a critical point as to cause swelling of the cells and subsequent lysis. The osmotic stress experiments performed after irradiation showed that the gamma irradiated erythrocytes exhibited an almost similar sigmoidal behavior for all irradiation doses, whereas the electron irradiated samples showed a much larger increase in hemolysis degree and, in the case of a given electron dose (100 Gy), the hemolysis was found much smaller than for the control sample (a similar behavior of the erythrocytes was found in the case of microwave irradiation at temperatures under 0 deg. C). Our experimental data suggest that electron radiation and gamma radiation have different impacts on the erythrocyte membrane fluidity, involving, probably, the different rate of energy deposition in the samples and the direct interaction of electrons with the erythrocyte membranes. (authors)

  20. Gamma irradiation devices

    International Nuclear Information System (INIS)

    Foeldiak, Gabor; Stenger, Vilmos.

    1983-01-01

    The main parameters and the preparation procedures of the gamma radiation sources frequently applied for irradiation purposes are discussed. In addition to 60 Co and 137 Cs sources also the nuclear power plants offer further opportunities: spent fuel elements and products of certain (n,γ) reactions can serve as irradiation sources. Laboratory scale equipments, pilot plant facilities for batch or continuous operation, continuous industrial irradiators and special multipurpose, mobile and panorama type facilities are reviewed including those in Canada, USA, India, the Soviet Union, Hungary, UK, Japan and Australia. For irradiator design the source geometry dependence of the spatial distribution of dose rates can be calculated. (V.N.)

  1. Effects of Gamma Irradiation on Ruminal Degradation of Samurai 1 Sweet Sorghum Bagasse

    Directory of Open Access Journals (Sweden)

    T. Wahyono

    2017-06-01

    Full Text Available The purpose of this study was to investigate the influence of gamma irradiation on dry matter, organic matter, and neutral detergent fiber degradability of Samurai 1 sweet sorghum bagasse, to facilitate its utilization in ruminant diets. Sorghum bagasse was obtained from Samurai 1 sorghum stem by-product after juice extraction. Gamma irradiation was carried out in a cobalt-60 irradiator in the Center for the Application of Isotopes and Radiation. Two polyethylene packages of samples were irradiated in gamma cell (Co-60 at doses of 50 and 100 kGy in the presence of air. Treatments were untreated/unirradiated and  50- and 100-kGy gamma irradiation. Sample were incubated in the rumen for periods of 0, 8, 24, 48, and 72 h with in sacco method. The observed parameters were the degradations of dry matter (DM, organic matter (OM, and neutral detergent fiber (NDF. DM, OM and NDF degradation characteristics were also observed. DM degradation of 50 kGy irradiation dose started higher than untreated samples after 24 hours incubation while OM degradation started higher than untreated samples after 48 hours incubation. DM and OM degradation of 100 kGy irradiation started higher than untreated after 8 hours incubation. Gamma irradiation treatment of 50 kGy and 100 kGy could increase NDF degradation on 8 to 72 hours incubation. Irradiation was also capable to increase NDF degradation rate (c fraction and ruminal effective degradation (ED value on Samurai 1 sweet sorghum bagasse. Gamma Irradiation could break down the lignocellulose materials, break β 1,4 branch chain of cellulose and make it easily digested for rumen bacteria. The best dose of gamma irradiation for processing Samurai 1 sweet sorghum bagasse as a fiber source for ruminants was 100 kGy.Received: 10 December 2015; Revised: 10 October 2016; Accepted: 10 October 2016

  2. Effect of gamma irradiation on microbial load, chemical and sensory evaluation of chicken meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2009-01-01

    The effect of gamma irradiation on microbial load, chemical sensory characteristics of chicken meat has been evaluated. Chicken meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Degree Centigrade). Immediately after irradiation, general composition, microbiological and sensory evaluation of chicken meat were done. Microbiological and chemical analysis of chicken meat were evaluated at weekly up to end of the storage period. The results indicated that all doses of gamma irradiation reduced the microbial load, and increased the shelf-life of chicken meat. Total acidity, volatile basic nitrogen (VBN) and lipid oxidation value in chicken meat were not affected by gamma irradiation. Sensory evaluation showed no significant differences between irradiated and un-irradiated chicken meat. (author)

  3. Effect of gamma irradiation on microbial load, chemical and sensory evaluation of chicken meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2008-03-01

    The effect of gamma irradiation on microbial load, chemical sensory characteristics of chicken meat has been evaluated. Chicken meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Degree Centigrade). Immediately after irradiation, general composition, microbiological and sensory evaluation of chicken meat were done. Microbiological and chemical analysis of chicken meat were evaluated at weekly up to end of the storage period. The results indicated that all doses of gamma irradiation reduced the microbial load, and increased the shelf-life of chicken meat. Total acidity, volatile basic nitrogen (VBN) and lipid oxidation value in chicken meat were not affected by gamma irradiation. Sensory evaluation showed no significant differences between irradiated and un-irradiated chicken meat. (author)

  4. Effects of gamma irradiation on the development and reproduction of the greasy cutworm, Agrotis ipsilon (Hufn.

    Directory of Open Access Journals (Sweden)

    H.M. Salem

    2014-01-01

    Full Text Available Three substerilizing doses 50, 100 and 150 Gy of gamma radiation were tested against full – grown male and female pupae or against full-grown male or female pupae of Agrotis ipsilon. The results showed that fecundity of irradiated females crossed with irradiated males was decreased by increasing irradiation dose. The decrease in egg – hatchability % and increase in sterility % induced by gamma radiation were found to be positively correlated with the dose level. The parentage of larval and pupal mortality increased significantly (p ≤ 0.05 with the increase of used doses. In addition, larval and pupal durations were found to be significantly prolonged as a result of gamma- irradiation treatment. In general, the results obtained indicated that the biological action of gamma irradiation against A. ipsilon larvae was more remarkable when both crossed females and males were irradiated followed by irradiated females crossed with non-irradiated males.

  5. Microbiological, physicochemical, and sensory characteristics of gamma-irradiated fresh oysters during storage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Sek; Pak, Jae Nam; Park, Jin Gyu; Han, In Jun; Jung, Pil Mun; Song, Beaom Seok; Choi, Jong Il; Kim, Jae Hun; Byun, Myung Woo; Lee, Ju Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Han, Sang Bae [Food and Risk Standardization Team, KFDA, Seoul (Korea, Republic of)

    2008-05-15

    The microbiological, physicochemical and sensory characteristics of gamma irradiated fresh oysters were evaluated regarding its shelf-life during refrigeration. Non-irradiated fresh oysters began to be putrefied after 14 days, while fresh oysters irradiated with 2 kGy showed 5.54 log CFU∙g-1 even after 28 days. Volatile basic nitrogen (VBN) value increased more rapidly in the non-irradiated sample than the irradiated samples during storage. Especially the VBN value of the non-irradiated sample was eight fold higher then that of the the sample irradiated with 2 kGy. The pH of the non-irradiated fresh oysters significantly decreased during storage while the samples irradiated with doses higher than 2 kGy showed no significant change. Thiobarbituric acid (TBA) value increased in all samples during a storage period, and gamma irradiation accelerated the increase of lipid oxidation. Sensory characteristics of fresh oysters were deteriorated as irradiation doses increased, and sensory scores of the samples irradiated with doses higher than 2 kGy were significantly decreased.

  6. Microbiological, physicochemical, and sensory characteristics of gamma-irradiated fresh oysters during storage

    International Nuclear Information System (INIS)

    Park, Jae Sek; Pak, Jae Nam; Park, Jin Gyu; Han, In Jun; Jung, Pil Mun; Song, Beaom Seok; Choi, Jong Il; Kim, Jae Hun; Byun, Myung Woo; Lee, Ju Woon; Han, Sang Bae

    2008-01-01

    The microbiological, physicochemical and sensory characteristics of gamma irradiated fresh oysters were evaluated regarding its shelf-life during refrigeration. Non-irradiated fresh oysters began to be putrefied after 14 days, while fresh oysters irradiated with 2 kGy showed 5.54 log CFU∙g-1 even after 28 days. Volatile basic nitrogen (VBN) value increased more rapidly in the non-irradiated sample than the irradiated samples during storage. Especially the VBN value of the non-irradiated sample was eight fold higher then that of the the sample irradiated with 2 kGy. The pH of the non-irradiated fresh oysters significantly decreased during storage while the samples irradiated with doses higher than 2 kGy showed no significant change. Thiobarbituric acid (TBA) value increased in all samples during a storage period, and gamma irradiation accelerated the increase of lipid oxidation. Sensory characteristics of fresh oysters were deteriorated as irradiation doses increased, and sensory scores of the samples irradiated with doses higher than 2 kGy were significantly decreased

  7. Gamma irradiation technology for composite materials

    International Nuclear Information System (INIS)

    Romero, Guillermo R; Gonzalez, Maria E.

    2003-01-01

    A composite of sugar cane bagasse and low-density polyethylene was prepared. Gamma -radiation of Cobalt-60 (Co 60 ) and reactive additives were used, to make compatible the lignocellulosic fibers with the polymeric matrix. Gamma-radiation was applied in different stages with different purposes: a) Irradiation of cellulosic fibers treated or not with reactive additive, in presence of air, to produce macro radicals increasing their reactivity during extrusion with polyethylene. A homogeneous and fusible material resulted that can be used as raw material in thermoforming processes with cost in between that of its constitutive elements; b) Irradiation of final products, to produce the cross-linking of polymeric chains. The fibers remain trapped in the cross-linked matrix. A homogeneous and infusible material with high mechanical properties was obtained. (author)

  8. Effect of Gamma irradiation on the Production of Four Species of Some Labiateae Family

    International Nuclear Information System (INIS)

    El-Sharnouby, M.E.

    2013-01-01

    This investigation was carried out on four species of Labiateae family (Sweet basil, Marjoram, Rosemary and Thyme), plants cultured on Taif region in KSA and seeds were exposed to gamma rays treatments at 20, 40, 60 and 80 Gy. The results indicated increase the number of shoots of all labiateae species with control plants after 2 and 4 months (except Rosmary seeds irradiated with 20 Gy of gamma irradiation which produced maximum number of shoots (3.1) after four months from seeds culturing). The highest dose of gamma rays (80 Gy), significantly decreased the average shoot number on Marjoram plants. Exposing to gamma irradiation, the irradiated sweet basil plants with gamma rays at 40 and 60 Gy formed significantly longer shoots after 4 months from culturing compared with the control plants. The high dose of gamma rays (80 Gy), significantly decreased the average of Marjoram shoot length. The Rosmary plants, showed a significant increase in the shoot length with gamma irradiation at 20 Gy which produced (4.0 cm) than other gamma irradiation treatments. Stem diameter and plant dry weight of the Rosmary, Marjoram and Thyme plants were the best on control than other gamma rays treatments after 2 and 4 months respectively. The highest number of leaves percentage (12.2) was recorded with the control of marjoram plants. Most of the irradiation treatments decreased the number of leaves of all labiateae plants except sweet basil plants specially gamma ray at 60 Gy which reached more number of leaves than sweet basil control plants after 4 months from seeds culturing.

  9. Blood biochemical studies on toxicological aspects of dicophane pesticide in gamma irradiated rats

    International Nuclear Information System (INIS)

    Tawfik, S.M.F.

    2003-01-01

    The present work deals with the effect of feeding 150 mg dicophane/ kg, an organochlorine pesticide, and / or 6 Gy whole body gamma irradiation on albino rats which produced several alternations in blood biochemical components. Alkaline phosphatase (AP), cholinesterase (ChE), creatinine and urea were increased significantly for dicophane and or gamma irradiation treatment, while protein level was increased after dicophane treatment and decreased by radiation. On the other hand, serum levels of bilirubin tended to decrease allover the experimental periods. Dicophane feeding caused decrease in cholesterol and glucose levels till 7 and 15 days, respectively, then increased significantly after 30 days, and also significant increase were observed in their levels after dicophane and/ or gamma irradiation treatments

  10. Radiosensitivity of lentil beam (Lens culinaris L.) to gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyu; Ryu, Jaihyunk; Jeong, Sang Wook; Kim, Jin Baek; Kang, Si Young; Kwon, Soon Jae [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-02-15

    We examined damages from gamma-irradiation and determined the optimal gamma ray dose for mutation breeding in lentil (Lens culinaris L.) bean. Four individual lines (L-C, L-2, L-8 and L-9), that have remarkable adaptability in South Korea were gamma-irradiated at doses of 50, 70, 100, 200, 300, 400, and 500 Gy. The germination rate of seed decreased as the dose increased over 50 Gy in all lines. However, LD{sub 50} and RD{sub 50} were different among lines. The median lethal doses (LD50) were approximately 127 (L-C), 74 (L-2), 95 (L-8), and 144 (L-9) Gy. The median reduction doses (RD{sub 50}) for plant height, number of leaves, root length, and flash weight were 156, 176, 150, and 180 Gy for L-C, 253, 198, 127, and 142 Gy for L-2, 188, 175, 200, and 190 Gy for L-8, and 162, 210, 224, and 184 for L-9, respectively. The growth characteristics of the M1 generation decreased as the dose increased over 70 Gy. The optimal doses of gamma irradiation for mutation breeding of lentil were determined to be 70 Gy (L-2, L-8) and 100 Gy (L-C, L-9). We performed the comet assay to observe nuclear DNA damage induced by gamma-irradiation. In comet assay, a clear difference was identified over 100 Gy treatments. With increasing doses of gamma-ray in the range of 50 to 500 Gy, the rate of head DNA was decreased significantly from 97.5% to 81.6%. Tail length was consecutively increased from 1.9 μm to 17.4 μm. Our result provides basic information for construction of mutant pools in lentils.

  11. Radiosensitivity of lentil beam (Lens culinaris L.) to gamma-irradiation

    International Nuclear Information System (INIS)

    Lee, Min Kyu; Ryu, Jaihyunk; Jeong, Sang Wook; Kim, Jin Baek; Kang, Si Young; Kwon, Soon Jae

    2017-01-01

    We examined damages from gamma-irradiation and determined the optimal gamma ray dose for mutation breeding in lentil (Lens culinaris L.) bean. Four individual lines (L-C, L-2, L-8 and L-9), that have remarkable adaptability in South Korea were gamma-irradiated at doses of 50, 70, 100, 200, 300, 400, and 500 Gy. The germination rate of seed decreased as the dose increased over 50 Gy in all lines. However, LD_5_0 and RD_5_0 were different among lines. The median lethal doses (LD50) were approximately 127 (L-C), 74 (L-2), 95 (L-8), and 144 (L-9) Gy. The median reduction doses (RD_5_0) for plant height, number of leaves, root length, and flash weight were 156, 176, 150, and 180 Gy for L-C, 253, 198, 127, and 142 Gy for L-2, 188, 175, 200, and 190 Gy for L-8, and 162, 210, 224, and 184 for L-9, respectively. The growth characteristics of the M1 generation decreased as the dose increased over 70 Gy. The optimal doses of gamma irradiation for mutation breeding of lentil were determined to be 70 Gy (L-2, L-8) and 100 Gy (L-C, L-9). We performed the comet assay to observe nuclear DNA damage induced by gamma-irradiation. In comet assay, a clear difference was identified over 100 Gy treatments. With increasing doses of gamma-ray in the range of 50 to 500 Gy, the rate of head DNA was decreased significantly from 97.5% to 81.6%. Tail length was consecutively increased from 1.9 μm to 17.4 μm. Our result provides basic information for construction of mutant pools in lentils

  12. Effectiveness of gamma ray irradiation and ethyl methane ...

    African Journals Online (AJOL)

    Survival rate and plantlet performance of DNKW001 in gamma ray + EMS 7uM treatment declined profoundly with increasing doses and LD50 was lower (104 Gy) than LD50 in gamma ray irradiation (177 Gy) alone. Variants of plantlets were detected in pre (white streaked leaf and bigger petiole with distorted leaf) and post ...

  13. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  14. Radical unique to gamma-irradiated allspice and cinnamon and its utiliy for detection of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, S. [National Inst. of Hygienic Sciences, Tokyo (Japan); Sugiki, A.; Kawamura, Y.; Murayama, M.; Saito, Y.

    1993-04-15

    Gamma-Irradiation at a practical dose level of allspice and cinnamon generates a principal signal (signal I, g-value: 2.0048 approx 2.0050) and a minor signal (signal II) at 30 G lower field from signal I in the electron spin resonance spectrum. Signal I, which was not increased in red pepper by photo-exposure, was increased in allspice and cinnamon by gamma-irradiation, heating and even photo-exposure. Signal II was generated only by gamma-irradiation, was little influenced by humidity and was stable for a long time. The ESR method with signal II was applicable to detection of allspice and cinnamon irradiated at 5 kGy or more for up to 6 months after irradiation, as well as allspice irradiated at 10 kGy or more and cinnamon at 5 kGy or more for up to a year. However, signal intensities of signal II differed to some extent between allspice and cinnamon, and even between varieties of cinnamon. Signals I and II were both enhanced after extraction with methanol. Since the rate of increase in signal I was obviously distinct from that of signal II, the radicals corresponding to these signals were presumed to be located at different positions of the matrix of the spice. The methanolic extracts did not yield a major component common to the spices giving signal II.

  15. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric (Curcuma longa)

    Energy Technology Data Exchange (ETDEWEB)

    Dhanya, R. [P.G. Department of Botany and Research Centre, Sir Syed College, Taliparamba 670142, Kerala (India); Mishra, B.B. [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Khaleel, K.M., E-mail: khaleelchovva@yahoo.co.in [P.G. Department of Botany and Research Centre, Sir Syed College, Taliparamba 670142, Kerala (India)

    2011-11-15

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric (Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents. - Highlights: > Effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric (Curcuma longa) was studied. > Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. > Curcuminoid content and the volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. > Curcuminoid content was slightly increased by gamma irradiation. > No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  16. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric (Curcuma longa)

    International Nuclear Information System (INIS)

    Dhanya, R.; Mishra, B.B.; Khaleel, K.M.

    2011-01-01

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric (Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents. - Highlights: → Effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric (Curcuma longa) was studied. → Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. → Curcuminoid content and the volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. → Curcuminoid content was slightly increased by gamma irradiation. → No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  17. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  18. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  19. Comparative effect of mutation of Aspergillus oryzae by gamma or ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Nessa, A.

    1994-01-01

    Mutation frequency of Aspergillus oryzae IAM2630 was studied compared with gamma and ultraviolet irradiation. In this study, mutation frequency of morphological changes on survived colonies was increased up to 50% by irradiation of gamma-rays at survival fraction of 10 -3 to 10 -4 on potato-dextrose agar. On the contrary, mutation frequency of ultraviolet was obtained less than 17% at survival fraction of 10 -3 . Mutants with improvement of three-to-five hold production of α-amylase were isolated by irradiation of gamma-rays at 1.2 kGy. However, we could not isolate any mutants of higher production of α-amylase by ultraviolet irradiation. (author)

  20. Comparative effect of mutation of Aspergillus oryzae by gamma or ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Nessa, A. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-08-01

    Mutation frequency of Aspergillus oryzae IAM2630 was studied compared with gamma and ultraviolet irradiation. In this study, mutation frequency of morphological changes on survived colonies was increased up to 50% by irradiation of gamma-rays at survival fraction of 10{sup -3} to 10{sup -4} on potato-dextrose agar. On the contrary, mutation frequency of ultraviolet was obtained less than 17% at survival fraction of 10{sup -3}. Mutants with improvement of three-to-five hold production of {alpha}-amylase were isolated by irradiation of gamma-rays at 1.2 kGy. However, we could not isolate any mutants of higher production of {alpha}-amylase by ultraviolet irradiation. (author).

  1. Inactivation of RNA viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Nonomiya, Takashi; Morimoto, Akinori; Iwatsuki, Kazuo; Tsutsumi, Takamasa; Ito, Hitoshi; Yamashiro, Tomio; Ishigaki, Isao.

    1992-01-01

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD·MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D 10 values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author)

  2. Inactivation of RNA viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nonomiya, Takashi; Morimoto, Akinori; Iwatsuki, Kazuo; Tsutsumi, Takamasa (Ministry of Agriculture, Forestry and fisheries, Yokohama, Kanagawa (Japan). Animal Quarantine Service); Ito, Hitoshi; Yamashiro, Tomio; Ishigaki, Isao

    1992-09-01

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD[center dot]MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D[sub 10] values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author).

  3. Investigation on the effects of gamma irradiation on bitumen

    International Nuclear Information System (INIS)

    Mello, M.S.; Braz, D.; Motta, L.M.G.

    2011-01-01

    Brazil has more than 218,000 km of asphalt-paved highways. Bitumen is a generic term for natural or manufactured black or dark-colored solid, semisolid, or viscous cementitious materials that are composed mainly of high molecular weight hydrocarbons (90-95%). Several papers have shown that the irradiation process has changed the mechanical behavior in some polymers. This work aims to analyze the behavior of Brazilian irradiated Bitumen (CAP 50-70). In order to provide a preliminary evaluation, bitumen samples and cylindrical specimens of asphaltic mixture were tested. The bitumen samples were irradiated 0.1 to 300 kGy, and asphaltic mixture specimen was irradiated 5 to 300 kGy. The cylindrical asphaltic mixture specimen of 10.16 cm diameter used in this study was molded using an asphalt-aggregate mixture. The specimens were irradiated in LIN/UFRJ/Brazil using a Gamma cell Co 60 source of gamma irradiation with an applied dose rate of 29.7 Gy/min. After irradiated, the bitumen samples were subjected to penetration test and the asphaltic mixtures were subjected to indirect tensile strength test (diametral compression) for determination of the resilient modulus, according to ASTM method D 4123. The results of these experiments for each dose were compared with the control (nonirradiated). As expected, the penetration results showed that the ratio (irradiated/non-irradiated) decreases with increasing of irradiation dose for bitumen samples and the resilient modulus results showed that the ratio (irradiated/non-irradiated) increases with increasing of irradiation dose for asphaltic mixture. (author)

  4. Application of gamma irradiation on forming protein-based edible films

    International Nuclear Information System (INIS)

    Sabato, Susy Frey

    2000-01-01

    In the last decade considerable interest has been addressed to the development of protein-based edible films due to their application in the food industry, as a substitute to traditional plastic films. The use of soy and whey proteins to form those films has been investigated, using heat, chemical and enzymatic processes. Gamma irradiation was recently reported to form caseinate-based edible films, due to the increase of the cohesive strength of the proteins by the formation of cross-links. This work aimed to verify the role of the gamma irradiation in the process of forming edible films from soy protein isolate (SPI) alone and in complex mixtures, that is, mixed with whey protein isolate (WPI), with carbethoxymethyl cellulose (CMC) and with poly(vinyl)alcohol (PVA). Gamma irradiation treatment improved significantly the mechanical properties for all films. The mechanical behavior is strongly related to the formulation, showing synergy between the gamma irradiation and the CMC, mainly for SPI-based films. SPI-based films presented a trend to decrease the water vapor permeability values when irradiated. The CMC addition showed significant improvements on the permeability for films from SPI and from the mixture of SPI with WPI. (author)

  5. Use of gamma irradiation for microbial inactivation of buckwheat flour and products, 8

    International Nuclear Information System (INIS)

    Muramatu, Nobuyuki; Ohinata, Hiroshi; Karasawa, Hideyuki; Oike, Terutake; Ito, Hitoshi; Ishigaki, Isao.

    1991-01-01

    Effects of irradiation at 3.0-7.0 kGy with 2 MeV electron beams were investigated on the number of microorganisms and quality of buckwheat flour. Electron beams and gamma-rays were compared in terms of the effects on the quality of buckwheat flour. The results were as follows. (1) Electron beams at 3 kGy reduced the number of microorganisms almost to the same level as gamma-rays. Oxygen content in buckwheat flour had no effect on inactivation of microorganisms by irradiation with electron beams and gamma-rays. (2) Peroxide-value (POV) of lipid in buckwheat flour increased with absorbed dose of gamma-rays and electron beams. The increase of POV was suppressed by the usage of oxygen absorber. The color change of buckwheat flour was suppressed by the usage of oxygen absorber as well. Acid-value (AV) of lipid in buckwheat flour was not changed by irradiation at high dose with gamma-rays or electron beams. (3) Maximum torque in Farinograph test of dough prepared from irradiated buckwheat flour decreased with increase of absorbed dose of electron beams. However, oxygen absorber suppressed the change of these properties induced by irradiation. (4) The usage of oxygen absorber resulted in a high sensory score of noodles from irradiated buckwheat flour with small changes of color, flavor and texture. (author)

  6. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour.

    Science.gov (United States)

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-09-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P flours showed slight increase in water absorption capacity, swelling capacity and bulk density. The peroxide value of crude oil increased significantly with dose increases for the period of storage. The sensory evaluation of moinmoin samples prepared from irradiated pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour.

  7. Effects of gamma irradiation on food contact polyethylene, polypropylene and polystyrene. Volatiles

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Sayama, Kayo; Yamada, Takashi

    2000-01-01

    The effects of gamma irradiation on the generation of volatiles from food contact polyethylene and polypropylene were investigated using head space (HS)/GC/MS. All samples generated volatiles such as acetic acid, propionic acid, butanoic acid, 2,2-dimethylpropionic acid, acetone, 2-butanone, 2-propanol, 2-methyl-2-propanol, hydrocarbons, etc., due to the gamma irradiation. Especially, acetic acid and acetone were formed in greatest amounts. Since these volatiles did not exist before irradiation and their amounts increased with increasing irradiation dose, they should be degradation products from the polymer or additives by irradiation. Polypropylene generated more kinds and larger amounts of volatiles than polyethylene, which showed that polypropylene is more sensitive to irradiation. Polystyrene contained styrene and ethylbenzene as monomers before irradiation and their amounts decreased after irradiation. Polystyrene generated few degradation products during the irradiation. (author)

  8. Effects of gamma irradiation on durum wheats and spaghetti quality

    International Nuclear Information System (INIS)

    Köksel, H.; Celik, S.; Tuncer, T.

    1996-01-01

    The efficient control of insects in cereal grains has long been the main objective of processors who are always looking for safer and more economical methods. Gamma irradiation is a physical technique of food preservation that seems to have a potential to protect grains from insect infestation and microbial contamination during storage. It has been reported that gamma irradiation doses in the range of 0.2-1.0 kGy are effective in controlling insect infestation in cereals (IAEA 1991). Increasing the dose to 5 kGy totally kills the spores of many fungi surviving the lower doses (Murray 1990). Besides its protective role from insects and microorganisms, gamma irradiation also has important effects on various quality criteria of cereal grains. Experiments have been performed to study the effects of gamma irradiation on various aspects of wheat quality such as milling characteristics, dough properties, and baking quality (Lai et al 1959, Lee 1959, Fifield et al 1967, Rao et al 1975, Paredes-Lopez and Covarrubias-Alvarez 1984, MacArthur and D'Appolonia 1983, Ng et al 1989). It was reported that amylograph peak viscosity and falling number values of the flour decreased significantly as radiation levels increased (MacArthur and D'Appolonia 1983, Ng et al 1989). Rao et al (1975) showed that as radiation dose increased, amylograph peak height and dough stability decreased. At 10 kGy, loaf volume and crumb grain were impaired. Paredes-Lopez and Covarrubias-Alvarez (1984) found that the overall bread quality of wheat was greatly reduced at medium doses of radiation (1-10 kGy). At doses >5 kGy, irrespective of the baking formula used, loaf volume and baking quality deteriorated (Lai et al 1959). Irradiation of grain has also caused problems in noodle quality. Japanese noodles (udon) show increased cooking losses and inferior scores in sensory analysis when the bread wheats have been irradiated in the range of 0.2-1.0 kGy (Shibata et al 1974, Urbain 1986). However, no detailed

  9. Nutritional quality evaluation of velvet bean seeds (Mucuna pruriens) exposed to gamma irradiation.

    Science.gov (United States)

    Bhat, Rajeev; Sridhar, Kandikere R; Seena, Sahadevan

    2008-06-01

    Effects of gamma irradiation on Mucuna pruriens seeds at various doses (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) on the proximate composition, mineral constituents, amino acids, fatty acids and functional properties were investigated. Gamma irradiation resulted in a significant increase of crude protein at all doses, while the crude lipid, crude fibre and ash showed a dose-dependent decrease. Raw Mucuna seeds were rich in minerals (potassium, phosphorus, calcium, magnesium, iron and selenium). Sodium, copper and manganese were significantly decreased on irradiation at all the doses, while magnesium and iron showed a significant decrease only above 10 kGy. The essential amino acids of raw and gamma-irradiated Mucuna seeds were comparable with the FAO/WHO recommended pattern. A significant increase of in vitro protein digestibility was seen in seeds irradiated at 30 kGy. High amounts of unsaturated fatty acids in Mucuna seeds decreased significantly after irradiation. However, linoleic acid was not present in raw seeds but detected after irradiation and it was elevated to high level at 30 kGy. Behenic acid, a major anti-nutritional factor, was reduced significantly on irradiation, indicating the positive effect of gamma irradiation on Mucuna seeds. Significant enhancement in the water absorption and oil absorption capacities, protein solubility, emulsion activity and improvement in the gelation capacity was recorded after irradiation. Results of the present investigation reveal that application of gamma irradiation does not affect the overall nutritional composition and can be used as an effective method of preservation of Mucuna seed and their products.

  10. Effect of gamma rays on crystalline materials during irradiation in a reactor

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Karpukhin, V.I.; Gordeev, V.G.

    1995-01-01

    The article presents and discusses the results of experiments to determine the effect of gamma rays on the change in the properties of diamond, graphite, and structural steel. The materials were irradiated in a VVER type reactor. For diamonds, the effect on the annealing of defects was investigated. As gamma ray intensity increased, the crystal lattice expansion and defect concentration increased. Graphite lattice expansion and the mechanical properties of structural steel were also examined. Graphite lattice expansion increased with increased neutron flux and decreased irradiation temperature. Changes in the impact toughness of structural steel correlated precisely to the gamma ray flux in the experiments. 6 refs., 3 figs

  11. A Review on Microbial Mutagenesis through Gamma Irradiation for Agricultural Applications

    International Nuclear Information System (INIS)

    Hoe, P.C.K.; Khairuddin Abdul Rahim

    2016-01-01

    Gamma irradiation is widely used in sterilization and mutagenesis, especially for plant breeding and crop protection. Microbial mutagenesis through gamma irradiation is mainly applied in fermentation industry. In agriculture, gamma irradiation is mostly applied in crop improvement. Microbial mutagenesis is mainly applied against fungus and spore-forming bacteria, which are resistant to gamma irradiation. Response of microbes to gamma irradiation varies and depends on various factors. Review of previous works on gamma irradiation for microbial mutagenesis in agriculture may provide some information for the use of this method. The general view on gamma irradiation, its application, and mutagenesis are discussed in this paper. Further investigation on microbial mutagenesis should consider molecular changes, information on which is lacking in previous works. Moreover, studies on microbial mutagenesis are still lacking in Malaysia despite having several gamma irradiation facilities. Therefore, further studies on microbial mutagenesis should be conducted. (author)

  12. Evaluation of Chemical Changes in Some Soybean Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd-Elkalik, K.; Mekkawy, S.H.; El-Demerdash, H.M.

    2010-01-01

    The Egyptian soybean cultivar Giza-22 was used to induce genetic variability by using gamma rays at dose levels of 100, 150 and 200 Gy. Sixteen mutants (including parental cultivar) were evaluated in M3 generation for their agronomic traits and chemical analysis was done in seeds of M3 generation. Four mutants A21 (150 Gy), A22, A23 and A24 (200 Gy) showed superiority in their agronomic traits compared with parental cultivar. The results of chemical analysis of seeds of M3 generation showed that, oil and energy contents were unaffected by irradiation treatments while protein contents were significantly increased at doses 150 and 200 Gy. Phenolic and tannin contents in seeds of M3 generation showed no significant changes in their percentages due to irradiation treatments. Gamma irradiation significantly increased in linoleic acid content in most of the mutants compared with the control (Giza-22), whereas, there were decreases in linolenic acid content. Investigation of amino acid composition of mutants of M3 generation revealed significant increases in the essential amino acids in most mutants induced by gamma irradiation at 150 and 200 Gy. It could be suggested that the use of gamma irradiation can induce an improvement of the oil and protein composition in soybean

  13. Study on the changes in phyicochemical properties of seafood cooking drips by gamma ray irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Il; Kim, Yeon Joo; Kim, Jae Hun; Yoon, Yo Han; Song, Beom Seok; Lee, Ju Woon; Chun, Byung Soo; Ahn, Dong Hyun; Lee, Ju Yeoun

    2010-01-01

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lots of proteins, carbohydrates, and other functional materials. But, the seafood cooking drips are easily contaminated because of its rich nutrients, and their color are very dark. This study was conducted to investigate the effect of gamma irradiation on the quality of seafood cooking drips including Hizikia fusiformis, Enteroctopus dofleini, and Thunnus thynnus. The Hunter's color values (L, Brightness) of H. fusiformis, and T.thynnus, were increased with increasing irradiation doses, showing becoming bright. The crude protein content and crude lipid content were increased by gamma irradiation. These results indicated that gamma irradiation increased extraction efficiency of available compounds in cooking drips

  14. Physicochemical properties of brown rice as influenced by gamma irradiation, variety and storage

    International Nuclear Information System (INIS)

    Sabularse, V.C.

    1988-01-01

    Effects of gamma irradiation, variety and storage on physicochemical properties of brown rice from three Louisiana rice varieties: Mars, a medium grain variety, Lemont and Tebonnet, long grain varieties, were determined. Cooking time was significantly reduced in Mars and Lemont at doses of 200 and 300 Krads. Irradiation increased cooking rate, water uptake at 80 degree C, water uptake ratios, total solids content in residual cooking liquid and starch damage from 100 to 300 Krad samples. Water uptake at 96 degree C generally decreased with increasing dose levels. Evidence indicated alterations in the rice grain structures and composition. The component drastically affected by gamma irradiation was starch as shown by reduced cooking time, increased water uptake, increased amounts of starch and protein in residual cooking liquid, reduced volume expansion, increased damage starch and changes in amylographic pasting characteristics. Scanning electron microscopy showed more simple starch granules in irradiated samples than in nonirradiated samples. Structural changes in the bran layer due to gamma irradiation were not evident from electron micrographs

  15. Application of gamma irradiation for storage potato

    International Nuclear Information System (INIS)

    Rezaee, M.; Almasi, M.

    2009-01-01

    Since deficiency of controlled store in Iran and environmental problems of chemical material the use of gamma irradiation to control sprouting and increase the length of storage time of potatoes has been proposed as an alternative to cold storage or the use of chemical sprout suppressants. In this study potatoes of Agria Variety were irradiated at a dose of 0.10 KGY and stored along with the unirradiated controls at 12±3°C for a period of more than 6 month from October to April .After 4 month of storage the sprouting ranged from 5 to 12% in irradiated potatoes and 45 to 74% in unirradiated samples and after 6 month the unirradiated potatoes were discarded because of heavy sprouting and rotting. The rot attack was approximately double in unirradiated samples. It was found that losses through dehydration were 10.3 to 15.1 % in the irradiated potatoes. Also a comparative study of reducing and non-reducing sugars, vitamin-C content, total sugar, starch and protein was carried out between unirradiated and irradiated samples. The results suggested the efficacy of Gamma irradiation for ensuring availability of the storing quality of potato during lean periods from October to April. (author)

  16. TRIGA out of core gamma irradiation facility

    International Nuclear Information System (INIS)

    Rant, J.; Pregl, G.

    1988-01-01

    A possibility to irradiate extended objects in a gamma field inside the shielding water tank and above the core of operating TRIGA Mark II Reactor has been investigated. The irradiation cask is shielded with Cd cover to filter out thermal neutrons. The dose rate of the gamma field strongly depends on the distance of the irradiation position above the core. At 25 cm above the core, the gamma dose rate is 2.2 Gy/s and epithermal neutron flux is ∼ 8.10 6 ncm -2 s -1 ∼ 3 as measured by TLD (CaF 2 : Mn) dosimeters and Au foils respectively. Tentative applications of the gamma irradiation facility are in the studies of radiation induced accelerated aging and within the Nuclear Power Plant Equipment Qualification Program (EQP). A complete characterization of the neutron spectrum and optimization of the 7 radiation field within the cask has still to be performed. (author)

  17. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  18. Effects of gamma irradiation on antioxidants of medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Jetawattana, Suwimol [The irradiation research for agriculture program, Office of Atoms for Peace, BK (Thailand); Chaichantipyuth, Chaiyo [Faculty of Pharmacy, Chulalongkorn University, BK (Thailand)

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased.

  19. Prophylactic Role of Spermine in Rats Intoxicated With Lead and/or Gamma Irradiation

    International Nuclear Information System (INIS)

    Habieb, M.E.; Mohamed, M.A.; Hawas, A.M.; Abu-Khudir, R.; Mohamed, T.M.

    2017-01-01

    The current study was conducted to investigate the protective effect of spermine, a natural polyamine against toxicity of lead and /or gamma irradiation in male rats. Eight groups of rats were used in this study (control, irradiated group (6 GY), lead (40 mg/kg bw), spermine (10 mg/kg bw), lead plus irradiation, irradiation plus spermine, lead plus spermine, irradiation plus lead co-treated with spermine) for consecutive 14 days. Blood samples were used for complete blood count (CBC) and glucose 6-phosphate-dehydrogenase (G6PD) levels. Moreover, malondialdhyde (MDA), glutathione (GSH), metallothionein (MT) levels and catalase (CAT) activity were investigated in liver, kidney and brain. G6PD activity significantly decreased post exposure to lead and /or gamma irradiation. Hepatic, renal and brain MDA, GSH, MT and CAT were significantly increased in lead intoxicated group, while GSH, MT and CAT activity were significantly decreased in gamma-irradiated group. Spermine administration alleviated changes in CBC, G6PD, MDA, MT and CAT to normal control levels, but with significant increase in G6PD activity and platelets count. In conclusion, spermine acts as an antioxidant and plays a prophylactic role against intoxication with lead and/or gamma irradiation exposure.

  20. Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites

    International Nuclear Information System (INIS)

    Dadbin, Susan; Kheirkhah, Yahya

    2014-01-01

    Poly(D-L lactide) PDLLA/hydroxyapatite (HAP) nanocomposites at various compositions were prepared by melt-compounding process and then subjected to gamma irradiation at a dose of 30 kGy. The morphology of the nanocomposites, characterized by transmission electron microscopy (TEM), displayed HAP nanoparticles at various sizes ranging from 10 to 100 nm distributed almost evenly within the polymer matrix. Differential scanning calorimetric (DSC) analysis of the irradiated nanocomposites showed an increase in the degree of crystallinity along with a melting peak split. The double melting peak suggested formation of different crystalline structures in the radiation exposed nanocomposites. Also the cold crystallization peak shifted to lower temperatures and became much sharper upon irradiation, indicating higher crystallization rate. The irradiated nanocomposites showed lower tensile strength and elongation at break, suggesting occurrence of some chain scission reactions in the PLA. - Highlights: • Biomedical polylactic acid/hydroxyapatite nanocomposites prepared by melt-compounding were gamma irradiated. • Transmission electron microscopy showed hydroxyapatite nanoparticles evenly distributed within polylactic acid ranging from 10 to 100 nm. • A halo appeared around hydroxyapatite particles showing interfacial interactions between polylactic acid and the particles. • Double melting peak appeared for polylactic acid in DSC thermograms upon gamma irradiation of the nanocomposites

  1. Effects of gamma irradiation on the physical and structural properties of β-glucan

    International Nuclear Information System (INIS)

    Byun, Eui-Hong; Kim, Jae-Hun; Sung, Nak-Yun; Choi, Jong-il; Lim, Seong-Taek; Kim, Kwang-Hoon; Yook, Hong-Sun; Byun, Myung-Woo; Lee, Ju-Woon

    2008-01-01

    This study was carried out to evaluate the effect of gamma irradiation on the physical and structural properties of β-glucan. β-Glucan solution (10%, w/v) was exposed to a cobalt-60 source (10, 30, and 50 kGy). Gel permeation chromatography data showed that the average molecular weight of irradiated β-glucan significantly decreased as the irradiation dose increased. In addition, gamma irradiation improved the solubility and decreased the viscosity of β-glucan by the radiolysis of the glycosidic bonds, and this effect was dependent upon the absorbed dose. Fourier transform infrared spectroscopy results showed that the functional groups of β-glucan were not significantly affected by gamma irradiation. Scanning electron microscopy results showed that the irradiated β-glucan was deformed into smaller granules. Therefore, gamma irradiation could be used in commercial processes as an effective method to resolve the physical problems involved in the use of β-glucan with high viscosity and low solubility

  2. Immune-enhancing activities of low molecular weight β-glucan depolymerized by gamma irradiation

    Science.gov (United States)

    Sung, Nak-Yun; Byun, Eui-Hong; Kwon, Sun-Kyu; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Yoo, Young-Choon; Kim, Mee-Ree; Lee, Ju-Woon

    2009-07-01

    β-glucans are structural cell wall polymers of many microorganisms and cereals which possess immunomodulatory properties and have been used in the food, cosmetic and medical industry. In our previous study, β-glucan was depolymerized by gamma irradiation and leads to improve the solubility and viscosity. This study was carried out to evaluate the functional properties, mainly immune-enhancing activities of low molecular weight β-glucan fragmented by gamma irradiation. The results showed that RAW 264.7 macrophage cell stimulation activities of irradiated β-glucan were higher than that of non-irradiated β-glucan. In addition, the oral administration of gamma-irradiated β-glucan significantly increased the proliferation and cytokine (IFN-γ and IL-2) release of spleen and Peyer's patch cells compared with non-irradiated β-glucan. In conclusion, gamma irradiation could be used as an effective method for the production of depolymerized β-glucan improved functional property such as immunomodulatory activity.

  3. Immune-enhancing activities of low molecular weight β-glucan depolymerized by gamma irradiation

    International Nuclear Information System (INIS)

    Sung, Nak-Yun; Byun, Eui-Hong; Kwon, Sun-Kyu; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Yoo, Young-Choon; Kim, Mee-Ree; Lee, Ju-Woon

    2009-01-01

    β-glucans are structural cell wall polymers of many microorganisms and cereals which possess immunomodulatory properties and have been used in the food, cosmetic and medical industry. In our previous study, β-glucan was depolymerized by gamma irradiation and leads to improve the solubility and viscosity. This study was carried out to evaluate the functional properties, mainly immune-enhancing activities of low molecular weight β-glucan fragmented by gamma irradiation. The results showed that RAW 264.7 macrophage cell stimulation activities of irradiated β-glucan were higher than that of non-irradiated β-glucan. In addition, the oral administration of gamma-irradiated β-glucan significantly increased the proliferation and cytokine (IFN-γ and IL-2) release of spleen and Peyer's patch cells compared with non-irradiated β-glucan. In conclusion, gamma irradiation could be used as an effective method for the production of depolymerized β-glucan improved functional property such as immunomodulatory activity.

  4. Quality Properties of Cakes Containing Gamma-Irradiated Egg White

    International Nuclear Information System (INIS)

    Lee, J.W.; Seo, J.H.; Ahn, H.J; Byun, M.W; Kim, Y.H.; Choi, J.M.; Yook, H.S.

    2003-01-01

    As a research on the practical approaches of gamma irradiation for the reduction of egg allergy, cakes including gamma-irradiated egg white were manufactured, and rheological characteristics and sensory qualities of the cakes were evaluated. Egg white was separated from whole egg and then gamma-irradiated with the absorbed dose of 10 or 20 kGy

  5. The effects of gamma-irradiation on additives in food-contact polymers

    Science.gov (United States)

    Smith, Christine

    A range of antioxidants (BHT, Irganox 1010, 1076, 1330 and Irgafos 168) were incorporated into polymers (polyethylene, polypropylene, polystyrene and polyvinyl chloride) and subjected to increasing doses of gamma-irradiation (1,5,10,20,25,35 and 50 kGy) from a cobalt-60 source.The amount of extractable antioxidant from the stabilised polymers was determined chromatographically and a gradual diminution in the total extractable levels of each antioxidant was observed as irradiation progressed, the extent depending on the nature of both the antioxidant and the polymer 2,6-Di-t-butyl-1,4-benzoquinone was shown to be an extractable degradation product, arising from the effects of gamma-irradiation on the phenolic antioxidants. The extractable degradation product arising from the phosphite antioxidant, Irgafos 168, was identified as tris(2,4-di-t-butylphenyl)phosphate. It was demonstrated using 14C-labelled Irganox 1076 that degradation products formed during gamma-irradiation are becoming covalently bound to the polymer, as a result of radical coupling processes. There is a pronounced increase in the extent of covalent binding from 0.4% before irradiation to a minimum of 12.4% after an exposure to 50 kGy. Evidence has also been presented of covalent binding of the degradation product of Irgafos 168 to the polypropylene matrix, via polymeric radicals formed during irradiation. Finally, the effects of gamma-irradiation on the extent of migration of antioxidants from polyolefins into food simulants was studied. It was found that irradiation leads to a decrease in the extent to which hindered phenolic antioxidants migrate from polyolefins into fatty media, consistent with the reduction in extractable antioxidant levels and the increase in the extent of antioxidant-polymer binding.

  6. The Effect of Gamma Irradiation on The Quality of Egyptian Kareash Cheese

    International Nuclear Information System (INIS)

    Aly, S; Farage, M. D.; Galal, E.A.

    2008-01-01

    The effect of gamma irradiation on the quality of kareash cheese was evaluated. Egyptian kareash cheese were subjected to gamma irradiation at different safety doses beginning from 1 kGy to a maximum of 5 kGy . The physico-chemical composition as well as microbiological quality of kareash cheese samples was monitored before and after irradiation. Soluble nitrogen, salt as well as pH values were higher in cheese samples before irradiation in comparison with the irradiated groups. Irradiation reduced population of bacteria i.e. total colony count, Total yeast and mold count, aerobic spore former count, Coliform count, total Enterobacteriacae count and the effect was more pronounced at the highest dose (5 kGy). It could be concluded that increasing the dose of irradiation up to 5 kGy had high reduction percentages for bacterial count with no effect on either sensory or chemical characteristics. Our results suggest that kareash cheese manufacturer could use gamma irradiation to improve the safety of their product. (author)

  7. Microbial determination of Cumin by gamma irradiation

    International Nuclear Information System (INIS)

    Motamedi, F.; Abhari, M.; Fathollahi, H.; Arbabi, K.

    2002-01-01

    Cumin is one of the valuable export items of Iran, and like most of the agricultural products it is contaminated by microorganisms. Due to importance of this product, the gamma irradiation method, which has applications in microbial decontamination, has been used for the improving its quality and increasing the shelf life-time. For this purpose pak ages of 10 gr of cumin were irradiated by 2,4,6 and 8 KGy from 60 Co source. With each dose, four samples were irradiated and results were compared with controlled not irradiated samples. According to the standard limitation of bacteria and molds the total optimum doses are 7.5 and 5 KGy respectively

  8. Gamma- irradiation to increase crop production

    International Nuclear Information System (INIS)

    Nomai, Matongo

    2000-01-01

    Brief background information on past research activities on the use of Co-60 Gamma Irraditor in production of medical products such as sterilised biological tissue grafts and surgical Gloves and in food preservation.The general results of the application of Radiation Mutation Breeding is discussed from the current research activities involving Beans,Pumpkins,Cotton Seeds,Finger Millet,Wheat,Groundnuts and Rice.The focus is to demonstrate the great potential of the technique in increasing food security

  9. Comparison of the effects of gamma ray and e-beam irradiation on the quality of minced beef during storage

    International Nuclear Information System (INIS)

    Park, Jae Nam; Han, In Jun; Kim, Wang Geun; Song, Beom Seok; Kim, Jae Hun; Choi, Jong Il; Yoon, Yo Han; Byun, Myung Woo; Hwang, Han Joon; Lee, Ju Woon; Park, Jin Gyu

    2009-01-01

    This study was conducted to compare the microbiological and physicochemical qualities of minced beef irradiated with gamma ray of e-beam at the absorbed doses from 5 to 20 kGy. The total bacterial counts of minced beef were decreased depending upon the irradiation doses, but sterilizing effect of gamma irradiation was higher than that of e-beam irradiation. The contents of malondialdegyde of minced beef were increased depending upon irradiation doses as well as storage periods (p< 0.05). Volatile basic nitrogen in minced beef was constantly increased during storage, but the increasing rate were retarded by irradiation. The hunter's color values(L*, a* and b*) of gamma or e-beam irradiated minced beef were decreased as irradiation dose increasing. Meanwhile, the quality changes of gamma irradiated samples were faster than e-beam irradiated samples

  10. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    International Nuclear Information System (INIS)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension. - Highlights: • Marinated anchovies were γ-irradiated at 2, 3 and 4 kGy and stored at 4 °C (10 months). • Irradiation slightly hardened the texture and reduced its softening during storage. • Irradiated marinades had good sensory acceptability without differences with controls. • Irradiation improved the quality by reducing texture softening and color changes

  11. The evaluation of wheat grain odor and color after gamma and microwave irradiation

    International Nuclear Information System (INIS)

    Warchalewski, J.R.; Gralik, J.; Kusnierz, R.; Zawirska-Wojtasiak, R.; Zabielski, J.

    1998-01-01

    Wheat grain was exposed to gamma ionising irradiation at selected doses between 0.05-10 kGy and microwave radiation from 45 to 180 sec. The sensory evaluation of a grain odor proved that both applied treatments, gamma and microwave irradiation, did not cause significant changes in the grain odor in comparison to control samples of grain with the exclusion of maximum irradiation dose 10 kGy, and maximum microwave heating time 180 sec. The results obtained after measurement of the grain reflected-light showed that gamma 60 Co irradiation did not cause any changes in grain color. The grain after microwave heating at 90, 120, 180 sec was characterised by significantly higher lightness (L*) value. The total colour difference (δE) between microwave irradiated samples and the control ones was increasing gradually, with the increase in temperature. The yellowness (b*) and the redness (a*) values were statistically significantly higher in the case of 120 and 180 sec of irradiation time comparing to the control sample. (author)

  12. Gemstone dedicated gamma irradiation development

    Energy Technology Data Exchange (ETDEWEB)

    Omi, Nelson M.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: nminoru@ipen.br; prela@ipen.br

    2007-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  13. Induction of Aspergillus oryzae mutant strains producing increased levels of α-amylase by gamma-irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Nessa, Azizun

    1996-01-01

    Spores of Aspergillus oryzae IAM 2630 were suspended in 0.067 m phosphate buffer and irradiated with gamma rays. Spores were incubated for 7 days and colony mutants counted by observing colour change compared to normal colours. α-amylase activities of the normal and mutant colonies were assayed. DNA assay of the spores was also carried out, after culture on different plating media. Enzyme production increased 2-5 times with increasing radiation dose. Increased spore size and DNA content was also observed in mutant strains with higher enzyme production suggesting that enzyme production is genetically controlled. Ultraviolet radiation did not appear to induce higher frequency of mutation. (UK)

  14. Induction of Aspergillus oryzae mutant strains producing increased levels of {alpha}-amylase by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Nessa, Azizun [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    Spores of Aspergillus oryzae IAM 2630 were suspended in 0.067 m phosphate buffer and irradiated with gamma rays. Spores were incubated for 7 days and colony mutants counted by observing colour change compared to normal colours. {alpha}-amylase activities of the normal and mutant colonies were assayed. DNA assay of the spores was also carried out, after culture on different plating media. Enzyme production increased 2-5 times with increasing radiation dose. Increased spore size and DNA content was also observed in mutant strains with higher enzyme production suggesting that enzyme production is genetically controlled. Ultraviolet radiation did not appear to induce higher frequency of mutation. (UK).

  15. Luminescence from {gamma}-irradiated humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, Wieslaw [Faculty of Chemical Technology, Radio- and Photochemistry Department, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan (Poland); Slawinski, Janusz [Institute of Ecotechnology, State Higher Vocational School, ul. Ks. Kard. S.Wyszynskiego 38, 62-200 Gniezno (Poland)

    2008-07-15

    This study was conducted to investigate the ultraweak delayed radiochemiluminescence (RCL) spectra, kinetics and spectroscopic properties of humic acids (HAs) after {gamma}-radiation exposure (absorbed doses of 1-10 kGy, Co-60) in model systems. The kinetics and spectral distribution of RCL (340-650 nm) were measured using the single photon counting (SPC) method and cut-off filters. The intensity of fluorescence ({lambda}{sub ex}=390, 440, 490 and 540 nm) covering the spectral range 400-580 nm was heavily dependent on the {lambda}{sub ex} and slightly increased with the absorbed dose of {gamma}-radiation. Absorption spectra (the range 240-800 nm) and color coefficients E{sub 2.6/4} and E{sub 4/6} of irradiated solutions indicated that post-radiative degradation/polymerization processes take place in the HA, changing their macromolecule size or properties. Comparison of FTIR spectra and elemental analysis proved an increased O and decreased C atoms in irradiated samples. The data indicate on the radiolysis-induced degradation of native HA into fulvic-like acids with higher hydrophilicity and lower molecular size.

  16. Gamma irradiation effect on polymers derived of pyrrole synthesized by plasma

    International Nuclear Information System (INIS)

    Lopez G, O. G.

    2013-01-01

    This work studies the effect of gamma irradiation at doses of 50, 100, 200, 400 and 800 kGy on polymers obtained from pyrrole synthesized by plasma. The evolution of the structure was studied by Fourier transform infrared spectroscopy (Ftir) and X-ray photoelectron spectroscopy (XPS). The Ftir spectra show that poly pyrroles have N-H, C-H, C=O, triple and consecutive double bonds in their structure. The irradiated polymers show the same chemical groups in their structure without significant changes. Nevertheless, a more detailed analysis by XPS allows the identification of superficial chemical states, such as: C=CH-C, C=CC-C, C-NH-C, C-NC-C, etc., and shows that most of these states are present in all polymers but with different participation. One possible mechanism indicates that as the irradiation dose increases, dehydrogenation processes are performed increasing fragmentation, crosslinking and formation of multiple bonds. The fragmentation and thermal degradation were studied by thermogravimetric analysis, indicating that the loss of moisture and light compounds formed during gamma irradiation occurs in the firsts 100 grades C. The main degradation of all polymers occurs from 150 to 700 grades C, suggesting that the thermal stability is independent of the irradiation dose in the interval studied. Morphology was studied using scanning electron microscopy techniques. Before irradiation, the polymer presented a uniform and practically smooth surface, however, after gamma irradiation, the applied energy increased roughness and macro fragmentation. The roughness and functional groups on the surface reduced the contact angle with water as the irradiation dose increased. However, the polymers are hydrophilic, because for all doses that contact angle is smaller than 90 grades C. Electrical conductivity was calculated respect to temperature in the interval from 25 to 100 grades C. Conductivity increases with temperature and is slightly greater in the irradiated polymers

  17. Effect of gamma-irradiation on flavor compounds of fresh mushrooms

    International Nuclear Information System (INIS)

    Mau, J.L.; Hwang, S.J.

    1997-01-01

    Fresh mushrooms (Agaricus bisporus) were gamma-irradiated with doses of 1,2, and 5 kGy. The volatile compounds were isolated using a Lickens-Nickerson apparatus and analyzed using gas chromatography and gas chromatography-mass spectrometry. The amount of total volatiles was greatly affected by the doses applied. The amounts of benzaldehyde and benzyl alcohol were not affected by gamma-irradiation and ranged from 8.94 to 11.79 and from 0.696 to 1.503 micrograms/g, respectively. The amounts of eight-carbon compounds decreased as the doses of gamma-irradiation increased, from 41.73 for the control (0 kGy) to 20.06 (1 kGy), 8.77 (2 kGy), and 4.04 micrograms/g (5 kGy irradiated mushrooms). The major eight-carbon compound was 1-octen-3-ol, and its amount decreased from 30.34 (the control) to 14.18 (1 kGy), 6.22 (2 kGy), and 2.92 micrograms/g (5 kGy)

  18. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  19. Innovations to increase throughput of the multipurpose irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, Estelita G; Lanuza, Luvimina G; Maningas, Aurelio L; Solomon, Haydee M [Irradiation Services Unit, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1998-07-01

    With the installation and operation of the PNRI [Philippine Nuclear Research Institute] multipurpose irradiation facility, several local industries are now aware of, and in fact using gamma radiation for sterilization or decontamination of medical and pharmaceutical products, packaging materials and for food preservation. However, the multipurpose irradiation facility has limited capacity and capability, since this was designed as a pilot scale irradiator for research and development. To meet the increasing demand of gamma irradiation service, a new product handling system was locally designed, fabricated and installed. Performance, in terms of total loading and more importantly, radiation dose distribution of the new product handling system, was evaluated. An increase in product throughput was realized effectively with the new product handling system. (Author)

  20. Innovations to increase throughput of the multipurpose irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, Estelita G.; Lanuza, Luvimina G.; Maningas, Aurelio L.; Solomon, Haydee M.

    1998-01-01

    With the installation and operation of the PNRI [Philippine Nuclear Research Institute] multipurpose irradiation facility, several local industries are now aware of, and in fact using gamma radiation for sterilization or decontamination of medical and pharmaceutical products, packaging materials and for food preservation. However, the multipurpose irradiation facility has limited capacity and capability, since this was designed as a pilot scale irradiator for research and development. To meet the increasing demand of gamma irradiation service, a new product handling system was locally designed, fabricated and installed. Performance, in terms of total loading and more importantly, radiation dose distribution of the new product handling system, was evaluated. An increase in product throughput was realized effectively with the new product handling system. (Author)

  1. Impact of Gamma Irradiation on The Metabolism of Some Seed Borne Fungi

    International Nuclear Information System (INIS)

    Afifi, M.A.; Ahmad, S.M.; Moussa, H.R.; Ismael, M.A.

    2014-01-01

    The influence of gamma irradiation on the metabolism of some seed born fungi isolated from maize and wheat grains, collected from different localities of El-Gharbia Governorate, Egypt, was the target of this study. The most common fungi isolated are Aspergillus terricola and Aspergillus fumigatus. Mostly all doses of gamma irradiation applied decreased carbohydrates and total lipids. Meanwhile, certain doses increased total proteins which suggested that protein might play a part in protection against the harmful effect of radiation. Application of gamma irradiation treatment inhibited α-amylase activities but increased cellulase, protease and organic acids production by Aspergillus terricola and Aspergillus fumigatus. The present data showed a pronounced reduction in total free amino acids upon increasing the gamma radiation doses. The results showed that 69 protein bands of molecular weights from 11.5 to 178 kDa were observed. Aspergillus fumigatus contains 31 protein bands from 15 to 120 kDa and Aspergillus terricola contains 27 protein bands from 12 to 91 kDa. According to the results from SDS-PAGE, 5 common bands could be seen between A. fumigatus and A. terricola while SDS-PAGE electrophoresis demonstrated emphasis of 2 new bands under influence of gamma irradiation with molecular weights of 60.4 kDa identified as phytochelatin synthase in Aspergillus fumigatus treated with 1 kGy and 66.7 kDa as protein from chaperone family in Aspergillus terricola treated with 1 kGy. It could be concluded that the major advantages of gamma irradiation treatment to maize and wheat seeds before storage can reduce the pathogenic fungi and preserve the quality and quantity of processed d seeds

  2. Chlorogenic acid was specifically induced among phenolic compounds in centipedegrass by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Byung Chul; Barampuram, Shyamkumar; Lee, Seung Sik; Lee, Eun Mi; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedlling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to 0.114 mg ml{sup -1} and 0.0258 to 0.2211 mg ml{sup -1}, respectively) from 3{sup rd} to 15{sup th} day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance on seedling stage plants by gamma irradiation as simplicity and cheaply method.

  3. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce

    International Nuclear Information System (INIS)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo

    2004-01-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell

  4. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  5. Alteration of Leaf Anatomy of Handeuleum (Graptophyllum pictum L. Griff due to Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    Arrin Rosmala

    2016-07-01

    Full Text Available The leaves of the plant handeuleum (Graptophyllum pictum L. Griff have long been used for traditional medicine in several regions in Indonesia. This study was aimed to determine the effect of gamma irradiation rate on the anatomy and phytochemical content of the leaf. The rates of gamma rays used were 0, 15, 30, 45, 60, 75, 90, and 105 Gy. Our results showed that gamma ray irradiation rate of 30 Gy produced leaves that contain anthocyanins and carotenoids, with the highest number of stomata and stomatal density compared with control plants. Stomatal index was found highest in the leaves with 45 Gy of gamma irradiation. High-rate gamma ray irradiation produced rigid, thick, and frangible leaves. A high rate of gamma irradiation, i.e. 75, 90, and 105 Gy, produces bigger palisade, sponges, and upper epidermis than the control plants, respectively. Our results showed an association between increasing rate of irradiation with alterations in the structure of leaf anatomy and phytochemical content of handeuleum.

  6. Effect of gamma irradiation on bitter pit of apple fruits (Malus Domestica Borkh)

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2000-12-01

    Tow varieties of apple fruits Golden and Starking were irradiated with 0, 0.5, 1.0, 1.5 kGy and with 0, 1.0, 1.5 kGy respectively. Irradiated and unirradiated fruits were stored at 1 to 2 centigrade and relative humidity of 80 to 90%. Fruit quality (firmness, skin thickness and bitter pit) and juice characteristics (moisture, ash, carbohydrates, organic acids, Ph, and viscosity), were determined during storage periods (0, 3 and 6 months). The used doses of gamma irradiation significantly decreased the percentage and intensity of bitter pit. Irradiated fruits were softer immediately after irradiation and through storage periods, there were no differences in firmness between irradiated and unirradiated fruits. Gamma irradiation increased the thickness of skin in Golden fruits and decreased it in Starking. Juice production from both varieties immediately after irradiation was not affected by gamma irradiation. However the juice produced from irradiated fruits had higher organic acids (citric and malic acids), viscosity and Ph values than the control. (author)

  7. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  8. Effects of gamma irradiation on the mid-gut of Hyphantria Cunea

    International Nuclear Information System (INIS)

    Choi, J.H.

    1980-01-01

    In this paper, the author studied the histological changes of the midgut cells of fall webworms (Hyphantria cunea Drury) through 1.75-7 krad of the whole body gamma irradiation according to their metamorphosis by comparing the control group with the irradiated one through an optical microscope. Here the results were as follows: The epithelium of midgut was composed of columnar, goblet and regenerative cells. The effects of gamma irradiation were varied with the dosages and the stages during the metamorphosis. The degree of histological change mode by irradiation was increased with the dosages. Radiosensitivity was the highest in both last-stage larva and 8-day-old pupae. (Author)

  9. Fluctuation in hematology values in gamma irradiated rats subjected to pesticide ingestion

    Energy Technology Data Exchange (ETDEWEB)

    abdel-Hamid, F M [Radioisotope Department, Nuclear Research Center, Radiation Biology, cairo (Egypt); Roushdy, H M [Department, National Center for Radiation Reasrch and Technology, Cairo (Egypt); Girgis, R B; Abu-Ghadir, A R [Atomic Energy Authority, and Zoology Department, Faculty of Science, Cairo University, Cairo (Egypt)

    1995-10-01

    Male albino rats were exposed to gamma irradiation alone or after either oral daily administration of 50 or 100 mg kelthane for 3 successive days; or daily administration of 200 mg kelthane mixed with food per kg body weight for 3,6 and 12 weeks. Relative spleen weight and certain hematological values were determined. Significant decrease could be estimated in relative spleen weight due to exposure only to gamma irradiation significant increase was recorded due to treatment with 50 and 100 mg kelthane. The data obtained on hematological levels revealed insignificant changes in erythrocyte counts and hemoglobin concentration due to exposure to gamma irradiation and/.or kelthane treatment. Significant decrease was recorded in hematocrit value either for successive 30 days or due exposure to gamma irradiation after treatment with kelthane for short and long term periods. Leucocyte counts showed significant decrease for all animals groups. 2 tabs.

  10. fluctuation in hematology values in gamma irradiated rats subjected to pesticide ingestion

    International Nuclear Information System (INIS)

    abdel-Hamid, F.M.; Roushdy, H.M.; Girgis, R.B.; Abu-Ghadir, A.R.

    1995-01-01

    Male albino rats were exposed to gamma irradiation alone or after either oral daily administration of 50 or 100 mg kelthane for 3 successive days; or daily administration of 200 mg kelthane mixed with food per kg body weight for 3,6 and 12 weeks. Relative spleen weight and certain hematological values were determined. Significant decrease could be estimated in relative spleen weight due to exposure only to gamma irradiation significant increase was recorded due to treatment with 50 and 100 mg kelthane. The data obtained on hematological levels revealed insignificant changes in erythrocyte counts and hemoglobin concentration due to exposure to gamma irradiation and/.or kelthane treatment. Significant decrease was recorded in hematocrit value either for successive 30 days or due exposure to gamma irradiation after treatment with kelthane for short and long term periods. Leucocyte counts showed significant decrease for all animals groups. 2 tabs

  11. The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    International Nuclear Information System (INIS)

    Deacon, Donna H; Slingluff, Craig L Jr; Hogan, Kevin T; Swanson, Erin M; Chianese-Bullock, Kimberly A; Denlinger, Chadrick E; Czarkowski, Andrea R; Schrecengost, Randy S; Patterson, James W; Teague, Mark W

    2008-01-01

    Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate 3 H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation. Melanoma cells were gamma- and/or UV-irradiated. 3 H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression. UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100. These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells

  12. Practical design of gamma irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, Sen-ichi

    1976-01-01

    In this report, it is intended to describe mainly the multi-purpose irradiation facilities which carry out the consigned irradiation for the sterilization of medical apparatuses, which is most of the demand of gamma irradiation in Japan. Gamma irradiation criterion is summed up to that ''Apply the specified dose properly and uniformly to product cases and be economic.'' Though the establishment of the design standard for irradiation facilities is not easy and is not solve simply, the factors to be considered in the design are as follows: (1) mechanism safety, (2) multipurpose irradiation structure, (3) irradiation criteria and practice, (4) efficiency of radiation source utilization and related problems, and (5) economical merit. Irradiation facilities are generally itemized as follows: irradiation equipments, radiation source-storing facility, package carrier, radiation source-driving equipments, facilities for safety and operational management and others. Examples and their characteristics are reported for the facilities of Japan Radio-isotope Irradiation Cooperative Association and Radie Industries Ltd. Expenses for construction, processing and radiation sources are shown on the basis of a few references, and the cost trially calculated under a certain presumptive condition is given. (Wakatsuki, Y.)

  13. Effect of Low Dose gamma-ray Irradiation on the Germination and Growth in Red Pepper (Capcicum annuum L.)

    International Nuclear Information System (INIS)

    Lee Eun-Kyung; Kim Jae-Sung

    1998-01-01

    This study was conducted to determine the effect of low dose gamma-ray irradiation in red pepper. The germination percentage, plant, the number of flower, chlorophyll contents, leaf length and width were observed from plants grown with red pepper seeds irradiated with various low dose of gamma-ray. The germination percentage of irradiation group treatmented gamma-ray was much higher than that of the control. Specially the germination percentage after sowing red pepper seeds on paper towel was higher than 1,000 and 2,000 rad irradiation group. The height of plants grown with red pepper seeds irradiated with gamma-ray was increased in 100, 200 and 400 rad irradiation group compared to that of the control. The height of plant from 2,400 rad irradiation group, however, was shorter than that of the control. Nutrient contents of leaves of plants grown with red pepper seeds irradiated with various dose of gamma-ray were significantly increased in 800 and 1,200 rad irradiation group. Electric conductivity (EC) of the water used for seed germination was lower irradiation group than control group. Therefore, there was the possibility to increase the germination and plant growth with gamma-ray of adequate low dose

  14. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Deichert, Geoffrey G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Selby, Aaron P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reches, Yonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiations of nano-modified concrete planned for FY 2018.

  15. Study on silk yellowing induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Tsukada, Masuhiro; Aoki, Akira

    1985-01-01

    The changes in the yellow color of silk threads with total dose of irradiation applied were described and studied by a colorimetric method and by monochrome photography. The change into a yellow color of the specimen in the course of irradiation was clearly detected in photographs using filters, 2B and SC 56 under light conditions at the wavelength of 366 nm. The b/L value measured by colorimetry in undegummed and degummed silk fibers sharply increased in the early stage of irradiation. Yellow color indices (b/L) of the specimen subjected to gamma-irradiation continued to increase and the yellow color of the silk threads became more pronounced above a total dose of irradiation of 21 Mrad. The b/L value of the undegummed silk fiber which had deen irradiated was about 2 times that of the degummed silk fiber. (author)

  16. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020 (India)]. E-mail: nkrastogi@cftri.com

    2005-08-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.

  17. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    International Nuclear Information System (INIS)

    Rastogi, N.K.

    2005-01-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity

  18. Gamma irradiation treatment of secondary sewage effluent

    International Nuclear Information System (INIS)

    Vajdic, A.H.

    The operation and monitoring of a pilot scale Co-60 gamma irradiation unit treating secondary sewage effluent is described. The disinfecting efficiency of the unit is compared to that of an experimental 'ideal' chlorination unit and to the plant chlorination process. A cost estimate for disinfection by gamma irradiation on a full plant scale is included. (author)

  19. The Use of gamma-Irradiation in Counteracting the Effect of Salinity for Cultivation of Barley and Pea Plants

    International Nuclear Information System (INIS)

    Aly, M.A.S.; Afifi, L.M.; Kamel, H.A.; Mostafa, I.Y.; Kord, M.A.

    2000-01-01

    The biochemical changes induced by salinity in two economic plants (Barley and Pea) and the probable counteraction of gamma irradiation for enhancement of growth were studied. The data obtained revealed that the reduction in pigments content due to salinity treatment was more pronounced in pea plants than barley. However, gamma irradiation caused a significant increase in pigment content of both plants. The interaction effect of salinity and radiation varied from an increase in case of barley to a reduction in peas. In both plants, soluble sugars content increased due to salinity and /or gamma-radiation. Moreover, total carbohydrates increased due to the combined treatment. A matched increase in free proline content was recorded with increase of salinity. While, gamma-irradiation showed a different trend. Protein and nucleic acids contents were proportionally decreased with increase of salinity levels, whereas gamma radiation induced an increase in both protein and nucleic acids content. A progressive reduction in the yield by increasing salinity was observed, while gamma-irradiation increased the yield of both plants. 14 CO 2 fixation was reduced by salinity treatment while gamma-radiation increased it. Contrary to 14 CO 2 fixation, salinity enhanced respiration, while radiation retarded it

  20. Gamma ray irradiation induced optical band gap variations in silica sol-gel doped sucrose

    International Nuclear Information System (INIS)

    Marzouki, F.; Farah, K.; Hamzaoui, A.H; Ben Ouada, H

    2015-01-01

    The silica xerogels doped sucrose was prepared via sol-gel process and exposed at room temperature to different doses of high energy ("6"0Co) gamma irradiation. Changes in the UV-visible and FTIR spectra of pristine and irradiated xerogels with varying of gamma doses rays show variation in the gap energy. It was found that energy gap of the investigated silica xerogels decreases with increasing the gamma irradiation doses. Thereby the irradiated samples reveal behaviour changes, from an insulator (Eg ∼5,8 eV) towards a semiconductor with (Eg ∼ 3.5 eV).

  1. Synthetic activity of rat blood lymphocytes under acute and continuous gamma-irradiation - fluorescent microspectral study

    International Nuclear Information System (INIS)

    Karnaukhova, N.A.; Sergiyevich, L.A.; Aksenova, G.Y.; Karnaukhov, V.N.

    1999-01-01

    The effects of different doses of acute and continuous gamma-irradiation on the synthetic activity of rat blood lymphocytes stained with acridine orange were studied by fluorescent microspectrometry. Male rats were exposed to acute gamma-irradiation with doses of 7.5, 4 and 3 Gy, or to continuous irradiation with dose rates of 14.4, 2.1, 1.1 and 0.43 cGy/day, respectively. The changes of the synthetic activity of blood lymphocytes occurred in three main stages after acute gamma-irradiation and in four stages under continuous irradiation. The stages reflect the processes of depression and activation of the immune system under irradiation. Essential differences between the acute and continuous effects were observed in the first stage. After acute gamma-irradiation, the synthetic activity decreased sharply, indicating the predominant contribution of the damaging effect of irradiation, whereas under continuous irradiation, as a result of the stimulatory effect of low-dose irradiation, the synthetic activity increased during the first stage. (orig.)

  2. The effects of gamma irradiation in combination with NaCl treatment on digestibility of rice straw

    International Nuclear Information System (INIS)

    Abidin, Z.; Suharyono.

    1988-01-01

    Combination of gamma irradiation and sodiumchloride treatments have been conducted to increase the nutritive value of rice straw as an animal feed. Rice straw was sprayed by sodiumchloride solution prior to gamma irradiation. The sodiumchloride concentration in straw were 0, 1, and 2% ( gNaCl/100 g rice straw), and irradiation dose were 0, 5, 10, and 15 Mrad. Result indicated that the combined treatments significantly increased (p<0.01) dry matter digestibility of rice straw. On the other hand, there was no significant interaction between gamma irradiation and sodiumchloride treatment was observed. (authors). 11 refs, 4 tabs

  3. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  4. Management of Potato Soft Rot by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Ghany, H.; Moussa, Z.; Abd El-Rahman, A.F.; Salem, E.A.

    2017-01-01

    This investigation aims to apply a safe practice to minimize potato losses due to soft rot disease of tubers kept under ambient temperature. In this regard, gamma irradiation was used to extend keeping quality through its effect on soft rot bacteria. Eight bacterial isolates were recovered on Logan’s medium from kitchen kept tubers with symptoms of soft rot disease. Five isolates were found pathogenic and tentatively identified as Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense on the basis of the usual bacteriological methods. A molecular method using 16SrDNA sequence analysis for verification of the identity of two isolates was made. The two bacterial isolates, Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense, were irradiated by different doses of gamma rays. Complete inhibition occurred at doses 2.5 and 2.0 KGy for high densities (Approximately 4.0x10"9 CFU/ml) of P. atrosepticum and P. carotovorum sub sp. brasiliense, respectively. The D10 value of gamma irradiation was 0.24 KGy for P. atrosepticum and 0.20 KGy for P. carotovorum subsp. brasiliense. Irradiation of artificially infected tubers with soft rot bacteria using the two mentioned D10 doses for the two bacterial species increased the shelf life of tubers kept under ambient temperature. The internal chemical quality of tubers was shown to be improved by keeping the tubers under ambient temperature after irradiation by the two D10 doses 0.24 and 0.20 KGy

  5. Is Vitamin E Life Supporter for Gamma Irradiated Galleria Mollenella?

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2012-01-01

    This study conducted to determine the effect of vitamin E separate or combined with gamma ray in semi artificial diets on some biological aspects of the Greater wax moth, Galleria mellonella L. (Pyralidae : Lepidoptera). The increase in the average number of eggs per mated female for more than 70 % of the control in both treated male and female. Also, through the F1 generation (descendant of P1 progeny fed on artificial diet plus vitamin E) in either irradiated male or female at 100 and 300 Gy dose levels. The life supporter of vitamin E clearly demonstrates throughout F1 whose offspring fed on artificial diet plus Vitamin E, also more pronounced during the first generation treated with gamma irradiation (100 and 300 Gray) which descendant from the offspring were fed on the artificial diet containing Vitamin E (0.02%) than that treatments which treated with gamma irradiation only. The average weight of larvae and pupae significantly increase by using petroleum ether only or this may be abnormal. The average weight of larvae and pupae at the concentration 0.02% was 105.07 and 121.87 % from the control treatment, respectively then decreased to 67.86 and 75.12%, respectively from the control treatment at the concentration 0.04% and then increase at the two concentrations 0.06 and 0.08 %. The increase in weight gain in the case combined ( 100 Gy or 300 Gy with Vitamin E) more than in case using a single dose of gamma irradiation , the increase in case 300 Gy only or combined with Vitamin E more than the control treatment. The best result in case of Vitamin (E) only then when treated the pest with gamma radiation after Vitamin (E) and the effect at 100 Gy better than in case 300 Gy. The combined effect of sub sterilizing dose (300 Gy) and sterilizing doses (400 and 500 Gy) of gamma radiation and vitamin E on the mating competitiveness of F1 males G. Mellenella shows that the competitiveness values more than 1.0 at the combined VE and the two dose levels 400 and 500 Gy

  6. Effect of gamma-ray and electron irradiation on the response of solid-state track detectors

    International Nuclear Information System (INIS)

    Fukuda, Kyue

    1980-01-01

    Specimens of muscovite mica were first exposed to fission fragments and then to various gamma-ray fields from a 60 Co source ranging from 1.9 x 10 3 to 1.6 x 10 4 Mrad dose. The results show that the average etched width of fission-fragment tracks decreases with increasing gamma-ray dose. Shallow pits were observed in etched specimens when the gamma-ray dose exceeded 5 x 10 3 Mrad. Numerous shallow etch pits caused by the gamma-ray irradiation interfered with the observation of fission tracks in the specimens. No shallow etch pits were observed in the specimen annealed for 100 min at 600 0 C before the gamma-ray irradiation. Pre-annealing extends the ''safety limits'' of gamma background below which muscovite mica can be used to observe fission tracks without any gamma-ray interference. Gamma-ray and electron irradiation caused significant increase of the resistance to thermal decomposition of muscovite mica. The resistance increased markedly in the dose range from 5 x 10 3 to 8 x 10 3 Mrad. These phenomena suggest the use of mica to assess radiation doses of gamma rays and electrons up to several thousand megarads. (author)

  7. Comparative effectiveness of gamma-rays and electron beams in food irradiation

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1991-01-01

    Ionizing radiations which can be used for the treatment of foods are gamma-rays from Co-60 and Cs-137, accelerated electrons from a machine at an energy of 10 MeV or lower and X-rays from a machine at an energy of 5 MeV or lower. The Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food held in 1980 concluded that the foods irradiated at overall average doses up to 10 kGy with the radiation listed above are wholesome for human consumption. While most of the commercial food irradiations are conducted with gamma-rays from Co-60, accelerated electrons are increasingly utilized for treating foods. An important difference between gamma-rays and accelerated electrons is the penetration capacity in materials. The penetration capacity of gamma-rays is much higher than that of accelerated electrons. Another important difference is the dose rate. The dose rates of gamma-rays from commercial Co-60 sources are 1-100 Gy/min, while those of electron beams from electron accelerators are 10 3 -10 6 Gy/s. Ideally a comparison of the effect of different types of ionizing radiation should be carried out at the same dose rate but this has been difficult due to the design of irradiators. It is very difficult to draw a definite conclusion on the difference in the effectiveness in food irradiation between gamma-rays and electron beams based on published data. This chapter deals with as many reports as possible on the comparative effectiveness of gamma-rays and electron beams and on the effect of dose rate on chemical reactions and living organisms, whether or not they demonstrate any dependency of the effect of irradiation on dose rate and type of radiation. (author)

  8. Postharvest storage quality of gamma-irradiated 'climax' rabbiteye blueberries

    International Nuclear Information System (INIS)

    Miller, W.R.; Mitcham, E.J.; McDonald, R.E.; King, J.R.

    1994-01-01

    Postharvest quality of 'Climax' rabbiteye blueberries (Vaccinium ashei Read) was evaluated after exposure to dosages of 0, 0.75,1.5,2.25, or 3.0 kGy gamma irradiation (0.1 18 kGy-min-1) and after subsequent storage. Irradiation did not affect weight loss, but irradiated berries were softer than nontreated berries. There was also a trend toward increased decay as dose increased. Irradiation had no effect on powdery bloom or surface color; total soluble solids concentration, acidity, and pH were affected slightly. Flavor preference was highest for nonirradiated berries and generally declined as dosage increased. Irradiation at 2.25 and 3.0 kGy resulted in increased levels of xylosyl residues in cell walls, and xylosyl residues were the most abundant cell-wall neutral sugar detected in blueberries. There was no evidence of cell wall pectin loss in irradiated berries. Irradiation at 1.5 kGy lowered the quality of fresh-market 'Climax' blueberries

  9. Shelf Life of Tilapia Fillets Treated with low dose Gamma Irradiation

    International Nuclear Information System (INIS)

    Mohamed, W.S.; El-Mossalami, I.I.

    2009-01-01

    The bacterial load (total bacterial count), Psychrophilic count, chemical and sensory examinations in Tilapia fish fillets were determined to evaluate its sanitary status and to increase its storage period during storage at -18 degree C for one year. The experiment was carried out at the time of receiving the samples and after gamma radiation treatment with dose levels of 1, 2 and 3 kGy. The initial total bacterial count was 5.4x10 0 cfu/gm and the psychrophilic count was 4x10 5 cfu/gm; it was slightly increased during freezing storage. The chemical parameters were more indicative in evaluating the shelf life of frozen fish; as they exceeded the permissible limits, so that the frozen non-irradiated samples were rejected after 6 months. The exposure to gamma irradiation at a dose of 1 kGy extended the storage time of the samples to 9 months while irradiation with 3 kGy extended the storage time of the samples to 12 months without changing its quality attributes. The quality during storage at -18 degree C of non irradiated and irradiated fish fillets was investigated every 3 months for one year by measuring the bacterial counts, chemical parameters and sensorial evaluation of the samples to study the effect of irradiation on increasing the storage time of fish fillets. So, it is recommended that fish fillets should be properly cleaned, packaged and exposed to gamma irradiation at a dose of 3 kGy to extend its freezing storage period

  10. Digestibility and composition of broiler litter, as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    An experiment has been carried out to study the effect of 6 doses of gamma irradiation (0-350 kilo Gray, kGy) on in vitro organic matter digestibility (IVOMD), digestible energy, gross energy (GE), total nitrogen (N), crude fibre (CF), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) and acid-detergent lignin (ADL) in broiler litter. The results indicate that gamma irradiation increased the IVOMD and IVDE, except the dose of 50 kGy, and decreased the values of CF, NDF, ADF and ADL significantly (P 0.05) effect of irradiation on GE and N. (author)

  11. Microbial decontamination of dried date by Gamma-irradiation

    International Nuclear Information System (INIS)

    Majd, F.; Motamedi, F.; Abhari, M.

    2000-01-01

    Dried date is one of the export item from Iran. It can be contaminated during the processing and storage using nuclear techniques such as irradiation of food can increase the shelf life of agricultural products and improve their quality. This technique can be used for food decontamination of dried fruits according the standard authorized limitation. In this research different doses of Gamma Irradiation were used for microbial decontamination.he rest indicates that the optimum dose to reduce microbial contamination and increase shelf life is 5 kGy

  12. Effect of gamma irradiation on the photoluminescence of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Elistratova, M. A., E-mail: Marina.Elistratova@mail.ioffe.ru; Romanov, N. M. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Goryachev, D. N. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Zakharova, I. B. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Sreseli, O. M. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2017-04-15

    The effect of gamma irradiation on the luminescence properties of porous silicon produced by the electrochemical technique is studied. Changes in the photoluminescence intensity between irradiation doses and over a period of several days after the last irradiation are recorded. The quenching of photoluminescence at low irradiation doses and recovery after further irradiation are registered. It is found that porous silicon is strongly oxidized after gamma irradiation and the oxidation process continues for several days after irradiation. It is conceived that the change in the photoluminescence spectra and intensity of porous silicon after gamma irradiation is caused by a change in the passivation type of the porous surface: instead of hydrogen passivation, more stable oxygen passivation is observed. To stabilize the photoluminescence spectra of porous silicon, the use of fullerenes is proposed. No considerable changes in the photoluminescence spectra during irradiation and up to 18 days after irradiation are detected in a porous silicon sample with a thermally deposited fullerene layer. It is shown that porous silicon samples with a deposited C{sub 60} layer are stable to gamma irradiation and oxidation.

  13. Effect of gamma irradiation on essential oils and lipids in spices

    International Nuclear Information System (INIS)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao

    1991-01-01

    Seven kinds of spices were irradiated with gamma-rays at the dose of 5 to 80 kGy. Studies of radiation effect on lipids in each spice were carried out by measuring peroxide value (POV), iodine value (IV), acid value (AV) and analysis of gas-chromatography (GC). POV in each spice was gradually increased with increasing absorbed doses. The increase of POV in nutmeg was higher than those of other spices, and it was suggested that those increase of POV values were related to lipid contents in spices. A little increase of IV and AV were also observed as same amount of POV by the irradiation up to 80 kGy. From the GC analysis of lipids in each spice, components were not changed even irradiated up to 50 kGy of gamma-rays. Radiation effect on components of essential oils in each spice were also analyzed by headspace-GC (HS-GC), and any degradation of components were not observed up to 50 kGy of irradiation even analyzed by GC after separation to hydrocarbon and oxygen compounds. On the contrary, essential oils of cloves sterilized by heat treatment were apparently decreased as compared with irradiated and non-irradiated cloves. (author)

  14. Effect of gamma irradiation on essential oils and lipids in spices

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-11-01

    Seven kinds of spices were irradiated with gamma-rays at the dose of 5 to 80 kGy. Studies of radiation effect on lipids in each spice were carried out by measuring peroxide value (POV), iodine value (IV), acid value (AV) and analysis of gas-chromatography (GC). POV in each spice was gradually increased with increasing absorbed doses. The increase of POV in nutmeg was higher than those of other spices, and it was suggested that those increase of POV values were related to lipid contents in spices. A little increase of IV and AV were also observed as same amount of POV by the irradiation up to 80 kGy. From the GC analysis of lipids in each spice, components were not changed even irradiated up to 50 kGy of gamma-rays. Radiation effect on components of essential oils in each spice were also analyzed by headspace-GC (HS-GC), and any degradation of components were not observed up to 50 kGy of irradiation even analyzed by GC after separation to hydrocarbon and oxygen compounds. On the contrary, essential oils of cloves sterilized by heat treatment were apparently decreased as compared with irradiated and non-irradiated cloves. (author).

  15. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  16. Increasing the Control Efficacy of Saw toothed grain beetle, Oryzaephilus surinamensis (L) Using Gamma Irradiation and Essential Plant Oils

    International Nuclear Information System (INIS)

    Sileem, Th.M.; Hassan, R.S.; Sayed, W.A.A

    2017-01-01

    The combination of gamma irradiation and essential oils could potentially be used to control the Saw toothed grain beetle, Oryzaephlius surinamensis (L). Lethal dose of gamma irradiation and six commonly essential oils (Rosemary, Rosmarinus officinalis L., Marjoram, Origanum vulgare and Sesame, Sesamum indicum, Mintha, Mentha pulegium, Basil, Ocimum basilicum, and Pine, Pinus longifolia L) as a fumigants was tested. It was noticed that the O. surinamensis (L) larvae were most susceptible to irradiation where as, the aged adults were most tolerant. The insecticidal activity of the essential oils varied depending on the insect age and the type of essentials oils. The larval stage among the three test ages was more susceptible to the tested oils and the younger adults more sensitive than the older once to the tested essential oils in general. The combined treatment increased the mortality, which was also two times higher than could be expected from the sum of the effects of each of the treatments. The results indicated that synergistic effect was more pronounced in the case of fumigation followed by irradiation than in the case of irradiation followed by fumigation. Also, the total amount of glutathione (GSH+GSSG), thiobarbituric acid reactive substances (TBARS) and acetylcholine esterase (ACHE) were recorded. The findings indicate that the ionizing radiation might be considered as an environmentally compatible alternative or supplement to the essential oils for stored product-pests management

  17. The protective role of damsissa (Ambroosia Maritima) against gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Osman, O.A.; Mohamed, Y.S.

    2003-01-01

    The present work was directed to evaluate the effectiveness of treatment with damsissa (Ambrosia maritima) for thirty consecutive days pre- irradiation exposure in controlling the post-irradiation hazards in irradiated rats. Male albino rats (Spraue Dowley strain) weighing about 120+- 10 g were used and blood samples were collected from tails of animals thirty days after treatment with damsissa and seven days post irradiation. Blood samples were subjected to biochemical analysis such as liver functions, kidney function and lipid profile. Whole body gamma irradiation of rats at 6 Gy (single dose) caused significant decrease in the contents of total proteins accompanied by significant increase of urea level as recorded on the 7th days post irradiation. Data obtained in this study revealed that whole body gamma irradiation induced significant elevation in all tested blood lipid functions. There was significant increase of aspartate amino transferase (AST) and alanine amino transferase (ALT) whole alkaline phosphatase (ALP) showed statistical significant decrease as compared with the control group. Damisissa (Ambrosia maritima) treatment exerted noticeable amelioration in the the studied biochemical parameters of the irradiated albino rats. The mechanism of action of damsissa may be due to its anti-inflammatory properties against whole body gamma irradiation

  18. Radioprotective effects of chlorogenic acid against mortality induced by gamma irradiation in mice

    International Nuclear Information System (INIS)

    Seyed Jalal Hosseinimehr; Amirhossein Ahmadi; Shahram Akhlaghpoor; Tehran University of Medical Sciences, Tehran

    2007-01-01

    Complete text of publication follows. The radioprotective effects of the naturally occurring compound chlorogenic acid has been investigated against mortality induced by gamma irradiation in mice. Chlorogenic acid administrated at single doses of 100, 200 and 400 mg/kg 1 and 24 h prior to lethal dose of gamma irradiation (8.5 Gy). At 30 days after treatment, the percentage of animal survival in each group was: control, 20%; 100 mg/kg, 20% and 15%; 200 mg/kg, 45% and 15%; 400 mg/kg, 25% and 35% for 1 h and 24 h treatment prior gamma irradiation, respectively. Percentage of survival increased in animal treated with this agent at 200 mg/kg at 1 h statistically compared with irradiated alone group. Other doses of chlorogenic acid have not showed any enhanced survival at 1 and 24 h before irradiation. Chlorogenic acid exhibited concentration-dependent activity on 1, 1-diphenyl 2-picrylhydrazyl free radical to show strong antioxidant activity. It appeared that chlorogenic acid with antioxidant activity reduced mortality induced by gamma irradiation.

  19. Improving the microbial safety and quality of quail carcasses by gamma irradiation

    International Nuclear Information System (INIS)

    Rady, A.H.; Khalaf, H.H.; Afifi, E.A.; Nasr, E.H.

    2002-01-01

    This investigation aims to study the possibility of using gamma irradiation for improving the microbial safety quality of quail carcasses. One hundred quail carcasses were examined for the presence of salmonella. The examination illustrated that 70 carcasses from all examined carcasses were positive for salmonella. therefore, the contaminated quail carcasses were gamma irradiated at 2, 4 and 6 kGy doses and the effects of these treatments on the microbiological aspects and chemical properties of samples under investigation were evaluated. The results indicated that, the chemical composition of samples did not alter by gamma irradiation treatment. Furthermore, irradiation of samples at doses of 2, 4 and kGy greatly reduced its microbial count. Moreover, irradiation doses of 2 and 4 kGy completely destroyed salmonella and enterococcus faecalis, respectively. In addition, the acid value, peroxide value and thiobarbituric acid value were increased after irradiation. On the other hand, irradiation treatment had no real effects on the total volatile basic nitrogen content and amino acid composition of samples under investigation

  20. Microbiological and chemical characteristics of gamma irradiated roasted Veal Meat

    International Nuclear Information System (INIS)

    Aftfy, S.A.; Abdel-Daiem, M.H.

    2007-01-01

    This investigation aims 10 study the possibility of using gamma irradiation at doses of 1,3 and 5 KGy for microbial decontamination of roasted veal meat (kebab). The samples were purchased from local market and examined for the counts of Staphylococcus aureus, Bacillus cereus, presence of Salmonella spp and the counts of total bacterial, molds and yeasts and Enterobacteriaceae. The results illustrated that all samples were positive for Staphylococcus aureus, Bacillus cereus, while Salmonella spp was detected in only 3 samples. Therefore, these product samples were gamma irradiated at doses of 0,1,3 and 5 kGy, then stored at cold storage (4±1 degree C). The effects of these treatments on the microbiological, chemical and sensory characteristics were studied post treatment and during cold storage. Irradiation at 1 kGy reduced the counts of total bacterial, molds and yeasts, Enterobacteriaceae, Staphylococcus aureus and Bacillus cereus as well as eliminating Salmonella spp. On the other hand, irradiation at 3 and 5 kGy doses completely eliminated the present Enterobacteriaceae, S. aureus, B, cereus and Salmonella spp. Irradiation of samples increased their amounts of thiobarbituric acid reactive substances (TBARS) but it did not affect the sensory characteristics of samples and it had no effects on their total volatile nitrogen (TVN) contents, while storage increased the TBARS and TVN for irradiated and non-irradiated samples. Gamma irradiation treatments had no effects on the sensory characteristics for appearance, odor and taste of all kebab samples and extended their time of sensory preference. However, doses of 1, 3 and 5 kGy reduced the counts of total bacteria and extended of the refrigerated shelf-life of samples to 11, 23 and 29 days, respectively, compared to 5 days for non-irradiated controls

  1. Investigating the embryo/larval toxic and genotoxic effects of {gamma} irradiation on zebrafish eggs

    Energy Technology Data Exchange (ETDEWEB)

    Simon, O., E-mail: olivier.simon@irsn.fr [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Massarin, S. [Laboratoire de Modelisation Environnementale, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 159, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Coppin, F. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Hinton, T.G. [Service d' Etude du Comportement des Radionucleides dans les Ecosystemes, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 159, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Gilbin, R. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France)

    2011-11-15

    Eggs/larval of freshwater fish (Danio rerio) were exposed to low dose rates of external gamma radiation (from 1 to 1000 mGy d{sup -1}) over a 20-day period, with the objective of testing the appropriateness of the 10 mGy d{sup -1} guideline suggested by the IAEA. The present study examines different endpoints, mortality and hatching time and success of embryos as well as the genotoxicity of {gamma}-irradiations (after 48 h). The 20-day embryo-larval bioassay showed an enhanced larval resistance to starvation after chronic exposure to {gamma} irradiation (from low 1 mGy d{sup -1} to high dose rate 1000 mGy d{sup -1}) and an acceleration in hatching time. Gamma irradiation led to increased genotoxic damage Ito zebrafish egg (40-50% DNA in tail in Comet assay) from the lowest dose rate (1 mGy d{sup -1}). Possible mechanisms of {gamma} radiotoxicity and implications for radioprotection are discussed. - Highlights: > Relevant information on the {gamma} radiation impact on early life stage biota is scarce. > The eggs of zebrafish Danio rerio were selected as biological model. > We test the appropriateness of the 10 mGy d{sup -1} guideline (IAEA). > We observed effects measured at individual levels (starvation, hatching time). > Chronic gamma irradiation led to increased genotoxic damage to zebrafish egg. > {gamma} radiotoxicity mechanisms and implications for radioprotection are discussed.

  2. Characterization of Gamma-Irradiated Egyptian Wheat Flour

    International Nuclear Information System (INIS)

    Amer, H.H.; Attia, A. A.; Elsayed, A.A.; Ali, M.A.

    2008-01-01

    Physical, rheological and baking properties of bread Shamy, prepared from gamma-irradiated Egyptian wheat flour up to 25 KGy as one of common types of bread in Egypt, were studied and the acceptability of bread was evaluated by sensory tests. All amylo-, farino-, and extensograph characteristics and also sample ph showed significant decrease as irradiation dose increased. Such results could be explained in terms of loss of unique elastic and cohesive properties of wheat gluten and starch damage upon increment of radiation dose. The improvement in properties of bread, baked from flour irradiated up to 7.5 KGy, could be explained on the basis of a simulation in gas production during dough fermentation due to increase in starch degradation products. However, bread, prepared from wheat samples irradiated above 7.5 KGy, exhibited significantly lower values of acceptance because of physico-chemical changes in both starch and gluten

  3. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    International Nuclear Information System (INIS)

    Gagnaire, B.; Cavalié, I.; Pereira, S.; Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C.

    2015-01-01

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  4. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, B., E-mail: beatrice.gagnaire@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Cavalié, I. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Pereira, S. [Neolys Diagnostics, Lyon 69373 (France); Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France)

    2015-12-15

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  5. Antioxidative activity of carnosine in gamma irradiated ground beef and beef patties

    International Nuclear Information System (INIS)

    Badr, H.M.

    2005-01-01

    The activity of carnosine as a natural antioxidant in gamma irradiated ground beef and beef patties was studied. Samples of ground beef, in absence and presence of 0.5% or 1.0% carnosine, as well as raw and cooked beef patties prepared with 1.5% salt (NaCl), in absence and presence of 0.5% or 1.0% carnosine, were gamma irradiated at doses of 2 and 4 KGy. Then, the extent of oxidation in irradiated and non-irradiated samples of ground beef and raw beef patties was determined during refrigerated (4± 1 degree C) and frozen (-18 degree C) storage, while was determined for cooked beef patties during refrigerated storage only. Moreover, the determination of metmyoglobin (MetMb) accumulation and sensory evaluation for the visual colour were carried out for samples of ground beef and raw patties. The results indicated that salt or salt and cooking can accelerate the oxidative processes and significantly increased the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) in the prepared non-irradiated samples. However, salt slowed down the accumulation of MetMb in raw patties. Irradiation treatments and storage in absence of carnosine significantly increased with higher rates the PV and TBARS in salted or salted and cooked beef samples. Moreover, irradiation and storage significantly increased the formation of MetMb in ground beef and raw patties in absence of carnosine. Addition of carnosine significantly reduced the oxidative processes and MetMb formation (proportionally to the used concentration) in samples post irradiation and during storage. Furthermore, carnosine exerted significant efficacy in maintaining an acceptable visual red colour post irradiation and during storage of ground beef and raw patties. These results demonstrate that carnosine can be successfully used as a natural antioxidant to increase the oxidative stability in gamma irradiated raw and cooked meat products

  6. Effects of gamma irradiation on physicochemical properties of heat-induced gel prepared with chicken salt-soluble proteins

    International Nuclear Information System (INIS)

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Seo, Kwang-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The technological effects of gamma irradiation (0, 3, 7, and 10 kGy) on chicken salt-soluble meat proteins in a model system were investigated. There were no significant differences in protein, fat, and ash content, and sarcoplasmic protein solubility among all samples. The samples with increasing gamma irradiation levels had higher pH, lightness, yellowness, and apparent viscosity, whereas moisture content, water holding capacity, redness, myofibrillar protein solubility, total protein solubility, hardness, springiness, cohesiveness, gumminess, and chewiness were the highest in the unirradiated control. The result from meat products using gamma irradiation was intended to provide a basic resource processing technology. - Highlights: • The effect of gamma irradiation on salt-soluble meat proteins was investigated. • Gelling properties of salt-soluble protein affected by gamma irradiation. • Gamma irradiation of meat products provides a basic resource processing technology

  7. Aromatic polymers of increased resistance to flow and molecular weight obtained by irradiation

    International Nuclear Information System (INIS)

    Staniland, P.A.; Jarrett, G.

    1976-01-01

    Aromatic polymers of increased resistance to flow and increased molecular weight are obtained by irradiation using β rays or gamma rays at temperatures up to 400 0 C of an aromatic polymer whose molecular chains comprise benzenoid groups and bivalent linking groups, and where irradiation is gamma rays by heating subsequent to irradiation at 200 0 C to 400 0 C. The polymeric materials having increased molecular weight are useful for coating non-cooking surfaces of cookware

  8. The effect of gamma irradiation on insect pest of rice in storage

    International Nuclear Information System (INIS)

    Rita Muhamad Awang; Noorma Osman.

    1987-01-01

    This study was conducted to determine the effect of gamma irradiation on insect pest of rice, stored for a period of 24 months, and packed in four different packaging materials. They were then exposed to gamma radiation using Gamma Cell 220, in a 60 Co source. Samples were randomly sampled at the initial storage period and there after at 3 months interval. At each sampling time the grain weight loss and insect count, both dead and alive, were determined. The increasing dosages of irradiation did not show any consistent effect on the insect population in all the four packaging materials which indicated that the rice was already infested even before it was irradiated. The range of percentage weight loss for all the dosages of irradiation in all of the four packaging materials is 0.99 to 2.02. (A.J.)

  9. Determination of fatty acid composition of {gamma}-irradiated hazelnuts, walnuts, almonds, and pistachios

    Energy Technology Data Exchange (ETDEWEB)

    Gecgel, Umit [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey); Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey)

    2011-04-15

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  10. Improving Quality and Microbial Safety of Wheat Flour by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.; Hassan, M.F.; Soliman, S.M.; Abu-Shady, M.R.

    2017-01-01

    In the present study Egyptian wheat flour extracted from wheat (variety Seds 6 ) were irradiated at a dose of 5.0 kGy using Co-60 gamma source. The influence of this irradiation dose on the aerobic bacterial count, mold and yeast count, aflatoxins and major chemical composition of wheat flour was investigated. The influence of a 5.0 kGy gamma radiation dose on the rheological characteristics of wheat flour as well as on the sensory properties of Balady bread was also investigated. It was found that irradiation greatly reduced aerobic bacterial count and mold and yeast count as well as decreasing aflatoxin B1. The major chemical composition of wheat flour almost had no changes as a result of exposure to gamma radiation. An irradiation dose of 5.0 kGy caused a decrease in dough development time, dough stability time and deformation energy of dough as well as increasing dough water absorption which are all desirable in bread making. On the other hand, sensory properties of bread prepared from irradiated flour were almost similar to that of bread made from non-irradiated flour

  11. Gemstone enhancing dedicated gamma irradiator development

    International Nuclear Information System (INIS)

    Omi, Nelson Minoru

    2006-01-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to it's poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator raised in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations were performed. With the definitive irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. (author)

  12. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  13. Gamma irradiation versus microbial contamination of Thai medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wannipa Phianphak

    2007-03-01

    Full Text Available Seventeen species of herbs established in Thai traditional remedies were microbially decontaminated by gamma-irradiation doses of 7.7 and 8.8 kGy. The herb samples were randomly collected four times from producers in Chiangmai during a 1-year period. These were tested, qualitatively and quantitatively, for total aerobic bacteria, Staphylococcus spp., Salmonella spp., coliform bacteria, and fungi before and after gamma treatment. No microorganisms were found after gamma treatment; and the color, aroma, and texture of the herbs remained normal. The applied dose of gamma irradiation was within the regulatory limits in Thailand (<10 kGy and the main export country (USA< 30 kGy. Gamma irradiation is an effective treatment for microbial decontamination of Thai export herbs.

  14. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of (/sup 14/C)adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with /sup 60/Co ..gamma..-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of ..gamma..-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m/sup -2/) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as ..gamma..-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  15. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    Science.gov (United States)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  16. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yoo, Young-Choon [Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, International University of Korea, Jinju 660-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-{alpha} and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  17. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-01-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  18. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    International Nuclear Information System (INIS)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shivananda, C. S.; Harish, K. V.; Sangappa; Shetty, G. Rajesha

    2015-01-01

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films

  19. The changes of nutrient composition and in vitro evaluation on gamma irradiated sweet sorghum bagasse

    International Nuclear Information System (INIS)

    Teguh Wahyono; Firsoni

    2016-01-01

    In vitro rumen fermentation study was done to evaluate the effects of gamma irradiation on nutrient compound changes and rumen fermentation product of sweet sorghum bagasse (SSB). The level doses 0, 50, 100 and 150 kGy from cobalt-60 gamma rays irradiator was used to treate sweet sorghum bagasse (SSB). Variables measured were nutrient values, gas production, methane (CH_4) production, total volatile fatty acid (TVFA), ammonia (NH_3), in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) after 72 h in-vitro incubation times. Complete randomized design (CRD) (four treatments and four replications) was used to analyze data. The results showed that gamma irradiation doses of 50, 100 and 150 kGy were able to reduce neutral detergent fibre (NDF) (2.15; 3.29 and 5.44% respectively) and acid detergent fibre (ADF) (3.29; 4.58 and 4.58% respectively) and significantly different (P <0.05). Gamma irradiation was capable to increase total volatile fatty acid (TVFA), IVDMD and IVOMD (P <0.05). Irradiation doses of 100 and 150 kGy also increased protozoa population and CH_4 production significantly (P <0.05). Gamma irradiation improved in vitro rumen performance represented in rumen fermentation products. (author)

  20. Effect of gamma irradiation in sterilization of dry dextran as plasma substitute and sodium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Piatkiewicz, A; Kusewicz, D [Politechnika Lodzka (Poland)

    1975-01-01

    The exposure of dry dextran, sodium chloride and polyethylene packing to 0,3-2 Mrad of gamma irradiation decreased their contamination by 60 to 96%. The sterilization effect of irradiation increased with gamma-ray dose. Spores of Bacillus subtilis and Aspergillus niger were shown to be the most resistant to gamma-ray treatment. In some samples the resistant Micrococcus was also detected.

  1. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    Science.gov (United States)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  2. Evaluation of artemisia mutant lines conducted from gamma irradiation treatment

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; EG Lestari; M Syukur

    2010-01-01

    Cases of Malaria diseases attack in Indonesia has been increasing. Plasmodium falciparum the cause of malaria disease is now resistant to the usual medicine. One of malaria medicine which recommended by WHO is artemisinine compound extracted from Artemisia annua L plant. Low artemisinine content is one problem of Artemisia development in Indonesia. Increasing genetic variation using gamma irradiation is one alternative method to improve artemisinin content. In 2007, induce mutation had been done to artemisia seeds using gamma irradiation at dosage of 10-100 Gy. The good rooting planlet was regenerated and acclimatized in the green house, and then the seedling (M0 generation) was planted in the field at 1545 m asl. Plants derived from seeds without gamma irradiation treatment and cultured in vitro (in vitro control) were used as control. The result showed there were some morphological variations between the mutant lines (plant height, shape of the leaves and time of flowering). Ten mutant lines were selected based on biomass yield and analyzed for the artemisinine content.The result showed that artemisinine content of the mutant lines ranged from 0.44 - 1.41%, and it was significantly higher than that of in vitro control (0.43%). (author)

  3. Effect of gamma-irradiation on the phenolic acids of some Indian spices

    International Nuclear Information System (INIS)

    Variyar, P.S.; Bandyopadhyay, C.; Thomas, P.

    1998-01-01

    Five commercially important spices, namely cinnamon, clove, cardamom, nutmeg and mace, were subjected to gamma-irradiation using a dose of 10 kGy, which is recommended for microbial decontamination. Various phenolic acids present in these spices were analysed by high-performance liquid chromatography (HPLC). In clove and nutmeg, quantitatively significant changes were noted in some of the phenolic acids upon irradiation. The content of gallic and syringic acids in irradiated clove increased by 2.2- and 4.4-fold respectively, whereas in irradiated nutmeg many of the phenolic acids showed wide increases and decreases in the range of two- to sixfold compared with the control samples. No qualitative and major quantitative changes were, however, observed in the phenolic acids of cinnamon, cardamom and mace upon irradiation. The possibility that gamma-radiation induced breakdown of tannins could be responsible for the changes in phenolic acids content of clove and nutmeg is discussed

  4. Analysis of gamma irradiated pepper constituents, 5

    International Nuclear Information System (INIS)

    Takagi, Kazuko; Okuyama, Tsuneo; Ishikawa, Toshihiro.

    1988-01-01

    Gamma irradiated peppers (10 krad, 100 krad, 1 Mrad) were analyzed by HPLC. The extraction method and HPLC conditions were same as the first report, that is, the extraction from pepper was performed by Automatic Air Hammer and the extracted samples were separated on a reversed phase C 8 column with a concave gradient from 0.1% trifluoro aceticacid (TFA) in water to 75% acetonitrile-0.1% TFA in water for 60 minutes and detected at 210 nm, 280 nm. It is difficult to compare with irradiated and unirradiated pepper constituents by their peak height or area. And the method of multi variant statistically analysis was introduced. The 'peak n area/peak n + 1 area' ratio was calculated by computer. Each peak area was accounted by integrator. The value of these ratio were called 'parameter'. Each chromatogram has 741 parameters calculated with 39 chromatographic peaks. And these parameters were abopted to the multi variant statiscally analysis. Comparison of constituents between irradiated pepper and unirradiated pepper was done by 741 parameters. The correlation of parameters between irradiated and unirradiated was investigated by use of computer. Some parameters of irradiated case were selected as which had no correlation with unirradiated case. That is to say these parameters were thought to be changed with gamma spectrum irradiation. By this method, Coumarin was identified as a changed component with gamma irradiation. (author)

  5. Effect of gamma irradiation on microbial load and quality characteristics of minced camel meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Zeinou, R.

    2006-12-01

    The effect of gamma irradiation on microbial load, chemical and sensory characteristics of camel meat has been evaluated. Camel meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Centigrade). Immediately after irradiation, general composition and sensory evaluation of camel meat were done. Microbiological and chemical analyses of camel meat were evaluated at 0, 2, 4 and 6 weeks of storage. The results indicated that all doses of gamma irradiation reduced the total counts of mesophilic aerobic bacteria and total coli form of camel meat. Thus the microbiological shelf-life of camel meat was significantly extended from less than 2 weeks (control) to more than 6 weeks (samples irradiated with 2, 4 or 6 kGy). No significant differences in moisture, protein, fat, Thiobarbituric acid (TBA) value, total acidity, pH vale and fatty acids (C14: 0; C16: 0; C18:0) of camel meat were observed due to irradiation. Both total volatile basic nitrogen (VBN) and lipid oxidation value in camel meat were effected by gamma irradiation. Immediately after treatment, VBN of irradiated camel meat increased and lipid oxidation values decreased. Sensory evaluation showed no significant differences between irradiated and unirradiated camel meats. (author)

  6. Gamma ray irradiation to semi-purified diet

    International Nuclear Information System (INIS)

    Takigawa, Akihiro; Danbara, Hiroshi; Ohyama, Yoshinobu

    1976-01-01

    Semi-purified diet containing 10% soybean oil was irradiated with gamma rays at levels of 0.6, 3 and 6 Mrad and was fed to chicks. Crude fat contents of the diets decreased and a considerable amount of peroxide was formed with high doses of irradiation. Feed consumption and feed efficiency of the highly irradiated diets were less than those of control. Metabolizable energy and digestibility of the diets, especially of fat, were decreased with the irradiation. The chicks fed with irradiated diets showed marked dilatation of the small intestine and the liver, and their erythrocytes were more fragile than those of control. The same phenomena were found with the chicks fed the diet containing the oil highly oxidized by autoxidation. Irradiation of the diet excluding oil showed little effect on the growth of chicks. It was considered that these phenomena were caused by the peroxide or other oxidation products of fat which were formed with gamma ray irradiation. (auth.)

  7. Radioprotective effects of Cordyceps sinensis extracts on {gamma}-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Beong Gyu [Wongwang Health Science College, Iri (Korea, Republic of); Kim, On Joong; Kim, Jae Young [Dongguk University, Seoul (Korea, Republic of)

    1999-06-01

    Effect of single intraperitoneal administration of Cordyceps sinensis (Cs) extract at 24 hour before whole-body {gamma} - irradiation on the survival ratio, body weight, organ weight changes and serum metabolites in the irradiated mice were investigated. The single pre-administration of Cs extract increased the 40-day survival ration of irradiated mice from 66.7 percent to 83.4 percent. The administration of Cs extract completely prevented weight reductions of spleen and thymus produced by {gamma} - irradiation (P < 0.05, P < 0.01). Similar but somewhat less radioprotective effect was also found in the testis of the Cs treated mice. The administration of Cs inhibited the serum hyperglycemia produced by irradiation on the day 7th(P < 0.01). However, it did not influence the serum cholesterol and protein levels on the days examined. The present study is the first report regarding Cs which was tested and found to be radioprotective. (Author)

  8. Fluctuation in haematological values in gamma irradiated rats subjected to pesticide ingestion

    International Nuclear Information System (INIS)

    Abdel-Hamid, F.M.; Roushdy, H.M.; Abu-Ghadeer, A.R.; Girgis, R.B.

    1995-01-01

    Male albino rats were exposed to gamma irradiation alone or after either oral daily administration of 50 or 100 mg kelthane for 3 successive days; or daily administration of 200 mg kelthane mixed with food per kg body weight for 3,6 and 12 weeks. Relative spleen weight and certain hematological values were determined. Significant decrease could be estimated in relative spleen weight due to exposure to gamma irradiation. Significant increase was recorded due to treatment with 50 and 100 mg kelthane. The data obtained on hematological levels revealed insignificant changes in erythrocyte counts and hemoglobin concentration due to exposure to gamma irradiation and / or kelthane treatment. Significant decrease was recorded in hematocrit value either for successive 30 days or due to exposure to gamma radiation after treatment with kelthane for short and long term periods. Leucocyte counts showed significant decrease for all animal groups. 2 tabs

  9. Effects of gamma irradiation on chemical and sensory evaluation of Cabernet Sauvignon wine

    International Nuclear Information System (INIS)

    Caldwell, C.L.; Spayed, S.E.

    1989-01-01

    Cabernet Sauvignon wines received gamma irradiation doses of 0, 0.6, 1.2 or 2.4 KGy and were stored at 21°C for up to 18 months. As radiation dose and storage time increased, total anthocyanin concentration decreased, while color density, hue and color age increased. Acetaldehyde concentration increased with increasing radiation dose and decreased as storage time increased. Sensory evaluation indicated no difference in color or astringency, but off-flavors were detected in wines given a 2.4 KGy dose. Use of gamma irradiation to rapid age Cabernet Sauvignon wines did not appear to be feasible

  10. Desulfurization of petroleum by Co-60 gamma irradiation and analysis of products using GC-MS

    International Nuclear Information System (INIS)

    Mathuthu, M.; Tshivhase, V.M.; Olobatoke, R.Y.; Gaxela, N.N.

    2014-01-01

    Sulfur is an undesirable hetero-atom that has negative on motor engines if present in quantities between 50 and 180.000 ppm. Research has shown that sour petroleum can be 'sweetened' by gamma irradiation to de-sulfurize the crude oil. In this research we will report experimental results of desulfurizing petroleum locally procured. The objective is to improve the quality of product delivered to the motor market and also reduce the environmental pollution due to SO 2 emissions from engines. The gamma irradiated (de-sulfurized petroleum was chemically analyzed using GC-MS. The preliminary results show that the petroleum is polymerized by gamma radiation to higher molecular mass. The un-irradiated petroleum had a sulfur concentration of 3.24% and 0.020% wt after gamma irradiation. The sulfur content was reduced by a factor of about 160 when dose was increased from zero to 50 kGys. GC-MS Chromatographs are presented for the identified hydrocarbons after gamma irradiation. (authors)

  11. Preventive and Therapeutic Effects of Propolis in Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; El-Shahat, A.N.

    2011-01-01

    Ionizing radiation is known to stimulate the generation of oxygen radicals which destabilize organic molecules resulting in a decrease of the system's antioxidant potential. Propolis (bee glue) is a complex mixture of natural substances that exhibits a broad spectrum of biological activities. As the possibility exists that it may exert a radio protections role, the present study aimed to examine the preventive and therapeutic effects of propolis on the gamma irradiation-induced changes in antioxidant status and certain biochemical parameters. HPLC chromatography for analysis of propolis showed that the number of identified phenols was 6 compounds (natural antioxidants). Male albino rats were exposed to 6 Gy of gamma radiation. The efficiency of propolis was evaluated when propolis was administered orally to rats at a dose of 200 mg/kg as follow: non-irradiated rats received orally propolis extract for 6 weeks (positive control) and rats received orally propolis extract for 3 weeks before or after gamma irradiation. The obtained results revealed that propolis given to rats before gamma irradiation protect the hazardous effects of gamma irradiation. In addition, administration of propolis to gamma irradiated rats caused significant enhancement in hepatic antioxidant enzymes (glutathion reductase; GR and catalase; CAT) and total antioxidant capacity associated with a remarkable decrease in the level of lipid peroxidation (TBARS). Also, it significantly reduced the changes induced by gamma irradiation in the serum levels of glucose and liver enzymes; aminotransferases (AST, ALT) and alkaline phosphatase (ALP). In addition, a significant improvement was observed in the serum levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein- cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C). In conclusion, the positive results obtained in the gamma irradiated rats given propolis indicated that propolis could be considered as effective

  12. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  13. Gamma irradiation effect on acrylated-epoxidized soybean oil: polymerization and characterization

    International Nuclear Information System (INIS)

    Hernandez-lopez, S.; Sanchez-Mendieta, V.; Vigueras-Santiago, E.; Martin Del Campo-Lopez, E.; Urena-Nunez, F.

    2006-01-01

    In this work we present the gamma-irradiation dose effect on acrylated-epoxidized soybean oil (AESO). AESO started to polymerize at 12 kGy and at higher doses (24, 110 and 340 kGy) there is an increase in cross-linking reaction without degradation, thermal or structural changes. Polymeric products were glassy, thermosetting, insoluble, which no longer melt upon heating, and no Tg was observed between -30 to 300 deg C. These polymers were obtained with a specific shape and different properties in comparison with the thermal PolyAESO (rubber) due to higher cross-linking achieved by gamma irradiation. NMR, FT-IR and DSC techniques evidenced these facts. Friction and scratching properties were dependent of irradiation dose. Due to an increase in cross-linking density, lower friction values, reached at high doses (110 and 340 kGy), were accompanied by a lower scratching penetration depth in these polymers. Gamma-ray polymerization could be an alternative and efficient method for in situ synthesis of thermosetting polymers, copolymers and composites with given shapes, controlled polymerization degrees and optimized properties

  14. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  15. Effects of irradiation and storage on the gamma-glutamyl transpeptidase activity of garlic bulbs cv 'Red'

    International Nuclear Information System (INIS)

    Ceci, L.N.; Curzio, O.A.; Pomilio, A.B.

    1992-01-01

    The effects of 50 Gy gamma-irradiation 30 days after harvest on gamma-glutamyl transpeptidase (GTP) activity (the first enzyme in the catabolism of gamma-glutamyl peptides) of garlic bulbs of 'Red' during storage for 300 days were evaluated. GTP activity was determined by spectrophotometry using gamma-glutamyl-p-nitroanilide as exogenous substrate, and was correlated with parameters related to the metabolic-respiratory activity, such as sprouting index in control bulbs, and cumulative weight losses (CWL) and non-enzymic or control pyruvate (CP: metabolite of the respiratory chain) in irradiated and control bulbs. GTP activity was also correlated with flavour parameters, such as enzymic pyruvate (EP; metabolite of the reaction of alliinase and sulphur amino acids in crushed garlic) and primary sulphur compounds. From these results, three storage stages are suggested: (i) the internal dormancy period, (ii) the first post-dormant stage, and (iii) the second post-dormant stage. During the first 90 days of storage (first stage) all the parameters remained nearly constant in the controls, while GTP activity and CP content increased in irradiated garlic because of radioinduced metabolic-respiratory activation. From 90 to 180 days of storage (second stage) the correlation between the increases of GTP and EP in irradiated garlic and controls was due to the action of GTP on gamma-glutamyl peptides that finally released substrates of alliinase. Both enzymes increased EP contact, which was higher in irradiated garlic (major flavour enhancement) than in controls. After 180 days of storage (third stage) EP and primary sulphur compounds decreased in irradiated garlic and in the controls. while GTP, CWL and CP kept increasing in both samples with lower rates of increase in irradiated garlic. These increases were related to metabolic activation. reserve exhaustion and finally rotting. Therefore, irradiated garlic was of better quality at the end of storage

  16. Environmental studies on X- and {gamma}-irradiated LiCsSO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E

    2003-09-01

    Thermoluminescence (TL) characteristics of LiCsSO{sub 4} crystal have been studied after exposure to different doses of X and {gamma} radiations. The glow curves showed TL response of three peaks at 75 deg. C, 125 deg. C and 250 deg. C. The structure of the glow peaks due to X-rays is quite different from that due to {gamma}-rays. UV exposure yields a regeneration of the TL peaks for the post-irradiated samples with X- or {gamma}-radiation with some changes in the peak structure especially the third peak. For the post-X-ray irradiated crystals, the area under the third glow peak (PK III) increased linearly with the integrated time of UV exposure till about 30 min after which no changes were observed; while, for the post-{gamma}-irradiated crystals, two linear regions were observed. The models of the TL response for the post-irradiated samples as a result of exposure to UV are discussed.

  17. Effect of gamma irradiation on Callus formation and regeneration of wheat immature embryos

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2007-01-01

    Four Egyptian bread wheat cultivars; G164, G168, SK61 and Sids1, were tested for their response to six gamma irradiation treatments; 1, 2, 3 Gy (as low doses) and 10, 20, 30 Gy (as high doses) in addition to 0 Gy (as a control) in terms of callus formation and regeneration of immature embryos. Low doses of gamma irradiations ( 1, 2 and 3 Gy) showed favourable effects on both traits; number of regenerated calli and number of shoots per callus comparing with the control (0 Gy), while high doses; 10, 20 and 30 Gy, had the worst effect comparing with the control (0 Gy). G164 cultivar was shown to get the best response in terms of callus formation and regeneration when exposed to low doses of gamma irradiation. In conclusion, gamma irradiation can serve in increasing regeneration efficiency of Egyptian bread wheat cells when used in low doses

  18. Hepatoprotective effects of {gamma}-irradiated caraway essential oils in experimental sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, F. [Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box, 14115-111, Tehran (Iran, Islamic Republic of); Allameh, A. [Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box, 14115-111, Tehran (Iran, Islamic Republic of)], E-mail: allameha@modares.ac.ir; Khalafi, H. [Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Ashrafihelan, J. [Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-02-15

    Irradiation is an important method of processing herbal drugs, while our understanding of the effects of {gamma}-irradiation on pharmacological properties of seed products such as caraway essential oils is however still very limited. In this study, caraway seeds were irradiated at dose levels of 0, 10 and 25 kGy. After extracting the essential oils, the effects of fresh and {gamma}-irradiated caraway oils (100 mg/kg b.w) on preventing septic-related oxidative liver injury induced by cecal ligation and puncture (CLP) model were investigated by measuring oxidative stress parameters in the liver. CLP operation caused a marked increase in myeloperoxidase (MPO) activity which was readily reversed in rats treated with fresh and irradiated caraway oils. Likewise, thiobarbituric acid reactive substances (TBARS) level in the liver was compensated in rats treated with the fresh and irradiated caraway oils. Moreover, liver GSH which was initially depleted due to CLP was recovered by essential oil treatments. The protective role of oils was further confirmed by showing that liver function tests (ALT/AST) as well as histopathological changes following CLP operation were recovered in rats treated with oils from either fresh or irradiated caraway seeds. These data may suggest that {gamma}-irradiation to caraway seeds at 10 and 25 kGy has no influence on the antioxidative properties of caraway essential oils.

  19. Depolymerization of schizophyllan by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Kengo; Ito, Wataru; Hirata, Akio; Kojima, Takemasa [Taito Co. Ltd., Kobe (Japan). Research Lab.

    1992-11-01

    Schizophyllan, an antitumor (1 [yields] 3)-[beta]-D-glucan that takes on a triple helical structure in aqueous solution, was irradiated with gamma-ray at doses of 0.058 to 8.4 Mrad. The molecular weight of the polysaccharide decreased as the dose of radiation increased, and the number of reducing group increased. Methylation analysis by enzymic hydrolysis with exo-[beta]-1,3-glucanase and antitumor tests showed that the polysaccharide after irradiation at 0.058 or 0.26 Mrad had essentially the same chemical structure and antitumor activity as native schizophyllan. Treatment at 2 or 8.4 Mrad caused changes in the chemical structure and antitumor activity. The depolymerization mechanism seemed to be different from that caused by ultrasonic treatment or hydrodynamic shearing, because irradiation most readily caused changes in the chemical structure and antitumor activity. (author).

  20. improving the hygienic quality of quail carcasses by gamma irradiation

    International Nuclear Information System (INIS)

    Nasr, E.H.A.

    2002-01-01

    this investigation aimed to use gamma irradiation doses as compared to chemical preservative sodium tripolyphosphate (stpp) for increasing the shelf-life and improving the hygienic quality of quail carcasses during cold and frozen storage. one hundred quail carcasses were examined for the presence of salmonella. the examination illustrated that 70 carcasses from all examined carcasses were positive for salmonella. therefore, the contaminated quail carcasses were gamma irradiated at 2,4,6 and 8 kGy doses and soaking in 3% stpp and the effect of these treatments on the organoleptic, microbiological aspects and chemical properties during cold (4±1 o C) and frozen storage (-18 o C) of samples under investigation were evaluated .the results indicated that, the chemical composition of samples did not alter by gamma irradiation and soaking in STPP treatments. furthermore, treatments had no deleterious effects on the organoleptic properties of quail samples. irradiation of samples at doses of 2,4,6 and 8 kGy or soaking in STPP greatly reduced its microbial count and prolonged its shelf- life for 12,15,21,24 and 9 days at 4±1 o C, respectively against only 6 days for control samples

  1. Effect of spirit irradiation with 60Co gamma-rays

    International Nuclear Information System (INIS)

    Gwardys, S.

    1975-01-01

    A few sorts of spirit were irradiated with a dose of 1 or 5 Mrad of 60 Co gamma-rays. Then the chemical composition of spirits was investigated. It was found that as a result of irradiation the content of acids, esters, acetal aldehydes and methanol increases, while the strength of higher alcohols decreases slightly. The changes of compounds content in particular spirits are dependent on radiation doses and chemical composition before irradiation. It was also discovered that spirit irradiation causes decrease or even disappearance of characteristic - for given spirits - maxima of UV absorption. (Z.M.)

  2. Chronic gamma irradiation of ornamental and landscaping plants at gamma greenhouse

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Zaiton Ahmad; Affrida Abu Hassan

    2011-01-01

    Activities on chronic gamma irradiation of ornamental and landscaping plants have started since April 2010. Among plants which have been irradiated were landscaping plants such as hibiscus, canna, turnera, plumeria, amaryllis, and ornamental plants such as orchid, heliconia, cucurma and sanseviera, as well as vanilla. The main objectives at the initial stage were to develop database for optimum chronic irradiation dose and suitable experimental design for each species. The ultimate aim is to obtain new varieties of ornamental plants with flower and horticultural traits of commercial values and landscaping plants suitable for Malaysian landscape such as large and colourful flower, longer bloom period and frequent flowering. This paper discusses irradiation activities for ornamental plants in Gamma Greenhouse including preparation of samples, growing medium and screening plots, selection/determination of optimum dose and dose rate, collection of data and selection of mutants. (author)

  3. The Use of Gamma Irradiation in the Sterilization of Streptomyces Colonizing the Tempra Paintings in Ancient Egyptian Tombs

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2013-09-01

    Full Text Available Eight out of forty six Streptomyces strains from mural paintings at the Tell Basta and Tanis tombs were exposed to increasing doses (5, 10, 15, 20, 25kGy of gamma irradiation. These strains varied in their resistance profile. S. canarius was the most resistant to gamma irradiation doses, as it was totally eliminated at 25kGy, whereas S. chibaensis and S. albidofuscus resisted to 20kGy and S. ambofaciens resisted 15kGy. The other strains under investigation showed a lower resistance to gamma irradiation. Tricyclazole (5, 7, 10 µg/mL inhibited melanin production after gamma irradiation at doses lower than lethal dose. Gamma irradiation with the previous doses enhanced the chitinease activity of irradiated Streptomyces strains, but S. canarius was the exception. No color change was observed either for pigments or for binding media, after gamma irradiation at the same doses.

  4. Effects of gamma-irradiation on meat proteins

    International Nuclear Information System (INIS)

    Yook, H.S.; Kim, M.R.; Kim, J.O.; Lim, S.I.; Byun, M.W.

    1998-01-01

    The proteins extracted from beef, pork and chicken meats were irradiated with up to 100 kGy at room temperature. The extracted proteins were evaluated on their in vitro digestibility by incubating successively with pepsin and pancreatin conjugate. Amino acid compositions and SDS-PAGE pattern were also analyzedin for these proteins. Gamma irradiation within the applied dose range (up to 100 kGy) produced negligible in in vitro digestibility and amino acid composition. Analysis of gamma-irradiated proteins by SDS-PAGE revealed radiolysis of ovalbumin to proteins or peptides with lower molecular weight. On the other hand, the proteins directly extracted from irradiated meats containing moisture were also evaluated for their in vitro digestibility, amino acid compositions and SDS-PAGE pattern. However, the results obtained from this experiment were similar to those of irradiated proteins after extraction from the meats

  5. Application of gamma irradiation for inhibition of food allergy

    International Nuclear Information System (INIS)

    Byun, M.-W.; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y.

    2002-01-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods

  6. Application of gamma irradiation for inhibition of food allergy

    Energy Technology Data Exchange (ETDEWEB)

    Byun, M.-W. E-mail: mwbyun@kaeri.re.kr; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk {beta}-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  7. The effect of low dose gamma irradiation on maize production (1985-1988)

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, K.

    1990-06-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain field crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on maize in Syria. Our experiments were carried out in controlled, in field conditions, and in a large scale application. Samples of air dried seeds of maize (Var. Gota-82 and LG-11) of previous season were irradiated by gamma-rays from a 137 Cs sourse using doses of 5, 7.5, 10, 15, 20, 30, 40 and 50 Gy. at dose rate of 9.8 - 9.2 Gy/min. Then were planted after 2 days from irradiation with unirradiated control, in complete randomized block design and replicated 4 times for four seasons (1985-1988). The date revealed that gamma irradiation, at interval doses of 5 - 10 Gy led to, first: Acceleration of seed germination, faster development, intensive development of root system, increase plant hieght (12 - 19%) and significant increase in ear size and number, and second: Increase both green mass (15 - 35%) and seed yield (10 - 31%), and percentage of seed protein (2 - 17%). Large scale applications were performed in 1987 and 1988 using a transportable irradiation unit POC-1 137 Cs and dose of 7.5 Gy. A significant yield increase was obtained from all fields. The average percentage increment varied from 13 - 30% which is approximately 382-765 Kg/h. Therefore, presowing seed irradiation with low doses gamma irradiation ranging from 5 to 10 Gy, was found to be feasible for application in qualitative and quantitative improvement of maize yield. (author). 38 refs., 12 figs., 44 tabs

  8. New multipurpose gamma-irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, G

    1985-01-01

    In the past 3 years much work has been done in the G.D.R. on food irradiation. The experiments have shown that this treatment gives favourable results in many products such as spices, onions, potatoes, chicken, animal feeds, fodder yeast, drugs and vaccines. Economic aspects of food irradiation require the effective use of an irradiation plant and cobalt-60. Therefore, a new multipurpose irradiation facility was developed, applicable as an onion irradiator with a capacity of about 15 ton/h and for the simultaneous irradiation of different products (spices, animal feed, chicken, etc.) in closed product boxes with a size of 1.2 m x 1.0 m x 1.2 m. A microcomputer controls the transport of product boxes around the gamma sources.

  9. The influence of irradiation of gamma-rays on the pulping and paper making, (4)

    International Nuclear Information System (INIS)

    Suzuki, Kyoji; Inoue, Kaoru; Hanamura, Norio; Mori, Kenji

    1980-01-01

    The influence of gamma-irradiation on the beating properties of unbleached kraft pulps was studied, and the changes of the mechanical and chemical properties of the sheet made from those pulps were also investigated. The results obtained were as follows: (1) When the unbeaten pulp was treated with gamma-ray, the degree of polymerization of cellulose was decreased rapidly and the formation of aldehyde and carboxyl groups in pulp was observed in addition to that the beating time of irradiated pulps was reduced comparing with non-irradiated pulp. These effects increased roughly in proportion to the radiation dose. (2) Gamma-irradiation was more effective in wet state (moisture content = 70 - 80%) than air dry state. This may be due to the degradation products of water by gamma-irradiation. (3) The mechanical properties (breaking length, tear and burst factors) of the sheets made from irradiated pulps were considerably deteriorated at 10 7 R, but there was a slight deterioration up to 10 6 R. (4) Comparing the result of the mechanical properties, the strengths of the various sheets were shown in the following order: the sheet irradiated after paper making gt the sheet irradiated before beating (air dry state) gt the sheet irradiated before beating (wet state). (author)

  10. Influence of irradiation conditions on the gamma irradiation effect in polyethylene

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Gal, O.; Novakovic, L.J.; Secerov, B.

    2002-01-01

    Complete text of publication follows. The radiation cross-linking of polyethylene, due to its high cross-linking yield, has resulted in the radiation technology that has found application in radiation production of heat shrinkable structures and in improvement of mechanical and thermo-physical properties of oriented polyethylene objects. It is observed that the cross-linking efficiency decreases when the irradiation is carried out in the presence of oxygen. In order to estimate the conditions that improve cross-linking efficiency, gamma irradiation effect in two types of polyethylene, irradiated in water and air was investigated. The polyethylene samples used were the low density (LDPE) Lotrene CdF 0302 with 45% crystallinity and the high density (HDPE) Hiplex EHM 6003 with 73% crystallinity. Both kinds of samples, fixed in the Pyrex glass tubes, were simultaneously irradiated with 60 Co gamma rays in distilled water and air, at a doses rate of 9,5 kGy/h (determined by the Fricke dosimeter) at room temperature. Radiation induced oxidative degradation was followed through oxygen containing group formation by the carbonyl group band (1720 cm -1 ) and transvinylene group formation by the band at 966 cm -1 in the infrared spectra. Cross-linking efficiency was determined by gel content using the procedure of the extraction in xylene. The monitored effects of gamma irradiation in water and air point to the conclusion that irradiation in water leads to the lower oxidative degradation and higher cross-linking compared with the effects measured after irradiation in air

  11. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Ting Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2011-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw waste water was diluted using tap water to targeted concentration of COD 400 mg/l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The COD removal at lowest dose, 2 kGy is about 310 mg/l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/l. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This shows the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (Author)

  12. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2010-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewater was diluted to using tap water to targeted concentration of COD 400 mg/ l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. The COD removal at lowest dose, 2 kGy is about 310 mg/ l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/ l. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This showed the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (author)

  13. Impairment of liver and kidney functions in gamma irradiation rats suffering pesticide toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H M; Abdel-Hamid, F M; Abu-Ghadir, A R [Radiation biology department, National Centre for Radiation Research and Technology, Radio isotope Department, Nuclear Reseach Center, and atomic Energy, Authority, Cairo (Egypt)

    1995-10-01

    The effect of exposure to single whole body gamma irradiation dose at 6.5 Gy and/or either oral administration of 50 or 100 mg kelthane/kg kelthane/kg body weight/day for successively 3 days, or daily feeding with 200 mg kelthane/kg body weight for 3, 6, and 12 weeks has been studied on relative liver and kidney weights, certain serum and liver enzymes creatinine and inorganic phosphorous clearance, as well as percentage of tubular phosphorous reabsorption in male animals. The data obtained revealed that exposure to gamma-irradiation alone or combined with kelthane treatment caused significant increase in the relative spleen weight besides significant decrease in serum and liver alkaline phosphatase and serum cholinesterase. Exposure to gamma irradiation after orally administration of 100 mg or feeding dietary kelthane caused significant decrease in liver glucose-6-phosphatase. Non significant changes in aspartic and alanine transaminases could be recorded due to gamma-irradiation and/or kelthane treatment. Endogenous clearance of creatinine and phosphorous as well as tubular phosphorous reabsorption were determined to assess the glomerular filtration and tubular function. The data obtained revealed that exposure to gamma-irradiation either alone or after treatment with kelthane caused significant decrease in creatinine and phosphorous clearance while phosphorous reabsorption was not appreciably affected. 4 tabs.

  14. Impairment of liver and kidney functions in gamma irradiation rats suffering pesticide toxicity

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Abdel-Hamid, F.M.; Abu-Ghadir, A.R.

    1995-01-01

    The effect of exposure to single whole body gamma irradiation dose at 6.5 Gy and/or either oral administration of 50 or 100 mg kelthane/kg kelthane/kg body weight/day for successively 3 days, or daily feeding with 200 mg kelthane/kg body weight for 3, 6, and 12 weeks has been studied on relative liver and kidney weights, certain serum and liver enzymes creatinine and inorganic phosphorous clearance, as well as percentage of tubular phosphorous reabsorption in male animals. The data obtained revealed that exposure to gamma-irradiation alone or combined with kelthane treatment caused significant increase in the relative spleen weight besides significant decrease in serum and liver alkaline phosphatase and serum cholinesterase. Exposure to gamma irradiation after orally administration of 100 mg or feeding dietary kelthane caused significant decrease in liver glucose-6-phosphatase. Non significant changes in aspartic and alanine transaminases could be recorded due to gamma-irradiation and/or kelthane treatment. Endogenous clearance of creatinine and phosphorous as well as tubular phosphorous reabsorption were determined to assess the glomerular filtration and tubular function. The data obtained revealed that exposure to gamma-irradiation either alone or after treatment with kelthane caused significant decrease in creatinine and phosphorous clearance while phosphorous reabsorption was not appreciably affected. 4 tabs

  15. Improvement of physical properties of soyabeans by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.-W.; Kwon, J.-H.; Mori, Tomohiko

    1993-01-01

    Physical properties of gamma-irradiated soybeans were evaluated at different temperatures by determining water absorption pattern and cooking characteristics of the sample. Irradiation at 2.5-10 kGy caused the reduction of soaking time in soybeans by 2-5 hours and the increase of hydration capacity by 10-20%, respectively, compared to the non-irradiated control at 20 o C. The activation energy for water absorption was lower in irradiated soybeans than in the non-irradiated control. Irradiation at 2.5-10 kGy caused the reduction of cooking time in soybeans by 30-60% compared to the non-irradiated control and the cooking rate constant of irradiated samples was higher about 2 times than that of the non-irradiated control. The irradiation efficacy on physical quality improvement was also recognized in the stored soybeans for one year at room temperature. (author)

  16. Sterilization by gamma irradiation

    International Nuclear Information System (INIS)

    Reyes Frias, L.

    1992-01-01

    Since 1980 the National Institute of Nuclear Research counts with an Industrial Gamma Irradiator, for the sterilization of raw materials and finished products. Through several means has been promoted the use of this technology as alternative to conventional methods of sterilization as well as steam treatment and ethylene oxide. As a result of the made promotion this irradiator has come to its saturation limit being the sterilization irradiation one of the main services that National Institute of Nuclear Research offers to producer enterprises of disposable materials of medical use also of raw materials for the elaboration of cosmetic products and pharmaceuticals as well as dehydrated foods. It is presented the trend to the sterilization service by irradiation showed by the compilation data in a survey made by potential customers. (Author)

  17. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice

    International Nuclear Information System (INIS)

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-01-01

    This study evaluated the changes of solubility and anti-inflammatory properties of structurally modified gamma-irradiated chrysin. Chrysin was irradiated at various doses for a physical analysis and determining any structural changes and solubility. As shown through the physical analysis, the main peak of the chrysin was decreased as the irradiation dose increased, and it was concomitant with the appearance of several new peaks, which were highly increased in 50 kGy gamma-irradiated chrysin. The solubility was markedly increased in the gamma-irradiated groups. As shown through a physiological analysis, both gamma-irradiated- (15–50 kGy) and intact-chrysin (0 kGy) did not exert cytotoxicity to bone-marrow derived macrophages. The treatment of LPS-stimulated macrophages with 50 kGy gamma-irradiated chrysin resulted in a dose-dependent decrease in pro-inflammatory mediators, such as iNOS-mediated NO, PGE 2 , COX-2, and cell surface marker (CD80 and CD86), as well as pro-inflammatory cytokines (TNF-α and IL-6), when compared to the intact-chrysin treated group. Mechanically, we found that the inhibition of these pro-inflammatory mediators induced by gamma-irradiated chrysin occurred through an inhibition of MAPKs (ERK1/2 and p38) and the NF-κB signaling pathways. Furthermore, the anti-inflammatory activity remained in the LPS-injected animal model. In this model, gamma-irradiated chrysin treatment highly increased the mouse survival, and significantly decreased the serum cytokine (TNF-α, IL-6 and IL-1β) levels. From these findings, the anti-inflammatory action by gamma-irradiated chrysin may be closely mediated with structural modification. It seems likely that gamma irradiation can be an effective tool for improvement of the physical and physiological properties of polyphenols. - Highlights: • Gamma irradiation leads to the structural modification of chrysin. • Gamma irradiation improved the solubility of chrysin. • Gamma-irradiated chrysin significantly

  18. Inactivation of fungal contaminants on Korean traditional cashbox by gamma irradiation

    Science.gov (United States)

    Choi, Jong-il; Lim, Sangyong

    2016-01-01

    In this study, gamma irradiation was applied to decontaminate a Korean cultural artifact, a wooden cashbox stored in local museum. Fungi isolated from the wooden cashbox were identified by 18S rDNA sequencing methods. It was observed that the isolated fungi exhibited high similarity to Aspergillus niger, Penicillium verruculosum, and Trichoderma viride. Each strain was tested for sensitivity to gamma irradiation, and was inactivated by the irradiation at a dose of 5 kGy. The wooden cashbox was thus gamma-irradiated at this dose (5 kGy), and consequently decontaminated. Two months after the irradiation, when the wooden cashbox was retested to detect biological contamination, no fungi were found. Therefore, these results suggest that gamma irradiation at a low dose of 5 kGy can be applied for successful decontamination of wooden artifacts.

  19. Effect of Gamma Irradiation on the physicochemical, functional and sensory properties of cocoyam. (Xanthosoma sagittifolium)

    International Nuclear Information System (INIS)

    Asante, R.

    2012-01-01

    Cultivated for human nutrition, animal feed and cash income for both farmers and traders, the underground cormels of Xanthosoma sagittifolium provide easily digested starch; the leaves are nutritious spinach-like vegetable, which contain a lot of minerals, vitamins and thiamine. The high water content and the difficulty of storing, processing and transportation of roots and tubers have resulted in potentially very high postharvest losses in bulb and tuber crops. Radiation has the potential to control postharvest losses of a wide range of fresh produce including tuber crops such as yam and potato. This study, therefore, sought to determine the effect of gamma irradiation on the physical, chemical and sensory properties of stored cocoyam. Freshly harvested cocoyam cormels were obtained from Atia in the Ashanti region of Ghana and immediately transported to the Radiation Technology Centre of the Ghana Atomic Energy Commission. The cocoyam was stored in baskets and subjected to different doses of gamma irradiation; 0, 150, 300, 450 and 600Gy. Gamma irradiation significantly (p < 0.05) reduced sprouting in stored cocoyam cormels. Although stored significantly (p < 0.05) increased sprouting in tannia, application of a dose of 150Gy reduced sprouting by up to 80% whereas 300Gy achieved 89% reduction in sprouting. Storage significantly (p < 0.05) increased rotting of cocoyam cormels. Above 150Gy, gamma irradiation significantly (p < 0.05) increased rotting of cocoyam. Storage but not irradiation significantly (p < 0.05) reduced both moisture and ash contents of cocoyam. Functional properties of tannia are affected by both irradiation and storage. Water absorption capacity increased significantly (p < 0.05) with both irradiation and storage. Bulk density increased significantly (p < 0.05) with both irradiation and storage. Whereas swelling power of cocoyam flour was significantly (p < 0.05) increased by irradiation, storage generally decreased it. Irradiation as well as

  20. Kraft cooking of gamma irradiated wood, (1)

    International Nuclear Information System (INIS)

    Inaba, Masamitsu; Meshitsuka, Gyosuke; Nakano, Junzo

    1979-01-01

    Studies have been made of kraft cooking of gamma irradiated wood. Beech (Fagus crenata Blume) wood meal suspended in aqueous alkaline alcohol was irradiated up to 1.5 KGy (0.15 Mrad) with gamma rays from a Co-60 source in the presence or absence of oxygen. The irradiated wood meals were washed thoroughly with fresh water, air dried and cooked under the ordinary cooking conditions. The results are summarized as follows: (1) Pre-irradiation in aqueous alkali have negligible effect on kraft cooking. (2) In the case of ethanol addition (50 g/l), pre-irradiation in vacuo shows acceleration of delignification and stabilization of carbohydrates during kraft cooking. Cooked yield gain by pre-irradiation was about 1.2% in all over the range of delignification from 80 to 90%. Aqueous ethanol without alkali also shows positive but smaller effect than that with alkali. (3) Propanol, iso-propanol and butanol show positive but smaller effects than ethanol. However, methanol does not show any positive effect. (4) Irradiation in the presence of oxygen does not show any attractive effect on kraft cooking. (author)

  1. Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shunkai; Liao, Fan, E-mail: fliao@suda.edu.cn; Wang, Tao; Zhu, Lili; Shao, Mingwang, E-mail: mwshao@suda.edu.cn

    2016-07-15

    Gamma-ray irradiation was employed to tune surface properties of graphene oxide quantum dots (GOQDs), such as functional groups and defect density. The GOQDs were first oxidized under γ-ray irradiation with doses ranging from 0 to 200 kGy, and then reduced under larger irradiation doses from 200 to 400 kGy. In other words, both the defect density and the number of surface functional groups increased first and then decreased along with the increasing irradiation dose. This process was confirmed with UV–visible absorption, X-ray photoelectron spectroscopy, Raman spectra and Fourier transform infrared spectra. In order to estimate their π-conjugated content, the GOQDs were served to quench the fluorescence of Rhodamine 6 G. The results showed that there existed a positive relationship between the π-conjugated content and the static quenching coefficient V{sub q}Na, which might have a potential value. - Highlights: • The conjugate extent and hydrophily of GOQDs decreased along with irradiation dose. • Gamma-ray irradiation weakens the quenching effect of GOQDs. • Quenching mechanism is a combination of dynamic and static quenching.

  2. Effects of gamma irradiation on physical-chemical properties and dewatering characteristics of sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1976-01-01

    Separation of solids from liquids is a paramount operation in the processes applied in treating sewage and waste waters. Therfore, studies were undertaken to investigate effects of gamma irradiation on the physical-chemical properties of sludges and the de-watering characteristics of anaerobically digested sludge and aerobically activated sludge. A dose of 300 krad reduced the specific resistance of anaerobically digested sludges from 33 x 10 sec 2 /g to approximately 10 x 10 9 sec 2 /g. This conditioning effect was little influenced by the presence of oxygen or nitrogen. Pasteurization increased the specific resistance to filtration up to 48 x 10 9 sec 2 /g. Dewatering characteristics of raw sludge were not affected by irradiation in the presence of oxygen but a slight conditioning effect was noticed when the sludge was irradiated under deaerated conditions. Experimental evidence indicated that gamma irradiation detached organic substances from the sludge flocks resulting in a decrease of the specific resistance and an increase in the Total Organic Carbon (TOC) and the Chemical Oxygen Demand (COD) in the filtrates. Elutriation reduced but did not eliminate the conditioning effect of gamma irradiation. (author)

  3. Gamma ray-irradiation in fresh allo-joint transplantation

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi

    1995-01-01

    In the first of a series of experiments in rat designed to assess the efficacy of gamma ray irradiation in fresh allo-joint transplantation, it was found that the optimal gamma ray dosage was 4 Gy. At this dosage level, the irradiation rays suppressed the viability of marrow cells which had the highest antigenicity, with no injury to the bone or articular cartilage. In a second experiment, a fresh homologous knee joint was irradiated at 4 Gy and then transplanted while administering the donor's splenic cell suspension (for specific immunosuppression) and the immunosuppressive agent cyclosporine (5 mg/kg) to the recipient rat. All the rats that received a pre-irradiated knee joint graft survived until sacrificed for evaluation without showing any sign of host rejection. In these rats, bone fusion had occurred between the host bone and the graft by the 8th postoperative week. Degeneration of the articular cartilage was similar between the rats that had received a pre-irradiated graft and those that had not. These findings indicated that 4 Gy gamma ray irradiation to a graft before transplantation provided an effective means of immunosuppression. (author)

  4. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)

    Science.gov (United States)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.

    2011-11-01

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  5. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  6. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  7. Effect of gamma irradiation on physico-chemical charateristics of soybean

    International Nuclear Information System (INIS)

    Inayatullah; Hussain, B.; Zeb, A.; Ahmad, M.; Khan, I.

    1987-01-01

    Effect of gamma irradiation (0,25,50,100,250 and 500 Krad) on the physicochemical and cooking characteristics of Crawford, Dawson, Webber, Swat-84, S-76209 and Hobbit varieties of soybean was studied. Irradiation had no significant effect on proximate composition (water, protein, fat, ash, crude fiber, carbohydrate) and important mineral contents (calcium, phosphorous, iron) of soybean. Phytic acid content and cooking time were significantly decreased whereas peroxide value of soybean was significantly increased due to irradiation. (author)

  8. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  9. Sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Our investigations prove that sludge contains Salmonellae in more than 90% of samples. The maximum number of organisms was 10 7 per litre. One of our most important findings was the fact that neither aerobic stabilization nor anaerobic digestion significantly reduces contamination with Salmonellae. Moreover we found that Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. The increasing number of Salmonella carriers among our herds of cattle and their striking accumulation during the grazing period demonstrate that such transmission represents a growing danger. Sanitation of sludge to be used as fertilizer is therefore urgent. In our investigation of the sanitary effect of pasteurization (70degC for 30 min) and of gamma irradiation on sewage sludge, we examined the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants. The doses applied were 100, 200, 300, 400 and also 500 krad. We found a linear reduction of Enterobacteriaceae with increasing doses; a dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae; and there were less than 10 Enterobacteriaceae per gram in 97.2% of the samples irradiated with 300 krad. The results of these model experiments could be completely confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by the reduction in Enterobacteriaceae, was equivalent to the effect of heat treatment by pasteurization. (author)

  10. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  11. Gelam Honey Protects against Gamma-Irradiation Damage to Antioxidant Enzymes in Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-02-01

    Full Text Available The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx of human diploid fibroblasts (HDFs subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v for 24 h and exposed to 1 Gray (Gy of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05. Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05. Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.

  12. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  13. The spectroscopic analysis of {gamma}-irradiated glass by colorimetry, ESR and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.I. [College of Life Sciences and Biotechnology, Korea University, 5 ga Anam-dong, Seongbuk-Gu, Seoul 135-701 (Korea, Republic of); Lee, Y.N. [R and D Institute Biscuit Team, 131-1, Namyoung-dong, Youngsan-Gu, Seoul 140-708 (Korea, Republic of); Cho, S.Y. [College of Life Sciences and Biotechnology, Korea University, 5 ga Anam-dong, Seongbuk-Gu, Seoul 135-701 (Korea, Republic of); Whiteside, W.S. [Department of Packaging Science, 226 Poole Agricultural Center, Clemson University, Clemson, SC 29634-0320 (United States); Park, H.J. [College of Life Sciences and Biotechnology, Korea University, 5 ga Anam-dong, Seongbuk-Gu, Seoul 135-701 (Korea, Republic of)], E-mail: hjpark@korea.ac.kr

    2008-09-15

    The darkening of {gamma}-irradiated glass was related to the binding of Si-O and Sn-O, and the binding of Na-O. The dosimetric range of glass color change was evaluated by colorimetry, UV-Vis spectrophotometry and ESR. Colorimetry and UV-Vis spectrophotometry, revealed linear changes up to 9 kGy. For the calibration curve of {gamma}-irradiation, the signal of g=2.01 observed by ESR responded most sensitively with a linear increase with up to 12 kGy.

  14. Decontamination of spices by gamma irradiation

    International Nuclear Information System (INIS)

    Akhtar, T.; Khan, M.; Mahmood, F.; Sattar, A.

    1995-01-01

    Effect of gamma irradiation (8 kGy) on decontamination of pre packed (in polyethylene) and unpacked spices such as black pepper and chilli, was studied over a storage period of 12 months. Radiation dose of 8.0 kGyu completely decontaminated by the spices. Fungal packaged samples. Water content increased from a range values of 7.6-8.5% to 11.4 to 15.2% the increase was higher in red chilli than black pepper. Colour values significantly changed during storage, however the influence of radiation was not consistent. (author)

  15. Gamma irradiation for sewage treatment at US army facilities

    International Nuclear Information System (INIS)

    Van den Berg, A.J.; Hollis, H.D.; Musselman, H.D.; Woodbridge, D.D.

    1975-01-01

    The US Army Corps of Engineers has been sponsoring research for many years on the use of gamma irradiation for disinfection and sterilization of sewage plant effluents. Initial research was directed to laboratory experiments using sterile solutions to determine the effects of gamma irradiation on E. coli, M-pyogenes and M-smegmatis organisms, and on the chemical constituents of sewage such as phenols, surfactants and pesticides. The results of the initial research warranted further study using municipal sewage secondary effluent as test samples. Current research is directed towards investigating the effects of radiation on the constituents of sewage sludge and on the cyst stage of the amoebic protozoa. Consideration has been given by the Corps to the management of waste-waters by disposal on land. Legal and medical reasons dictate that the plant effluents be sterilized before being used as fertilizers and soil conditioners. Gamma radiation from isotopic sources appears to be the best source of sterilizing energy for Army waste-water disposal. The Corps of Engineers is considering the construction of an experimental gamma irradiation pilot facility to validate laboratory experimental work and to establish design criteria for operating plants. The data obtained will provide a basis for performing detailed cost effectiveness studies on gamma irradiation as a method to treat secondary plant effluent. In addition, optimization work will be conducted to determine where in the sewage treatment cycle the use of gamma irradiation will produce the best results in meeting current and anticipated standards. (author)

  16. Induced disease resistance of satsuma mandarings against penicillium digitatum by gamma irradiation

    International Nuclear Information System (INIS)

    Jeong, Rae Dong

    2017-01-01

    Gamma irradiation, which is a type of ionizing radiation, can be used as a fruit inducible factor. In the present study, the effects of gamma irradiation on the resistance of mandarin fruits against Penicillium digitatum, the causal agent of postharvest green mold disease, were investigated. Pretreatment of a low dose of gamma irradiation effectively reduced the disease incidence and lesion diameter of mandarin fruits inoculated with P. digatatum during storage for 14 d. Interestingly, exposed to 400 Gy of gamma irradiation significantly maintained firmness and stimulated the synthesis of defense-related enzymes, (e.g., β-1,3-glucanase, phenylalanine, peroxidase, and polyphenol oxidase) and pathogenesis-related (PR) genes (e.g., PR-1 and PR-2). Therefore, the gamma irradiation-induced resistance against P. digatatum involves both changes of phenolic compounds and the induction of expression of defense-related genes. In addition, scanning electron microscopy analysis revealed that induced disease resistance by gamma irradiation signifcantly inhibits the growth of P. digatatum in mandarin fruits. These results suggest that the exposure of gamma irradiation is a potential methods for inducing the disease resistance of fruit to postharvest fungal pathogens and for extending the postharvest life of mandarin fruit

  17. Induced disease resistance of satsuma mandarings against penicillium digitatum by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Rae Dong [Dept. of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju (Korea, Republic of)

    2017-06-15

    Gamma irradiation, which is a type of ionizing radiation, can be used as a fruit inducible factor. In the present study, the effects of gamma irradiation on the resistance of mandarin fruits against Penicillium digitatum, the causal agent of postharvest green mold disease, were investigated. Pretreatment of a low dose of gamma irradiation effectively reduced the disease incidence and lesion diameter of mandarin fruits inoculated with P. digatatum during storage for 14 d. Interestingly, exposed to 400 Gy of gamma irradiation significantly maintained firmness and stimulated the synthesis of defense-related enzymes, (e.g., β-1,3-glucanase, phenylalanine, peroxidase, and polyphenol oxidase) and pathogenesis-related (PR) genes (e.g., PR-1 and PR-2). Therefore, the gamma irradiation-induced resistance against P. digatatum involves both changes of phenolic compounds and the induction of expression of defense-related genes. In addition, scanning electron microscopy analysis revealed that induced disease resistance by gamma irradiation signifcantly inhibits the growth of P. digatatum in mandarin fruits. These results suggest that the exposure of gamma irradiation is a potential methods for inducing the disease resistance of fruit to postharvest fungal pathogens and for extending the postharvest life of mandarin fruit.

  18. Economics of gamma processing in cobalt-60 irradiation facilities

    International Nuclear Information System (INIS)

    Gay, H. G.; Kotler, J. G.

    1985-01-01

    Gamma processing by cobalt-60 is well established. However, since irradiation of food is relatively new from the commercial point of view, it is important to assess costs of gamma irradiation in the context of food processing. Five different types of AECL-RCC irradiation equipment are examined in terms of their throughputs, and capital and operating costs. Using these figures, costs of irradiation of nine types of food products are presented. In general, these represent about 2-10% of the wholesale cost of these products

  19. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  20. Influence of gamma irradiation on electro active properties of copolymers of vinylidene fluoride with tetrafluoroethylene

    International Nuclear Information System (INIS)

    Magerramov, A.M; Rustamova, D.F.

    2010-01-01

    Full text : Fluoropolymers are known, as one of the most promising polymers of electro active materials and they are very sensitive to radiation, with the prone to decomposition processes. One way to stabilize the piezoelectric properties of Fluor polymers may be their radiation modification of gamma-irradiation. The aim of the present work is to study the effect of gamma-irradiation on the piezoelectric properties of the copolymer of vinylidene fluoride with tetrafluoroethylene-P (VDF-TeFE). The polarization produced in the optimal range for the electric field. Irradiation of the films performed at the facility Rahm-gamma-30 both before and after polarization. For gamma irradiation, apparently as a result of conformational transitions alpha and beta is a change of relations of ferroelectric and par electric phases in upward of crystallinity, i e an increase in the ferroelectric polymer. It was discussed possible mechanisms of changes in the dielectric, piezoelectric and ferroelectric properties (hysteresis loops, the values of the coercive field) with a residual polarization of Fluor polymers when exposed to gamma-irradiation.

  1. Effect of low doses gamma irradiation on seed, bulblets and bulbs of onion

    International Nuclear Information System (INIS)

    Al-Oudat, Mohammad

    1991-10-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on onion in Syria. The effect of low doses gamma irradiation on onion seeds, bulblets and bulbs of two local varieties, red and white, was studied during three consecutive seasons (1986 - 1988). Air dried seeds were irradiated by gamma rays from 137 Cs source. Five, 10, 15, 20 and 30 GY, were applied at dose rate of 9.8 Gy/min. The irradiation of onion bulblets and bulbs were carried out with gamma-rays from 60 Co source at a dose rate of 0.5 Gy/min. using 1, 2, 3, 4 and 5 Gy. Within 7 - 10 days after irradiation, both controlled and irradiated seeds, bulblets and bulbs were sown in the field in complete randomized block design with 4 replicates. Irradiation of seeds with doses of 5, 10 and 15 Gy led to highly significant increases in bulblets yield in the three seasons. The increases ranged from 14.5 to 22.1 for red variety and from 16.2 to 22.3 for white variety. The irradiation of bulblets with 1 and 2 Gy increase significantly the yield of bulbs by 21.6 - 26.0% for red variety and 21.6 - 24.4% for white variety. A considerable increase in seed yield was obtained after irradiation of bulbs with 1 and 2 Gy doses. The average increment was about 21.0% for both varieties. Large scale application were performed in 1989 and 1990 using doses of 10 Gy for seeds and 1 Gy for bulblets and bulbs. A considerable increase in the yield was obtained. The average percentage increment was 16.9% and 23.3% for seeds, 18.6 and 20.9% for bulblets, 24.8 and 27.3% for bulbs, for red and white varieties respectively. Therefore, presowing irradiation of seeds, bulblets and bulbs of onion with low doses of gamma-rays (5 - 15 Gy for seeds and 1 - 2 Gy for bulblets and bulbs) can be of practical application resulting in improvement of yield of

  2. Effect of gamma irradiation on fungi in stored rice

    International Nuclear Information System (INIS)

    Zainal Abidin Mior Ahmad.

    1987-01-01

    The objective of this study is to examine the effect of different doses of gamma irradiation on fungi infecting rice stored in various packaging materials. The agar plate test method was used. It was observed that the percentage of fungi did not appear to decrease with the increase of irradiation up to 2 kGy and also no indication of any significant reduction in percentage of fungi isolated with increasing time of storage at all levels of radiation treatment. The majority of the fungi isolated were Aspergillus and Penicillium species. (A.J.)

  3. Using gamma irradiation to improve sterile turf and forage bermudagrasses

    International Nuclear Information System (INIS)

    Burton, G.W.; Georgia Univ., Tifton

    1976-01-01

    The widely-used Tif-series of turf bermudagrasses - Tifgreen, Tifway, and Tifdwarf - are vegetatively propagated sterile triploids that cannot be improved by conventional breeding methods. Dormant stolons, washed free of soil and cut into one-or two-node sections were treated with varying dosages of EMS (ethyl methane sulfonate) and gamma irradiation ranging from 7 to 12 kR. EMS failed to produce noticeable variants but gamma irradiation from a Cobalt 60 source created 158 mutants. These mutants differed in many characters such as leaf size, hairiness, stem diameter, internode length, basic plant color, herbicide tolerance, spreading rate, and nematode resistance. Attempts to improve the winterhardiness of tetraploid sterile Coastcross-1 forage bermudagrass by exposing over 1,400,000 sprigs (vegetative stems) to 7 kR of gamma rays gave chlorophyll deficient mutants but progress in increasing winterhardiness has not been established. (author)

  4. Microbiological, sensorial and chemical quality of gamma irradiated pistachio nut (Pistacia vera l.

    Directory of Open Access Journals (Sweden)

    Mahfouz AL-BACHIR

    2014-12-01

    Full Text Available The present study investigated the effect of gamma irradiation and storage period on quality retention of raw pistachio nut. Var. Halebi. Kernel of the pistachio nuts were exposed to 1, 2 and 3 kGy of gamma irradiation. Irradiated and unirradiated nuts were kept at room temperature for 12 months. Used doses of irradiation significantly reduced the total bacterial plate counts (TBPCs and total fungal counts up to undetectable level (less than 10 CFU g-1. Irradiation doses of 1, 2 and 3 kGy of gamma irradiation seem to be suitable for post-harvest sanitation and decontamination treatment, without significant changes in the sensorial properties (texture, odor, color and taste, chemical quality (free fatty acids and pH value or in contents of moisture, proteins, sugars, lipid, and ash, with respect to the control samples. The highest used dose (3kGy slightly decreased the fatty acid content and pH value, and treatment with higher doses (2 and 3 kGy significantly increased the total volatile nitrogen TVN.

  5. Perspectives of recycling gamma irradiated sewage-sludge in agricultural applications: a study on methi (Trigonella foenum-graecum L. :leguminosae)

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, G A; Banerjee, S; Modi, V V [Baroda Univ. (India). Faculty of Science

    1991-01-01

    The effects of gamma-irradiated sludge on the growth and yield of methi (Trigonella foenum-graecum L.) in pot cultures have been studied. The gamma-irradiated sludge appeared to negatively affect the physical growth parameters of the plant. The significant positive effect of gamma-irradiated sludge was observed on the biochemical growth parameters and yield of methi plants. There was a 3.5-, 1.7- and 2-fold increase in the total protein content, total soluble sugars and starch content, respectively, of plants grown in soil supplemented with gamma-irradiated sludge after 45 days of growth. The gamma-irradiated sludge did not show any detrimental effect on any of the three biochemical parameters studied, even after 90 days of plant growth. The sludge obtained from the conventional treatment process was found to be inhibitory to the protein and starch content of plants in the latter stages of plant growth. A significant increase in the yield of methi plants, after 45 as well as 90 days, grown in the presence of gamma-irradiated sludge indicates a beneficial effect of recycling of irradiated sludge for agricultural applications. (author).

  6. Perspectives of recycling gamma irradiated sewage-sludge in agricultural applications: a study on methi (Trigonella foenum-graecum L.:leguminosae)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Banerjee, S.; Modi, V.V.

    1991-01-01

    The effects of gamma-irradiated sludge on the growth and yield of methi (Trigonella foenum-graecum L.) in pot cultures have been studied. The gamma-irradiated sludge appeared to negatively affect the physical growth parameters of the plant. The significant positive effect of gamma-irradiated sludge was observed on the biochemical growth parameters and yield of methi plants. There was a 3.5-, 1.7- and 2-fold increase in the total protein content, total soluble sugars and starch content, respectively, of plants grown in soil supplemented with gamma-irradiated sludge after 45 days of growth. The gamma-irradiated sludge did not show any detrimental effect on any of the three biochemical parameters studied, even after 90 days of plant growth. The sludge obtained from the conventional treatment process was found to be inhibitory to the protein and starch content of plants in the latter stages of plant growth. A significant increase in the yield of methi plants, after 45 as well as 90 days, grown in the presence of gamma-irradiated sludge indicates a beneficial effect of recycling of irradiated sludge for agricultural applications. (author)

  7. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    Science.gov (United States)

    Azzeh, F. S.; Amr, A. S.

    2009-09-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  8. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    Energy Technology Data Exchange (ETDEWEB)

    Azzeh, F.S. [Department of Nutrition and Food Technology, University of Jordan, Queen-Rania, Amman (Jordan)], E-mail: firasazzeh@yahoo.com; Amr, A.S. [Department of Nutrition and Food Technology, University of Jordan, Queen-Rania, Amman (Jordan)

    2009-09-15

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  9. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    International Nuclear Information System (INIS)

    Azzeh, F.S.; Amr, A.S.

    2009-01-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  10. Detection of Listeria species in Gamma irradiated Fishes during Storage periods

    International Nuclear Information System (INIS)

    Mohamed, W.S.

    2011-01-01

    This investigation was carried out to detect the post irradiation recovery and growth of Listeria species encountered in frozen whole Tilapia fishes ,Tilapia fillet and frozen Hamour fillets fishes (-18 degree C) irradiated at 1, 2, 2.5 and 3 kGy. The pathogen was eliminated at a dose of 2.5 kGy of gamma radiation. The presence of the microorganism was monitored for sex months on appropriate selective media. The ability of recovery of the organism from irradiation damage was not influenced by the kind of fish. No increased counts of the organism in irradiated fishes at 2.5 kGy of gamma radiation was noticed during 6 months of freezing storage at -18 degree C. This study also aimed to evaluate the effect of different enrichment procedures on the detection of Listeria species in fishes

  11. The gamma irradiation of tragacanth: effect on microbial contamination and rheology

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1979-01-01

    The use of gamma radiation for the sterilization of tragacanth, which is used in pharmaceuticals as a thickening and suspending agent, was investigated. The effect of different gamma doses on the rheological profile of tragacanth mucilage, prepared from tragacanth irradiated in the dry state, and the efficiency of such treatments in reducing the pre-irradiation microbial load were studied. A decrease in viscosity with increasing dose was found in the range 0.1-5 Mrads. All irradiated samples were found to be free from contamination, although the 0.1 Mrad irradiation was only carried out on a less contaminated sample. The radiation chemistry of tragacanth is discussed. It is concluded that although even small doses affect the viscosity, minimal doses of (say) 0.1 Mrad may be used for reducing microbial load particularly if the initial contamination is not excessive. (author)

  12. Effects of gamma irradiation on microbial load and quality characteristics of veal

    Directory of Open Access Journals (Sweden)

    Ebrahim Rahimi

    2013-01-01

    Full Text Available Background: Veal is a rich nutrient medium that provides a suitable environment for proliferation of veal spoiling microorganisms and common food-borne pathogens. In this study, the effects of irradiation on the veal microbiological quality and half life of minced beef during chilled storage was investigated. Materials and Methods: Twenty samples of minced veal were irradiated with doses of 2, 5, 7, and 10 kGy (Cobalt-60, gamma cell 220 and evaluated for their microbiological quality up to 10 days. Results: The results showed that gamma irradiation reduced the number of microorganisms in all the irradiated minced veal samples, with 2, 5, 7, and 10 kGy (P < 0.01. Moreover, the half life of the samples were increased considerably (P < 0.01. In addition, the results indicated that there was a significant difference in the number of coliformes between untreated and irradiated samples (P < 0.05. While, Staphylococcus aureus could not be detected in the irradiated samples with doses of 7 and 10 kGy. Conclusion: These results indicated that irradiation could be employed as an effective mean to inactivate common food-borne pathogens namely S. aureus and increases the half life of veal.

  13. Influence of Gamma Irradiation on Biogenic Amine Contents and Pathogenic Bacteria in Spinach

    International Nuclear Information System (INIS)

    Ali, H.A.S.

    2015-01-01

    This study was carried out to evaluate the effect of gamma irradiation at doses 1, 2, 4 and 6 kGy as compared with blanching at 95°C/3 min on biogenic amine contents and pathogenic bacteria in spinach leaves (Spinacia oleracea L.). The results indicated that tryptamine and β- phenylethylamine were not detected while histamine was the major amine detected at concentration of 12.55 mg/100g of wet weight. Blanching at 95°C/3 min significantly reduced the content of histamine, putrescine and tyramine in spinach while significantly increased the content of cadaverine. Gamma irradiation at different doses significantly reduced the contents of histamine and tyramine while significantly increased the content of cadaverine. However, putrescine content was increased significantly after subjected to doses 1 and 2 kGy while the doses 4 and 6 kGy significantly reduced it. Regarding to microbiological analysis in spinach, it could be noticed that total bacterial count, Enterobacteriaceae, coliform group, yeast, mould, Staphylococcus aureus and Salmonella spp. in fresh spinach were 5.97, 4.40, 2.53, 2.11, 1.40, 1.48 and 1.18 log cfu/g, respectively. Changes in microbiological characters (cfu/g) in spinach by different gamma irradiation doses and blanching were also followed. It could be noticed that the total bacterial count, Enterobacteriaceae, coliform group, yeast, mould, Staphylococcus aureus and Salmonella spp. were significantly decreased after treatment with blanching and gamma irradiation and these microorganisms were not detected after being subjected to 4 and 6 kGy. It could be concluded that blanching at 95°C/3 min or gamma irradiation at dose 2 kGy can be used to control the pathogenic bacteria and reduce biogenic amine (histamine, putrescine and tyramine) in spinach

  14. Effect of the gamma irradiation on the bio-sorption of Cr (Vi) by orange peel

    International Nuclear Information System (INIS)

    Lugo L, V.; Barrera D, C. E.; Sanchez M, V.; Urena N, F.

    2009-01-01

    The orange peel (Citrus sp.) is a bioadsorbent that contains functional groups able to remove Cr (Vi). To study the effect of gamma irradiation in the sorption capacity, the Nn materials were irradiated with gamma rays using a Co 60 source to dose from 10 to 3500 KGy (Nlγ). The biomass irradiation with gamma rays was successful since it increased the hexavalent chromium removal obtaining a maximum removal percentage of 100%. Sorption isotherms were realized to determine the concentration effect of initial Cr (Vi), the ph effect of the solution and the relationship m/v. (Author)

  15. Mechanical and thermal properties of castor oil polyurethane bone cement after gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, E.C.; Chierice, G.O.; Claro Neto, S.; Lepiesnki, C.M.; Nascimento, E.M.

    2009-01-01

    Polyurethanes from castor oil are being employed as bone cement in medical applications. In this work the thermal and mechanical properties of gamma irradiated polyurethanes derivative from castor oil were investigated by instrumented indentation, thermogravimetry and scanning electron microscopy. A slightly increase in hardness is observed only for doses as high as 100 kGy. Thermal analysis indicates stability at human body temperature. The glass transition temperature has small changes after gamma irradiation. (author)

  16. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Assumpcao, Roberto L.; Nascimento, Eduardo M. do; Claro Neto, Salvador; Soboll, Daniel S.

    2009-01-01

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  17. Radiation protection in category III large gamma irradiators

    International Nuclear Information System (INIS)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro; Itepan, Natanael Marcio

    2011-01-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  18. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  19. The effect of gamma irradiation on glycoalkaloid and chlorophyll synthesis in seven potato cultivars

    International Nuclear Information System (INIS)

    Dale, M.F.B.; Griffiths, D.W.; Bain, H.; Goodman, B.A.

    1997-01-01

    The use of gamma irradiation to control sprouting and increase the length of storage time of potatoes has been proposed as an alternative to cold storage or the use of chemical sprout suppressants. Indeed, it is applied on a commercial-scale to potatoes in Japan. This research reports on the effects of different levels of gamma irradiation on seven potato cultivars in relation to chlorophyll and glycoalkaloid synthesis on subsequent exposure to light after a period of storage. There were significant genotype differences between cultivars in their response to gamma irradiation, with some cultivars exhibiting dramatically reduced levels of glycoalkaloid synthesis compared with others. Also, cultivars responded differently to variable irradiation levels. The implications of the results are discussed in relation to public health concerns and selection within potato breeding programmes

  20. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  1. Effect of gamma ray irradiation on seed germination of Ardisia crenata

    International Nuclear Information System (INIS)

    Huang Donghua; Xu Hong; Huang Yanping; Song Xiaomin

    2011-01-01

    The seeds of Ardisia crenata were used as experimental material and treated with gamma ray under the irradiative doses ranging from 50 to 500 Gy. The results showed that the seed germination rates were not affected under the irradiative dose of 150 Gy and below. The germination potentiality turned to reduce while the irradiative dose was higher than 250 Gy. And in the range of 300 to 500 Gy the germination rates were decreased with the increase of the irradiative dose. (authors)

  2. Physicochemical, functional and pasting properties of flour produced from gamma irradiated tiger nut (Cyperus esculentus L.)

    International Nuclear Information System (INIS)

    Ocloo, Fidelis C.K.; Okyere, Abenaa A.; Asare, Isaac K.

    2014-01-01

    Tiger nut (Cyperus esculentus L.) has been recognised as one of the best nutritional crops that can be used to augment the Ghanaian diet. The application of gamma irradiation as means of preserving tiger nut could modify the characteristics of resultant flour. The purpose of this study was to determine the physicochemical, functional and pasting characteristics of flour from gamma irradiated tiger nut. The yellow and black types of tiger nut were sorted, washed and dried in an air-oven at 60 o C for 24 h. The dried tiger nut samples were irradiated at 0.0, 2.5, 5.0 and 10.0 kGy and then flours produced from them. Moisture, ash, pH, titratable acidity, water and oil absorption capacities, swelling power, solubility, bulk density and pasting properties of the flours were determined using appropriate analytical methods. Results showed that irradiation did not significantly (P>0.05) affect the moisture and ash contents of the resultant flours. Gamma irradiation significantly (P≤0.05) increased titratable acidity with concomitant decrease in pH of the flours. No significant differences were observed for water and oil absorption capacities, swelling power as well as bulk density. Solubility significantly (P≤0.05) increased generally with irradiation dose. Peak viscosity, viscosities at 92 °C and 55 °C, breakdown and setback viscosities decreased significantly with irradiation dose. Flour produced from irradiated tiger nut has a potential in complementary food formulations due to its low viscosity and increased solubility values. - Highlights: • Physicochemical, functional and pasting characteristics of flour from gamma irradiated tiger nut were studied. • Irradiation did not affect the moisture and ash contents of the resultant flours. • Titratable acidity increased with decrease in pH of the flours from the irradiated tiger nut. • Solubility increased whereas peak viscosity decreased with irradiation dose. • Flour produced from irradiated tiger nut has a

  3. Antioxidant activity potential of gamma irradiated carrageenan

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Racadio, Charles Darwin T.; Aranilla, Charito T.; De la Rosa, Alumanda M.

    2013-01-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda< iota< kappa. Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar. The antioxidant properties of these carrageenan oligomers were lower than that of ascorbic acid and galactose sugar. - Highlights: • The antioxidant capacity of gamma irradiated κ-, ι-, λ-carrageenans increased with increasing concentration and dose. • The type of carrageenan had an influence on its antioxidant activity which followed the order of lambda< iota< kappa. • Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar

  4. Improving the nutritive value of the blocks using gamma irradiation treatment

    International Nuclear Information System (INIS)

    Al-Masri, M. R.

    1993-09-01

    The effects of 100 KGy of gamma irradiation on dry matter and organic matter digestibility determined in vitro to improve the nutritive value of three types of blocks containing different feed stuffs were investigated. The compositions of the blocks were type I (wheat bran 28%, dried poultry manure 31%, molasses 20%, urea 10%, Ca(OH)2 6%, salt 5%). Type II (wheat bran 22%, dried poultry manure 10%, sugarbeet 30%, molasses 20%, urea 8%, Ca(OH)2 6%, salt 4%). Type III (olive-oil cake 35%. Wheat bran 30%, urea 100%, cement 15%, salt 10%). The results indicate that there was a significant difference (0.05) between the treated samples and the control for NDF, dry matter and organic matter digestibility. Gamma irradiation resulted in a significant increase (P<0.05) in dry matter and organic matter digestibility and a significant decrease (P<0.05) in NDF contents for the three types of feed blocks. Dry matter digestibility increased by 5% for all block types whereas organic matter digestibility increased by 7%, and 10% for block types I, II and III respectively. The increase in organic matter digestibility was probably due to a decrease in NDF content resulting from gamma irradiation. NDF decreased by 25%, 19% and 16% for block types I, II and III respectively. (author). 23 refs., 4 figs., 2 tabs

  5. Estimation of genetic variability and heritability of wheat agronomic traits resulted from some gamma rays irradiation techniques

    International Nuclear Information System (INIS)

    Wijaya Murti Indriatama; Trikoesoemaningtyas; Syarifah Iis Aisyah; Soeranto Human

    2016-01-01

    Gamma irradiation techniques have significant effect on frequency and spectrum of macro-mutation but the study of its effect on micro-mutation that related to genetic variability on mutated population is very limited. The aim of this research was to study the effect of gamma irradiation techniques on genetic variability and heritability of wheat agronomic characters at M2 generation. This research was conducted from July to November 2014, at Cibadak experimental station, Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Ministry of Agriculture. Three introduced wheat breeding lines (F-44, Kiran-95 & WL-711) were treated by 3 gamma irradiation techniques (acute, fractionated and intermittent). M1 generation of combination treatments were planted and harvested its spike individually per plants. As M2 generation, seeds of 75 M1 spike were planted at the field with one row one spike method and evaluated on the agronomic characters and its genetic components. The used of gamma irradiation techniques decreased mean but increased range values of agronomic traits in M2 populations. Fractionated irradiation induced higher mean and wider range on spike length and number of spike let per spike than other irradiation techniques. Fractionated and intermittent irradiation resulted greater variability of grain weight per plant than acute irradiation. The number of tillers, spike weight, grain weight per spike and grain weight per plant on M2 population resulted from induction of three gamma irradiation techniques have high estimated heritability and broad sense of genetic variability coefficient values. The three gamma irradiation techniques increased genetic variability of agronomic traits on M2 populations, except plant height. (author)

  6. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    Science.gov (United States)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  7. Inhibitory mechanism of low-dose, whole-body irradiation with gamma-rays against tumor metastasis

    International Nuclear Information System (INIS)

    Yasuhiro Ohsima; Mitsutoshi Tukimoto; Shuji Kojima

    2007-01-01

    Complete text of publication follows. A lot of beneficial effects of low-dose irradiation are well known. Of them, an inhibitory effect of the radiation on lung metastasis is reported so far. It has been reported that low-dose whole-body irradiation with gamma rays enhanced cytotoxic immune response as one of the mechanisms. In our laboratory, it has been confirmed an enhancement of natural killer activity in mice irradiated with whole-body 0.5Gy gamma-rays. Metastasis is accomplished by multistep process, involving basement membrane destruction, local invasion, intravasation, survival in the bloodstream, extravasation into distant organs, and proliferation at the target site. Besides, a lot of growth factors and proteases are involved in these steps. As to mechanism of inhibition of tumor metastasis induced by low-dose whole-body irradiation, studies from the standpoint of tumor invasion have not been reported. Here, inhibitory effect of 0.5Gy whole-body gamma-ray irradiation on tumor metastasis and its mechanism were examined in pulmonary metastasis model mice injected with B16 melanoma cells. Consequently, 0.5Gy whole-body gamma ray irradiation significantly suppressed colony formation in the lungs. Expression of matrix metalloproteinase- 2 (MMP- 2), a proteinase related to metastasis, in lung tissues was suppressed by the radiation. Alteration of tissue inhibitor of matrix metalloproteinase (TIMP) after the gamma-ray irradiation was examined. Expression of TIMP-1 and TIMP-2 mRNA in the lungs were significantly increased. In order to clarify the inhibitory effect obtained in the in vivo metastatic lung cancer model mice, we studied effects of gamma-rays on cell proliferation, alterations of mRNA and proteins related to tumor metastasis in cultured B16 melanoma cells. Proliferation of B16 melanoma cells was decreased in a dose-dependent manner. MMP-2 mRNA expression was not altered in any doses of gamma-rays. Thought expression of the protein was slightly

  8. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  9. Proximate Nutritional Evaluation of Gamma Irradiated Black Rice (Oryza sativa L. cv. Cempo ireng)

    Science.gov (United States)

    Riyatun; Suharyana; Ramelan, A. H.; Sutarno; Saputra, O. A.; Suryanti, V.

    2018-03-01

    Black rice is a type of pigmented rice with black bran covering the endosperm of the rice kernel. The main objective of the present study was to provide details information on the proximate composition of third generation of gamma irradiated black rice (Oryza sativa L. cv. Cempo ireng). In respect to the control, generally speaking, there were no significant changes of moisture, lipids, proteins, carbohydrates and fibers contents have been observed for the both gamma irradiated black rice. However, the 200-BR has slightly better nutritional value than that of 300-BR and the control. The mineral contents of 200-BR increased significantly of about 35% than the non-gamma irradiated black rice.

  10. Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds

    Science.gov (United States)

    Hassan, Amro B.; Mahmoud, Nagat S.; Elmamoun, Khalid; Adiamo, Oladipupo Q.; Mohamed Ahmed, Isam A.

    2018-03-01

    This study was aimed at investigating the effect of gamma irradiation at various doses (0.5, 1.0, 1.5 and 2.0 kGy) on protein characteristics and functional properties of sesame seeds. Gamma radiation at high doses (>1.0 kGy) significantly (P ≤ 0.05) increased globulin and albumin fractions of sesame protein. Concomitant (P ≤ 0.05) increase of in-vitro protein digestibility was noticed in irradiated sesame flour compared to non-radiated sample. Maximum protein solubility was observed in sesame flour irradiated at 1.0 kGy. SDS-PAGE electrophoretic patterns of total sesame protein were not affected by irradiation process. Significant enhancement (P ≤ 0.05) in emulsification capacity (EC) and emulsion stability (ES) was recorded after irradiation at a dose level of 1.0 and 1.5-2.0 kGy, respectively. Foaming capacity reached a significantly maximum value in sesame flour irradiated at 1.0 kGy while foaming stability was not significantly affected by gamma irradiation. It can be concluded that gamma radiation enhances the protein and functional properties of sesame flour and thus can be employed as an effective method of preserving sesame flour and its products.

  11. ESR investigations of gamma irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Ryabikin, Yu.A.; Polyakov, A.I.; Petukhov, Yu.V.; Bitenbaev, M.I.; Zashkvara, O.V.

    2000-01-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  12. ESR investigations of gamma irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ryabikin, Yu A; Polyakov, A I; Petukhov, Yu V; Bitenbaev, M I; Zashkvara, O V [Physical-Technical Inst., Almaty (Kazakhstan)

    2000-04-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  13. Effect of gamma-irradiation on cereal DNA investigated by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Miura, Aya; Imura, Hiromi; Yamada, Takashi; Saito, Yukio

    1996-01-01

    The effects of gamma-irradiation on the DNA of corn, soybean and wheat were investigated using a pulsed-field gel electrophoresis technique. In order to avoid strand breaks during the DNA extracting steps, protoplasts prepared from seeds were embedded in agarose plugs and the DNA was purified by the digesting membranes and proteins. Pulsed-field gel electrophoresis can separate large DNA strands of about a few Mb in length. The DNA from unirradiated corn, soybean and wheat had mainly 3 fragments, about 6Mb(Fr.1), 5Mb(Fr.2), a few hundred kb(Fr.3) and so on. After gamma-irradiation, Fr.1 and Fr.2 had decreased depend on irradiation dose. The Fr.4(about 200 kb) of corn and Fr.3 of soybean DNA increased while Fr.3 of wheat did not increase under 10 kGy irradiation, however, the Fr.3 of all samples and the Fr.4 of corn decreased by over 10 kGy irradiation. It can be assumed that the large DNA strands were broken into smaller strands which increased at low irradiation doses, whereas both large and small DNA strands were broken down at higher irradiation doses. The Fr.6(2.5Mb) and Fr.7(1.5Mb) appeared in irradiated wheat DNA. (author)

  14. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  15. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  16. The sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Sludge contains Salmonellae in more than 90% of samples. The maximum number reaches 10 7 per liter. Neither aerobic stabilization nor anaerobic digestion significantly reduces the contamination with Salmonellae. Moreover, Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. Sanitizing of sludge to be used as fertilizer is therefore urgent. The sanitary effect of pasteurisation and of gamma irradiation on sewage sludge was investigated. For this the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants was examined. The doses applied were 100, 200, 300, 400 and sometimes 500 krad. A linear reduction of Enterobacteriaceae was achieved with increasing radiation doses. A dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae. Less than 10 Enterobacteriaceae per gramm were found in 97.2% of the samples irradiated with 300 krad. The effect found in the above mentioned model experiments could be perfectly confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by Enterobacteriaceae reduction, was equivalent to the effect of heat treatment by pasteurisation. (orig./MG) [de

  17. Microbial decontamination of some chicken meat products by gamma irradiation

    International Nuclear Information System (INIS)

    Afifi, E.A.; El-Nashaby, F.M.

    2001-01-01

    This investigation aims to study the possibility of using gamma irradiation for microbial decontamination of some chicken meat products (Luncheon, Burger and debonded minced chicken) which are produced by three companies (Halwany Bros.(H)-Faragalla (F) and Egypco (E)). The samples were purchased from local supermarkets and examined for the presence of Salmonella spp. and Staphylococcus aureus. The examination illustrated that all examined samples were positive for Staphylococcus aureus. While Luncheon (F), Burger (H) and debonded minced chicken (E) were only positive for Salmonella spp. Therefore, these product samples were gamma irradiated at 0, 3, 6 and 9 kGy. The effects of radiation treatments and cold storage (5+,-1 degree) on the total volatile basic nitrogen (T.V.B.N.), microbiological quality and sensory properties of samples under investigation were studied. The results indicated that 3kGy dose of gamma irradiation completely destroyed Staphylococcus aureus and Salmonella spp. and caused slight increase in (T.V.B.N.) content for all samples. A gradual increase in total bacteria, molds and yeast and T. V. B. N. during storage were observed, while 6 kGy dose was also sufficient for destroying Salmonella spp. and Staphylococcus aureus in all chicken meat products under investigation without any detectable effects on the sensory properties of these products and increased the shelf-life of luncheon, burger and minced for 8, 4 and 3 weeks respectively as compared with 4, 2 and 1 weeks for control samples

  18. The effect of gamma irradiation on bacteria in stored rice

    International Nuclear Information System (INIS)

    Kamaruzzaman Sijam.

    1987-01-01

    The effect of gamma irradiation on bacteria was studied for reducing the total microbial numbers that contaminating raw product under storage. Different storage packages of rice samples were irradiated at various levels of dosage. The results of bacterial isolation, total bacterial count and the isolation of bacterial food pathogenus were discussed. It was observed that the presence of bacteria colonies was suppressed by the presence of yeast and moulds eventhough the number of them decreased as the irradiation dosage levels were increased. (A.J.)

  19. Post-{gamma}-irradiation reactions in vitamin E stabilised and unstabilised HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Mallegol, J.; Carlsson, D.J. E-mail: dave.carlsson@nrc.ca; Deschenes, L

    2001-12-01

    The oxidation of high density polyethylene (HDPE), both unstabilised and vitamin E stabilised, has been studied by infrared (IR) and electron paramagnetic resonance (EPR) spectroscopies in the period following {gamma}-irradiation at doses from 1 to 60 kGy (range of food sterilisation). Derivatisation by reaction with sulphur tetrafluoride was used to identify macro-ketone and carboxylic acid components of the overlapped IR carbonyl region. Oxidation continued for several hundred hours after the cessation of irradiation as shown by the increase in hydroxyl, ketone and acid groups. Carboxylic acid groups are particularly important as a direct indication of backbone scission. Vitamin E, although an effective antioxidant during {gamma}-irradiation, was less effective in reducing the post-irradiation changes, which are probably driven by migration of radical sites along the polymer backbone from within the crystalline phase to the amorphous/crystalline inter-phase, where they become oxygen accessible.

  20. Preservation of potatoes by gamma irradiation

    International Nuclear Information System (INIS)

    Nouani, A.; Boussaha, A.

    1987-01-01

    In Algeria, potatoes are a major food item in nutrition habits. Because of lack of cold storage facilities, losses can reach up to 40% of the total output of summer harvest. This paper describes the first experiments on the application of gamma irradiation for the preservation of local varieties of potatoes. Losses are strongly reduced by inhibition sprouting effect of irradiation and reduction of sugars content has no significant influence on the acceptability of irradiated potatoes

  1. Effect of irradiation (gamma rays) on the biology of Eimeria tenella oocysts

    Energy Technology Data Exchange (ETDEWEB)

    Bajwa, R.S.; Gill, B.S.

    1977-01-01

    Effect of gamma rays on the biology of the progeny of the irradiated Eimeria tenella oocysts was investigated. The parent inoculum of sporulated oocysts was exposed to 5 to 60 kR (gamma rays). These oocysts were fed to chicks. The oocysts voided by the chicks were collected and sporulated. The sporulation rate, pathogenicity, immunogenicity and reproduction potential of these oocysts--the progeny of the irradiated oocysts--were compared with those of the unirradiated oocysts. It was observed that increase of irradiation dose caused progressive decrease in the pathogenicity of the oocyst suspension. The oocysts exposed to 30 and 40 kR produced only mild infections whereas those exposed to 50 kR and above were noninfective. No difference in pathogenicity, immunogenicity and reproduction potential of unirradiated oocysts and the oocysts progeny of the irradiated oocysts was seen. It was concluded, therefore, that the effect of irradiation was limited to the inoculum exposed to it, and was not transmissible to the progeny of the irradiated oocysts.

  2. Preservation of squid rings by gamma irradiation. Microbiological, sensory and physicochemical aspects

    International Nuclear Information System (INIS)

    Tomac, A.; Yeannes, M.I.; Cova, M.C.; Narvaiz, Patricia

    2011-01-01

    The aim of this work was to analyze the use of gamma irradiation to preserve squid rings during refrigerated storage. Skinned rings of 'Illex argentinus' were packed in polyethylene/polyamide bags and gamma irradiated at 0, 2, 3 and 4 kGy with a cobalt-60 source at a semi-industrial irradiation facility. Samples were kept at 4 ± 1 °C during transportation, irradiation and 21 storage days. Mesophilic and psychrotrophic aerobic bacteria, Staphylococcus aureus, enterobacteriaceae, total coliforms, Escherichia coli, and sulphite-reducing clostridia were analyzed, as well as p H, total volatile basic nitrogen, color, and sensory parameters like aspect, color, odor, taste, texture and overall acceptability. Irradiation initially reduced three and two log cycles, respectively, of mesophilic and psychrotrophic bacterial counts, trend which was maintained during storage. Enterobacteriaceae and coliform growths were also controlled by this treatment. S. aureus, E. coli and sulphite-reducing clostridia were not detected in any sample. p H and TVBN values increased during storage time, being significantly lower in irradiated samples. Irradiation slowed down color changes during storage, measured as a* and b*. Color difference (DE2000) was significantly higher in control samples as compared to irradiated rings since the 6 th day. Sensory acceptability was not affected by gamma irradiation at any of the applied doses, being shelf-life extended at least 14 days in 3 kGy samples. (author) [es

  3. Gamma Irradiation Effect on Biodegradable Poly (Hydroxybutyrate) Studied by Positron Annihilation Technique

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Mohamed, S.S.

    2010-01-01

    -Bacterial polyesters have attracted much attention as biodegradable polymers. An ecofriendly alternative to this biodegradable material is poly-3-hydroxybutyrate (PHB) which has attracted industrial attention as an environmentally degradable plastic for a wide range of medical applications. Free volume holes in polymers play a crucial role in determining its physical properties. The Positron Annihilation Lifetime (PAL) technique has been established as a powerful probe for microstructures of polymers, in particular, angstrom-sized free volume holes. The PHB samples were irradiated using 60 Co source at room temperature with doss ranging from 5 to 300 kGy. The PAL spectra for all the samples have been measured at room temperature as a function of gamma-irradiation dose. The free volume hole size decreases with increasing the irradiation dose up to 25 kGy followed by slowly increases up to 200 kGy, then decreases at higher doses. On the other hand, the free volume content decreases with increasing the gamma-irradiation dose which is due to the increase of the degree of crystallinity. The variations in the free volume with the irradiation dose will be discussed in the frame of free volume model. A correlation between the macroscopic mechanical properties Hv and positron annihilation parameters has been done

  4. Effect of autoclave processing and gamma irradiation on apparent ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of autoclaving and different doses of gamma irradiation on the apparent ileal digestibility of amino acids of cottonseed meal in male broiler breeders. Samples were irradiated in a gamma cell at total doses of 15, 30 and 45 kGy. One package (control) was left at room ...

  5. Response change in winter-wheat types to the pathogen complex under chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Budanov, V.E.; Lysenkov, V.I.; Shcherbakov, V.K.

    1975-01-01

    Disease reactions in plants that have been gamma-irradiated are discussed. Damage to different types of soft winter wheat, due to pathogenic fungi, is evaluated. The Mironovski Jubilee variety showed high resistance to the leaf form of powdery mildew, along with the opposite phenomenon of a high susceptibility to the stem form of this disease. Chronic gamma irradiation of plants of this variety increased the susceptibility to this disease

  6. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit

    International Nuclear Information System (INIS)

    Kavitha, C.; Kuna, Aparna; Sagar, S.B.; Padmavati, T.V.N.; Supraja, T.; Prabhakar, N.

    2015-01-01

    Effect of gamma irradiation (0.25 to 1.0kGy) on antioxidant properties of ber fruit was studied. Antioxidant properties of ber fruits were determined by scavenging DPPH radical activity, reducing power assay, super oxide anion radical activity, TBARS, total phenolic content and total flavonoid content. Gamma irradiation treatment up to 1.0 kGy elevated the scavenging DPPH radical activity (9 %), super oxide anion radical activity (26 %) and total flavonoid content (208 %) compared to fresh ber fruit. On the other hand it brought down the reducing power activity (65 %) and total phenolic content (18 %) as compared to raw fruit. The TBARS activity statistically increased upon irradiation of ber fruit. It indicated that total antioxidant activity decreased as TBARS value increased. Therefore 0.25 to 0.5kGy is better dose to retain the natural antioxidant in fruit. (author)

  7. Dried gamma-irradiated sewage solids use on calcareous soils: crop yields and heavy metals uptake

    International Nuclear Information System (INIS)

    McCaslin, B.D.; Sivinski, J.S.

    1980-01-01

    The fertilizer values of gamma-irradiated digested sewage solids (RDSS) and gamma-irradiated undigested sewage solids (RUSS) have been examined on calcareous soils. Previously published data from Sandia Laboratories have shown that approximately 1 mega-rad of gamma-irradiation effectively destroys pathogenic bacteria, parasites and plant seeds in dried sewage solids. Greenhouse experiments directly comparing gamma-irradiated and non-irradiated undigested and digested dried sewage solids as fertilizers indicate little or no effect of 1 mega-rad gamma radiation treatment on plant yield or plant-nutrient uptake and demonstrated considerable benefit from using sewage solids on calcareous soils. Plant response to undigested sewage solids was considerably greater than to digested sewage solids when applied at levels that were isonitrogenous. The calcareous soils in New Mexico typically range in pH from 7.5 to 9.0, limiting the plant-availability of many elements, especially heavy metals. Soils irrigated with sewage-effluent for 40 years demonstrated beneficial use of supplied plant-nutrients with no apparent increase in plant-uptake of heavy metals. RDSS applied to a calcareous soil low in plant-available iron increased plant growth in the greenhouse considerably more than treatments with equal amounts of nitrogen, phosphorus and iron applied as common fertilizer materials. Plant tissue concentrations of Fe, Zn, Mn and Cu showed that RDSS was a good source of these nutrients. Results also indicated that the total soluble salt concentration of the RDSS was the factor most limiting plant growth. Chromium, Cd, Ni and Pd plant-tissue concentrations were apparently not increased by RDSS treatments. (Auth.)

  8. Effect of gamma irradiation on fatty acids of tomato seed oil

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Raouf, M.S.; Morad, M.M.; Rady, A.H.

    1979-01-01

    Since gamma irradiation of tomatoes is investigated as a tool for increasing tomato shelf-lefe, in this study the tomato seed oil produced from irradiated tomatoes was compared with that produced from industrial tomato seeds and with cotton seeds. Fatty acid contents of tomato seed oil, produced from industrial tomato seed waste and from tomato seeds (Variety Ace), were found nearly the same as in the edible cotton seed oil. Hence, both tomato seed oils may be considered as an additional source of essential fatty acids especially linoleic. Gamma irradiation doses ranged from 50-200 Krad had no significant effect on total saturated and total unsaturated fatty acids. 200 Krad led to significant increases in lenolic acid on the account of insignificant decrease in palmatic acid. Essentail and non essential amino acids of tomato seed meal seem to be equivalent to these of cotton seed meal. This suggests the possible use of tomato seed meal in animal feeding

  9. Development of Irradiation Procedure for Gamma Irradiation Chamber Bio beam GM 8000

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Affrida Abu Hassan; Zaiton Ahmad; Abdul Rahim Harun; Ahmad Zainuri Mohd Dzomir

    2015-01-01

    Bio Beam GM 8000 gamma irradiation chamber obtained a conditional approval to operate on March 27, 2012, and later acquired a full approval on December 13, 2012. The objective for the procurement of this gamma chamber is to develop an acute irradiation facility for biological samples, including plants tissues, insects, pupae, microorganisms, as well as animal and human cells. To ensure a smooth and efficient operation, irradiation procedures were developed and improved over time. This paper discusses the operation and management of the Bio Beam GM 8000 facility, including irradiation procedures and sample preparation, application for services through online e-client system, consultancy, quality assurance and information dissemination to internal as well as external clients. In addition, this paper also discusses the potential, constraints and improvement measures taken to optimize the use of this facility in order to meet its objectives. (author)

  10. The effect of red ginseng extract on superoxide dismutase activity in the kidney of gamma-ray irradiated mice

    International Nuclear Information System (INIS)

    Park, Yong Soon

    1992-01-01

    This study was prepared to observe the change of enzyme activities in kidney treated with red ginseng extract in the gamma ray irradiated mice. Determine the activity of SOD, peroxidase, catalase in the kidney a period of 1 day, 2 day, 3 day, 4 day, 5 day after a saline injection or injection of red ginseng extract or gamma ray irradiated group into four classify. The activity SOD and catalase showed a tendency to increase and recovery at the early state but pay no regard. Where ase, the activity of peroxide restored and increased pay regard. A physiological saline injection group after gamma ray irradiation showed a tendency to diminish after remarkable increase of activity of SOD, peroxidase and catalase than control group. Injection group of red ginseng extract after gamma ray irradiation observed rapid recovery on activity of SOD, peroxidase, catalase than a saline injection group. Experimental result suggested that injection of red ginseng extract after irradiation have the recovery effect on the changed of activity of SOD, peroxidase and catalase against radiation injury

  11. EFFECT OF GAMMA IRRADIATION ON THE GROWTH AND DEVELOPMENT OF SAGO PALM (Metroxylon sagu Rottb. CALLI

    Directory of Open Access Journals (Sweden)

    Imron Riyadi

    2017-01-01

    Full Text Available The application of gamma irradiation on plant materials may increase the genetic variation of the offspring with useful traits. The experiment was conducted to determine the effect of irradiation dosage of gamma ray on growth and development of sago palm (Metroxylon sagu calli. Friable calli of sago palm derived from suspension culture were used as a material source. The primary calli were initiated from apical meristematic tissues of sago palm suckers of Alitir variety from Merauke, Papua. The treatments used were dosage of gamma ray irradiation at 0, 5, 10, 15, 20 and 25 Gy. The treated calli were then subcultured on modified Murashige and Skoog (MMS solid medium containing 3% sucrose and 0.1% activated charcoal and added with 1 mg l-1 2,4-D and 0.1 mg l-1 kinetin. The results showed that at all irradiation dosages, calli biomass increased significantly. The highest proliferation of calli biomass of 5.33 folds from the initial culture after 4 weeks was achieved at gamma irradiation of 25 Gy, whereas the lowest proliferation of calli biomass of 3.4 folds was achieved at control. The best development of embryogenic calli was obtained at 10 Gy that produced 100% somatic embryos, whereas the lowest somatic embryo formation at 0% was obtained at 0 and 25 Gy after one subculture. High response of somatic embryo induction to gamma irradiation at 10 Gy may increase production of somatic embryos. These results can be used in in vitro breeding of sago palm via mutagenesis to create new elite varieties.

  12. Gamma radiation sensitivity in tomato tree and response of plants proceeding from salinity irradiated seeds

    International Nuclear Information System (INIS)

    Colaco, Waldeciro; Bidjeke, Raoul; Fleming, Peter M.

    2000-01-01

    Preliminary experiments were conducted to evaluate the radiosensitivity of tomato {Lycopersicon esculentum L. cultivars IPA-6, IPA-8, and Lycopersicum hirsutum glabratum - } to gamma rays from a 60 Co source, considering future induced mutation studies aiming at the improvement of plant salinity tolerance. Sets of dry seeds were exposed to gamma radiation doses (300 - 600 Gy and 100-400 Gy) and compared to a control without irradiation (0 Gy) under greenhouse conditions. The radiosensitivity was initially evaluated through germination of irradiated dry seeds determined at 13 and 30 days after irradiation and also through seedling survival. Seed germination was delayed by gamma irradiation and especially reduced at higher doses (300- 600 Gy). Survival of tomato plants was decreased with increased dose of radiation and was reduced by < 16% at the 300-600 Gy doses. Growth of plants was enhanced at low doses of gamma rays; higher doses reduced plant size. Gamma irradiation had significant effects on tomato plants generated from dry seed and submitted to different levels of salinity. It is recommended a dose range of 100-200 Gy for mutation breeding purpose using the varieties tested. (author)

  13. Genotoxicological safety of the ethanol extract from seafood cooking drips by gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Choi, Jong Il; Lee, Hee Sub; Kim, Jae Hun; Byun, Myung Woo; Chun, Byung Soo; Ahn, Dong Hyun; Yook, Hong Sun; Kim, Kee Hyuk

    2008-01-01

    Although seafood cooking drips were the byproducts from the fishery industry it was known that the cooking drips had many nutrients and could be used as functional materials. Previously, the physiological properties of cooking drips were shown to be increased by a gamma irradiation. But, there was no report on the safe for the genotoxicity on the irradiation. In this study, the genotoxicity of the cooking drips from Hizikia fusiformis, Enteroctopus dofleni and Thunnus thynnus was evaluated by the Ames test (Salmonella typhimurium reversion assay) and the SOS chromotest. The results from all samples were negative in the bacterial reversion assay with S. typhimurium TA98, TA100. No mutagenicity was detected in the assay, both with and without metabolic activation. The SOS chromotest also indicated that the gamma-irradiated seafood cooking drips did not show any mutagenicity. Therefore, this study indicated that gamma irradiation could be used for the hygiene, functional properties and processibility of seafood cooking drips

  14. Combined effect of formaldehyde and gamma-irradiation. Vitamin complex effect

    International Nuclear Information System (INIS)

    Ban'kovskij, A.A.; El'chaninova, M.A.

    1996-01-01

    Combined inhalation effect of formaldehyde and gamma-irradiation on the activities of alcohol and aldehyde dehydrogenases in rat lung tissue was studied. The possibility of fitting the parameters studied by the vitamin PP, A and E and complex was shown. At investigation of white rats in conditions of formaldehyde inhalation in concentration 10 mg/m 3 and gamma-irradiation by dose 0.25 Gy the changes of activities of alcohol and aldehyde dehydrogenases in the rat lung tissue were detected. An injection of PP, A and E vitamin complex after combined effect of formaldehyde and gamma-irradiation contributes to normalization of studied parameters. The K(C -1 ) constant is reduced. On this basis it is proposed that in such conditions formaldehyde stabilizes membranes and protects important metabolic processes against damages. Thus, vitamin complex is capable to level a toxic combined effect of formaldehyde and gamma-irradiation. 9 refs., 1 tab

  15. Effect of gamma irradiation on poly(butylene naphthalate) based polyesters

    International Nuclear Information System (INIS)

    Malavasi, I.; Consolati, G.; Quasso, F.; Soccio, M.; Gigli, M.; Negrin, M.; Macerata, E.; Giacobbo, F.; Lotti, N.; Munari, A.; Mariani, M.

    2016-01-01

    The present work investigates the effect of gamma radiation on the properties of three naphthalate-based polyesters, i.e. poly(butylene naphthalate) (PBN), poly(diethylene naphthalate) (PDEN) and poly(thiodiethylene naphthalate) (PTDEN). In addition, the analogous terephthalate-based polymers of PDEN and PTDEN, i.e. poly(diethylene terephthalate) (PDET) and poly(thiodiethylene terephthalate) (PTDET), are also investigated, in order to check the effect of a lower number of aromatic rings. All the polymers, irradiated in air at different absorbed doses, were characterized by several techniques. The data obtained indicate that all the polymers, except PBN, show a decrease of molecular weight with the dose increase. The thermal behavior and the morphology confirm the previous results and show that the higher the crystallinity degree and number of aromatic rings, the higher the radiation resistance. The introduction of heteroatoms decreases the ability of a polymer to crystallize due to a reduction of polymer chain symmetry, thus worsening their radiation resistance. - Highlights: • Gamma irradiation of polyesters with different number of aromatic rings was studied. • Effect of gamma radiation on PBN, PDEN, PTDEN, PDET, and PTDET was investigated. • Irradiated polymers were studied by GPC, DSC and PALS. • Introduction of heteroatoms decreases polymers radiation resistance. • Presence of double aromatic ring confers a higher stability with increasing doses.

  16. Effect of gamma-irradiation on biodegradable microspheres loaded with rasagiline mesylate

    International Nuclear Information System (INIS)

    Fernandez, Marcos; Barcia, Emilia; Negro, Sofia

    2016-01-01

    In the present study, the influence of gamma-irradiation was evaluated on the physicochemical characteristics and in vitro release of rasagiline mesylate (RM), a selective MAO-B inhibitor used in Parkinson's disease, from poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Microspheres were prepared using PLGA 50:50 by the solvent evaporation technique (O/W emulsion). Microspheres were sterilized by gamma-irradiation and their influence was assessed by scanning electron microscopy (SEM), laser light diffraction, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gel permeation chromatography (GPC), encapsulation efficiency (EE) and in vitro drug release. Gamma-irradiation of RM-loaded microspheres did not affect EE, DSC and XRD patterns. After gamma-irradiation, changes on the surface were observed by SEM, but no significant difference in mean particle size was observed. GPC measurements showed a decrease in molecular weight of the polymer after five days of in vitro release. The similarity factor value between irradiated and non-irradiates microspheres was <50, indicating the non-similarity of the release profiles. The sterilization technique had an effect on the integrity of polymeric system, significantly affecting in vitro release of RM from PLGA microspheres. Therefore, from our results we conclude that gamma-irradiation is not a suitable sterilization procedure for this formulation

  17. Effect of {gamma}-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok [Department of Food and Nutrition, Chosun University (Korea, Republic of); Seo, Hye-young [Korea Food Research Institute (Korea, Republic of); Kim, Hee-Yeon [Korea Food and Drug Administration (Korea, Republic of); Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University (Korea, Republic of); Kim, Kyong-Su [Korea Food Research Institute (Korea, Republic of)], E-mail: kskim@chosun.ac.kr

    2009-07-15

    A study was carried out to find the effect of {gamma}-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix (Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, (E)-carveol, (E,E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of {gamma}-irradiation on medicinal herb.

  18. Reduction of nitrogen oxides by gamma-irradiated hemoproteins. Pt. 1. Nitrite reducing activity of gamma-irradiated hemoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Tadatake; Kondo, Mitutaka; Sato, Hitoshi; Ichikawa, Yoshinobu; Nishio, Toshiyuki; Ito, Teiichiro [Nihon Univ., Tokyo (Japan). Coll. of Agriculture and Veterinary Medicine

    1994-08-01

    In nature, nitrite reductases located in microorganisms as well as in plants convert nitrite (NO{sub 2}{sup -}) into ammonium ion (NH{sub 4}{sup +}). It is rather difficult to isolate nitrite reductase because of very low content in microorganisms and plants. Bovine blood hemoglobin (Hb), horse cardiac muscle myoglobin (Mb) and horse cardiac muscle cytochrome c (Cyt c) in 50{mu}M aqueous solution were treated by gamma-irradiation at doses of 10-30 kGy in the presence of air. The present study shows that NO{sub 2}{sup -} is connected into NH{sub 4}{sup +} by gamma-irradiated hemoprotein in the presence of sodium hydrosulfite as a reducing agent and methyl viologen as an electron carrier. The concentration of NO{sub 2}{sup -} and NH{sub 4}{sup +} after reaction were determined by using diazo-reaction and ninhydrin reaction, respectively, after separation by HPLC. NO{sub 2}{sup -} remained and NH{sub 4}{sup +} formed by 10 kGy irradiated Cyt c, Hb and Mb at pH4 at 60 min were, 0% and 46%, 17% and 31%, 31% and 24%, respectively. Formation of hydroxylamine by reaction of NO{sub 2}{sup -} was not recognized in this reaction. The process of conversion of NO{sub 2}{sup -} to NH{sub 4}{sup +} is a net 6 electrons, 8-proton reaction. These results suggest that gamma-irradiated Hb, Mb and Cyt c can be used as a substituent of nitrite reductase. (J.P.N.).

  19. Improvement of physical properties of SnO2 By Gamma Irradiation

    International Nuclear Information System (INIS)

    Elttayef, A. K.

    2012-12-01

    In this work, the structural and optical of properties of (Sno 2 ) thin films prepared by chemical spray pyrolysis technique have been studied before and after irradiation by gamma ray. The films were prepared from mixture of Tin chloride hydrate SnCl 2 .2H 2 O with molar concentration of (0.1 M)at substrate temperature (400)o C and thickness (175,300 nm). X-ray diffraction analysis indicated that all the prepared films have polycrystalline structure. The optical properties of the films were determined by studying the visible and near IR spectrum, which include transmittance, absorbance, reflectance, absorption coefficient and energy gap before and after irradiation by gamma ray. It was found that the irradiance caused increasing the value of transmittance and optical energy gap. (Author)

  20. Gamma Irradiation Induced Degradation of Orange Peels

    Directory of Open Access Journals (Sweden)

    Jaime Saucedo Luna

    2012-08-01

    Full Text Available In this study, gamma irradiation induced degradation of orange peels (OP was investigated. The lignocellulosic biomass degradation was carried out at doses of 0 (control, 600, 1800 and 3500 kGy using a Co-60 gamma radiation source. The samples were tested for total and reducing sugars. The concentrations of total sugars ranged from 0.530 g∙g−1 in control sample to 0.382 g∙g−1 of dry weight in the sample which received the highest radiation dose. The reducing sugars content varying from 0.018 to 0.184 g∙g−1 of dry weight with the largest rise occurring in the sample irradiated at 3500 kGy. The concentrations of sucrose, glucose and fructose were determined. The changes generated in physico-chemical properties were determined by Fourier Transform Infrared Spectroscopy (FTIR and termogravimetric analysis (TG-DTG. The results show that OP was affected, but not significantly, which suggests that lignocellulose and sugars profiles were partially degraded after gamma irradiation.

  1. Performance evaluation of gamma irradiated SiR-EPDM blends

    Energy Technology Data Exchange (ETDEWEB)

    Deepalaxmi, R., E-mail: deepalaxmivaithi@gmail.com; Rajini, V.

    2014-07-01

    Highlights: • The effects of gamma irradiation on SiR-EPDM blend are examined. • Cross-linking reaction is dominant in blends C, D and E, due to higher EPDM content. • The tensile strength and hardness of blend E is improved by gamma irradiation. • The blend C and EPDM rich blends (D, E) are found to have superior performance. • Among C, D and E, suitable blend can be selected for a particular NPP application. - Abstract: Cable insulation materials (CIM) should perform their safety functions throughout their installed life in nuclear power plants (NPP). The CIM will be exposed to gamma irradiation at the installed locations. In order to forecast long-term performance of CIM, the short time accelerated testing was carried out. Due to its good mechanical strength, ethylene propylene diene monomer (EPDM) is widely used as CIM. Silicone rubber (SiR) is used in high temperature environments, due to its good di-electric properties/hydrophobicity. The blending of these two polymers may result in the improvement in their specific properties. This paper analyses the effects of gamma irradiation on the five different compositions (90-10; 70-30; 50-50; 30-70; 10-90) of SiR-EPDM blends. The blends were exposed to four different doses (25 Mrad, 100 Mrad, 200 Mrad and 250 Mrad) of gamma irradiation. The electrical and mechanical parameters like volume resistivity (VRY), surface resistivity (SRY), tensile strength (TS), elongation at break (EB), hardness (H) of the virgin and gamma irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier transform infrared spectroscopy (FTIR). The simultaneous occurrence of cross-linking and chain scission is found to be the mechanism for ageing in SiR-EPDM blends. The electrical parameters such as volume resistivity and surface resistivity of all the blends are found to improve for all doses of gamma irradiation. To validate the influence of cross-linking reaction of the Si

  2. The relationship between carbohydrate content and gamma irradiation during rooting of chrysanthemum cuttings

    International Nuclear Information System (INIS)

    Noh, Seol Ah; Kim, Jin Kyu

    2003-01-01

    The effect of gamma radiation on carbohydrate metabolism was studied in chrysanthemum cuttings. Total water-soluble carbohydrate, glucose, fructose, sucrose, and starch contents were measured in leaves and stems. Differences in the accumulation of carbohydrate associated with inhibition or stimulation in response to gamma irradiation. Sucrose levels increased significantly in leaves and stems until the 15th day, reaching maximum values on that day. Glucose contents declined rapidly until the 10th day and increased later, reaching maximum values on the 15th day. Fructose levels gradually increased, reaching maximum values at the 10th day, and then decreased again. Differences in the components of soluble carbohydrates were evident between rooting durations and doses. Soluble sugars were in the highest contents in the 20 Gy irradiated group. However, irradiation dose higher than 20 Gy resulted in an inhibitory effect

  3. Investigation of some physical properties of polypropylene irradiated by gamma rays

    International Nuclear Information System (INIS)

    Kattn, M.; Ajji, Z.

    2005-03-01

    Pure polypropylene samples were exposed to different of gamma radiation up to 100 kGy in presence of oxygen or nitrogen. Some physical properties were investigated in relation to the radiation dose: melting point, crystallinity, apparent activation energy; tensile strength,; elongation. The data show that the crystallinity decreases at low doses. In addition, the melting point is shifted to lower temperature with increasing the irradiation dose. The apparent activation energy increases with increasing irradiation dose. The tensile strength increases for low doses up to maximum, and after this value it decreases increasing (Authors)

  4. Some Analytical Characteristics of Moringa Oleifera Leaves and Seeds Affected by Gamma Irradiation

    International Nuclear Information System (INIS)

    Aly, A.A.; Maraei, R.A.; Ali, H.G.M.

    2014-01-01

    Moringa oleifera is an important multipurpose tropical tree under-recognized for its nutritional and medicinal properties. Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to human against infections and degenerative diseases. Leaves and seeds of M. oleifera were subjected to different gamma rays dose levels (0, 5, 10 and 15 kGy) and the content of phenolics, flavonoids, antioxidants activity and the profile of phenolics and flavonoids by HPLC were evaluated. The obtained data indicated that the phenolics and flavonoids content increased gradually by increasing irradiation doses in the seeds and leaves extract. Scavenging activity was increased gradually by increasing irradiation dose levels. Regarding to HPLC analysis of phenolic and flavonoid compounds it was shown that irradiation stimulated the biosynthesis of some phenolic compounds such as, chlorogenic, caffeic, salicycic, ellagic and p-OH-benzoic, as well as rosmarinic, naringin and hyper oside for flavonoids. This study showed that gamma irradiation is an effective tool for enhancing the phenolic compounds and antioxidant activity of M. oleifera.

  5. Curcuma sparganifolia Improvement Through Gamma Irradiation

    International Nuclear Information System (INIS)

    Krasaechai, A.

    1990-01-01

    The studies of Curcuma sparganifolia improvement through irradiation using gamma rays from 40 Gy to inhibit sprouting of the rhizomes were conducted. Various effects of gamma rays on growth and development were observed in 11 parameters. Colour mutation of flowers and braces were not found except in 1 plant which showed deeper brats colour. Leaf chimera was observed but the characters for commercialization were not achieved

  6. Histochemical differentiation between unirradiated and gamma-irradiated tissue in commercial use of some irradiated vegetables

    International Nuclear Information System (INIS)

    Foa, E.

    1978-01-01

    The use of gamma irradiation as a commercial method for the preservation of fruits and vegetables calls for methods of differentiation between unirradiated and irradiated products. A new approach to studying the influence of gamma irradiation on vegetable tissue at the cellular level by histochemical techniques has been developed by the authors and already applied to a number of fruits and vegetables. The possibility of evidencing radiation effects in the polysaccharide components of the cell wall suggested that these detected differences could be applied to differentiate irradiated from unirradiated tomatoes and potatoes. Some work done to determine changes in the cell wall polysaccharides of gamma-irradiated potatoes and tomatoes and to relate these changes to some other factors, such as storage time and vegetable variety, is reported here. While significant differences have been found in the optical densities of the total polysaccharides of the cell wall as a function of irradiation and of the other variables mentioned, it is not yet possible to use these values as a means of reliable differentiation. (author)

  7. EPR structure of the gamma irradiated alanine spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A; Jimenez D, H; Urena N, F; Galindo, S; Bosch, P

    1992-03-15

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of {gamma}-irradiated powder DL- and L-alanine. (Author)

  8. Gamma irradiation induced ultrastructural changes in Paracoccidioides brasiliensis yeast cells

    International Nuclear Information System (INIS)

    Demicheli, Marina C.; Andrade, Antero S.R.; Goes, Alfredo Miranda

    2007-01-01

    Paracoccidioides brasiliensis is a thermally dimorphic fungus agent of paracoccidioidomycosis, a deep-seated systemic infection of humans with high prevalence in Latin America. Up to the moment no vaccine has still been reported. Ionizing radiation can be used to attenuate pathogens for vaccine development and we have successfully attenuated yeast cells of P. brasiliensis by gamma irradiation. The aim of the present study was to examine at ultrastructural level the effects of gamma irradiation attenuation on the morphology of P. brasiliensis yeast cells. P. brasiliensis (strain Pb-18) cultures were irradiated with a dose of 6.5 kGy. The irradiated cells were examined by scanning and also transmission electron microscopy. When examined two hours after the irradiation by scanning electron microscopy the 6.5 kGy irradiated cells presented deep folds or were collapsed. These lesions were reversible since examined 48 hours after irradiation the yeast have recovered the usual morphology. The transmission electron microscopy showed that the irradiated cells plasma membrane and cell wall were intact and preserved. Remarkable changes were found in the nucleus that was frequently in a very electrodense form. A extensive DNA fragmentation was produced by the gamma irradiation treatment. (author)

  9. Chemometric characterization of gamma irradiated chestnuts from Turkey

    International Nuclear Information System (INIS)

    Barreira, João C.M.; Antonio, Amilcar L.; Günaydi, Tugba; Alkan, Hasan; Bento, Albino; Luisa Botelho, M.

    2012-01-01

    Chestnut (Castanea sativa Miller) is a valuable natural resource, with high exportation levels. Due to their water content, chestnuts are susceptible to storage problems like dehydration or development of insects and microorganisms. Irradiation has been revealing interesting features to be considered as an alternative conservation technology, increasing food products shelf-life. Any conservation methodology should have a wide application range. Hence, and after evaluating Portuguese cultivars, the assessment of irradiation effects in foreign cultivars might act as an important indicator of the versatility of this technology. In this work, the effects of gamma irradiation (0.0, 0.5 and 3.0 kGy) on proximate composition, sugars, fatty acids (FA) and tocopherols composition of Turkish chestnuts stored at 4 °C for different periods (0, 15 and 30 days) were evaluated. Regarding proximate composition, the storage time (ST) had higher influence than the irradiation dose (ID), especially on fat, ash, carbohydrates and energetic value. Sucrose exhibited similar behavior in response to the assayed ST and ID. The prevalence of ST influence was also verified for FA, tocopherols and sucrose. Lauric, palmitoleic and linolenic acids were the only FA that underwent some differences with ID. Saturated, monounsaturated and polyunsaturated fatty acids levels were not affected either by storage or irradiation. α-Tocopherol was the only vitamer with significant differences among the assayed ST and ID. Overall, Turkish cultivars showed a compositional profile closely related with Portuguese cultivars, and seemed to confirm that gamma irradiation in the applied doses did not change chestnut chemical and nutritional composition. - Highlights: ► γ-irradiation was applied to Turkish chestnuts as a conservation method. ► Doses till 3 kGy did not affect chestnuts nutritional parameters. ► Storage time influenced chestnuts chemical composition. ► Irradiation might be a suitable

  10. Effect of gamma irradiation on the pigments and the biological activities of methanolic extracts from leaves of centipedegrass (Eremochloa ophiuroides Munro)

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Lee, Seung Sik; Bai, Hyoung-Woo; Cho, Jae-Young; Kim, Tae Hoon; Chung, Byung Yeoup

    2013-01-01

    Extracts from centipedegrass (Eremochloa ophiuroides Munro) have been previously identified as having beneficial effects medically and cosmetically. In this study, the effects of gamma irradiation on pigment removal and biological activities of centipedegrass extracts to promote industrial application were investigated. The methanolic extracts were exposed to gamma irradiation at dose ranging from 2 to 20 kGy. The major pigments of centipedegrass extracts, cyanidin-3-O-glucoside and cyanidin-3-O-(6″-malonyl-)glucoside, were found to be effectively removed by gamma irradiation above 10 kGy. Although the reddish-orange color of the cyanidins was markedly decreased by gamma irradiation, the biological activities were relatively unaffected. The biological activities such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, inhibition of tyrosinase activity, and inhibition of elastase activity in methanolic extracts were modulated from 50.5% to 70.2%, from 50.9% to 65.8% and from 65.6% to 94.0%, respectively. Surprisingly, the biological activities have the highest activities after 6–8 kGy of gamma irradiation. These results indicate that despite pigment degradation, biological activities were maintained or increased by gamma irradiation. Based on these results, gamma irradiation may be a useful tool to remove the undesirable reddish-orange color present in centipedegrass without any loss of biological activities, thereby promoting its utility in industrial applications such as manufacturing of cosmetic products. - Highlights: • The pigments of centipedegrass extracts were decreased by gamma irradiation. • The contents of maysin and its derivatives were slightly changed by gamma irradiation. • The biological activities of centipedegrass extracts were retained or increased by gamma irradiation

  11. Gamma irradiation as a quarantine treatment for spider mites (Acarina: tetranychidae) in horticultural products

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Banasik-Solgala, K.

    1999-01-01

    The carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the two-spotted spider mite, Tetranychus urticae Koch, are closely related species of tetranychid mites (Acarina, Tetranychidae) that respond to gamma irradiation in a similar way. Eggs of both species exposed to gamma radiation early in embryonic development were considerably more susceptible to irradiation than older eggs. The tolerance of eggs to gamma radiation increased in 3-4-day-old eggs, when eye-spots were formed. Nymphs were more resistant to gamma radiation than eggs and larvae. Deteriorative effects of irradiation treatment were reflected in the immatures by their mortality in subsequent developmental stages. A positive relationship between dosage and the percent egg mortality or the mortality of subsequent stages was usually found when the immature stages were irradiated. The sex ratio of adults developed from irradiated eggs, larvae, and nymphs was affected by the irradiation treatment; the ratio was usually skewed towards males. Irradiation of females resulted in increased mortality, lowered fecundity, reduced egg viability, and sex ratio distortion in their progeny. Two-day-old females of the carmine spider mite and the two-spotted spider mite irradiated with 200 or 300 Gy lived as long as the controls. Mortality occurred after 3 weeks. The number of eggs laid by irradiated females of spider mites was considerably lower than in the control, and it decreased as the absorbed dose increased. The higher the dose of gamma radiation applied to adults of the spider mites (the parental generation, P), the higher the mortality of the F1 mites during their embryonic development. Viability of eggs laid by irradiated females of spider mites mated with irradiated males was significantly reduced. Young females treated with a dose of 0.2 kGy produced 40-50% nonviable eggs, while control mites produced only 6.0-6.6% nonviable eggs. A dose of 0.3 kGy caused high mortality of eggs; 88% and 97% nonviable

  12. Radiation safety for operators of gamma irradiation plants

    International Nuclear Information System (INIS)

    1989-01-01

    These notes have been prepared by the UK Panel for Gamma and Electron Irradiation with advice from the HSE (Technology Division and Factory and Agricultural Inspectorate) to assist operators of Gamma irradiation plants to comply with the requirements of the Ionising Radiations Regulations (IRR 1985), and other relevant regulations (see below). The process is currently used for the sterilisation of medical devices and in the treatment of plastics materials etc. The Government has proposed that the process should also be permitted for the treatment of foodstuffs, and these notes will also be relevant to any irradiation plants which may be used in the UK for this purpose. (author)

  13. Hopping conduction in gamma-irradiated InSe and InSe:Sn single crystals

    International Nuclear Information System (INIS)

    MUSTAFAEVA, S.N.; ISMAILOV, A.A.; ASADOV, M.M.

    2010-01-01

    Full text : The semiconductive InSe layer compound is characterized by a strong covalent bond inside the layers and a weak Van der Waals bonding between them. It was shown that across the layers of InSe single crystals at low temperatures (T ≤ 200 K) at direct current (dc) hopping conduction through localized states near the Fermi level takes place. The results of dc-conductivity of gamma-irradiated p-InSe and n-InSe : Sn layer single crystals have been presented in this work. ρ-InSe single crystal specimens grown by the Bridgman method were used in the experiments. Plates of the crystals under study were obtained by cleaving along the layers of single crystal ingots. The single-crystal InSe samples for electric measurements had the form of planar capacitors normal to the C axis of the crystals, with silver-paste electrodes. The thickness of the InSe samples was 300 mkm. Co 60 serves as the source of irradiation with energy of gamma-quantum equal to 1.3 MeV. The electric properties of non-irradiated and gamma-irradiated InSe crystals were measured under the same conditions. It is revealed that InSe and InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T≤200 K in a dc electric field. From experimental data the parameters of localized states of p-InSe and n-InSe : Sn were calculated before and after gamma-irradiation. It is revealed that gamma-irradiation of p-InSe and n-InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals leads to significant change of localized states parameters. After gamma-irradiation the density of states near the Fermi level increased, but their energy spread and the average jump distance decreased. The concentrations of radiated defects were estimated in p-InSe (5.18*10 1 7 sm - 3) and n-InSe : Sn (2.5*10 1 7 - 2.7*10 1 8 sm - 3) single crystals. The present results demonstrate that gamma-irradiation offers the possibility of tuning

  14. Response of reptilian live to external gamma irradiation

    International Nuclear Information System (INIS)

    Gupta, M.L.

    1990-01-01

    Adult healthy specimens of Uromastix hardwickii were exposed to three doses (i.e. 2.25, 4.50 and 9.00 Gy) of gamma radiation from a 60 Co source (experimental group). Five animals were sacrificed at each post-irradiation intervals of 1, 2, 3, 7 and 14 days. The liver was fixed in Bouin's fluid and after processing in a routine way, it was examined histologically. Five sham-irradiated animals (control group) were also sacrificed to compare the results. Low dose (i.e. 2.25 Gy) did not produce any apparent radiolesions in the liver. Changes in the form of cytoplasmic degranulation, swollen hepatocytes, pycnosis, increases in bile pigmentation were noticed after 4.50 and 9.00 Gy gamma ray exposure. Hyperaemia, widening of sinusoids and cytoplasmic vacuolation were also noticed in 9.00 Gy group. The liver exhibited normal picture on day 14 after exposure to both the doses. The radiolesions were found dose dependent. (author)

  15. The Role of Gamma Irradiation on Growth and Some Metabolic Activities of Spirulina platensis

    International Nuclear Information System (INIS)

    Moussa, H.R.; El-Shaer, E.A.; Ismaiel, M.M.S.; Shabana, E.F.; Gabr, M.A.

    2015-01-01

    Spirulina platensis cells were exposed to different doses of gamma irradiation 0.0; (control), 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 Kilo Gray (kGy) using Co 60 as a gamma source at the Cyclotron Unit, Nuclear Research Center, Egyptian Atomic Energy Authority. After which, the cells were cultivated on Zarrouk medium for 14 days (the exponential phase of growth). The optimum growth of Spirulina platensis was recorded at 2.0 kGy as compared to the control after the 14th day of incubation. All of the following analyses were done after 10 days of growth. The results of pigments analysis revealed that the chlorophyll a and carotenoid contents of Spirulina platensis were reached their maximum rate at a dose of 2.0 kGy, Which induces the same trend for phycobiliproteins fractions. The photosynthetic activity and total carbohydrate content of the irradiated Spirulina cells increased with elevating the doses of gamma irradiation and reached a maximum value at a dose of 2.0 kGy as compared to the control. The activity of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO) was increased up to irradiation dose of 2.0 kGy. whereas, the maximum activity of the phosphoenol pyruvate carboxylase (PEPCASE) was recorded at the irradiation dose of 1.0 kGy Spirulina platensis cells were exposed to different doses of gamma irradiation 0.0; (control), 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 Kilo Gray (kGy) using Co 60 as a gamma source at the Cyclotron Unit, Nuclear Research Center, Egyptian Atomic Energy Authority. After which, the cells were cultivated on Zarrouk medium for 14 days (the exponential phase of growth). The optimum growth of Spirulina platensis was recorded at 2.0 kGy as compared to the control after the 14th day of incubation. All of the following analyses were done after 10 days of growth. The results of pigments analysis revealed that the chlorophyll a and carotenoid contents of Spirulina platensis were reached their maximum rate at a dose of 2.0 kGy, Which induces the same

  16. The Analysis Of Spent Fuel Utilization For A Gamma Irradiator

    International Nuclear Information System (INIS)

    MS, Pudjijanto; Setiyanto

    2002-01-01

    The gamma irradiator using RSG-GAS spent fuels was analyzed. The cylindrical geometry of the irradiator was designed by locating the spent fuels the cylindrical periphery. The analysis was focused to evaluate the feasibilities of the irradiator as a fruits and vegetables irradiator. The spent fuels activities were calculated using Origen2 code, while the dose rate at the irradiation positions was determined by linear attenuation model with transport coefficient. The evaluated results showed that the cylindrical geometry of irradiators with diameter around 1-1.5 m gave the effective dose rate for fruits and vegetables preservation. It can be concluded that one can use the RSG-GAS spent fuels effectively as a gamma irradiator for certain applications

  17. Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.; Othman, Y.

    2010-01-01

    Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 deg. C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0-5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.

  18. Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M., E-mail: scientific5@aec.org.sy; Farah, S.; Othman, Y.

    2010-08-15

    Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1-4 deg. C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0-5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.

  19. High-energy {gamma}-irradiation effect on physical ageing in Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Kozdras, A. [Department of Physics of Opole University of Technology, 75 Ozimska Str., Opole, PL-45370 (Poland); Department of Economy of Academy of Management and Administration in Opole, 18 Niedzialkowski Str., Opole, PL-45085 (Poland); Kozyukhin, S. [Institute of General and Inorganic Chemistry of RAS, Leninsky Pr. 31, Moscow 199991 (Russian Federation); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, PL-42201 (Poland)], E-mail: shpotyuk@novas.lviv.ua

    2009-09-01

    Effect of Co{sup 60} {gamma}-irradiation on physical ageing in binary Ge{sub x}Se{sub 100-x} glasses (5 {<=} x {<=} 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This {gamma}-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 {<=} x {<=} 27 compositions. The effect under consideration is supposed to be associated with {gamma}-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  20. Effect of gamma irradiation on the nutritive value of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, Moutaz

    1992-03-01

    An experiment was carried out to study the effects of doses of gamma irradiation on the nutritive value of cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs, as an attempt to improve the nutritive value of these residues in order to utilize theme in animal diets. Ground samples of six residues were irradiated by 137 Cs gamma source (Gammator) at doses of 0, 1, 10, 40, 50, and 100 kilo gray (KGy) under identical conditions of temperature and humidity, and analysed for dry matter, crude ash, crude protein, crude fat, crude fibre, Neutral Detergent Fibre (NDF), Acid Detergent Fibre (ADF), and Acid detergent Lignin (ADL). The results indicate that gamma irradiation has no effect on crude protein whereas decreased crude fat content. Gamma irradiation has a pronounced effect on decreasing crude fibre contents especially at the highest dose (100 KGy) reaching (%): 30, 21, 15, 17, 21 and 16 for cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs respectively with increases in NFE values. NDF decreased by 19.7%, 13%, and 11.5% for wheat straw and maize straw respectively, by 9.3% for maize cobs and barley straw and by 6.6% for cottonwood. The reductions in ADF values were: 8% for cottonwood, 7.3% for maize straw and maize cobs, and 5.7% for wheat straw and barley straw. Gamma irradiation lowered ADL content by 29% for maize cobs, 17.2% for barley straw and by 20.8% and 7.4 for wheat straw and cottonwood respectively. Gamma irradiation (100 KGy) has no effect on ADF, ADL, and cellulose for lentils straw and on hemicellulose for cottonwood. (author). 24 refs., 20 tabs., 2 figs

  1. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Science.gov (United States)

    Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.

    2017-07-01

    Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.

  2. Effects of Gamma Irradiation on Quality Characteristic and Microbiological Safety of Rape (Brassica napus) Pollen

    International Nuclear Information System (INIS)

    Kim, Kyoung-Hee; Jeong, Su-Ji; Kim, Dam; Yook, Hong-Sun; Kim, Kwang-Hun

    2013-01-01

    This study is carried out to sanitize rape (Brassica napus) pollen by gamma irradiation. Rape pollens were treated with 0, 5, 10 and 15 kGy gamma irradiations, and then analyzed for the following: general composition, microbial population, reducing sugar, Hunter color values, TBARS (2-thiobarbituric acid reactive substances) values, and VBN (volatile basic nitrogen). Mold and coliform bacteria were not detected in the samples irradiated at 5 kGy or more. Yeasts and total aerobic bacteria were not detected in the samples irradiated at 10 kGy or more (102 CFU/g). Moisture, ash, crude protein, crude fat, carbohydrate, reducing sugar and the contents of volatile basic nitrogen in the irradiated pollen did not show any significant changes by irradiation. Hunter color values, L, a and b values were decreased with increment of irradiation dose. TBARS values were increased with an increment of irradiation dose. In conclusion, gamma irradiation at 5 kGy was considered to be an effective treatment to control for mycotoxin producing fungi in rape pollen to minimize changes of general composition and physicochemical properties. Further studies should be investigated to reduce the detrimental effects induced by irradiation

  3. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  4. Influence of gamma-ray irradiation on Faraday effect of Cu-doped germano-silicate optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Jang, Myoung-Jin [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of); Kim, Jong-Yeol; Lee, Nam-Ho; Jung, Hyun-Kyu [Nuclear Convergence Technology Development Department, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Han, Won-Taek, E-mail: wthan@gist.ac.kr [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-01

    Influence of gamma-ray irradiation on the Faraday effect of the Cu-doped germano-silicate optical fiber was investigated. The Verdet constant of the gamma-ray irradiated optical fiber at 660 nm was measured to be 3.07 rad T{sup −1} m{sup −1}, 1.46 times larger than that of before the irradiation at total dose of 1200 Gy. Cu-related radiation-induced defect centers and Cu metal particles which were reduced from Cu{sup 2+} ions by the irradiation are thought to be responsible for the increase in the Verdet constant of the optical fiber.

  5. The influence of gamma irradiation in poultry

    International Nuclear Information System (INIS)

    Paluchova, K.; Benova, K.; Falis, M.; Sesztakova, E.

    2004-01-01

    The effect of a single whole - body gamma - irradiation of broiler chickens with a dose of 15.0 Gy on the activities of alaninaminotransferase (ALT) and aspartataminotransferase (AST) in the serum was investigated 1, 3, 5 and 7 days post irradiation. The numbers of erythrocytes and leucocytes and concentrations of haemoglobin in peripheral blood was investigated 1, 2, 4, 7, 9 and 14 days post irradiation. (authors)

  6. Nanodefect formation in LiF crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Ibragimova, Eh.M.; Kalanov, M.U.; Muminov, M.I.

    2006-01-01

    One studied the spectra of absorption and of photoluminescence, microhardness and performed X-ray structure analysis of gamma-irradiated LiF crystals in a shutdown reactor and in 60 Co source when gamma-radiation dose rate was equal to 7.65 Gy/s. In addition to formation of point and combined radiation defects one detected the presence of the gamma-irradiation induced 28 nm size nanoparticles of LiOH phase in Li sublattice. Formation of defects is shown to occur more efficiently in a shutdown reactor in contrast to 60 Co source [ru

  7. Effects of gamma irradiation on optical properties of polycarbonate: different formulations with commercial stabilizers

    International Nuclear Information System (INIS)

    Ferreira, Carlas C.; Aquino, Katia Aparecida da S.; Araujo, Elmo S.

    2009-01-01

    Medical plastics are in general sterilized by gamma irradiation in doses of 25 kGy. However, this process often causes discoloration of the product due the formation of color centers during the irradiation. In particular, polycarbonate (PC), a transparent thermoplastic, when gamma-irradiated undergoes main chain scissions with consequent yellowness. This discoloration is attributed the formation of macroradicals type phenoxyl and phenyl produced by irradiation process. PC was prepared in formulations containing different stabilizers in order to investigate its optical properties (transmittance and yellowness index) changed by irradiation process. Among the stabilizers tested, a new commercial stabilizer (high performance phosphite) has presented good results concerning to reduction of the yellowness in irradiated specimen tests. Transmittance (at 420 nm) of irradiated samples at doses of 25 kGy decreases to ∼ 45% of non-irradiated sample value, immediately to the irradiation process. Nevertheless, this transmittance is increased to values of ∼ 70% of non-irradiated sample, after 60 hours under heating into oven (45 deg C). (author)

  8. Effects of gamma-irradiation on some properties of bovine casein micelles

    International Nuclear Information System (INIS)

    Saito, Zenichi

    1974-01-01

    Sedimentation studies and electron microscopic observations revealed that an association between casein micelles dispersed in water or milk serum was not induced significantly by gamma-irradiation of exposure up to 3 x 10 6 R, whereas a release of nonprotein nitrogen was observed to a certain extent. It was concluded from the results of turbidi-metry and gel filtration using 3 size groups of casein micelles, namely large, medium and small, that an irradiation-induced polymerization or association occurred within individual casein micelles, and strengthend the micelle structure. Thus the irradiated casein micelles resisted, more or less, to the solubilizing effect of NaCl, EDTA, pyrophosphate and urea. Stabilities of casein micelles for ethanol and for acidification to an isoelectric point were decreased and increased, respectively, after irradiation. Gamma irradiation also caused the decrease of glycomacropeptide released from casein micelles by the action of rennin, and this resulted in the delay of rennin-coagulation of casein. There were no essential differences among the 3 size groups of casein micelles concerning the above described tendencies. (auth.)

  9. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  10. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  11. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  12. Gamma irradiation service in Mexico

    International Nuclear Information System (INIS)

    Liceaga C, G.; Martinez A, L.; Mendez T, D.; Ortiz A, G.; Olvera G, R.

    1997-01-01

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  13. Improving bambara groundnut productivity using gamma irradiation ...

    African Journals Online (AJOL)

    In recent times efforts are being made to improve the productivity of bambara groundnut. Studies were initiated (i) to characterise and evaluate landraces and to select superior ones for irradiation, (ii) to induce genetic variation through gamma irradiation and (iii) to use biotechnological approaches to shorten the generation ...

  14. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle

    International Nuclear Information System (INIS)

    Suarez, C.; Paz, M. D.; Diaz, A.

    1983-01-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H 2 SO 4 and 180 degree centigree at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H 2 SO 4 doesn't enhance the yield anyway. (Author) 21 refs

  15. Inhibition of alloxan diabetes by low dose {gamma}-irradiation before alloxan administration

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Kiyonori [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo

    1994-10-01

    We evaluated the inhibitory effects of whole body {sup 60}Co-{gamma} irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author).

  16. Sterilization of Carriers by using Gamma Irradiation for Bio fertilizer Inoculum Production

    International Nuclear Information System (INIS)

    Tittabutr, Panlada; Teamtisong, Kamonluck; Pewlong, Wachiraporn; Teaumroong, Neuhg; Laoharojanaphand, Sirinart; Boonkerd, Nantakorn

    2009-07-01

    Full text: Gamma irradiation has been widely used in sterilization process, which leads to improvement in the quality of the products. In the case of bio fertilizer inoculum, the sterilized carrier is also needed for producing high quality bio fertilizer. This study aimed at determining the factors, such as carrier materials, moistures, and packing sizes including packaging materials that may affect the sterilization efficiency by using gamma irradiation. All carrier materials, peat and compost, could be efficiently sterilized by irradiation. The carriers that have moisture content lower than 20% could be sterilized by irradiation at 15 kGy, while carrier with 30% moisture content must be sterilized by irradiation at 25 kGy. Higher irradiation dose was also necessary for sterilization of bigger carrier packing sizes. For, packaging materials, polyethylene bag appeared most durable after gamma irradiation even at high doses. However, contaminants could be detected in irradiated carrier after storage at room temperature for two months. It was hypothesized that these contaminants are spore forming microorganisms, which resist gamma irradiation. This hypothesis, as well as the quality of bio fertilizer produced from irradiated carrier, will be further evaluated

  17. EFFECT OF TIDIAZURON AND DIETHILENTRIAMINE ON GAMMA-IRRADIATED OATS AND TRITICALE PLANTS

    Directory of Open Access Journals (Sweden)

    Nevena STOEVA

    2001-09-01

    Full Text Available The potential modifying effect of the synthetic growth regulators Tidiazuron and poliamine diethilentriamine, applied after gamma-irradiation stress on oats and triticale plants, was studied. Pot vegetative experiments with spring oats, cultivar Hanza 152, and triticale, cultivar 7251, were carried out. The plants were grown under controlled conditions and in the phase of stem extension they were irradiated with Cesium- 137 gamma rays, at a dose rate of 6 Gy (oats, and 4 Gy (triticale, and dose intensity of 2 Gy/min. On the day after the irradiation the plants were sprayed with a radioprotector for the purpose of decreasing the radiation damage. Two types of protectors were tested: tidiazuron and diethilenthriamine. The irradiation of oats and triticale plants in the phase of stem extension caused stress, which was detected by the disorganization of the cardinal physiological processes. The tested synthetic plant growth regulators reduced the negative effect of the irradiation. The peroxidase activity and the lipid peroxidation were reduced, while the plant productivity and the photosynthetic pigments were increased, both photosynthesis and transpiration activation were increased. Independently of the similar effect of both of the substances, polyamine DETA was characterized with a better modifying effect.

  18. Color changes of vienna sausage by gamma irradiation

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Sato, Tomotaro

    1978-01-01

    Color change of vienna sausage induced by gamma irradiation was investigated. Discoloration of irradiated vienna sausage was evaluated by use of the color difference meter and sensory test. The discoloration by irradiation was influenced by oxygen contents in packing pouches. In the case of commercial vienna sausage, significant difference from unirradiated control by 99% of probability was recognized at the doses of 1.0 Mrad in nitrogen, 0.5 Mrad in air and 0.3 Mrad in oxygen, respectively. The color change of the specially prepared vienna sausage (40% pork, 40% mutton, 20% beef, and no additional preservatives) was less than that of the commercial one. The absorbance at 540 nm of extracts from vienna sausages with 80% acetone decreased with increasing irradiation dose and oxygen content. While, change in absorbance at 340 nm was practically unaffected by the oxygen concentration. These results suggest that the degradation of nitroso-heme complex by irradiation causes mainly the discoloration of vienna sausage. (auth.)

  19. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    International Nuclear Information System (INIS)

    Xiao-Ming, Jin; Ru-Yu, Fan; Wei, Chen; Dong-Sheng, Lin; Shan-Chao, Yang; Xiao-Yan, Bai; Yan, Liu; Xiao-Qiang, Guo; Gui-Zhen, Wang

    2010-01-01

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  20. Quality of gamma irradiated California Valencia oranges

    International Nuclear Information System (INIS)

    Nagai, N.Y.; Moy, J.H.

    1985-01-01

    The effects of gamma irradiation at 0.30-1.0 kGy (30-100 krad) on sensory qualities, certain biochemical components, and short-term storage life of Valencia oranges were examined. Irradiation at 0.75 kGy maintained food quality during 7°C storage for 7 weeks, while 0.50 kGy irradiation retained food quality at 21 °C. Irradiation at 0.26-0.30 kGy accomplished fruit fly disinfection while preserving market qualities of the oranges

  1. Gamma scanning of mixed carbide and oxide fuel pins irradiated in FBTR

    International Nuclear Information System (INIS)

    Jayaraj, V.V.; Padalakshmi, M.; Ulaganathan, T.; Venkiteswaran, C.N.; Divakar, R.; Joseph, Jojo; Bhaduri, A.K.

    2016-01-01

    Fission in nuclear fuels results in a number of fission products that are gamma emitters in the energy range of 100 keV to 3 MeV. The gamma emitting fission products are therefore amenable for detection by gamma detectors. Assessment of the fission product distribution and their migration behavior through gamma scanning is important for characterizing the in reactor behavior of the fuel. Gamma scanning is an important non destructive technique used to evaluate the behavior of irradiated fuels. As a part of Post Irradiation Examinations (PIE), axial gamma scanning has been carried out on selected fuel pins of the FBTR Mark I mixed carbide fuel sub-assemblies and PFBR MOX test fuel sub-assembly irradiated in FBTR. This paper covers the results of gamma scanning and correlation of gamma scanning results with other PIE techniques

  2. Effect of gamma irradiation on viscosity of aqueous solutions of some natural polymers

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Truong Thi Hanh; Le Quang Luan; Le Hai; Nguyen Quoc Hien

    2000-01-01

    Effect of gamma irradiation on viscosity of aqueous solution of alginate and carbon xylmethyl cellulose (CMC) irradiated in solid state has been carried out. the viscosity of aqueous solution of alginate and CMC decreased remarkably with increasing dose and the viscosity of 2% solution of above polymers irradiated at 50 kGy was about 100 times lower than the original one. (author)

  3. The effect of gamma irradiation of seeds on germination - growth - mineral content and yield of two barley varieties grown under saline conditions

    International Nuclear Information System (INIS)

    Charbaji, T.; Khalifa, Kh.; Al-Ain, F.

    2003-01-01

    Seeds of two barley varieties [Arabi Abiad (AA) and Pakistani PK 30163 (PK)] were irradiated with 0 and 15 Gy doses of gamma irradiation. Then, they were sown on salty soil (16.8-18 dS/m) and irrigated with salty water (7-8 dS/m). Gamma irradiation significantly increased the % of seedling emergence of PK only. At the heading stage, gamma irradiation decreased the % of total N of PK and increased shoot dry weight, Mg++ and P content and the % of total N of AA. K+ content of PK was lower than that of AA. At harvest stage, gamma irradiation increased total and grain yields and harvest index of PK; however, straw yield and 1,000 grain weight of AA were higher than those of PK [it

  4. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    International Nuclear Information System (INIS)

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  5. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of aniseed (anisum vulgare)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2002-09-01

    Seeds of ansium were exposed to doses of 0, 5, 10, 15 and 20 kGy in a 60 Co package irradiator, Irradiated and unirradiated samples were stored at room temperature. Microbial population on seeds, dissolved organic and inorganic solids in extract and sensory properties of extract were evaluated after 0, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the aerobic plate counts. Immediately after irradiation, the dissolved organic solids in extract of irradiated seeds were higher than those of non-irradiated ones. The dissolved organic matter in extract of irradiated and un-irradiated ansium seeds increased. After 6 and 12 months of storage. There were no significant differences in dissolved solids between the extract of irradiated and non-irradiated ansium seeds. Sensory evaluation indicated that gamma irradiation improved sensory characteristics of ansium seed extract tested immediately after irradiation; however, after 12 months of storage, no significant differences (P>0.05) were found in color, taste or odor between extract of irradiated and unirradiated ansium seeds. (author)

  6. Application of Gamma Irradiation and Its Convergent Treatments on Several Varieties of Oriental Hybrid Lily to Control Leaf Blight

    Directory of Open Access Journals (Sweden)

    Ji-Hoon Kim

    2014-06-01

    Full Text Available In order to seek more eco-friend, economic and safer quarantine method than current methyl bromide fumigation, the convergent treatment with 200 Gy of gamma irradiation and several chemicals such as nano-siver particles (NSS, sodium dichloroisocyanurate (NaDCC was tried on the cuttings of lily in the packing of catonnage box for export. With 6 independent experiments of gamma irradiation on the three lily cultivars, cvs. Siberia, Le reve and Sorbonne, incidence and severity of lily leaf blight was investigated on leaves and petals at 8-d after infection. 200 Gy of gamma irradiation decreased at 13-25% of severity on the leaf of Sorbonne, but it increased at 2-5% of severity on the leaf of Siberia and Le reve. Chemical substitutes such as NSS and NaDCC were not effective to control of lily blight on cuttings. By 200 Gy of gamma irradiation treatment, chlorophyll contents were statistically significantly decreased at 12-d after irradiation and the longevities vaselife of fully open flower of Siberia and Sorbonne were increased at 0.4 to 1.2 days. In addition, the relative fresh weights of the gamma irradiated cuttings were severely dried compared to the non-irradiated control. On the other hands, the symptoms of phyto-toxicity of high dose gamma irradiation at 1 or 2 kGy on cv. Siberia were to be blight at the tip of bloom, bent necks of flower, and delayed the process of flowering.

  7. Effects of Gamma Irradiation and Leaves Extract of Barnoof Plant on Larval Development of Agrotis ipsilon (Hufngel)

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2006-01-01

    The effects of irradiating parental male full grown pupae agrotis ipsilon with the two sub sterile doses 100 and 150 Gray (Gy) followed by treated F1 4 th instar larvae with three concentrations of the barnoof plant leaves extract (0,15000 and 30000 ppm) or each of them alone were studied. the combined treatment of gamma irradiation and the barnoof plant extract to F1 larvae had a deleterious effects on average larval duration, average weight of last larval instar, total morality, pupation, adult emergence and survival when compared with the effect of gamma irradiation or plant leaves extract which of them alone. gamma irradiation increased the susceptibility of F 1 Larvae descendant from irradiated parental male pupae with 100 and 150 Gy to the barnoof plant leaves extract. A gradual increase in susceptibility was noticed as the dose of radiation increase. the efficiency of gamma irradiation and/or plant leaves extract to inhibit the 4 th instar larvae of A-. ipsilon was evaluated. the results showed highly toxic effect to the 4 th instar larvae at the two concentrations (15000 and 30000 ppm). on the other hand the dose 150 Gy combined with 30000 ppm of plant extract treatment (Acetone or petroleum ether solvents) had highly effect on the 4 th instar larvae as compared with the other treatments

  8. Chemical evaluation of strawberry plants produced by tissue culturing of gamma irradiated seedlings

    International Nuclear Information System (INIS)

    Maraei, R.W.

    2007-01-01

    studies were conducted to evaluate the influence of gamma irradiation as a supplementary factor precedes tissue culture application on strawberry seedlings (c.v.Rosa Linda). the strawberry seedling were irradiated using 8 doses of co 60 gamma rays 50.75.100.125 ,150,250, 350 and 500 gray. tissue culture technique was applied on irradiated and unirradiated strawberry seedling. different characteristics of plantlets, plant and fruit of strawberry produced from the double treatment (irradiation followed by tissue culture) were studied as well as the early, total and exportable fruit yields. data indicated that, low radiation doses 50,75 and 100 gray increased all morphological and chemical characteristics of the plantlets, plant and fruit of strawberry, whereas radiation doses higher than 100 gray decreased them significantly. moreover 350 and gray were lethal doses. radiation dose 50 gray increased the survival percentage and the length of plantlets by 1.5% and 50% respectively more than the unirradiated treatment in all multiplication stages

  9. Effect of gamma irradiation on antioxidant activity of Amoora rohitaka

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Gaikwad, K.N.

    2012-01-01

    The effect of a medium dose of gamma radiation on antioxidant activity of Amoora rohitaka was studied. Radiation doses were 0, 1, 3 and 5 kGy. Antioxidant activity was screened by using different assay. With increasing dose the formation of Maillard reaction products (MRPs) contributes to the increase in the antioxidant activity. MRPs are formed as a result of Maillard reaction. In ABTS [2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid di-ammonium salt] assay, ethanol extract showed increase in scavenging activity. It also showed a marked increase in polyphenolic contents. The present study reveals that gamma irradiation can be an efficient process to increase antioxidant activity of Amoora rohitaka. (author)

  10. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  11. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    International Nuclear Information System (INIS)

    Jona, R.; Fronda, A.

    1990-01-01

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30 0 C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers. (author)

  12. Radiation-induced reduction of diuron by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Zhang Jibiao; Zheng Zheng; Zhao Tan; Zhao Yongfu; Wang Lianhong; Zhong Yun; Xu Yue

    2008-01-01

    Diuron degradation efficiencies and the proposed mechanism by gamma-ray irradiation were investigated. Several factors that might affect the degradation values were further examined. The UV absorbances at 200-400 nm and diuron concentration decreased with the increase of radiation dose. When diuron initial concentration was 18.5 mg L -1 and 1.0 kGy was selected as the radiation dose, diuron removal value and loss of total organic carbon were 100 and 34.1%, respectively. However, the concentration of Cl - ion increased with the increase of radiation dose. The process could be depicted by first order reaction kinetics and the reaction was mainly caused by the reaction of diuron with ·OH and e aq - . The degradation efficiency decreased with the increase of initial concentration at the same radiation dose. H 2 O 2 , HCO 3 - , NO 3 - , NO 2 - , CH 3 OH and humic acid as additives reduced the degradation efficiency. Furthermore, the increase of NO 3 - , NO 2 - , CH 3 OH and humic acid would result in the decrease of the degradation values. The pH value could affect the removal efficiency and the degradation process was enhanced in acid condition. The pH value became lower with increasing radiation dose after gamma-ray irradiation

  13. Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.).

    Science.gov (United States)

    Al-Bachir, Mahfouz

    2015-01-15

    The present study evaluated the quality of pistachio oil, as a function of irradiation, to determine the dose level causing undesirable changes to pistachio oil. Physicochemical fatty acid composition, acidity value, peroxide value, iodine value specification number, thiobarbituric acid (TBA) value and colour of pistachio oil extracted from samples treated with 0, 1, 2 and 3 kGy doses of gamma irradiation were determined. Gamma irradiation caused the alteration of fatty acids of pistachio oil which showed a decrease in oleic acid (C18:1) and an increase in linoleic acid (C18:2). All other fatty acids remained unaffected after irradiation. The higher used doses (2 and 3 kGy) decreased acidity value, peroxide value and iodine value, and increased specification number, with no effect on TBA value. Irradiation had a significant effect on colour values of pistachio oil. Parameters L, a and b increased at doses of 1 and 2 kGy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Shelf life extension of minimally processed ready-to-cook (RTC) cabbage by gamma irradiation

    International Nuclear Information System (INIS)

    Banerjee, Aparajita; Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun

    2016-01-01

    Gamma irradiation (0.5-2.5 kGy) in combination with low temperature (4-15 °C) storage was attempted to increase shelf life of ready-to-cook shredded cabbage wrapped in cling films. A maximum extension in shelf life of 8 days, while retaining the microbial and sensory quality, was obtained with an irradiation dose of 2 kGy and storage at 10 °C. Gamma irradiation also inhibited browning of shredded cabbage at their cut edges resulting in enhanced visual appeal. An increase in total antioxidant activity was observed with respect to DPPH and hydroxyl radical scavenging ability while the nitric oxide radical scavenging activity and ferric reducing property remained unaffected with irradiation. Total phenolic, flavonoid and vitamin C content remained unchanged due to irradiation. No significant migration of additives from cling films into stimulant water was observed up to a radiation dose of 2 kGy thus demonstrating the feasibility of such films for above applications. (author)

  15. Shelf life extension of minimally processed ready-to-cook (RTC) cabbage by gamma irradiation.

    Science.gov (United States)

    Banerjee, Aparajita; Chatterjee, Suchandra; Variyar, Prasad S; Sharma, Arun

    2016-01-01

    Gamma irradiation (0.5-2.5 kGy) in combination with low temperature (4-15 °C) storage was attempted to increase shelf life of ready-to-cook shredded cabbage wrapped in cling films. A maximum extension in shelf life of 8 days, while retaining the microbial and sensory quality, was obtained with an irradiation dose of 2 kGy and storage at 10 °C. Gamma irradiation also inhibited browning of shredded cabbage at their cut edges resulting in enhanced visual appeal. An increase in total antioxidant activity was observed with respect to DPPH and hydroxyl radical scavenging ability while the nitric oxide radical scavenging activity and ferric reducing property remained unaffected with irradiation. Total phenolic, flavonoid and vitamin C content remained unchanged due to irradiation. No significant migration of additives from cling films into stimulant water was observed up to a radiation dose of 2 kGy thus demonstrating the feasibility of such films for above applications.

  16. Effects of gamma-ray irradiation on the optical properties of amorphous Se100-xHgx thin films

    Science.gov (United States)

    Ahmad, Shabir; Islam, Shama; Nasir, Mohd.; Asokan, K.; Zulfequar, M.

    2018-06-01

    In this study, the thermal quenching technique was employed to prepare bulk samples of Se100-xHgx (x = 0, 5, 10, 15). Thin films with a thickness of ∼250 nm were deposited on glass substrates using the thermal evaporation technique. These films were irradiated with gamma rays at doses of 25-100 kGy. The elemental compositions of the as-deposited thin films were confirmed by energy dispersive X-ray analysis and Rutherford backscattering spectrometry. X-ray diffraction analysis confirmed the crystalline nature of these thin films upto the dose of 75 kGy. Fourier transform-infrared spectroscopy showed that the concentration of defects decreased after gamma irradiation. Microstructural analysis by field emission scanning electron microscopy indicated that the grain size increases after irradiation. Optical study based on spectrophotometry showed that the optical band gap values of these films increase after the addition of Hg whereas they decrease after gamma irradiation. We found that the absorption coefficient increases with doses up to 75 kGy but decreases at higher doses. These remarkable shifts in the optical band gap and absorption coefficient values are interpreted in terms of the creation and annihilation of defects, which are the main effects produced by gamma irradiation.

  17. ESR identification of gamma-irradiated albendazole

    Science.gov (United States)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  18. Use of gamma irradiation for prolonging shelf life of Garden pea (Pisum sativum L.)

    International Nuclear Information System (INIS)

    Mehta, A.K.; Nair, Reena

    2008-01-01

    Garden pea pods of variety Arkel were irradiated with 5 doses of 60 Co gamma rays ranging from 0.5-3 kGy and stored at ambient temperature up to 9 days along with control to study the effect of radiation in prolonging shelf life of pea pods and stabilizing its market demand. Physiological weight loss percentage decrease as the doses of gamma radiation increased. Minimum weight loss was noted in pods treated with 3 kGy gamma radiation as compared to control. Decay loss percent showed inverse relation with dose of gamma radiation. The minimum decay loss was recorded in 3 kGy and the organisms identified for decay loss were Alternaria and Cladosporium species of fungi. With regard to sugar content, pea pods irradiated with 1 kGy gamma rays recorded maximum sugar content. Pods irradiated with 0.5 kGy and 1 kGy gamma rays retained their green colour for a long period (up to 9th day of storage). Based on 9 point's hedonic scale the overall acceptability for appearance, taste and texture was observed in 1 kGy treatment. (author)

  19. Studies on the preservation of food by gamma irradiation

    International Nuclear Information System (INIS)

    Kim, S.K.; Umeda, K.

    1979-01-01

    This work was conducted to investigate the effects of ionizing radiation on the preservation of potato. The Irish Cobbler potato tubers were irradiated at the doses of 7 krad and 15 krad of gamma ray of Co-60 at room temperature. When the potato tubers were stored under various conditions, the freshness and preservability of irradiated potato tubers were remarkably extended by 20, June. The results of this work are summarized as follows: The potato tubers applied with 15 krad of gamma ray were observed freshness without any shrinkage and defects. The potato tubers of control rotted and sprouted completely on 3, March. All tubers of them were cured at 7 0 C and relative humidity of 90% for a month before irradiation and they were treated at 18-20 0 C and RH 80% for 2 weeks after irradiation. They were stored at the above mentioned conditions. Reducing Sugar content of irradiated potato tubers was negligibly changed such as non-irradiated potato tubers along with an extended storage period, when they, as pre-and post-irradiation, were stored at 7 0 C and RH 90%. If they were treated at 18-20 0 C and RH 80% for 2 weeks after irradiation, reducing sugar content of the potato tubers was temporarily increased and then it was decreased as much as the former. As the result of microscopic test for the wound-peridom formation of potato tubers, the dark brown cork layer of wounded tuber of control was perfectly built up at about 2 weeks of the post wound, and starch particles have disappeared almost. The cork layer of irradiated potato tuber was formed at 3-4 weeks after wounded and also starch particles were not watched. The layers irradiated potato was observed the same as cork layer of sound potato. (author)

  20. Effect of gamma irradiation on nutrient digestibility in SPF mini-pig

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeob [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of); Cho, Sung-Back [Swine Science Division, National Institute of Animal Science, Cheonan, Chungcheongnam-do 330-801 (Korea, Republic of); Kim, Yoo-Yong [College of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Ohh, Sang-Jip, E-mail: sjohh@kangwon.ac.k [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of)

    2011-01-15

    This study was carried out to evaluate the effect of gamma irradiation on nutrient digestibility of either soy-based or milk-based diet for specific pathogen-free (SPF) mini-pigs. Gamma irradiation of the diets was done at dosage of 10 kGy with {sup 60}Co whereas autoclaving was executed at 121 {sup o}C for 20 min. Apparent crude protein digestibilities of gamma irradiated diets were higher (p<0.05) than those of autoclaved diets regardless of diet type. Digestibilities of dry matter, gross energy and total carbohydrate in the irradiated diet were higher than those of the autoclaved diet. From the results of nutrient digestibility of mini-pig diets in this study, 10 kGy gamma radiation was suggested as a convenient diet radicidation method that can minimize the decrease in nutrient digestibility on feeding to SPF mini-pigs.

  1. Disinfection of Water and Wastewater Using Gamma Irradiation in Isfahan Water and Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2011-01-01

    Full Text Available To investigate the effect of gamma irradiation on the disinfection of water and wastewater, water samples were collected from raw and filtered water and wastewater samples were taken from the effluent of the secondary sedimentation, polished effluent (1-day retention time, and also from filtered (rapid sand filter effluent. The samples were irradiated with gamma collimated beam in a batch system using a Co-60 therapeutic gamma radiation machine with a radioactive source emission rate of 405.38CGy/min at different doses of 20-160 Gy and 80-240 Gy, respectively. The samples were analyzed before and after irradiation for total and fecal coliforms. It was observed that nearly 100% reduction was achieved in total and fecal coliforms in water samples treated with a dose of 160 Gy. Depending on effluent quality, disinfection efficiencies achieved using 240 Gy gamma irradiation for inactivation of total coliforms in wastewater samples were 83, 64, and 56 percent for filtered, clarified, and secondary effluents, respectively. The same values were nearly 81, 58, and 46 percent, respectively, for inactivation of fecal coliforms. At lower doses of 120-240Gy, the coliform bacteria were successfully inactivated. It was concluded that a linear correlation holds between the dose delivered and the inactivation of microorganisms, so that inactivation increases with increasing irradiation time.

  2. Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation and evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.

  3. Fluorescence of irradiated hydrocarbons. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Gulis, I G; Evdokimenko, V M; Lapkovskii, M P; Petrov, P T; Gulis, I M; Markevich, S V [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1977-01-01

    A visible fluorescence has been found out in ..gamma..-irradiated aqueous solutions of carbohydrates. Two bands have been distinguished in fluorescence spectra of the irradiated solution of dextran: a short-wave band lambdasub(max)=140 nm (where lambda is a wave length) at lambdasub(..beta..)=380 nm and a long-wave band with lambdasub(max)=540 nm at lambdasub(..beta..)=430 nm. A similar form of the spectrum has been obtained for irradiated solutions of starch, amylopectin, low molecular glucose. It has been concluded that a macromolecule of polysaccharides includes fluorescent centers. A relation between fluorescence and ..cap alpha..-oxiketon groups formed under irradiation has been pointed out.

  4. Improvement effect of gamma-irradiated complex leaf extract of date plum, persimmon and mulberry on UVB-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Cho, Byoung Ok; Che, Denis Nchang; Shin, Jae Young; Fang, Chong Zhou; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of)

    2016-11-15

    This study was conducted to evaluate the improvement effect of gamma-irradiated complex leaf extract of Date Plum, Persimmon and Mulberry (γ-DPME) on UVB induced skin damage. The samples were gamma irradiated at doses of 10 kGy. γ-DPME treatment tended to decrease UVB-induced immune cell infiltration and erthyderma index than the groups treated with non-gamma-irradiated DPME (n-DPME) and L-ascobic acid (AA). In addition, γ-DPME treatment significantly decreased skin thickness, melanin index and mast cell infiltration in UVB-irradiated skin. Moreover, γ-DPME treatment significantly decreased the compound 48/80-induced scratching behavior and immune cell infiltration than n-DPME group. These results show that gamma irradiation can be used to increase the physiological activities of DPME.

  5. THERMAL, STRUCTURAL AND OPTICAL INVESTIGATION OF THE EFFECT OF GAMMA IRRADIATION IN PM-355 NUCLEAR TRACK DETECTOR

    International Nuclear Information System (INIS)

    ABUTALIB, M.M.

    2009-01-01

    Samples from PM-355 sheets were irradiated with gamma doses at levels between 10 and 120 kGy. The modifications in the irradiated samples have been studied as a function of dose using different characterization techniques such as thermogravimetric analysis, differential thermal analysis, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and colour difference studies. The gamma irradiation of PM-355 in the dose range 20-80 kGy resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The melting temperature (T m ) of the PM-355 polymer was found to be a probe of the crystalline domains of the polymer. At the dose range 20-80 kGy, the generated defects destroyed the crystalline structure and so, reducing the melting temperature.In addition, structural property studies using X-ray diffraction and Fourier transform infrared spectroscopy were performed on irradiated and non-irradiated PM-355 samples. The results indicated that both the degree of ordering and the absorbance of the PM-355 polymer are dependent on the gamma dose. Further, the transmission of these samples in the wavelength range 200-2500 nm, as well as any colour changes, was studied. The colour difference ( δE) was greatly increased with increasing the gamma dose accompanied by a significant increase in the whiteness and yellow colour components.

  6. Study on shelf life extension of papayas irradiated by /sup 60/Co gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.S.; Chen, M.D.; Lin, C.T.; Fu, Y.K.

    1984-11-01

    Papayas are one of the main fresh fruits in Taiwan area. Papaya fruits were treated with hot water to pasteurize peels followed by /sup 60/Co gamma-ray irradiation to extend the ripening time. The purpose of synergetic methods is to extend the shelf life of papaya fruits. This experiment was carried out by seven treatments, which were: (1) control group, (2) hot water treatment only, (3) hot water treatment with a 25 krad ..gamma..-irradiation, (4) hot water treatment with a 50 krad ..gamma..-irradiation, (5) hot water treatment with a 75 krad ..gamma..-irradiation, (6) 75 krad ..gamma..-irradiation only, and (7) hot water treatment with a 100 krad ..gamma..-irradiation. The items of observation were: surface yellowing, surface decaying, quality of texture, and length of period lasted after irradiation for 50% marketable papayas. The results of this study showed that a shelf-life extension of six days could be obtained for papayas subjected to hot water (50 to 55/sup 0/C) treatment and a 100 krad irradiation. 3 refs., 2 figs., 2 tabs.

  7. Inherited Sterility of Fl Male Sitotroga cerealella (Olivier) and changes in the DNA Pattern as a Result of Using Gamma irradiation

    International Nuclear Information System (INIS)

    Rizk, S.A.; Mikhaiel, A.A.

    2009-01-01

    Full grown pupae of the Angoumois grain moth, Sitotroga cerealella were irradiated with 75 and 175 Gy or gamma irradiation .The sterility percent was increased by increasing of' gamma irradiation dose. Also, the sterility percent increased in F 1 males than in parents. Gamma irradiation caused a decrease in size or the ova doles and number of oocytes. The effects of gamma rays on the DNA patterns of adult male parents and Fl males showed alterations among the controls, the treated parents and Ft individuals. Exposure to radiation caused very frequently the appearance of some extra bands and the deficiency of others in the RAPD-PCR amplification patterns of the irradiated insects. However, the similarity in DNA patterns between some normal and treated samples was interpreted by assuming, that the radiation induced damage was in regions of' the genome other than at the loci under study

  8. Effects of gamma irradiation on deteriorated paper

    Science.gov (United States)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  9. Water absorption, cooking properties and cell structure of gamma irradiated soybeans

    International Nuclear Information System (INIS)

    Kang, I.J.; Byun, M.W.

    1996-01-01

    Gamma irradiation was applied to soybean(Glycine max.), Hwangkeum, at dose levels of 0, 5, 10 and 20 kGy to improve the physical properties of soybeans. The time to reach a fixed moisture content was reduced depending on the increment of soaking temperatures and applied irradiation dose levels. Irradiation at 5~20 kGy resulted in reduction in soaking time of the soybeans by about 3~6 hrs at soaking temperature of 20°. The degree of cooking of soybeans in boiling water was determined by measuring the maximum cutting force of cotyledon. The cutting force to reach complete cooking was about 145g/g. Irradiation at 5~20 kGy resulted in a reduction of cooking time of soybeans by 55~75% as compared to the nonirradiated soybean. In electron microscopic observation of seed coat inner, the parenchyma of nonirradiated soybean showed tight fibrillar structure, whereas that of irradiated soybeans showed loosened and deformed structure. The microstructure of compressed cells and cotyledon epidermis was also deformed by gamma irradiation. In subcellular structure of cotyledon, the roundness of protein body was deformed and changed to spike shape at 20 kGy. Also, the size of lipid body decreased as the irradiation dose levels increased

  10. Examination into the gamma irradiation of activated sludge

    International Nuclear Information System (INIS)

    Mustapha, S.; Forster, C.F.

    1985-01-01

    This study has shown that the treatment of activated sludge by gamma irradiation resulted in a deterioration in the filterability, a decrease in the size of the floc particles and an increase in the organic matter present in the sludge supernatant. A significant difference was found between the results obtained for filamentous and non-filamentous sludges in relation to the amount of soluble polysaccharide produced. (author)

  11. Growth studies on Lens culinaris after gamma irradiation

    International Nuclear Information System (INIS)

    Ahmad, S.; Bokhari, F.S.; Shahnaz, F.

    1996-01-01

    A study on growth parameters was carried out on two varieties of Lens culinaris after gamma irradiation. Experiment was conducted at Botanical Garden, Bahauddin Zakariya University, Multan in 1993. The germination percentage, survival percentage, height, branch number, pods per plant and 100-seed weight decreased with the increasing dose of radiation. Comparing the two varieties, variety-86642 appeared more sensitive to radiation than variety-87528

  12. Effect of gamma irradiation on the protoscoleces of Echinococcus granulosus of sheep origin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.P.; Dhar, D.N.

    1988-06-01

    In vitro and in vivo effects of varying levels of gamma irradiation on protoscoleces of Echinococcus granulosus of sheep origin were studied. Radiation doses of 100 Gy onwards caused a decrease in the viability of protoscoleces in vitro. However, infectivity of protoscoleces was not affected at radiation doses of 300 Gy in golden hamsters and 200 Gy in mice although number and size of cysts developing from infections with irradiated protoscoleces in these animals was small in comparison to cysts developing from infections with normal protoscoleces. Four hundred E. granulosus protoscoleces, normal or 100 Gy irradiated, proved fatal for mice. A significant progressive decline in worm establishment was observed in pups given an infection of E. granulosus protoscoleces exposed to increasing levels of gamma irradiation from 100 to 600 Gy. No worms established in pups infected with protoscoleces irradiated at 400 and 600 Gy, respectively. Worms developing from irradiated infections in pups were stunted and showed developmental abnormalities.

  13. Effect of gamma irradiation on the protoscoleces of Echinococcus granulosus of sheep origin

    International Nuclear Information System (INIS)

    Singh, B.P.; Dhar, D.N.

    1988-01-01

    In vitro and in vivo effects of varying levels of gamma irradiation on protoscoleces of Echinococcus granulosus of sheep origin were studied. Radiation doses of 100 Gy onwards caused a decrease in the viability of protoscoleces in vitro. However, infectivity of protoscoleces was not affected at radiation doses of 300 Gy in golden hamsters and 200 Gy in mice although number and size of cysts developing from infections with irradiated protoscoleces in these animals was small in comparison to cysts developing from infections with normal protoscoleces. Four hundred E. granulosus protoscoleces, normal or 100 Gy irradiated, proved fatal for mice. A significant progressive decline in worm establishment was observed in pups given an infection of E. granulosus protoscoleces exposed to increasing levels of gamma irradiation from 100 to 600 Gy. No worms established in pups infected with protoscoleces irradiated at 400 and 600 Gy, respectively. Worms developing from irradiated infections in pups were stunted and showed developmental abnormalities. (author)

  14. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes

    International Nuclear Information System (INIS)

    Bergers, W.W.A.

    1980-01-01

    Potatoes were used to study the metabolic stress effects in irradiated vegetable products. The changes of the contents of specific target compounds (glycoalkaloids, phenolic acids and coumarins) in alcoholic extracts of gamma irradiated potatoes were studied for metabolic irradiation stress. Doses of up to 3 kGy were applied to potatoes of several varieties. (Auth.)

  15. Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Sachidanand, S.; Modi, V.V.

    1989-01-01

    The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses. (author)

  16. Effect of gamma irradiation on the sugar and protein composition of Iraqi dates

    International Nuclear Information System (INIS)

    Auda, H.; Khalaf, Z.; Mirjan, J.

    1978-01-01

    Completely ripened date fruits of several Iraqi varieties were irradiated with 30, 70, 100, 270 and 500krad of gamma irradiation and stored at a temperature of 25-35 0 C in wooden boxes or in plastic bags. At various intervals samples were taken and analysed by paper-chromatography, gas-chromatography and spectrophotometry for quantitative and qualitative changes in carbohydrates. The results showed no effect of gamma irradiation on reducing sugar and major carbohydrate components. The formation of malonaldehyde under gamma irradiation of dates and solid standard sugars was also studied up to 500krad. The results showed no formation of malonaldehyde in irradiated date samples as well as standard sugars. Gamma irradiation showed no effect on the protein content of dates. However, storage showed some reduction in the protein content of both unirradiated and irradiated samples. (author)

  17. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  18. The effect of gamma irradiation on cytological and physiological function of two cultivar of barley

    International Nuclear Information System (INIS)

    Karbalaii, S.G.; Majd, F.; Fahimii, H.

    2005-01-01

    Full text: An investigation was performed in cytogenetic lab. of Nuclear Agriculture- Atomic Energy Organization of Iran in 2004-5.In this research the effect of gamma irradiation on cytological and physiological function of two cultivars of barley were examined. For this aim cytological and physiological sensitivity of two cultivars (30109, 30130) were assessed by different gamma radiation doses (50,150,250,350,450 Gy).By cytological studies in addition to defining the karyotype, the rate of chromosomal aberrations due to the effect of irradiation was studied and it was observed that the chromosomal aberrations increased by increasing the rate of irradiation. In 350 and 450 Gy were observed more different forms of chromosomal damage such as ring and dicentric chromosome, deletion and translocation than the other dose. The results showed that by increasing gamma ray dose, the growth rate, root and shoot length of two cultivars were decreased, and germination percentage had no significant difference.This work suggested that the increasing of chromosomal aberrations, so decrease mean value of growth rate. (author)

  19. Opto-structural characterization of gamma irradiated Bayfol polymer track detector

    Energy Technology Data Exchange (ETDEWEB)

    Tayel, A. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Zaki, M.F., E-mail: moha1016@yahoo.com [Experimental Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Abu Zaabal, Cairo (Egypt); El Basaty, A.B. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Hegazy, Tarek M. [Physics Department, College of Women for Arts, Science and Education, Ain Shams University, Cairo (Egypt)

    2013-11-15

    Bayfol CR 1-4 is one of polymeric solid state nuclear track detector which has numerous applications due to its outstanding optical, mechanical, thermal and electrical properties. In the present study, Bayfol polymer is irradiated with different doses of gamma rays ranging from 0 to 1000 KGy. The effects of gamma irradiations on the optical, structural and chemical properties of Bayfol were studied using Ultraviolet and visible (UV/Vis) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The UV–Vis spectra of irradiated samples show that the absorption edge is shifted towards longer wavelength comparing to pristine sample spectrum. This behavior indicates that there is a decrease in the band gap after irradiation. The maximum decrease in the band gap is about 0.8 eV. The XRD patterns of amorphous halo of pristine and irradiated samples show a fluctuation of integrated intensity of amorphous halo. This indicates a change in the structure due to gamma irradiation. In order to understand that structure change mechanism, we used the FTIR spectroscopy.

  20. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  1. Effect of high carbon dioxide storage and gamma irradiation on membrane deterioration in cauliflower florets

    International Nuclear Information System (INIS)

    Voisine, R.; Hombourger, C.; Willemot, C.; Castaigne, F.; Makhlouf, J.

    1993-01-01

    Controlled atmospheres and gamma irradiation are technologies which extend storage-life of fruits and vegetables. Separate and combined effects of high CO 2 storage and gamma irradiation on cell membranes from cauliflower florets (Brassica oleracea L., Botrytis group) were investigated. Storage of the florets for 8 days at 13°C, either under 15% carbon dioxide or in air after irradiation at 2 kGy, accelerated the deterioration of microsomal membranes during storage. Both treatments caused an early loss in lipid phosphate. Irradiation enhanced the free fatty acid content of the membranes during storage and caused an extensive protein loss. When irradiation and high CO 2 storage were combined, electrolyte leakage significantly increased while protein loss was considerably reduced. The results indicate that high CO 2 and irradiation accelerate membrane degradation through different mechanisms. The combined effects of the treatments were not additive, but membrane yield was apparently reduced. CO 2 protected the membranes from protein loss induced by irradiation. The apparent increase in electrolyte leakage after irradiation may be caused by the release of ions following cell wall deterioration

  2. Lipoperoxides, alpha-tocopherol and ceruloplasmin in gamma-irradiated blood plasma

    International Nuclear Information System (INIS)

    Aladzhov, E.; Popzakharieva, V.

    1995-01-01

    Ceruloplasmin, alpha-tocopherol and lipid peroxide concentrations are evaluated in blood plasma for transfusion following exposure to irradiation with 60 Co gamma rays at doses 23, 50, 100 and 200 Gy. In plasma exposed to irradiation an increase in lipid peroxides and decrease in alpha-tocopherol and ceruloplasmin are observed. The addition of 2.3 U/ml ceruloplasmin to plasma prior to irradiation reduces the quantity of lipid peroxides and protects alpha-tocopherol. The possible explanation is that the metal helates prevent the formation of free hydroxyl radicals and thus inhibit the oxidation of lipid membranes. 15 refs., 1 tab. (author)

  3. Effect of gamma irradiation on larval longevity of Chironomus Riparius Meigen. Vol. 4

    International Nuclear Information System (INIS)

    Samira, A.A.; El-Halfawy, N.; El-Ebiarie, A.S.

    1996-01-01

    Whole body irradiation is known to shorten the life-span of insects. This is further investigated in aquatic insect larvae, as part of a programme concerned with stress responses on these larvae. The effect of gamma rays on the longevity of different larval instars of midge Chironomus Riparius was investigated by using five doses of 1, 9, 30, 200 and 1000 Gy of gamma rays. Lt 50 (the time in days required for killing 50% of the population) was estimated using spss x programme. Data showed that irradiation decreased Lt 50 in the second, third and fourth instars in comparison to their control, while in the first instar, irradiation increased Lt 50 for all doses used. Shortening or increasing life was independent of the dose. Results were explained in terms of possibility of inhibition of enzymes. 1 fig., 1 tab

  4. Improving the Hygienic Quality and Shelf-Life of Minced Common Carp Fish by Gamma Irradiation

    International Nuclear Information System (INIS)

    El-Khawas, Kh.H.; Fawzia, M.; El-Nashaby; Abd El-daim, M.H.

    1999-01-01

    This investigation aimed to improve the hygienic quality and extend cold storage life of minced carp fish by gamma irradiation. The frozen samples were gamma irradiation at 0, 2, 4 and 6 kGy doses and the effects of these treatments on the chemical properties, microbiological aspects and sensory properties were studied post treatments and during cold storage. Irradiation of samples at doses of 2, 4 and 6 kGy greatly reduced its microbial counts and prolonged its shelf-life for 2, 4, and 6 weeks at 4 ±degree, respectively against only 3 days for control samples. Moreover, 4 kGy dose completely destroyed Staph aureus. The chemical composition of samples did not alter neither by γirradiation treatments nor by cold storage. Furthermore, irradiation treatments had no effects on pH-value, TVBN and TMA contents, while a gradual increase in these chemical quality indexes was observed during cold storage. However, both irradiation treatments and cold storage increased the TBA value

  5. Effect of gamma irradiation on storability and chemical properties of different depth samples of luncheon

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2000-03-01

    To investigate the effect of gamma irradiation on shelf-life of luncheon, meat packs were exposed to doses of 0, 1, 2 and 3 kGy in a 60 Co package irradiator, and the irradiated and unirradiated samples were stored at refrigeration temperature (1-3 centigrade). Microbial population and chemical changes were evaluated through storage periods (2, 4, 6 weeks) on the surface and depth in the of meat packs. The results indicated that gamma irradiation reduced the counts of microorganisms inside the samples more than the surfaces. Also the shelf-life of luncheon meat increased from two weeks for the control to 5 weeks for irradiated samples (2 and 3 kGy). Total acidity, lipid oxidation and the volatile basic nitrogen (VBN) increased during the first stage of storage up to 2 weeks of irradiation, furthermore these values were significantly higher (P> 0.05) on the surface than inside the meat packs. (author)

  6. Effect of gamma irradiation on nano polymer poly aniline

    International Nuclear Information System (INIS)

    Chan Yan Yhee

    2012-01-01

    Poly aniline (PANI) is a conductor polymer that investigated by a lot of researchers which display unique electric characteristic and widely applications. The objective in this research is to see the effect of gamma irradiation on PANI by using microemulsion method. Cation surfactant, cetyltrimethylammonium bromide, (CTAB) use in microemulsion method for dissolve aniline with distilled water. Mixture of aniline, ammonium persulfate (APS) as oxidizing agent and hydrochloric acid (HCL) into aqueous CTAB and magnetic bar stirrer applied at temperature of 3 degree Celsius for 3 hours to form PANI. The washing is done by using distilled water and ethanol to purify PANI. After washing the PANI are categories in two group, PANI aqueous solution and PANI powder. PANI aqueous solution irradiated with gamma irradiation from 0 kGy to 100 kGy doses in 10 kGy intervals while PANI powder are dried in oven before irradiated with gamma irradiation with same doses as PANI aqueous solution. These aqueous solution products are characterized by ultraviolet absorption spectroscopy (UV-Vis) which shows the electron transition π - π * and Microscope Electron Transmission (TEM) for morforlogy of PANI nanoparticles while PANI powder are characterized using Spectroscopy Fourier Transformation Intra-Red (FTIR) for the functional group, X-Ray Diffraction (XRD) to determine the crystalline peak and Field Emission Scanning Electron Microscope (FESEM) for morphology PANI nanoparticles. The effect of gamma irradiation nanoparticles are PANI aqueous solution produce aggregation and changing of PANI nanoparticles sizes while PANI powder produce fractures and distortion on PANI nanoparticles. (author)

  7. The Protective Role of Ginger (Zingiber Officinales ) in Male Albino Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Osman, H.F.

    2008-01-01

    The present work was performed to evaluate the effectiveness of preirradiation treatment with ginger (Zingiber Officinales) for 21 consecutive days before exposure in controlling post-irradiation hazards in male rats. Male albino rats weighing about 120±10 g were divided into four groups: ( I ) control, ( II ) treated with ginger 200 mg/kg , ( III ) irradiated with 6 Gy and ( IV ) treated with ginger 200 mg/kg before irradiated with 6 Gy gamma - radiation . The blood samples were collected from heart of animals 21 days after treatment with ginger and seven days post irradiation. Blood samples were subjected to biochemical analysts such as liver functions , lipid profile , kidney function and sex hormone. Whole body gamma irradiation of rats at 6 Gy (single dose) caused significant increase in (aspartate and alanine aminotransferases (AST and ALT), cholesterol, triglycerides , glucose, urea and creatinine) while alkaline phosphatase showed no effect. Irradiation caused decrease in the contents of total protein , albumin and testosterone. Ginger treatment exerted noticeable amelioration in the studied biochemical parameters of the irradiated albino rats. The mechanism of action of ginger may be due to its antiinflammatory properties against whole body gamma irradiation

  8. Effects of Ganoderma lucidum on cellular immunocompetence in gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    WangChi, Chen; DouMong, Hau [Institute of Radiation Biology, National Tsing Hua University, Hsinchu (China)

    1995-07-01

    We have investigated the effects on mice treated with Ganoderma lucidum (Gl) when the whole body was exposed to 400 rad gamma-irradiation. The mice were divided into five groups. Group A was the normal control; group B, the experimental control, was treated with GI; group C was the radiation control (RT); group D was treated with RT and Gl; group E was treated with Gl, RT and Gl. The results revealed that the relative spleen weight had increased significantly in groups B and E on day 7 and increased in all experimental groups on day, 28 after irradiation. The leukocyte counts decreased obviously in groups C, D and E on day 7, and recovered in groups D and E was faster than that in group C on day 28. The blastogenic response of splenocytes to LPS, Con A and PHA in groups administered GI were higher than that in group C on days 7and 28. Therefore, Gl seemed to assist the recovery of cellular immunocompetence in gamma-irradiated mice. (author)

  9. Effects of Ganoderma lucidum on cellular immunocompetence in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Chen WangChi; Hau DouMong

    1995-01-01

    We have investigated the effects on mice treated with Ganoderma lucidum (Gl) when the whole body was exposed to 400 rad gamma-irradiation. The mice were divided into five groups. Group A was the normal control; group B, the experimental control, was treated with GI; group C was the radiation control (RT); group D was treated with RT and Gl; group E was treated with Gl, RT and Gl. The results revealed that the relative spleen weight had increased significantly in groups B and E on day 7 and increased in all experimental groups on day, 28 after irradiation. The leukocyte counts decreased obviously in groups C, D and E on day 7, and recovered in groups D and E was faster than that in group C on day 28. The blastogenic response of splenocytes to LPS, Con A and PHA in groups administered GI were higher than that in group C on days 7and 28. Therefore, Gl seemed to assist the recovery of cellular immunocompetence in gamma-irradiated mice. (author)

  10. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of aniseed (pimpinella anisum)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2007-01-01

    Seeds of anise (pimpinella anisum) were exposed to doses of 0, 5, 10, 15 and 20 kGy in a 60 Co package irradiator. Irradiated and unirradiated samples were stored at room temperature. Microbial population on seeds, total and inorganic soluble solids in water extract and sensory properties of the latter were evaluated after 0, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the aerobic plate counts of aniseed. Immediately after irradiation, the total soluble solids in an extract of irradiated seeds were greater than those of unirradiated ones. The total soluble solids in an extract of irradiated and un-irradiated seeds increased after 6 and 12 months of storage. There were no significant differences (p>0.05) in inorganic soluble solids between the water extract of irradiated and unirradiated aniseeds. Sensory evaluation indicated that gamma irradiation improved sensory characteristics of aniseed water extract tested immediately after irradiation. However, after 12 months of storage, no significant differences (P>0.05) were found in color, taste or flavor between extract of irradiated and unirradiated seeds. (author)

  11. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  12. Effect of 60Co gamma irradiation on cochlea function and structure in guinea pigs

    International Nuclear Information System (INIS)

    Wang Zhonghe; Cai Yilin; Hu Haisen

    1994-01-01

    In the experiment inner ears of guinea pigs were irradiated with 60 Co gamma rays using the method of simulated clinical routine irradiation in order to find the effects of ionizing radiation on the cochlea function and structure and to explore the mechanism and protective measure that lead to hearing impairment following radiotherapy to the head and neck of cancer patients. Ten weeks after irradiation it was found that ABR threshold increased with increasing dose of radiation. The mean values of ABR thresholds in 70 Gy and 90 Gy groups were 10 dB and 28 dB respectively. The number of inner and outer hair cell and pillar cell loss was counted under microscope. The number of lost cells increased with increasing dose of radiation. The severity of damage in morphology of inner, outer hair cells and pillar cells reduced progressively. The groups of 70 Gy and 90 Gy lost significantly more than groups of control and 50 Gy(P<0.05). It is concluded that the damage of hair cells of cochlea is the direct result of gamma ray irradiation of the inner ear and is the main cause of hearing impairment following irradiation

  13. Effect of gamma irradiation on the amino acid contents of seafood cooking drips

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Yeon Joo; Choi, Jong Il; Kim, Yun Joo; Kim, Jae Hun; Kim, Jin Kyu; Byun, Myung Woo; Kwon, Joong Ho; Ahn, Dong Hyun; Chun, Byung Soo

    2008-01-01

    In this study, the effects of gamma irradiation on the change of structural and free amino acids contents of cooking drips from Hizikia fusiformis (HF) and Enteroctopus dofleini (ED) were investigated. The main structural amino acids were glutamic acid in HF cooking drip, and glutamic acid, glycine, arginine and aspartic acid in ED cooking drip, respectively. The concentrations of structural amino acids in both cooking drip extracts were decreased by the gamma irradiation at the dose of 10 kGy. Especially, the sulfur-containing amino acids were severely degraded by the irradiation. In free amino acid, ED cooking drip extract was contained the larger amount of free amino acid than that of HF cooking drip affecting its rich flavor. The free amino acid concentrations of cooking drips extracts from HF and ED were both increased by irradiation, and it explained the higher protein content by the irradiation

  14. Defect production in silica glasses under gamma-irradiation at the quenched nuclear reactor

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Kalanov, M.U.; Ibragimova, E.M.; Sandalov, V.N.; Muminov, M.L.

    2004-01-01

    Full text: Radiation defect production in oxides is highly interesting for atom and solar energy, and also for burying nuclear waste. Combine effect of neutron and gamma-radiation on materials was studied extensively and only neutrons are believed to displace atoms, although 60 Co-gamma quanta were proved to displace light anions (O, F) by inelastic mechanism. On the example of polished plates of pure fused quartz and barium-silica glasses containing nano-crystalline inclusions, and also nano-porous glass, the effect of gamma-radiation of the quenched reactor was studied in the energy range of 0.2-7 MeV. The time period was selected when practically constant current ∼10-20 nA is maintained in the ionizing chamber, corresponding to the average gamma-flux of 15-30 Gy/s. Optical absorption and photoluminescence spectra and also structure of the grasses were studied. It turned out, that the charged oxygen vacancies accumulation rate is higher in Barium glass than in the pure one, because for SiO 2 with small Z the photoelectric effect is weak, while the Compton scattering and photonuclear reactions prevail, and for Barium - just the opposite. The radiation-induced growth of the crystalline precipitates was noticed in the both glasses, which before had been attributed to the elastic atom displacements by fast neutrons. The density of Ba-glass increases with irradiation. The efficiency of defect production by the gamma-component even of the quenched reactor turned out much higher than that under irradiation with 60 Co gamma-source of ∼1.25 MeV to the equivalent dose at the current dose rate of ∼ 7 Gy/s (and before at 45 Gy/s). A 100-times increase of the surface proton conductivity was discovered in the porous glasses under gamma-irradiation due to water vapor radiolysis on the pore surface. The irradiated porous glass is recommended as an active electrode in the hydrogen fuel element. The work was done under the grant F2.1.2 from Center of Science and Technology

  15. Influence of Photo period and Gamma Irradiation on Shoot Development and Chemical Composition of Yucca elephantipes Regel Plant in Vitro

    International Nuclear Information System (INIS)

    El-Khateeb, M.A.; El-Sharnouby, M.E.; Ragab, E.A.

    2008-01-01

    In-Vitro propagated plant lets of Yucca elephantipes were placed under different photo periods (24/0, 16/8, and 0/24 L/D) for two months after cultured on MS medium supplemented with 40 g/l sucrose. Growing explants of Yucca elephantipes cultured on MS medium placed under photo period 24/0 L/D gave the highest shoot length and best proliferation than other treatments especially in subculture 3. Exposure to gamma irradiation at doses 0.0, 5 ,10, 20 and 40 Gy, and placed on the same conditions .Irradiated plantlets exhibited changes in shoot growth especially on photo period at 16/8 L/D than others, also with gamma irradiation at dose 20 Gy. Using gamma irradiation at level of 20 and 40 Gy stimulated both leaf shape and thickness of stem. The contents of total phenol, total saponin and some unsap contents were increased with increasing gamma irradiation

  16. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    International Nuclear Information System (INIS)

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-01-01

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n B were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co 1−x Zn x Fe 2 O 4 (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co 60 γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co 1−x Zn x Fe 2 O 4 spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n B ) etc. magnetic parameters were increased after irradiation

  17. Dose-response of photographic emulsions under gamma irradiation

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Do Thi Nguyet Minh; Le Van Vinh

    2003-01-01

    Photographic emulsion is irradiated under gamma rays irradiation of 137 Cs in the IAEA/WHO secondary standard dosimetry laboratory. Dose-response of the film is established. The sensitivity of the film is determined. The dose-rate effect is studied. (author)

  18. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Shawrang, P. [Agriculture, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)], E-mail: parvinshawrang@yahoo.co.uk; Nikkhah, A.; Zare-Shahneh, A. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of); Sadeghi, A.A. [Department of Animal Science, Faculty of Agriculture, Science and Research Branch, Islamic Azad University, P.O. Box 14515-4933, Tehran (Iran, Islamic Republic of); Raisali, G. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Moradi-Shahrebabak, M. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)

    2008-07-15

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition.

  19. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    International Nuclear Information System (INIS)

    Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A.A.; Raisali, G.; Moradi-Shahrebabak, M.

    2008-01-01

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition

  20. Physicochemical and functional properties of gamma irradiated buckwheat and potato starch

    Science.gov (United States)

    Verma, Ruchi; Jan, Shumaila; Rani, Savita; Jan, Kulsum; Swer, Tanya L.; Prakash, Kumar S.; Dar, M. Z.; Bashir, Khalid

    2018-03-01

    Starches isolated from buckwheat and potato were subject to different doses of irradiation at 0, 5, 10, 15 and 20 kGy. Native and irradiated starch samples were evaluated for their physicochemical and functional properties to assess the effect of gamma irradiation. Apparent amylose content decreased significantly from 26.84% to 22.12% and 27.01 to 16.11% for buckwheat and potato starch respectively as the dose increased. A significant decrease was observed in pH, swelling power and syneresis as the dose increased for both buckwheat and potato starch. pH decreased from 5.20 to 3.81 and 5.81 to 3.95 for buckwheat and potato starch, respectively. Carboxyl content, freeze thaw stability, water and oil absorption capacity and transmittance showed increasing trend with increasing irradiation dose. Carboxyl content increased from 0% to 0.23% and 0-0.22% for buckwheat and potato starch, respectively.

  1. Continuous gamma irradiation influence on food intake, body weight, and weight of some rat organs

    Energy Technology Data Exchange (ETDEWEB)

    Malatova, Z [Institute of Neurobiology SAV, Kosice (Czechoslovakia); Sedlakova, A; Ahlers, I; Praslicka, M [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1977-01-01

    Food intake, body weight and weight of some organs were studied in male Wistar rats within 25 days of continuous gamma irradiation at a dose rate of 15.48 x 10/sup -3/ C/kg (6O R) per day in an experimental gamma field. A decrease in food intake and body weight and a decrease in thymus and spleen weights were found during the first week in irradiated rats. The thymus and spleen involutions did not progress within the second week. From the beginning of the third week till the end of the experiment the irradiated animals increased their weight and the food intake was even higher during the last week of irradiation in comparison with controls. The spleen and thymus involutions stopped but the weight remained at the lower level. The relative weight of the adrenal glands in irradiated animals only increased at the end of the period.

  2. The decontamination effects of gamma irradiation on the edible gelatin

    International Nuclear Information System (INIS)

    Fu, Junjie; Shen, Weiqiao; Bao, Jinsong; Chen, Qinglong

    2000-01-01

    The decontamination effects of gamma irradiation on the edible gelatin were studied. The results indicated that the bacterium and mold in the gelatin decreased significantly with the dose of 5 kGy treatment. However, the content of crude protein, microelement, amino acid in the gelatin remained unchanged under the irradiation of 4 and 8 kGy. The viscosity of the gelatin decreased with the increase of the irradiation dose, but the gelatin with a dose of 5 kGy treatment still accorded with the standard of the second-order class. These results suggested that the optimum irradiation dose for edible gelatin for the purpose of decontamination was in the range 3-5 kGy. (author)

  3. The effect of gamma irradiation on the nucleic acids content of the mediterranean fruit fly ceratitis capitata (Wied)

    International Nuclear Information System (INIS)

    Fadel, A.M.; Amin, T.R.; Al-Elimi, M.H.

    1999-01-01

    This work was carried out study the effect of gamma irradiation on the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) content in the whole body homogenate of the mediterranean fruit fly, ceratitis capitata (Wied.) pupae were gamma irradiated with different doses (o, 50, 70, 90 and 110 Gy) at two different pupal ages (2 and 4 days before adult emergence ) to estimate the nucleic acids in pupae and adult males, and females. Experimental results showed that gamma irradiation of pupae reduced RNA content, and this reduction was proportional with the applied dose and more pronounced in the younger pupae. However, DNA content was reduced only when the highest dose was applied to pupae irradiated 2 days before adult emergence (older pupae). Concerning adult insects which were gamma irradiated as pupae, the results revealed, generally, that males and females which were irradiated 2 days before adult emergence were more affected than those irradiated 4 days before adult emergence. The male DNA content and the female RNA content showed high degrees of reduction which, more or less, increased with increasing the dose used. On the other hand, female DNA and male RNA contents were slightly, changed. The significant importance of the results and some statistical interrelations were discussed

  4. Toxoplasma gondii gamma irradiation using Co-60

    International Nuclear Information System (INIS)

    Serra-Freire, Nicolau Maues

    1996-01-01

    The use of nuclear power through radiation for the destruction of microorganisms which cause food deterioration, infections and toxicosis, is specifically for peaceful purposes. Toxoplasma gondii is a protozoa responsible for illnesses in humans and animals. One of the most common ways of transmission is through raw or poorly cooked meat. There is little information on the resistance of T. gondii to radiation. The objective of this research is to determine the Minimum Lethal Dose (MLD) of gamma radiation for those microorganisms. Suspensions of T. gondii containing approximately one million taquizoites/ml were irradiated with doses between up 0,01 up to 0,15 kGy (Kilogray) and inoculated to mice. The surviving T. gondii were re-irradiated with 0,01 up to 0,16 kGy. The irradiated protozoa were totally destroyed with a 0,15 kGy dose (MLD). Taquizoites issued from live protozoa of 0,14 kGy also were completely destroyed with dose of 0,15 kGy. No increase in resistance was observed regarding the non irradiated protozoa. (author)

  5. Protective Effect Of Avocado Oil Against Biochemical And Histological Changes In Whole Body Gamma Irradiation In Albino Rats

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.A.; Abd El Azime, A.SH.; Sherif, N.H.

    2013-01-01

    Avocado oil, extracted from the pulp of the fruit, is rich in poly-unsaturated fatty acids, linoleic, linolenic, oleic acids and the monounsaturated fatty acid. It also contains B-sitosterol, B-carotene, lecithin, minerals and vitamins A, C, D and E. Avocado oil lowers the blood levels of serum lipids and has antioxidant properties as a free radical scavenger. Male albino rats were divided into 5 groups. 1- Control group: rats not subjected to any treatment, 2- Avocado treated group: rats received avocado oil (0.1 ml/kg/day) via intraperitoneal injection during 21 days, 3- Irradiated group: rats were whole body gamma irradiated with 7 Gy, 4- Avocado + irradiated group: rats received avocado oil for 21 days then exposed to whole body gamma irradiation with 7 Gy and 5- Radiation + avocado group: rats were exposed to 7 Gy whole body gamma irradiation then received avocado oil for 21 days. Avocado oil (0.1 ml/kg/day) was given to rats, receiving a standard diet, for 21 days before exposure to 7 Gy whole body gamma irradiation then the treatment was continued for 10 days after irradiation. Several investigations were carried out such as superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), lipid profile and blood sugar. High significant increase in MDA was observed and treatment with avocado before irradiation caused significant increase in GSH, CAT and SOD and significant decrease in MDA as compared to the irradiated groups. The results also showed that treatment with avocado oil significantly diminished the radiation-induced alterations observed in the levels of lipid profile and glucose. The results demonstrated that whole body gamma irradiated rats showed significant increase in alanine aminotransferase (ALT), aspartate amino-transferase (AST), alkaline phosphatase (ALP) and glucose. By studying the lipid profile, significant increases in cholesterol, triglycerides and LDL-C levels were recorded while significant decrease was

  6. Familial study of ataxia telangiectasia. Heterozygotes identification on the basis of sensitivity of gamma-irradiated cultures to caffeine post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, A.L.; Kotecki, M. [Polska Akademia Nauk, Poznan (Poland). Zaklad Genetyki Czlowieka; Ignatowicz, R. [Centrum Zdrowia Dziecka, Warsaw (Poland)

    1994-12-31

    The effects of caffeine (CF), {gamma}-irradiation + CF post-treatment on chromosomal aberrations were studied in lymphocyte cultures from a patient with ataxia telangiectasia (AT), his parents and brother. In the studied family both the homozygotes and the obligatory heterozygotes of AT showed increased sensitivity to CF post-treatment. Individual differences in sensitivity to {gamma}-irradiation + CF post-treatment proved to be correlated with the sensitivity of non-irradiated cells to CF treatment, but not to {gamma}-irradiation. (author). 19 refs, 1 fig., 1 tab.

  7. Study on the sterilization of canned water melon by gamma irradiation

    International Nuclear Information System (INIS)

    Kim, B.M.

    1978-01-01

    In order to study the effects of gamma-irradiations on the storage life of canned water melon, the contents of canning water melon were controlled pH to 4.0 and 5.0 by adding some kinds of organic acids such as citric acid, tartaric acid, and ascorbic acid, respectively. The pH controlled water melons were canned, followed by being exposed to 0.25, 0.5, and 1.0 Mrads of gamma-ray, respectively. The results were as follows: In non-acid canned water melon, the higher doses of radiation induced the more efficiency on the extension of storage life of it even if the efficiency was mot so great. By irradiations of 1.0 Mrads, it could be kept for 15 days without any deterioration. By means of the addition of organic acids, the radiation effect on the extension of the storage life of the above food increased remarkably. In particular, the water melon cans with ascorbic acid (pH 4.0) could be kept for 60 days without any deterioration by gamma-irradiation of 0.5 and 1.0 Mrads. (Author)

  8. Effects of gamma irradiation of an isolated flower in reproductive stages on seed production of Brassica napus L

    International Nuclear Information System (INIS)

    Minami, Harufumi; Sakurai, Noboru; Muroyama, Takeo; Hogetsu, Daisuke

    1999-01-01

    We examined seed production after gamma irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus strain 1 through a flower organ culture and estimated the effects of gamma rays on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 17, 32, 57 and 87 Gy of gamma rays in unpollinated stage at day of anthesis, in stage shortly after fertilization and early embryo stage. The gamma irradiation of flowers in stage shortly after fertilization showed a drastic effect on the mature seed production. The number of seeds per pod began to decrease at 17 Gy and dropped to 15% of that of unirradiated flowers at 32 Gy. On the other hand, the flowers irradiated in the unpollinated and early embryo stages began to reduce the number of seeds at 57 Gy. The ovary elongation was suppressed with increasing irradiation dose when the flower was irradiated in unpollinated stage and stage shortly after fertilization. (author)

  9. Practice for dosimetry for a self-contained dry-storage gamma-ray irradiator

    International Nuclear Information System (INIS)

    2002-01-01

    This practice outlines dosimetric procedures to be followed with self-contained dry-storage gamma-ray irradiators. If followed, these procedures will help to ensure that calibration and testing will be carried out with acceptable precision and accuracy and that the samples processed with ionizing radiation from gamma rays in a self-contained dry-storage irradiator receive absorbed doses within a predetermined range. This practice covers dosimetry in the use of dry-storage gamma-ray irradiators, namely self-contained dry storage 137 Cs or 60 Co irradiators (shielded free-standing irradiators). It does not cover underwater pool sources, panoramic gamma-ray sources such as those raised mechanically or pneumatically to irradiate isotropically into a room or through a collimator, nor does it cover self-contained bremsstrahlung x-ray units. The absorbed dose range for the use of the dry-storage self-contained gamma-ray irradiators covered by this practice is typically 1 to 10 5 Gy, depending on the application. The absorbed-dose rate range typically is from 10 -2 to 10 3 Gy/min. This practice describes general procedures applicable to all self-contained dry-storage gamma-ray irradiators. For procedures specific to dosimetry in blood irradiation, see ISO/ ASTM Practice 51939. For procedures specific to dosimetry in radiation research on food and agricultural products, see ISO/ASTM Practice 51900. For procedures specific to radiation hardness testing, see ASTM Practice E 1249. For procedures specific to the dosimetry in the irradiation of insects for sterile release programs, see ISO/ASTM Guide 51940. In those cases covered by ISO/ASTM Practices 51939, 51900, 51940, or ASTM E 1249, those standards take precedence. In addition, this practice does not cover absorbed-dose rate calibrations of radiation protection instrumentation

  10. Effects of gamma irradiation dose rate on microbiological and physical quality of mushrooms (Agaricus bisporus)

    International Nuclear Information System (INIS)

    Beaulieu, M.; Lacroix, M.; Charbonneau, R.; Laberge, I.; Gagnon, M.

    1992-01-01

    The effects of gamma irradiation (2 kGy) and dose rate of irradiation (4.5 and 32.0 kGy/h) on increasing the shelf-life and some quality properties of the mushrooms (Agaricus bisporus) were investigated during storage at 15 deg C and 90% R.H. The retardation of mushroom growth and ageing by reduction of gamma irradiation dose rate (4.5 kGy) was observed by measurements of the cap opening, the stipe increase, the cap diameter, the weight loss and the color of the caps. The color was measured in order to evaluate the lightness with the L value measurement and the color changes were measured in terms of lightness, hue and chroma. The control of fungal and bacterial diseases were also evaluated. The irradiation of mushrooms at both dose rates of irradiation was found to be effective in lowering microorganism counts initially and throughout storage and increased the shelf-life by four days. This study also showed that mushrooms exposed to a lower dose rate (4.5 kGy/h) of irradiation preserve the whiteness and reduce the stripe increase of mushrooms during storage

  11. Effect of Gamma Irradiation and Chemical Process on Gas Production Parameters of some Agricultural By-products in in vitro

    Directory of Open Access Journals (Sweden)

    S. Sobhanirad

    2013-03-01

    Full Text Available The aim of this study was investigating the effect of gamma irradiation and NaOH treatment of some agricultural by products (tomato pulp, orange pulp, pistachio hull and wheat straw on fermentation parameters and gas production test. Treatments of gamma irradiation (50, 100 and 200 kGy and %5 NaOH was done on each source of by products. The results showed that gamma irradiation at the dose of 200 kGy numerically and %5 NaOH increased (P

  12. Potential Application of Gamma Irradiated Polyvinyl Pyrrolidone (PVP) - Starch Hydrogel As Fever Cooling Plaster

    International Nuclear Information System (INIS)

    Darmawan Darwis; Lely Hardiningsih

    2010-01-01

    Research on the development of hydrogel for cooling fever by using gamma irradiation technique has been done. The hydrogel was prepared by irradiating the mixture of PVP with concentration of 7% (w/v) and starch with various concentrations using gamma ray at irradiation dose of 20 to 40 kGy. The results showed that optimum starch concentration to make solid constituent of PVP-starch prior to irradiation were 10-15%. Gel fraction of PVP-starch hydrogel showed an increase by increasing of irradiation dose up to 35 kGy, and acceleration of irradiation dose did not have any effect on gel fraction. At the same irradiation dose, there was no influence of starch concentration on gel fraction. Maximum gel fraction was achieved at 35 kGy irradiation dose. Water content of PVP-Starch hydrogel with starch concentration of 10 to 15% was in the range of 73 - 76%. Water content of hydrogel depends on starch concentration, while irradiation dose does not give any effect on water content of hydrogel. Hydrogel with high water content is potential to be used for fever cooling. Hydrogel PVP-Starch with starch concentration of 10% irradiated by gamma irradiation at the dose of 35 kGy had the ability to reduce water temperature from 40°C to 36°C in 21 minutes, while it took 24 minutes for the hydrogel with starch concentration of 12.5 and 15%. Commercial cooling pad hydrogel need 24 minutes to reduce temperature of water from 40°C to 36°C. Based on these results, it can be concluded that PVP hydrogel with 10% starch content showed faster cooling effect compared to hydrogel with 12.5 and 15 % starch content as well as the commercial hydrogel. Beside these advantages, the hydrogel obtained has some disadvantages such as low stickiness, brittle and opaque. (author)

  13. Chemical, sensory and microbiological changes of gamma irradiated coconut cream powder

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Norimah [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)], E-mail: norimah@mint.gov.my; Ramli, Ros Anita Ahmad; Ali, Foziah [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2007-11-15

    A study was carried out to determine optimum decontamination dose for a locally manufactured coconut cream powder. Samples were gamma irradiated (0-15 kGy) and ageing process was achieved using GEER oven at 60 deg. C for 7 days, which is equivalent to one-year storage at room temperature. Iodine value (IV), ranging from 4.8 to 6.4, was not affected by radiation doses and storage, however peroxide value and thiobarbituric acid (TBA) generally increased with radiation doses. In most samples, peroxide value (meq/kg) reduced after storage, whilst the TBA (mg malonaldehyde/kg), indicator for product quality, slightly increased. The sensory evaluation conducted using 25 taste panellists indicated that scores on odour, creamy taste and overall acceptance for all irradiated samples at more than 5 kGy were significantly lower (P<0.05) than the control. However, the panellists could not detect any significant differences among the irradiation doses (P>0.05). All stored products were significantly different in colour, creamy taste, odour and overall acceptance (P<0.05) when compared to the non-stored non-irradiated control. Microbiological count of the samples prior to irradiation was in the range of 1x10{sup 2}-1.7x10{sup 3} cfu/g with no detection of Salmonella sp. and Escherichia coli. No microbial colonies were detected after irradiation. Based on the TBA and overall sensory acceptance, gamma irradiation of 5 kGy was found to be the optimum dose and lower doses can be considered to decontaminate coconut cream powder.

  14. Identification of gamma irradiated pulse seed (Lens sp.) based on germination test

    International Nuclear Information System (INIS)

    Chaudhuri, Sadhan K.

    2001-01-01

    The germination test of pulse seed provided a reliable method for the identification of lentil seeds that had been subjected to irradiation. Root and shoot lengths were found more sensitive to the gamma irradiation than the germination percentages. The critical dose that prevented the root elongation varied from 0.1 kGy to 0.5 kGy. Germination percentage was reduced drastically above 0.2 kGy. Above 1.0 kGy dose, the lentil seeds did not germinate. The sensitivity of lentil seeds to gamma irradiation was inversely proportional to moisture content of the seeds. In addition, storage period up to 12 months had little effect on irradiation the induced reduction of root and shoot lengths. Thus, this test can determine the difference between irradiated and non-irradiated lentil seeds even 12 months after gamma irradiation. (author)

  15. [Effect of 60Co gamma-irradiation on dilute aqueous solutions of surfactants].

    Science.gov (United States)

    Sawai, T; Shimokowa, T; Miki, Y; Oseko, K; Sawai, T

    1978-01-01

    Present work deals with the effects of gamma irradiation from 60Co gamma-ray source upon aqueous solutions of three kinds of surfactants. When dilute aqueous solutions of sodium dodecyl sulfate (SDS, anionic), cethyl trimethyl ammonium chloride (CTAC, cationic), and polyoxyethylene lauryl ether (POE, non-ionic) were irradiated with gamma-rays at a room remperature, the residual concentration, products, surface tension, and forming power were examined by colorimetric method, IR spectrophotometric method, gaschromatography, Ross-Miles method, and Traube's stalagnometer etc.. These surfactants were decomposed by the irradiation and thus the surface tension increased and the forming power, on the contrary, decreased with dose. Radiation chemical yields (G-value) of the degradation were about 1 for the solutions of SDS and CTAC, and about 0.3 for the POE solution. From the experimental results, it was found that following chemical reactions seem to occur followed by the radiolysis of water; a) bond cleavage of ester for SDS, of CN for CTAC, and of oxyethylene for POE, b) hydrogen abstraction from the surfactants, c) production of CO bond in the presence of dissolved oxygen.

  16. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Rela, P.R.; Napolitano, C.M.; Kodama, Y.; Omi, N.M.; Costa, F.E. da; Andradee Silva, L.G. de

    2009-01-01

    The Radiation Technology Center from IPEN-CNEN/SP, Brazil, developed a revolutionary design and national technology, a small-sized continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of a continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotating door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is a product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 PBq. The performed qualification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process qualification. The initial load of the multipurpose irradiator was 3.4 PBq with 13 cobalt-60 sources model C-188, supplied by MDS Nordion - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The polymethylmetacrylate (PMMA) dosimeter system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning with dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma irradiators available on the market. (authors)

  17. Physiological characteristics of cucumber seed production plants by presowing laser and gamma irradiation

    International Nuclear Information System (INIS)

    Cholakov, D.; Petkova, V.

    1994-01-01

    Seeds from G-3 maternal line of hybrid cucumber cultivar Pobeda F 1 were treated with helium-neon 632.8 nm laser-exit power 20 mW and gamma-rays ( 60 Co) in a field experiment under conditions suitable for hybrid seed production. The irradiation was carried out a week before sowing and the following variants were investigated: 1. sevenfold laser irradiation; 2. 10 Gy gamma irradiation; 3. combined laser + gamma rays irradiation. Seeds from the parent line were not irradiated. A positive effect of irradiation on the photosynthetic intensity, content of plastid pigments in leaves and activity of catalase and peroxidase has been observed. (author)

  18. Kraft cooking of gamma irradiated wood, (1). Effect of alcohol additives on pre-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, M; Meshitsuka, G; Nakano, J [Tokyo Univ. (Japan). Faculty of Agriculture

    1979-12-01

    Studies have been made of kraft cooking of gamma irradiated wood. Beech (Fagus crenata Blume) wood meal suspended in aqueous alkaline alcohol was irradiated up to 1.5 KGy (0.15 Mrad) with gamma rays from a Co-60 source in the presence or absence of oxygen. The irradiated wood meals were washed thoroughly with fresh water, air dried and cooked under the ordinary cooking conditions. The results are summarized as follows: (1) Pre-irradiation in aqueous alkali have negligible effect on kraft cooking. (2) In the case of ethanol addition (50 g/l), pre-irradiation in vacuo shows acceleration of delignification and stabilization of carbohydrates during kraft cooking. Cooked yield gain by pre-irradiation was about 1.2 in all, over the range of delignification from 80 to 90%. Aqueous ethanol without alkali also shows positive but smaller effect than that with alkali. (3) Propanol, iso-propanol and butanol show positive but smaller effects than ethanol. However, methanol does not show any positive effect. (4) Irradiation in the presence of oxygen does not show any attractive effect on kraft cooking.

  19. Evaluation of the effects of paederus beetle extract and gamma irradiation on HeLa cells

    Directory of Open Access Journals (Sweden)

    Fariba Samani

    2014-04-01

    Full Text Available Objective(s:Cervical cancer is a malignancy that is the second most common cause of death from cancer in women throughout the world. Paederus beetle (Paederus fuscipes extract (PBE, contains bioactive compounds such as pederine which has cytotoxic properties and blocks DNA and protein synthesis at very low concentrations. In this investigation we tried to determine the effects co-treatment with PBE and gamma irradiation on HeLa cells. Materials and Methods: The viability of the cells was measured by two methods: MTT and Colony assay. Results: We found that supplementing gamma irradiation therapy with PBE does not increase cell death and it might even interfere with its cytotoxicty at the concentrations below 0.1 ng/ml and the viability for irradiation vs irradiation + PBE was 37%: 60%.   Conclusion: This finding might be due to radioprotective effects of the very low doses of PBE against gamma radiation.

  20. The effect of gamma irradiation on guar gum, locust bean gum, gum tragacanth and gum karaya

    Energy Technology Data Exchange (ETDEWEB)

    King, Karen (Department of Agriculture for Northern Ireland, Belfast (United Kingdom) Queen' s Univ., Belfast, Northern Ireland (United Kingdom)); Gray, Richard (Department of Agriculture for Northern Ireland, Belfast (United Kingdom))

    1993-02-01

    Changes in rheological properties, as measured by viscosity, of two galactomannans (guar gum and locust beam gum) and two acidic polysaccharides (gumtragacanth and gum karaya) were studied at a range of irradiation doses < 10 kGy. Powdered samples were irradiated, and the viscosity of a 1% dispersion prepared at room temperature or by heating to 80[sup o]C for 1 h was determined over a wide shear rate range. All samples showed pseudoplastic behaviour which approached Newtonian with increasing irradiation dose. Viscosities were calculated at a shear rate of 54 sec[sup -1] to enable comparison across the samples. Both galactomannans showed a decrease in viscosity with increasing [gamma] irradiation independent of temperature and a hypothesis is proposed that at low [gamma] irradiation doses (<2 kGy) there is a reduction in polymer aggregation in solution, whereas at higher doses polymer hydrolysis occurs. Electron spin resonance spectroscopy data supports this hypothesis, with the detection of different free radicals at low and high irradiation doses. The viscosity of the acidic polysaccharides, gum karaya and gum tragacanth, following [gamma] irradiation at low doses (<1 kGy) was unchanged or slightly higher when compared to the unirradiated control samples. Above 1 kGy dispersion viscosity decreased with increasing dose. For these polysaccharides chain hydrolysis seems to occur during irradiation at all doses resulting in an increase in the amount of soluble polymer and hence increased viscosity at low doses, whilst at high doses viscosity decreases due to extensive polymer hydrolysis. Similar electron spin resonance (ESR) spectra were obtained at low and high doses with a stronger signal at the higher dose. (Author).

  1. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    Science.gov (United States)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  2. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    International Nuclear Information System (INIS)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-01-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  3. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong [University of South China, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hengyang, Hunan Province (China)

    2016-11-15

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  4. Effects of gamma irradiation on raw materials and perfumes

    International Nuclear Information System (INIS)

    Guillot, M.; Pelpel, A.

    1983-01-01

    In order to enlight the strange problem of apparent perfume stability observed in manufactured talc powders sterilized by gamma rays, investigations were made on samples of odorant substances (raw materials, essential oils, or elaborated mixtures). As a rule, no immediate adulteration of olfactive caracteristics resulted at once from gamma irradiation. In several cases, a stabilizing effect appeared immediately and remained effective after long storage in various conditions (of temperature, or light, or oxygen exposure). This unexpected effect seems to be in accordance with previous experiments on gamma or electron irradiations of mixtures of organic molecules, reported in litterature: a mutual inhibition was observed to take place [fr

  5. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.; Sharabi, N.

    2002-11-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays. (author)

  6. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    CERN Document Server

    Shamma, M A; Sharabi, N

    2002-01-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays.

  7. Chemical, sensory and microbiological changes of gamma irradiated coconut cream powder

    International Nuclear Information System (INIS)

    Yusof, Norimah; Ramli, Ros Anita Ahmad; Ali, Foziah

    2007-01-01

    A study was carried out to determine optimum decontamination dose for a locally manufactured coconut cream powder. Samples were gamma irradiated (0-15 kGy) and ageing process was achieved using GEER oven at 60 deg. C for 7 days, which is equivalent to one-year storage at room temperature. Iodine value (IV), ranging from 4.8 to 6.4, was not affected by radiation doses and storage, however peroxide value and thiobarbituric acid (TBA) generally increased with radiation doses. In most samples, peroxide value (meq/kg) reduced after storage, whilst the TBA (mg malonaldehyde/kg), indicator for product quality, slightly increased. The sensory evaluation conducted using 25 taste panellists indicated that scores on odour, creamy taste and overall acceptance for all irradiated samples at more than 5 kGy were significantly lower (P 0.05). All stored products were significantly different in colour, creamy taste, odour and overall acceptance (P 2 -1.7x10 3 cfu/g with no detection of Salmonella sp. and Escherichia coli. No microbial colonies were detected after irradiation. Based on the TBA and overall sensory acceptance, gamma irradiation of 5 kGy was found to be the optimum dose and lower doses can be considered to decontaminate coconut cream powder

  8. Effect of gamma irradiation on proteins of some agricultural products

    International Nuclear Information System (INIS)

    Farag, M.F.S.E.

    1994-01-01

    Soybean and broad bean were exposed to gamma rays at dose levels of 10 ,30 and 50 KGy. Some chemical changes were studied in beans such as chemical composition, total amino acids, protein electrophoresis and trypsin inhibitor. Also irradiated beans were used as a sole source of protein in feeding rats. Some parameters were studied such as, true growth rate, food intake, protein efficiency ratio, true protein digestibility, biological value, serum total protein and serum albumin . The results indicated that irradiation treatments, did n't cause any obvious effects on the chemical composition . Also, no changes were shown in the number of protein bands. A little difference was observed in the bands density. Irradiation doses caused variable results with the majority of the amino acids, but they led to a gradual reduction in the activity of trypsin inhibitor. Moreover, the irradiation treatments caused an increased food intake. The rats growth rates, protein efficiency ratio, true protein digestibility and protein biological values were increased as the irradiation dose increased, but serum total protein and serum albumin were not affected

  9. Cesium adsorption ability and stability of metal hexacyanoferrate irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Arisaka, Makoto; Watanabe, Masayuki; Ishizaki, Manabu; Kurihara, Masato; Chen, Rongzhi; Tanaka, Hisashi

    2013-01-01

    The influence of irradiation with gamma-rays to metal hexacyanoferrate (MHCF: M = Fe, Cu or Ni), which is known as an adsorbent for selective adsorption of cesium (Cs) ion in solution, on Cs adsorption ability and stability was investigated in HNO 3 solutions. Under the adsorbed dose conditions (50 - 300 kGy), it was found that the MHCF is fully stable although the radiolytic decomposition of MHCF was slightly observed with an increase of the total adsorbed dose, which was confirmed by an increment of Fe, Cu or Ni concentration in HNO 3 solution after the irradiation. The weight percent of the metal in the solution to initial weight of MHCF was less than unity. Moreover, no change in composition of carbon, hydrogen and nitrogen in MHCF was observed. On the other hand, the distribution coefficients of Cs to the irradiated MHCF were independent of the total adsorbed dose. This indicates that the Cs adsorption ability was maintained under gamma-ray irradiation. (author)

  10. Gamma irradiation effects on poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, Geise; Zen, Heloisa A.; Geraldes, Adriana N.; Souza, Camila P.; Parra, Duclerc F.; Lima, Luis Filipe C.P.; Lugao, Ademar B.

    2009-01-01

    In this work, the properties of Poly(vinylidene fluoride) PVDF films after exposing to gamma radiation at different doses (5, 10 and 15 kGy) were investigated. PVDF is a semicrystalline polymer that shows good properties in terms of chemical, thermal and electrical stabilities. The gamma radiation is a convenient and effective way of modification perfluorinated and partially fluorinated polymers such as PVDF. The properties of the pristine and irradiated PVDF films were studied by infrared spectroscopy, thermal analysis (TGA and DSC) and mechanical measurements at room temperature and at melting temperature of the PVDF. The infrared spectra of the irradiated PVDF samples do not present significant alterations in the absorption bands at all irradiated doses. The results obtained by thermal analysis indicate that the radiation does not alter significantly the decomposition temperature of the pristine PVDF film. Tensile strength measurements at room temperature before and after exposition to gamma radiation showed decrease of elongation at rupture in relation of pristine PVDF, suggesting that the radiation caused the crosslinking or chain scission of the PVDF film. (author)

  11. Gamma irradiation of cholestenone oximes

    International Nuclear Information System (INIS)

    Uenseren, Envare.

    1976-01-01

    Irradiation of cholest-4-en-3-one and cholest-5-en-3-one oximes with cobalt-60 gamma-rays in different solvents at different doses gave a mixture of products from which ketones corresponding to the starting oximes, Beckmann type rearrangement products, and some other radiolysis products have been isolated and identified

  12. Gamma irradiation effects on the larval stage of the mediterranean flour moth Ephestia Kuehniella (Zell.)

    International Nuclear Information System (INIS)

    Salem, Y.S.; Ahmed, M.Y.Y.; El-Banby, M.A.; Abdel-Baky, S.M.

    1985-01-01

    Larvae of Ephestia Kuehniella Z. were irradiated with different doses of gamma radiation to study the effect of irradiation on immature stages, pupation, emergence, malformation and sex ratio of the produced insects. Mortality percent of irradiated larvae was increased progressively with increasing the dose. Sublethal doses retarded the duration of the immature stages. There was a gradual decrease in adult eclosion and adult longevity with increasing the dose. Fecundity and fertility of the resulting adults were gradually reduced with the increase of the dose. No complete sterility occurred after larval irradiation. Malformed adults of both sexes increased as the dose was increased

  13. Effect of gamma irradiation on larval longevity of Chironomus Riparius Meigen. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Samira, A A [Dept. of Entomology, Univ. of Ain Shams., Cairo (Egypt); El-Halfawy, N [National Centre radiation Research and Technology, Cairo (Egypt); El-Ebiarie, A S [Dept. of Zoology, Fac. of Science, Univ. of Helwan., Cairi (Egypt)

    1996-03-01

    Whole body irradiation is known to shorten the life-span of insects. This is further investigated in aquatic insect larvae, as part of a programme concerned with stress responses on these larvae. The effect of gamma rays on the longevity of different larval instars of midge Chironomus Riparius was investigated by using five doses of 1, 9, 30, 200 and 1000 Gy of gamma rays. Lt{sub 50} (the time in days required for killing 50% of the population) was estimated using spss{sup x} programme. Data showed that irradiation decreased Lt{sub 50} in the second, third and fourth instars in comparison to their control, while in the first instar, irradiation increased Lt{sub 50} for all doses used. Shortening or increasing life was independent of the dose. Results were explained in terms of possibility of inhibition of enzymes. 1 fig., 1 tab.

  14. Effect of gamma irradiation on Hom Tong banana

    International Nuclear Information System (INIS)

    1971-01-01

    This report contains research on the use of gamma irradiation to retard the ripening and extend the shelf life of bananas. The major concerns were the effects that irradiation would have on the nutritional content, the organoleptic properties and the pigment of the fruit

  15. Manufacturing of low-fat chicken sausage and keeping its quality by gamma irradiation

    International Nuclear Information System (INIS)

    Abdel-Daiem, M.H.

    2007-01-01

    The present study was carried out to study the possibility of manufacturing low-fat chicken breast sausage formulated with aged fresh chicken breast meat, 8% beef fat ratio and other ingredients. Thc manufactured sausage was subjected to gamma irradiation at doses of 0, 2, 4 and 6 kGy to improve its hygienic quality and extending its shelf-life. The irradiated samples were stored at refrigeration temperature (4± degree C), and the effects of gamma irradiation and cold storage on their microbiological, chemical and Sensory attributes were studied. Irradiated samples at dose of 2 kGy reduced the counts of total bacterial, lactic acid bacteria, total molds and yeasts and Bacillus cereus. Irradiation doses of 4 and 6 kGy completely eliminated Staphylococcus aureus, Bacillus cereus, enterobacteriaceae and Salmonella spp. On the other hand, applied doses gamma irradiation under investigation had no remarkable effects on thc chemical composition, ph values and total volatile nitrogen (TVN), but increased the amounts of thiobarbituric acid reactive substances (TBARs) of these product. irradiation treatments had no effects on sensory properties (appearance, texture and odor) of all fresh sausage samples. Moreover, fried sausage prepared from irradiated raw sausage had high sensory acceptability similar to those prepared from non-irradiated raw sausage. irradiation at doses of 2, 4 and 6 kGy prolonged the refrigeration shelf-life of fresh low-fat chicken breast sausage to 11, 20 and 27 days, respectively, compared to 5 days for non-irradiated samples without any adverse effects on sensory properties. Thus, it can be recommended as a healthy product especially for those who need to low fat and cholesterol foods

  16. Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S., E-mail: samadchemistry@gmail.com [Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali; Nawaz, Shah; Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2014-08-15

    Highlights: • Removal of endosulfan was assessed by gamma irradiation under different conditions. • Removal of endosulfan by gamma irradiation was mainly due to reaction of aqueous electron. • The radiation yield value decreased while dose constant increased with increasing gamma-ray dose-rate. • Second-order rate constant of endosulfan with aqueous electron was determined by competition kinetic method. • Degradation pathways were proposed from the nature of identified by-products. - Abstract: The removal of endosulfan, an emerging water pollutant, from water was investigated using gamma irradiation based advanced oxidation and reduction processes (AORPs). A significant removal, 97% of initially 1.0 μM endosulfan was achieved at an absorbed dose of 1020 Gy. The removal of endosulfan by gamma-rays irradiation was influenced by an absorbed dose and significantly increased in the presence of aqueous electron (e{sub aq}{sup −}). However, efficiency of the process was inhibited in the presence of e{sub aq}{sup −} scavengers, such as N{sub 2}O, NO{sub 3}{sup −}, acid, and Fe{sup 3+}. The observed dose constant decreased while radiation yield (G-value) increased with increasing initial concentrations of the target contaminant and decreasing dose-rate. The removal efficiency of endosulfan II was lower than endosulfan I. The degradation mechanism of endosulfan by the AORPs was proposed showing that reductive pathways involving e{sub aq}{sup −} started at the chlorine attached to the ring while oxidative pathway was initiated due to attack of hydroxyl radical at the S=O bond. The mass balance showed 95% loss of chloride from endosulfan at an absorbed dose of 1020 Gy. The formation of chloride and acetate suggest that gamma irradiation based AORPs are potential methods for the removal of endosulfan and its by-products from contaminated water.

  17. Application of gamma-irradiation to cereals and cereals products

    International Nuclear Information System (INIS)

    Wootton, M.

    1985-01-01

    Gamma-irradiation may be used on cereals and cereal products to control insect infestation and microbiological problems. Such problems include mould growth, mycotoxin production, pathogens, spore-forming organisms and total microbial load. Deleterious effects of gamma-irradiation arise only at relatively high dose levels with consequences on germination rate, wheat flour dough properties, and cake and noodle quality. Radiation-induced changes to starch have greater impact on behaviour of cereal products than such changes to other cereal components

  18. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  19. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  20. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Madiba, I.G., E-mail: madibagiven@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Émond, N.; Chaker, M. [Institut National de la Recherche Scientifique (INRS),1650 Blvd. Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Thema, F.T. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Tadadjeu, S.I. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa); Muller, U.; Zolliker, P. [Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Braun, A. [ETH Zurich, Swiss Federal Institute of Technology, CH-8057, Zurich (Switzerland); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Kotsedi, L. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); and others

    2017-07-31

    Highlights: • Synthesis of VO{sub 2} thin films by Reactive pulsed laser deposition has been achieved. • Properties VO{sub 2} remain mainly unaffected when subjected to gamma ray doses similar to those encountered during space missions. • The long range crystal structure of VO{sub 2} remains intact upon irradiation on different doses up to 100 kGy. • XPS reveals a shift from V{sup 4+} to V{sup 5+} oxidation state upon irradiation, due to the frenkel pair formation on the surface. • Irradiated films show the characteristic SMT of VO{sub 2}, although the electrical and optical properties are slightly affected. - Abstract: Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO{sub 2}) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO{sub 2} phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO{sub 2} structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V–V inter-dimer distance, which in turns favours the presence of the VO{sub 2} metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V{sup 4+} towards V{sup 5+} is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the

  1. Protective role of ascorbic acid in the decontamination of cow milk casein by gamma-irradiation.

    Science.gov (United States)

    Kouass Sahbani, Saloua; Klarskov, Klaus; Aloui, Amine; Kouass, Salah; Landoulsi, Ahmed

    2013-06-01

    The aim of this work was to investigate the protective role of ascorbic acid on irradiation-induced modification of casein. Casein stock solutions were irradiated with increasing doses 2-10 kGy using (60)Co Gamma rays at a dose rate D• = 136.73 Gy/min at room temperature. The total viable microorganism content of cow milk casein was evaluated by Plate Count Agar (PCA) incubation for 48 h at 37°C. Sodium dodecylsulfate gel electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) analysis were used to evaluate the effect of gamma irradiation on casein integrity. Gamma irradiation reduced the bacterial contamination of casein solutions at a lower irradiation dose when performed in the presence of ascorbic acid. The irradiation treatment of casein in the absence of ascorbic acid with a dose of 4 kGy could reduce 99% of the original amount of bacterial colonies. However, in the presence of ascorbic acid the irradiation treatment of casein with a dose lower than 2 kGy could reduce 99% of the original amount of bacterial colonies which suggested that the irradiation dose lower than 2 kGy achieved almost the entire decontamination result. SDS-PAGE and MALDI-TOF-MS analysis showed that ascorbic acid protected cow milk casein from degradation and subsequent aggregation probably by scavenging oxygen and protein radicals produced by the irradiation. It is demonstrated that the combination of gamma irradiation and ascorbic acid produce additive effects, providing acceptable hygienic quality of cow milk casein and protects caseins against Reactive Oxygen Species (ROS) generated, during the irradiation process.

  2. Radiation-induced reduction of diuron by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jibiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zheng Zheng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)], E-mail: zzheng@nju.edu.cn; Zhao Tan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zhao Yongfu [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Institute of Atomic Energy, Jiangsu Academy of Agriculture Sciences, Nanjing 210014 (China); Wang Lianhong; Zhong Yun; Xu Yue [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2008-03-01

    Diuron degradation efficiencies and the proposed mechanism by gamma-ray irradiation were investigated. Several factors that might affect the degradation values were further examined. The UV absorbances at 200-400 nm and diuron concentration decreased with the increase of radiation dose. When diuron initial concentration was 18.5 mg L{sup -1} and 1.0 kGy was selected as the radiation dose, diuron removal value and loss of total organic carbon were 100 and 34.1%, respectively. However, the concentration of Cl{sup -} ion increased with the increase of radiation dose. The process could be depicted by first order reaction kinetics and the reaction was mainly caused by the reaction of diuron with {center_dot}OH and e{sub aq}{sup -}. The degradation efficiency decreased with the increase of initial concentration at the same radiation dose. H{sub 2}O{sub 2}, HCO{sub 3}{sup -}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, CH{sub 3}OH and humic acid as additives reduced the degradation efficiency. Furthermore, the increase of NO{sub 3}{sup -}, NO{sub 2}{sup -}, CH{sub 3}OH and humic acid would result in the decrease of the degradation values. The pH value could affect the removal efficiency and the degradation process was enhanced in acid condition. The pH value became lower with increasing radiation dose after gamma-ray irradiation.

  3. Studies on safety and efficiency of gamma-irradiated ginseng

    International Nuclear Information System (INIS)

    Kwon, Joong Ho; Cho, Han Ok; Byun, Myung Wo; Kim, Suc Won; Yang, Jae Seong; Yoo, Young Soo; Jin, Joon Ha; Park, Soon Chul

    1991-09-01

    Gamma irradiation was applied to the biological quality improvement and preservation of white ginseng which has problems in a hygienic quality and storage stability. The current phosphine treatment showed no influence on microorganisms contaminated even though it was very useful for disinfestation of the sample, while 5 kGy irradiation effectively controlled the biological quality of the stored sample, with minimal effects on the quality parameters of white ginseng. Thus, it is concluded that gamma irradiation at a range of 5 kGy can be an alternative method of chemical fumigants provided air-tight packaging excluding recontamination is used for the stored product. (Author)

  4. Effect of gamma irradiation on chemical composition and nutritive value of sorghum grains

    International Nuclear Information System (INIS)

    Mekkawy, S.H.

    1996-01-01

    Sorghum grains were gamma irradiated at 0, 10, 50, 100, 150 and 200 KGy doses using cobalt-60 source. Irradiated and unirradiated sorghum samples were analyzed for crude fiber contents, total nitrogen, fat, ash and tannic acid. Neutral-detergent fiber (NDF), acid-detergent fiber (ADF) and acid detergent lignin (ADL) were also determined. In addition, digestibility coefficient received special attention. The irradiated sorghum grains were incorporated into basal diets and fed to rats during the digestion trials. The results indicated that gamma irradiation had no effects on total nitrogen, fat and ash contents of sorghum grains. Irradiation treatments of sorghum did not cause a pronounced effect on tannic acid content even those received the highest irradiation dose (200 kGy). Moreover, the irradiation treatments decreased the NDF content of sorghum especially those subjected to 100 or 200 kGy. On the other hand, the ADF and ADL values did not show a remarkable change due to irradiation treatments. Hemicellulose content was decreased with the increase of irradiation dose levels. Also, it was noticed that feeding rats on basal diets enriched with irradiated sorghum grains had a beneficial effects on digestibility coefficient. This trend was obvious with animals supplemented with sorghum grains subjected to the relatively high irradiation dose levels. 4 tabs

  5. Enhancement of refrigerated storage of Elasmobranchs by gamma irradiation

    International Nuclear Information System (INIS)

    Ghadi, S.V.; Lewis, N.F.

    1976-01-01

    Elasmobranch fish varieties including shark, ray and skate fish, are very susceptible to microbial spoilage because of high levels of urea in their muscle, giving rise to rapid formation of copious quantities of ammonia. Steaming of fish filleta prior to processing has been found to reduce the urea content thereby leading to better odour and flavour retention of the product. However, steaming of Elasmobranch fish fillets results in only a marginal increase in refrigerated storage. Gamma irradiation doses in the range 100-500 krad did not appreciably extend the refrigerated storage Elasmobranchs. However, steaming for five minutes followed by gamma irradiation exposure (100-250 krad) was found to give a 4-5 fold enhancement in the refrigerated storage life of these fish. Representative samples of fish given different treatments were examined at regular intervals during storage at 0-2 degC for sensory evaluation, total bacterial count and chemical freshness indices. (author)

  6. Controlling of carrier movement on gamma irradiator ISG-500

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2010-01-01

    Gamma irradiator ISG-500 is being designed. One of the design objects in the gamma irradiator is carrier movement and its controlling. Many possibilities of carrier movements can be implemented in the set-up design, such as using discrete or continuous mode. In this paper, selected discrete carriers movement and their controlling for the basic-design of the ISG-500 will be discussed. Nine stopper locations for nineteen carriers in operation will be controlled their carriers movement so that the movements have maximum positive transient load (increasing load) two carriers only. The controlling of the movement uses a train of pulses counting system as a one-dimension coordinate reference of a point on the rotated chain pulling the carrier. Every stopper location has a specific counting number in which will be used by the controlling system to let the carrier in the stopper location moving. By this movement, it is expected to prolong the life-time of the in use carrier mover motor. (author)

  7. Combined Effect of Gamma Irradiation with Protecto on Potato Tuber Moth, Phthorimaea operculella Zeller

    International Nuclear Information System (INIS)

    Salem, H.M.; Haiba, I.M.; Rizk, M.A.; Youssef, L.A.; Zahran, N.F.M.

    2008-01-01

    Effect of gamma irradiation on certain biological aspects of potato tuber moth, Phthorimaea operculella was studied. Five day old pupae were irradiated with sub sterilizing dose (10, 20, 30, 40, 50 and 100 Gy). Laboratory experiments were carried out to investigate the effect of bacterial commercial product of Bacillus thuringiensis (Protecto) on the newly hatched larvae of Ph. operculella at four concentrations (0.15, 0.30, 0.45 and 0.60 g/100 ml water). LC 50 value was calculated for protecto, significant positive relationship between dose levels and the percentage of adult emergence was obtained. The number of egg per female and the percentage of egg hatch of emerged adults were significantly decreased by the increase of gamma rays. In addition, dose levels of 50 and 100 Gy were completely inhibited the larval development. The larval mortality percentages were increased with the increase of concentrations as well as the period after the treatment of Protecto. The percentage of survived larvae to adult stage was reduced as the irradiation dose and Protecto concentrations increased, while larval and pupal durations were relatively longer. The longevity of adults was decreased by increasing the dose of radiation and concentration of Protecto. The percentage of malformation among adults was increased by increasing gamma rays doses and concentration of the Protecto

  8. Effects of gamma irradiation on physiological effectiveness of Korean medicinal herbs

    International Nuclear Information System (INIS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kim, Kyong-Su; Chung, Cha-Kwon

    1999-01-01

    Effects of gamma irradiation on the physiological effectiveness of Korean medicinal herbs were investigated. The physiological effectiveness including antioxidant and anticomplement function, nitrite scavenging and electron donating ability of Korean medicinal herbs by gamma irradiation at 10 kGy did not differ from that of the nonirradiated control

  9. On enzyme kinetic parameters modification of gamma irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Ferdes, M.; Turcu, G.R.

    1993-01-01

    To elucidate the molecular mechanisms of gamma-ray action on biomolecules there were investigated the modifications in activity and other kinetic parameters for some enzymes irradiated in pure dry state at relative high doses. There were considered bacterial and fungal α-amylases, glucoamylase and Mucor sp. protease irradiated by a 60 Co gamma-ray source in the dose range 1.0-30.0 kGy, at different dose-rates between 0.5-2.0 kGy/h, at room temperature. Considering the enzyme inactivation in this dose range, the dose-effect relationships have an expected form and depend on the irradiation conditions but not significantly on the dose rate. The catalytic properties of enzymes were modified by irradiation. By usual methods it is evidenced a direct correlation between the enzymatic activities, Michaelis-Menten constant, K m , reaction velocities, v, and the irradiation dose. These experimental findings can support a self-consistent theoretical approach on biophysical radiation action on biological active molecules like enzymes. At the same time, some enzyme behaviour to irradiation could be considered like a good biological indicator of radiation response. (Author) 4 Figs., 19 Refs

  10. Cytological and cytochemical effects of sodium benzoate and gamma irradiation on human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Mohamed, N.A.F.

    1981-01-01

    In vitro studies of human peripheral lymphocytes were conducted to elucidate and compare the effects of a suspected chemical clastogen, sodium benzoate, widely used in the food industry as an antimicrobial food additive, to that of a well-known physical mutagen, gamma rays. Blood from ten normal donors, five males and five females, was collected and treated with various doses of the two agents independently and in combination during G 0 or G 1 phase. Induction of structural chromosomal aberrations, sister chromatid exchanges (SCEs) and unscheduled DNA synthesis were used as parameters to monitor the effects of the two agents. Sodium benzoate at the same concentrations used in the food industry (0.05% and 0.10%) caused inhibition of mitosis and induced chromatid-type aberrations (gaps and breaks). The frequency of aberrations increased as the concentration of sodium benzoate increased. No increase in SCEs over the control level was observed as either concentration tested. The relative amount of DNA damage inflicted in the treated lymphocytes estimated as 3 H-tritiated thymidine incorporation (unscheduled DNA synthesis) was highly significant. In contrast, blood irradiated with 300, 600, or 900 rad 60 Co gamma rays produced chromatid and chromosome aberrations in cultured lymphocytes, dicentrics being the most frequent exchange event. The aberration yield was found to be dose-dependent and to fit the quadratic model. Unscheduled DNA synthesis as measured by lymphocyte 3 H-TdR incorporation following gamma irradiation was highly significantly increased with the largest uptake occurring during the first hour of incubation. The combined treatment of gamma irradiation plus 0.05% sodium benzoate did not increase the aberration frequencies over the independent irradiation treatments and had no effect on SCEs frequencies

  11. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics

    Science.gov (United States)

    Chirila, Laura; Popescu, Alina; Cutrubinis, Mihalis; Stanculescu, Ioana; Moise, Valentin Ioan

    2018-04-01

    Fabrics made of 100% cotton and 100% flax respectively were exposed at ambient temperature to gamma radiation doses, from 5 to 40 kGy, using a Co-60 research irradiator. After the irradiation treatment the fabrics were subjected to dyeing process with Itodye Nat Pomegranate commercial natural dye. The influence of gamma irradiation treatment on the physical-mechanical properties, dyeing and surface morphology of natural fibres were investigated. Gamma ray treatment of 40 kGy was the most effective in the case of fabrics made from 100% cotton, enhancing the colour strength as evidenced by K/S value. The results obtained from the mechanical properties of fabrics made of 100% flax indicated that the dose of 40 kGy leads to a decrease of tensile strength up of to 41.5%. Infrared spectroscopy was used to monitor chemical and structural changes in cellulosic fibres induced during processing. Crystallinity indices calculated from various bands ratio showed insignificant variations for cotton and small variations in the case of flax. The surface morphology of irradiated cotton fabrics did not show significant changes even at the highest dose of 40 kGy, while the low doses applied on flax fabrics led to an appearance of small changes of surface morphology. The gamma irradiation increased the uptake of natural dyes on natural cellulosic fibres.

  12. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Hosseinimehr, S.J.; Azadbakht, M.; Mousavi, S.M.; Mahmoudzadeh, A.; Akhlaghpoor, S.

    2007-01-01

    The radioprotective effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by gamma irradiation has been investigated in mouse bone marrow cells. A single intraperitoneal (ip) administration of hawthorn extract at doses of 25, 50, 100 and 200 mg/kg 1 h prior to gamma irradiation (2 Gy) reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs). All four doses of hawthorn extract significantly reduced the frequencies of MnPCEs and increased the PCE/PCE+NCE ratio (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte) in mice bone marrow compared with the non drug-treated irradiated control (p<0.02-0.00001). The maximum reduction in MnPCEs was observed in mice treated with extract at a dose of 200 mg/kg. Administration of amifostine at dose 100 mg/kg and hawthorn at dose 200 mg/kg reduced the frequency of MnPCE almost 4.8 and 5.7 fold; respectively, after being exposed to 2 Gy of gamma rays, compare with the irradiated control group. Crataegus extract exhibited concentration-dependent activity on 1, 1-diphenyl 2-picrylhydrazyl free radical showing that Crataegus contained high amounts of phenolic compounds and the high performance liquid chromatography (HPLC) analysis determined that it contained chlorogenic acid, epicatechin and hyperoside. It appeared that hawthorn extract with antioxidant activity reduced the genotoxicity induced by gamma irradiation in bone marrow cells. (author)

  13. Evaluating the effects of gamma-irradiation for decontamination of medicinal cannabis

    Directory of Open Access Journals (Sweden)

    Arno eHazekamp

    2016-04-01

    Full Text Available In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative HPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  14. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis.

    Science.gov (United States)

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  15. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Anil V., E-mail: nano9993@gmail.com [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Kurmude, D.V. [Milind College of Science, Aurangabad 431004, (M.S.) India (India); Shengule, D.R. [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, (M.S.) India (India)

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  16. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gamma-irradiation to inactivate thioglucosidase of crucifers

    International Nuclear Information System (INIS)

    Lessman, K.J.; McCaslin, B.D.

    1987-01-01

    The crucifers contain glucosinolates which through enzymatic hydrolysis give rise to toxicants that limit the use of oil-free meal obtainable from this plant family. Seeds from three crucifers were used to test gamma irradiation to inactivate enzyme systems as a step toward detoxification. Seeds of Crambe abyssinica Hochst (crambe), ground seeds of Sinapis alba L. (mustard), and seeds of Brassica napus L. (rape) were subjected to gamma-irradiation (6.25, 12.5, 25.0 and 50.4 Mrad) to inactivate thioglucosidase and/or destroy glucosinolates. Samples of ground seeds, their oil-free meals, previously irradiated ground seeds and their oil-free meals were assayed for glucose, a product of enzymatic hydrolysis of glucosinolates present in the crucifer seeds. The 50.4 Mrad exposure inactivated thioglucosidase but did not destroy glucosinolates. The fatty acid contents of extracted oils were affected. The amino acid profile of defatted crambe protein meal was affected, while that of white mustard was not

  18. Degradation of peptides by gamma-irradiation, 2

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Tadatake; Yoshida, Shigeki; Kondo, Mitsumasa; Ishida, Tomoharu; Fukui, Manabu; Ito, Teiichiro (Nihon Univ., Tokyo (Japan). Coll. of Agriculture and Veterinary Medicine)

    1990-10-01

    The radiolytic products of two kinds of dipeptides containing aromatic amino acid, gly-L-tyr and L-tyr-gly in 1 mM aqueous solution in the presence of air were examined by gamma-irradiation at doses of about 6, 12 and 25 kGy. Peptide samples in aqueous solution were analyzed by HPLC and GC after gamma-irradiation. Amides which the amounts of formation was very small, were collected several times by an amino acid autoanalyzer and isolated by HPLC. The ninhydrin-positive products from gly-L-tyr were detected gly, tyr, dopa, asp, ammonia, methylamine, ethylamine and glycinamide. The products from L-tyr-gly were tyr, gly, dopa, asp, ammonia, methylamine and ethylamine, but tyrosinamide was not confirmed. The total amounts of ninhydrin-positive products formed were less than the decreasing amount of each peptide at every irradiation dose. Methanal and ethanal were detected in both peptides. A radiolytic pathway of gly-L-tyr and L-tyr-gly was estimated from these results. (author).

  19. Effect of gamma irradiation on olive leaves and application on meat products

    International Nuclear Information System (INIS)

    Farhi, Hana

    2009-01-01

    The gamma irradiation is a high technology in the treatment of food product, for this reason we have been interested to study the effect of gamma irradiation on microbial charge (Bioburden), the phenolics compounds and their antioxidant activities on the olive leaves. The irradiated olive leaves are added as an antimicrobial and antioxidant compound on minced meat for preservation.

  20. Effect of UV and gamma irradiation on vitamin B6 content and protein constituents of feeds

    International Nuclear Information System (INIS)

    Koesters, W.W.; Kirchgessner, M.

    1976-01-01

    In irradiation studies using UV and gamma rays, the extent of loss of vitamin B 6 in different feeds was investigated. During UV irradiation for periods of 24, 48, 72 and 96 hours, a dependence of the vitamin B 6 destruction upon the length of irradiation was demonstrated. The extent of vitamin B 6 destruction after irradiation for 96 hours amounted to about of 33% in both dried skim milk and flaked oats. In fish meal, however, the decay of vitamin B 6 was only 17% even after 120 hours. Gamma irradiation of dried skim milk and a piglet prestarter at doses of 5, 7 and 14.3 Mrad resulted in an increasing loss of vitamin B 6 in response to the radiation dose. The addition of 0.03% ascorbic acid as an antioxidant increased the vitamin B 6 destruction, while vitamin E and smaller amounts of ascorbic acid remained without influence. In both feeds the loss of vitamin B 6 was about 40% after the dose of 14.3 Mrad. Simultaneous studies on amino acid composition and lysine availability revealed that high doses of gamma radiation may adversely affect the protein constituents of feeds. (orig.) [de