WorldWideScience

Sample records for gamma background simulation

  1. Annihilation gamma ray background characterization and rejection for a positron camera

    International Nuclear Information System (INIS)

    Levin, C.S.; Tornai, M.P.; MacDonald, L.R.

    1996-01-01

    We have developed a miniature (1.2 cm 2 ) beta-ray camera prototype to assist a surgeon in locating and removing the margins of a resected tumor. When imaging positron emitting radiopharmaceuticals, annihilation gamma ray interactions in the detector can mimic those of the betas. The extent of the background contamination depends on the detector, geometry and tumor specificity of the radiopharmaceutical. We have characterized the effects that annihilation gamma rays have on positron imaging with the camera. We studied beta and gamma ray detection rates and imaging using small positron or electron sources directly exposed to the detector to simulate hot tumor remnants and a cylinder filled with 18 F to simulate annihilation background from the brain. For various ratios of phantom brain/tumor activity, a annihilation gamma rate of 1.8 cts/sec/gCi was measured in the CaF 2 (Eu) detector. We present two gamma-ray background rejection schemes that use a β-γ coincidence. Results show that the coincidence methods works with ∼99% gamma ray rejection efficiency

  2. Monte Carlo simulations of low background detectors

    International Nuclear Information System (INIS)

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.

    1995-01-01

    An implementation of the Electron Gamma Shower 4 code (EGS4) has been developed to allow convenient simulation of typical gamma ray measurement systems. Coincidence gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra for the purpose of extremely low-level assay. Monte Carlo calculations of this sort can be extremely successful since low background detectors are usually free of significant contributions from poorly localized radiation sources, such as cosmic muons, secondary cosmic neutrons, and radioactive construction or shielding materials. Previously, validation of this code has been obtained from a series of comparisons between measurements and blind calculations. An example of the application of this code to an exceedingly low background spectrum stripping will be presented. (author) 5 refs.; 3 figs.; 1 tab

  3. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement

    International Nuclear Information System (INIS)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-01-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of "2"3"8U, "2"3"2Th, and "4"0K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. - Highlights: • This study proposes a novel natural environment background model by simulating decays of "2"3"8U, "2"3"2Th, and "4"0K in soil. • The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. • The proposed environment background model is applied to study the properties of anticoincidence detector.

  4. Gamma-Ray Background Variability in Mobile Detectors

    Science.gov (United States)

    Aucott, Timothy John

    . This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  5. Environmental gamma background measurements in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Zhi Zeng; Jian Su; Hao Ma; Hengguan Yi; Jianping Cheng; Qian Yue; Junli Li; Hui Zhang

    2014-01-01

    To determine the environmental gamma background levels which affects rare events experiments, we measured in situ gamma spectrum at four locations in the China Jinping Underground Laboratory. The integral background count rates (40-2,700 keV) varied from 3.76 to 74.1 cps. The average count rate of the measurements inside the CJPL was 73.4 cps. The spectrometer was calibrated with a 152 Eu point source and Monte Carlo simulation to obtain the activity conversion factors for the rock and the air, respectively. The rocks that surrounded the CJPL was characterized by very low activity concentrations of 238 U (3.69-4.21 Bq kg -1 ), 232 Th (0.52-0.64 Bq kg -1 ) and 40 K (4.28 Bq kg -1 ). (author)

  6. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  7. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement.

    Science.gov (United States)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-02-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of (238)U, (232)Th, and (40)K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. LOFT gamma densitometer background fluxes

    International Nuclear Information System (INIS)

    Grimesey, R.A.; McCracken, R.T.

    1978-01-01

    Background gamma-ray fluxes were calculated at the location of the γ densitometers without integral shielding at both the hot-leg and cold-leg primary piping locations. The principal sources for background radiation at the γ densitometers are 16 N activity from the primary piping H 2 O and γ radiation from reactor internal sources. The background radiation was calculated by the point-kernel codes QAD-BSA and QAD-P5A. Reasonable assumptions were required to convert the response functions calculated by point-kernel procedures into the gamma-ray spectrum from reactor internal sources. A brief summary of point-kernel equations and theory is included

  9. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; Schweppe, J.E.; Stave, S.C.; Bernacki, B.E.; Jordan, D.V.; Stewart, T.N.; Seifert, C.E.; Kernan, W.J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, {sup 60}Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  10. Background simulation for the GENIUS project

    International Nuclear Information System (INIS)

    Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, Yu.G.

    1999-01-01

    The background simulations for the GENIUS experiment were performed with the help of GEANT 3.21 package and event generator DECAY 4.Contributions from the cosmogenic activity produced in the Ge detectors and from its radioactive impurities as well as from contamination of the liquid nitrogen and other materials were calculated.External gamma and neutron background were taking into consideration also.The results of calculations evidently show feasibility of the GENIUS project,which can substantially promote development of modern astroparticle physics

  11. A study on the effect of gamma background in low power startup physics tests

    International Nuclear Information System (INIS)

    Bae, Chang Joon; Lee, Ki Bog

    1993-01-01

    Low power physics tests should be performed for the domestic pressurized light water reactors (PWRs) after refueling. The tests are performed to ensure that operating characteristics of the core are consistent with predictions and that the core can be operated as designed. But in some low power physics tests, slow but steady reactivity increasing phenomena were noticed after step reactivity insertion by the control rod movement. These reactivity increasing phenomena are due to the low flux level and the gamma backgroud because an uncompensated ion chamber (UIC) is used as the ex-core neutron detector. The gamma background may affect the results of the low power physics tests. The aims of this paper are to analyze the grounds of such phenomena, to simulate a reference bank worth measurement test and to present a resolution quantitatively. In this study, the gamma background level was estimated by numerically solving the point kinetics equations accounting the gamma background effect. The reactivity computer check test was simulated to verify the model. Also, an appropriate neutron flux level was determined by simulating the reference bank worth measurement test. The determined neutron flux level is approximately 0.3 of the nuclear heating flux. This level is about 3 times as high as the current test upper limit specified in the test procedure. Then, the findings from this work were successfully applied to Kori unit 4 cycle 7 and Yonggwang unit 1 cycle 7 physics tests. (Author)

  12. Shielding of the GERDA experiment against external gamma background

    International Nuclear Information System (INIS)

    Barabanov, I.; Bezrukov, L.; Demidova, E.; Gurentsov, V.; Kianovsky, S.; Knoepfle, K.T.; Kornouhkov, V.; Schwingenheuer, B.; Vasenko, A.

    2009-01-01

    The GERmanium Detector Array (GERDA) experiment will search for neutrinoless double beta decay of 76 Ge and is currently under construction at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The basic design of GERDA is the use of cryogenic liquid and water of high purity as a superior shield against the hitherto dominant background from external gamma radiation. In this paper we show by Monte Carlo simulations and analytical calculations how GERDA was designed to suppress this background at Q ββ ( 76 Ge)=2039keV to a level of about 10 -4 cts/(keVkgy).

  13. A Study of Background Conditions for Sphinx—The Satellite-Borne Gamma-Ray Burst Polarimeter

    Directory of Open Access Journals (Sweden)

    Fei Xie

    2018-04-01

    Full Text Available SPHiNX is a proposed satellite-borne gamma-ray burst polarimeter operating in the energy range 50–500 keV. The mission aims to probe the fundamental mechanism responsible for gamma-ray burst prompt emission through polarisation measurements. Optimising the signal-to-background ratio for SPHiNX is an important task during the design phase. The Geant4 Monte Carlo toolkit is used in this work. From the simulation, the total background outside the South Atlantic Anomaly (SAA is about 323 counts/s, which is dominated by the cosmic X-ray background and albedo gamma rays, which contribute ∼60% and ∼35% of the total background, respectively. The background from albedo neutrons and primary and secondary cosmic rays is negligible. The delayed background induced by the SAA-trapped protons is about 190 counts/s when SPHiNX operates in orbit for one year. The resulting total background level of ∼513 counts/s allows the polarisation of ∼50 GRBs with minimum detectable polarisation less than 30% to be determined during the two-year mission lifetime.

  14. Calibration and simulation of a gamma array for DRAGON at ISAC

    CERN Document Server

    Gigliotti, D G; Hussein, A H

    2003-01-01

    A gamma ray detector has been built for the DRAGON facility at TRIUMF to detect the gamma ray emitted in astrophysically important proton and alpha radiative capture reactions. The gamma detector was designed to balance cost with maximum solid angle coverage and efficiency. To study the properties of the current design, GEANT simulations are being carried out and compared with prototype measurements using calibration sources and radioactive beams supplied by ISAC. Simulations will be compared with data allowing a realistic simulation to be produced. This modified simulation will then be used to provide efficiency predictions of the gamma array when an actual experiment's parameters are inputted. Using the simulated efficiency of the array, cross sections for radiative capture can be calculated from the measured gamma ray yields, for the individual reactions. The following will outline some initial results of background suppression of beam related experiments. Also shown, are some preliminary comparison of poi...

  15. QCD jet simulation with CMS at LHC and background studies to H to gamma gamma process

    CERN Document Server

    Litvin, V; Shevchenko, S; Wisniewski, N

    2002-01-01

    We have simulated and reconstructed one million of QCD jet events. This study was done with CMS full detector simulation, based on GEANT3 package, and object-oriented CMS C++ reconstruction program. The understanding of QCD jet background is important for the Higgs search in two-photon decay mode. The comparison with other types of backgrounds was also done. It was shown that the isolation tools were important ones to isolate the signal process from the huge background one. Using the isolation criteria based on the information from PbWO /sub 4/ electromagnetic calorimeter and the tracker we were able to reduce the QCD jet background to 15% of the total one. (9 refs).

  16. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    Science.gov (United States)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  17. Timing of Pulsed Prompt Gamma Rays for Background Discrimination

    International Nuclear Information System (INIS)

    Hueso-Gonzalez, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Kormoll, T.; Rohling, H.; Pausch, G.; Enghardt, W.; Fiedler, F.; Heidel, K.; Schoene, S.; Schwengner, R.; Wagner, A.

    2013-06-01

    In the context of particle therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several planes of position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density profile, which is correlated with the dose distribution. At Helmholtz- Zentrum Dresden-Rossendorf (HZDR) and OncoRay, a camera prototype has been developed consisting of two scatter planes (CdZnTe cross strip detectors) and an absorber plane (Lu 2 SiO 5 block detector). The data acquisition is based on VME electronics and handled by software developed on the ROOT platform. The prototype was tested at the linear electron accelerator ELBE at HZDR, which was set up to produce bunched bremsstrahlung photons. Their spectrum has similarities with the one expected from prompt gamma rays in the clinical case, and these are also bunched with the accelerator frequency. The time correlation between the pulsed prompt photons and the measured signals was used for background discrimination, achieving a time resolution of 3 ns (2 ns) FWHM for the CZT (LSO) detector. A time-walk correction was applied for the LSO detector and improved its resolution to 1 ns. In conclusion, the detectors are suitable for time-resolved background discrimination in pulsed clinical particle accelerators. Ongoing tasks are the test of the imaging algorithms and the quantitative comparison with simulations. Further experiments will be performed at proton accelerators. (authors)

  18. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  19. Dissecting the Gamma-Ray Background in Search of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  20. Gamma spectrometry and plastic-scintillator inherent background

    International Nuclear Information System (INIS)

    Pomerantsev, V.V.; Gagauz, I.B.; Mitsai, L.I.; Pilipenko, V.S.; Solomonov, V.M.; Chernikov, V.V.; Tsirlin, Y.A.

    1988-01-01

    The authors measured the energy resolution for a linear dependence of light yield on gamma radiation energy of gamma spectrometers based on plastic scintillation detectors for several plastic scintillators. If there were several gamma lines from the source the line with the highest energy was used to eliminate distortion due to overlap from the Compton background from gamma radiation of higher energy. Attenuation lengths were calculated. The tests were based on three modes of interaction between the gamma radiation and the scintillator: Compton scattering, the photoelectric effect, and pair formation. The contribution from light collection was also considered. The scintillators tested included polystyrene, polymethyl methacrylate, cesium iodide, and sodium iodide. Gamma sources included cesium 137, sodium 22, potassium 40, yttrium 88, thorium 232, and plutonium-beryllium

  1. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  2. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  3. Anisotropies in the diffuse gamma-ray background measured by the Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, A. [Stockholm University-Oskar Klein Center AlbaNova University Center, Fysikum, SE-10691 Stockholm (Sweden); Linden, T. [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Mazziotta, M.N. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Siegal-Gaskins, J.M. [Einstein Postdoctoral Fellow, California Institute of Technology 1200 E. California Blvd., Pasadena, CA 91125 (United States); Vitale, Vincenzo, E-mail: vincenzo.vitale@roma2.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Tor Vergata, 00133 Roma (Italy); Komatsu, E. [Texas Cosmology Center and Department of Astronomy, University of Texas, Austin, Dept. of Astronomy, 2511 Speedway, Austin, TX 78712 (United States)

    2012-11-11

    The small angular scale fluctuations of the (on large scale) isotropic gamma-ray background (IGRB) carry information about the presence of unresolved source classes. A guaranteed contribution to the IGRB is expected from the unresolved gamma-ray AGN while other extragalactic sources, Galactic gamma-ray source populations and dark matter Galactic and extragalactic structures (and sub-structures) are candidate contributors. The IGRB was measured with unprecedented precision by the Large Area Telescope (LAT) on-board of the Fermi gamma-ray observatory, and these data were used for measuring the IGRB angular power spectrum (APS). Detailed Monte Carlo simulations of Fermi-LAT all-sky observations were performed to provide a reference against which to compare the results obtained for the real data set. The Monte Carlo simulations are also a method for performing those detailed studies of the APS contributions of single source populations, which are required in order to identify the actual IGRB contributors. We present preliminary results of an anisotropy search in the IGRB. At angular scales <2 Degree-Sign (e.g., above multipole 155), angular power above the photon noise level is detected, at energies between 1 and 10 GeV in each energy bin, with statistical significance between 7.2 and 4.1{sigma}. The obtained energy dependences point to the presence of one or more unclustered source populations with the components having an average photon index {Gamma}=2.40{+-}0.07.

  4. Characterization of the InSTEC's low-background gamma spectrometer for environmental radioactivity studies

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Lopez Pino, N.; D'Alessandro Rodriguez, K.; Reyes, H.; Padilla Cabal, F.; Arado Lopez, J.O.; Casanova Diaz, A.O.; Gelen Rudnikas, A.; Rodenas Palomino, C.; Gomez Arozamena, J.

    2010-01-01

    The capabilities of the Low-Background Gamma Spectrometer (LBGS) at InSTEC were studied for environmental purposes. Fifty three γ-lines were identified in the LBGS background spectrum. The Minimum Detectable Activity for 2 10 Pb, 2 38 U, 2 26 Ra, 1 37 Cs, 2 32 Th and 4 0K were calculated using the detector's volumetric efficiency simulated by the Monte Carlo method. Validation was performed by absolute and relative analysis of radionuclide activities present in a marine sediment certified material. (author)

  5. The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies

    Science.gov (United States)

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  6. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    Science.gov (United States)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  7. Characterization of the InSTEC's low-background gamma spectrometer for environmental radioactivity studies

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Lopez Pino, N.; D'Alessandro Rodriguez, K.; Reyes, H.; Padilla Cabal, F.; Arado Lopez, J.O.; Casanova Diaz, A.O.; Gelen Rudnikas, A.; Rodenas Palomino, C.; Gomez Arozamena, J.

    2009-01-01

    The capabilities of the Low-Background Gamma Spectrometer (LBGS) at InSTEC were studied for environmental purposes. Fifty three ?-lines were fixed/identified? in the LBGS background spectrum. The Minimum Detectable Activity for 2 10 Pb, 2 38 U, 2 26 Ra, 1 37 Cs, 2 32 Th and 4 0K were calculated using the detector's volumetric efficiency simulated by the Monte Carlo method. The radionuclide activities in a marine sediment standard reference material? were determined by absolute and relative methods for validation./¿absolute and relative validation? (author)

  8. Beta activity measurements in high, variable gamma backgrounds

    International Nuclear Information System (INIS)

    Stanga, D.; Sandu, E.; Craciun, L.

    1997-01-01

    In many cases beta activity measurements must be performed in high and variable gamma backgrounds. In such instances it is necessary to use well-shielded detectors but this technique is limited to laboratory equipment and frequently insufficient. In order to perform in a simple manner beta activity measurements in high and variable backgrounds a software-aided counting technique have been developed and a counting system have been constructed. This technique combines the different counting techniques with traditional method of successive measurement of the sample and background. The counting system is based on a programmable multi-scaler which is endowed with appropriate software and allow all operations to be performed via keyboard in an interactive fashion. Two large - area proportional detectors were selected in order to have the same background and the same gamma response within 5%. A program has been developed for the counting data analysis and beta activity computing. The software-aided counting technique has been implemented for beta activity measurement in high and variable backgrounds. (authors)

  9. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-11-01

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  10. The determination and use of radionuclide background in gamma spectrometry

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1986-01-01

    Background is the major component of gross photon peak area. Therefore, net area, nuclide activity, counting uncertainty, and limits of detection calculations are no better than the calculation of background. In this study, background in gamma spectrometry is explored in several of its aspects. Means are presented to reduce background. Standard practices are presented to be used in the acquisition of valid, relevant background data. Unified standard calculations with examples are presented in the use of background data to determine net count and counting uncertainty. L. A. Currie's latest calculations of Lower Limits of Detection (1) (LLD) as they apply to gamma spectrometry are reviewed. Finally, Maximum Undetected Activity (MUA), LLD, and Critical Level (CL) concepts and calculations are compared in sample spectra

  11. Simulation of neutrons and gamma pulse signal and research on the pulse shape discrimination technology

    International Nuclear Information System (INIS)

    Zuo Guangxia; He Bin; Xu Peng; Qiu Xiaolin; Ma Wenyan; Li Sufen

    2012-01-01

    In neutrons detection, it is important to discriminate the neutron signals from the gamma-ray background. In this article, simulation of neutrons and gamma pulse signals is developed based on the LabVIEW platform. Two digital algorithms of the charge comparison method and the pulse duration time method are realized using 10000 simulation signals. Experimental results show that neutron and gamma pulse signals can be discriminated by the two methods, and the pulse duration time method is better than the charge comparison method. (authors)

  12. Background Reduction around Prompt Gamma-ray Peaks from Korean White Ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. N.; Sun, G. M.; Moon, J. H.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Y. E. [Chung-buk National University, Chungju (Korea, Republic of)

    2007-10-15

    Prompt gamma-ray activation analysis (PGAA) is recognized as a very powerful and unique nuclear method in terms of its non-destruction, high precision, and no time-consuming advantages. This method is used for the analysis of trace elements in various types of sample matrix such as metallurgical, environmental, biological samples, etc. When a spectrum is evaluated, background continuum is a major disturbing factor for a precise and accurate analysis. Furthermore, a prompt gamma spectrum is complicate with a wide range. To make the condition free from this limitation, a reduction of the background is important for the PGAA analysis. The background-reducing methods are divided into using the electronic equipment like a suppression mode and principal component analysis (PCA) based on a multivariate statistical method. In PGAA analysis, Lee et al. compared the background reduction methods like PCA and wavelet transform for the prompt gamma-ray spectra. Lim et al. have applied the multivariate statistical method to the identification of the peaks with low-statistics from the explosives. In this paper, effective reduction of background in the prompt gamma spectra using the PCA is applied to the prompt gammaray peaks from Korean Baeksam (Korean white ginseng)

  13. Long-term variations in the gamma-ray background on SMM

    Science.gov (United States)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  14. {gamma}-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Perelli Cippo, E. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Gorini, G. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom); Andreani, C.; Senesi, R. [Universia degli Studi di Roma Tor Vergata, Dipartimento di Fisica and NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  15. Car-borne survey of natural background gamma dose rate in Canakkale region (Turkey)

    International Nuclear Information System (INIS)

    Turhan, S.; Arikan, I. H.; Oquz, F.; Aezdemir, T.; Yuecel, B.; Varinlioqlu, A.; Koese, A.

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Canakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of 238 U, 226 Ra, 232 Th and 40 K in soil samples from the Canakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92 856 data of the background gamma dose rate were collected for the Canakkale region. The background gamma dose rate of the Canakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h -1 , respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 μSv. (authors)

  16. The Utilization of Background Spectrum to Calibrate Gamma Spectrometry

    International Nuclear Information System (INIS)

    Mahrouka, M. M.; Mutawa, A. M.

    2004-01-01

    Many developed countries have very poor reference standards to calibrate their nuclear instrumentations or may find some difficulties to obtain a reference standard. In this work a simple way for Gamma spectrometry calibration was developed. The method depends on one reference point and additional points from the background. The two derived equations were applied to the analyses of radioactive nuclides in soil and liquid samples prepared by IAEA laboratories through AL MERA Project. The results showed the precision of the methodology used, as well as, the possibility of using some points in the background spectrum as a replacement for reference standards of Gamma spectrometry calibration. (authors)

  17. A low-background gamma-ray assay laboratory for activation analysis

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Langland, J.K.; Lindstrom, D.J.; Slaback, L.A.

    1990-01-01

    The sources of background in a gamma-ray detector were experimentally determined in underground and surface counting rooms, and an optimized shield was constructed at NIST. The optimum thickness of lead was 10-15 cm, with a greater thickness giving an increased background due to the buildup of tertiary cosmic-ray particles. Neither cadmium, tin, copper nor plastic (hydrocarbon or fluorocarbon) was desirable as a shield liner, since all these increased the background continuum or introduced characteristic peaks into the background spectrum. Two broad peaks in the background result from inelastic scattering of cosmic-ray neutrons (0.02 cm -2 s -1 ) in germanium. These neutrons also excite the lower nuclear levels of lead and structural iron to produce additional gamma-ray peaks in the spectrum. The influence of the 20 MW NIST reactor, located 60 m from the detector, was undetectable. Comparisons among detectors and locations clearly separate cosmic from environmental components of the background. (orig.)

  18. A low-background gamma-ray assay laboratory for activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Langland, J K [National Inst. of Standards and Technology, Gaithersburg, MD (USA). Center for Analytical Chemistry; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (USA). Lyndon B. Johnson Space Center; Slaback, L A [National Inst. of Standards and Technology, Gaithersburg, MD (USA). Occupational Health and Safety Div.

    1990-12-20

    The sources of background in a gamma-ray detector were experimentally determined in underground and surface counting rooms, and an optimized shield was constructed at NIST. The optimum thickness of lead was 10-15 cm, with a greater thickness giving an increased background due to the buildup of tertiary cosmic-ray particles. Neither cadmium, tin, copper nor plastic (hydrocarbon or fluorocarbon) was desirable as a shield liner, since all these increased the background continuum or introduced characteristic peaks into the background spectrum. Two broad peaks in the background result from inelastic scattering of cosmic-ray neutrons (0.02 cm{sup -2} s{sup -1}) in germanium. These neutrons also excite the lower nuclear levels of lead and structural iron to produce additional gamma-ray peaks in the spectrum. The influence of the 20 MW NIST reactor, located 60 m from the detector, was undetectable. Comparisons among detectors and locations clearly separate cosmic from environmental components of the background. (orig.).

  19. Study, simulation and modelling of a gamma photon detector placed on an integral-type eccentric orbit

    International Nuclear Information System (INIS)

    Diallo, N.

    1999-01-01

    Gamma-ray lines are the signature of nuclear reactions and other high-energy processes that take place in the Universe. Their measurement and study provide invaluable information on many important problems in high energy astrophysics, including particle acceleration, physics of compact objects and nucleosynthesis. However the observation of astronomical gamma-ray sources has to be performed above the atmosphere because the Earth's atmosphere is opaque to gamma-rays. Unfortunately at these altitudes, spatial high energy electromagnetic radiation (X and gamma rays) detectors are exposed to intense parasite fluxes of radiation and particles induced by primary galactic cosmic rays. These fluxes as well radiation and secondary particles they generate, constitute a considerable source of background which limits their performances. Our study has been done in the framework of the INTEGRAL mission, a gamma-ray astronomy mission of the European Space Agency. INTEGRAL is devoted to the observation of celestial gamma-ray sources. It consists of two main instruments: an imager IBIS and a high resolution germanium spectrometer SPI (ΔE/E = 1.6 10 -3 at 1.3 MeV). We studied the hadronic component of the SPI background. This component is due to the radioactive decay of unstable nuclides produced by the interactions of cosmic-ray protons with the materials of SPI. It consists of a continuum with gamma ray lines superimposed. To study nuclear processes, Monte Carlo simulations have been performed with the nuclear code TIERCE developed at CEA/DAM. We used the GEANT Monte Carlo code developed at CERN to simulate the germanium detectors response. Background reduction techniques as PSD (Pulse Shape Discrimination) and energetic signatures have been applied in well chosen energy ranges to reduce the background. and improve the SPI sensitivity. With the estimated SPI narrow-line sensitivity level, SPI would be able to detect many gamma ray limes emitted in the active galactic sites

  20. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  1. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  2. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pahlka, R; Kappadath, S; Mawlawi, O [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray in the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.

  3. Study, simulation and modelling of a gamma photon detector placed on an integral-type eccentric orbit; Etude, simulation et modelisation d'un detecteur de photons gamma place sur une orbite excentrique de type integral

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, N

    1999-07-01

    Gamma-ray lines are the signature of nuclear reactions and other high-energy processes that take place in the Universe. Their measurement and study provide invaluable information on many important problems in high energy astrophysics, including particle acceleration, physics of compact objects and nucleosynthesis. However the observation of astronomical gamma-ray sources has to be performed above the atmosphere because the Earth's atmosphere is opaque to gamma-rays. Unfortunately at these altitudes, spatial high energy electromagnetic radiation (X and gamma rays) detectors are exposed to intense parasite fluxes of radiation and particles induced by primary galactic cosmic rays. These fluxes as well radiation and secondary particles they generate, constitute a considerable source of background which limits their performances. Our study has been done in the framework of the INTEGRAL mission, a gamma-ray astronomy mission of the European Space Agency. INTEGRAL is devoted to the observation of celestial gamma-ray sources. It consists of two main instruments: an imager IBIS and a high resolution germanium spectrometer SPI ({delta}E/E = 1.6 10{sup -3} at 1.3 MeV). We studied the hadronic component of the SPI background. This component is due to the radioactive decay of unstable nuclides produced by the interactions of cosmic-ray protons with the materials of SPI. It consists of a continuum with gamma ray lines superimposed. To study nuclear processes, Monte Carlo simulations have been performed with the nuclear code TIERCE developed at CEA/DAM. We used the GEANT Monte Carlo code developed at CERN to simulate the germanium detectors response. Background reduction techniques as PSD (Pulse Shape Discrimination) and energetic signatures have been applied in well chosen energy ranges to reduce the background. and improve the SPI sensitivity. With the estimated SPI narrow-line sensitivity level, SPI would be able to detect many gamma ray limes emitted in the active

  4. Contribution of 210Pb bremsstrahlung to the background of lead shielded gamma spectrometers

    International Nuclear Information System (INIS)

    Mrda, D.; Bikit, I.; Veskovic, M.; Forkapic, S.

    2007-01-01

    Lead, which is often used as a shielding material, contains 210 Pb (T 1/2 =22.3 y). The 46.54 keV γ-intensity of 210 Pb can be easily reduced by an inner lining, but the bremsstrahlung caused by the β-decay of its daughter, 210 Bi, with a maximal electron energy of 1.16 MeV, will contribute to the gamma detector background. The spectrum of this bremsstrahlung is calculated by numerically fitting the β-spectrum and integrating the Koch-Motz formula. The absorption of the bremsstrahlung in the lead and detection efficiencies for the HPGe detector are calculated by the effective solid angle algorithm, using corrections for the photopeak/Compton ratio of cross-sections in Ge. By comparison with the measured background spectrum, it is shown that, for the lead with 25 Bq/kg of 210 Pb up to 500 keV of gamma spectrum, the bremsstrahlung contribution to the background is about 20% for our surface-based detector system. Also, we compared our calculations with a Monte Carlo simulation of another detector system with a shield containing 1 Bq/kg of 210 Pb and found that our analytical method gives a value of roughly two times higher than the Monte Carlo one for the total bremsstrahlung contribution. The quality of the analytical semi-empirical method is proved by the reasonable agreement with the experimental results published

  5. Gate Simulation of a Gamma Camera

    International Nuclear Information System (INIS)

    Abidi, Sana; Mlaouhi, Zohra

    2008-01-01

    Medical imaging is a very important diagnostic because it allows for an exploration of the internal human body. The nuclear imaging is an imaging technique used in the nuclear medicine. It is to determine the distribution in the body of a radiotracers by detecting the radiation it emits using a detection device. Two methods are commonly used: Single Photon Emission Computed Tomography (SPECT) and the Positrons Emission Tomography (PET). In this work we are interested on modelling of a gamma camera. This simulation is based on Monte-Carlo language and in particular Gate simulator (Geant4 Application Tomographic Emission). We have simulated a clinical gamma camera called GAEDE (GKS-1) and then we validate these simulations by experiments. The purpose of this work is to monitor the performance of these gamma camera and the optimization of the detector performance and the the improvement of the images quality. (Author)

  6. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  7. Origin of the diffuse background gamma radiation

    International Nuclear Information System (INIS)

    Stecker, F.W.; Puget, J.L.

    1974-05-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy formation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given. (U.S.)

  8. Neutron-induced 2.2 MeV background in gamma ray telescopes

    International Nuclear Information System (INIS)

    Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen

  9. Simulation of Prompt gamma-rays spectra: Calibration for water tables pollutants determination

    International Nuclear Information System (INIS)

    Khelifi, R.; Idiri, Z.; Amokrane, A.; Bode, P.

    2006-01-01

    Full text of publication follows: A PGNAA facility using Am-Be source has been developed with the aim of analyzing the major composition of various elements in aqueous sample. A program of simulation for gamma rays spectra was developed to estimate the detection limits of pollutants. The background line under photo-peaks of interest was simulated by using experimental data. The reliability of the program is checked on real condition with solutions contained various salt concentration. Comparison between experimental and simulated spectra was found in good agreement. (authors)

  10. Simulation of prompt gamma rays spectra: calibration for pollutants determination in voluminous samples

    International Nuclear Information System (INIS)

    Khelifi, R.; Idiri, Z.; Amokrane, A.; Bode, P.

    2006-01-01

    A PGNAA facility using Am-Be source has been developed with the aim of analyzing the major composition of various elements in aqueous samples. A program of simulation for gamma rays spectra was developed to estimate the detection limits of pollutants. The background line under photo peaks of interest was simulated using experimental data. The reliability of the program was checked under real conditions with solutions containing various salt concentrations. Experimental and simulated spectra were found to be in good agreement. (author)

  11. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  12. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    OpenAIRE

    Siegal-Gaskins, Jennifer M.

    2008-01-01

    The majority of gamma-ray emission from Galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population, and show that...

  13. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  14. Effect of high gamma background on neutron sensitivity of fission detectors

    International Nuclear Information System (INIS)

    Balagi, V.; Prasad, K.R.; Kataria, S.K.

    2004-01-01

    Tests were performed on two parallel plate and two cylindrical fission detectors in pulse and dc mode. The effect of gamma background on neutron sensitivity was studied in thermal neutron flux from 30 nv to 60 nv over which gamma field intensity ranging from 230 kR/h to 3.7 MR/h was superposed. In the case of one of the parallel plate detectors the fall in neutron sensitivity was observed to be 3.7% at 1 MR/h and negligible below 1 MR/h. In the case of one of the cylindrical counters the fall in neutron sensitivity was negligible below 500 kR/h and 37% at 1 MR/h. The data was used to derive the design parameters for a wide range fission detector to be procured for PFBR instrumentation for operation at 600 degC and gamma background of 1 MR/h. (author)

  15. Cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2007-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We show that the expected sensitivity of future gamma-ray detectors such as GLAST should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars, whose intensity is linearly proportional to density. Therefore, the angular power spectrum of the CGB provides a 'smoking-gun' signature of gamma rays from dark matter annihilation

  16. Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background

    Science.gov (United States)

    Ando, Shin'ichiro; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco; Zechlin, Hannes-S.

    2017-06-01

    Recently, a new measurement of the auto- and cross-correlation angular power spectrum (APS) of the isotropic gamma-ray background was performed, based on 81 months of data of the Fermi Large-Area Telescope (LAT). Here, we fit, for the first time, the new APS data with a model describing the emission of unresolved blazars. These sources are expected to dominate the anisotropy signal. The model we employ in our analysis reproduces well the blazars resolved by Fermi LAT. When considering the APS obtained by masking the sources listed in the 3FGL catalog, we find that unresolved blazars underproduce the measured APS below ˜1 GeV . Contrary to past results, this suggests the presence of a new contribution to the low-energy APS, with a significance of, at least, 5 σ . The excess can be ascribed to a new class of faint gamma-ray emitters. If we consider the APS obtained by masking the sources in the 2FGL catalog, there is no underproduction of the APS below 1 GeV, but the new source class is still preferred over the blazars-only scenario (with a significance larger than 10 σ ). The properties of the new source class and the level of anisotropies induced in the isotropic gamma-ray background are the same, independent of the APS data used. In particular, the new gamma-ray emitters must have a soft energy spectrum, with a spectral index ranging, approximately, from 2.7 to 3.2. This complicates their interpretation in terms of known sources, since, normally, star-forming and radio galaxies are observed with a harder spectrum. The new source class identified here is also expected to contribute significantly to the intensity of the isotropic gamma-ray background.

  17. An ultralow background germanium gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Reeves, R.H.; Brodzinski, R.L.; Hensley, W.K.; Ryge, P.

    1984-01-01

    The monitoring of minimum detectable activity is becoming increasingly important as environmental concerns and regulations require more sensitive measurement of the radioactivity levels in the workplace and the home. In measuring this activity, however, the background becomes one of the limiting factors. Anticoincidence systems utilizing both NaI(T1) and plastic scintillators have proven effective in reducing some components of the background, but radiocontaminants in the various regions of these systems have limited their effectiveness, and their cost is often prohibitive. In order to obtain a genuinely low background detector system, all components must be free of detectable radioactivity, and the cosmic ray produced contribution must be significantly reduced. Current efforts by the authors to measure the double beta decay of Germanium 76 as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma spectrometer with an exceptionally low background. This paper describes the development of this system, outlines the configuration and operation of its preamplifier, linear amplifier, analog-to-digital converter, 4096-channel analyzer, shielding consisting of lead-sandwiched plastic scintillators wrapped in cadmium foil, photomultiplier, and its pulse generator and discriminator, and then discusses how the system can be utilized to significantly reduce the background in high resolution photon spectrometers at only moderate cost

  18. Study of Gamma spectra by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cantaragiu, A.; Gheorghies, A.; Borcia, C.

    2008-01-01

    The purpose of this paper is obtaining gamma ray spectra by means of a scintillation detector applying the Monte Carlo statistic simulation method using the EGS4 program. The Monte Carlo algorithm implies that the physical system is described by the probability density function which allows generating random figures and the result is taken as an average of numbers which were observed. The EGS4 program allows the simulation of the following physical processes: the photo-electrical effect, the Compton effect, the electron positron pairs generation and the Rayleigh diffusion. The gamma rays recorded by the detector are converted into electrical pulses and the gamma ray spectra are acquired and processed by means of the Nomad Plus portable spectrometer connected to a computer. As a gamma ray sources 137Cs and 60Co are used whose spectra drawn and used for study the interaction of the gamma radiations with the scintillation detector. The parameters which varied during the acquisition of the gamma ray spectra are the distance between source and detector and the measuring time. Due to the statistical processes in the detector, the peak looks like a Gauss distribution. The identification of the gamma quantum energy value is achieved by the experimental spectra peaks, thus gathering information about the position of the peak, the width and the area of the peak respectively. By means of the EGS4 program a simulation is run using these parameters and an 'ideal' spectrum is obtained, a spectrum which is not influenced by the statistical processes which take place inside the detector. Then, the convolution of the spectra is achieved by means of a normalised Gauss function. There is a close match between the experimental results and those simulated in the EGS4 program because the interactions which occurred during the simulation have a statistical behaviour close to the real one. (authors)

  19. An automated background estimation procedure for gamma ray spectra

    International Nuclear Information System (INIS)

    Tervo, R.J.; Kennett, T.J.; Prestwich, W.V.

    1983-01-01

    An objective and simple method has been developed to estimate the background continuum in Ge gamma ray spectra. Requiring no special procedures, the method is readily automated. Based upon the inherent statistical properties of the experimental data itself, nodes, which reflect background samples are located and used to produce an estimate of the continuum. A simple procedure to interpolate between nodes is reported and a range of rather typical experimental data is presented. All information necessary to implemented this technique is given including the relevant properties of various factors involved in its development. (orig.)

  20. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    International Nuclear Information System (INIS)

    Cabras, G.; De Angelis, A.; De Lotto, B.; De Maria, M. M.; De Sabata, F.; Mansutti, O.; Frailis, M.; Persic, M.; Bigongiari, C.; Doro, M.; Mariotti, M.; Peruzzo, L.; Saggion, A.; Scalzotto, V.; Paoletti, R.; Scribano, A.; Turini, N.; Moralejo, A.; Tescaro, D.

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments

  1. Background simulation for the COBRA-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quante, Thomas [TU Dortmund, Institut fuer Physik (Germany); Collaboration: COBRA-Collaboration

    2015-07-01

    COBRA is a next-generation experiment searching for neutrinoless double beta (0νββ) decay using CdZnTe semiconductor detectors. The main focus is on {sup 116}Cd, with a Q-value of 2813.5 keV well above the highest dominant naturally occurring gamma lines. By measuring the half-life of the 0νββ decay, it is possible to clarify the nature of the neutrino as either Dirac or Majorana particle and furthermore to determine the effective Majorana mass. COBRA is currently in the demonstrator phase to study possible background contributions and gain information about the longterm stability of the used detectors. For this purpose a demonstrator array made up of 64 Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors in coplanar grid configuration was designed and realised at the Gran Sasso Underground laboratory (LNGS) in Italy. Simulations of the whole demonstrator setup are ongoing to reproduce the measured spectra for each detector. This is done in two steps. The first uses the Geant4 based framework VENOM for tracking and energy deposition inside each detector. Detector effects like the energy resolution and electron trapping have to be applied in the second step. The used detector geometry has to be verified against calibration measurements. This talk gives an overview of the current simulation status.

  2. Analysis of coincidence {gamma}-ray spectra using advanced background elimination, unfolding and fitting algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, M. E-mail: fyzimiro@savba.skfyzimiro@flnr.jinr.ru; Matousek, V. E-mail: matousek@savba.sk; Kliman, J.; Krupa, L.L.; Jandel, M

    2003-04-21

    The efficient algorithms to analyze multiparameter {gamma}-ray spectra are presented. They allow to search for peaks, to separate peaks from background, to improve the resolution and to fit 1-, 2-, 3-parameter {gamma}-ray spectra.

  3. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  4. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    Science.gov (United States)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  5. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  6. Reduction of Compton background from hydrogen in prompt gamma-ray analysis by multiple photon detection

    International Nuclear Information System (INIS)

    Toh, Y.; Oshima, M.; Kimura, A.; Koizumi, M.; Furutaka, K.; Hatsukawa, Y.

    2008-01-01

    Low-energy photons produced by the Compton scattering from hydrogen increase the background in the lower-energy region of the gamma-ray spectrum. This results in an increase in the detection limit for trace elements. In multiple photon detection prompt gamma-ray analysis (MPGA), only those elements that simultaneously emit two or more prompt gamma-rays, which have cascade relation and are emitted within a short interval, can be measured. Therefore, the influence of hydrogen can be reduced. In this study, standard polymer and food samples are measured. The hydrogen background is reduced in MPGA. (author)

  7. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  8. Measurement of background gamma radiation in the northern Marshall Islands.

    Science.gov (United States)

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  9. A Comparison Of GADRAS Simulated And Measured Gamma Ray Spectra

    International Nuclear Information System (INIS)

    Jeffcoat, R.; Salaymeh, S.

    2010-01-01

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  10. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    International Nuclear Information System (INIS)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M.; Carrillo F, J.; Montero C, M. E.

    2015-10-01

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226 Ra, 232 Th, 40 K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h -1 . Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg -1 , of 226 Ra, 232 Th and 40 K, respectively. From the analysis of the spatial distribution of 232 Th, 226 Ra, and 40 K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  11. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein

    2012-01-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a 137 Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  12. Nature of gamma rays background radiation in new and old buildings of Qatar University

    International Nuclear Information System (INIS)

    Al-Houty, L.; Abou-Leila, H.; El-Kameesy, S.

    1987-01-01

    Measurements and analysis of gamma-background radiation spectrum in four different places of Qatar University campus were performed at the energy range 10 keV-3 MeV using hyper pure Ge-detector. The dependence of the detector absolute photopeak efficiency on gamma-ray energies was determined and correction of the data for that was also done. The absorbed dose for each gamma line was calculated and an estimation of the total absorbed dose for the detected gamma lines in the four different places was obtained. Comparison with other results was also performed

  13. Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: a closer look

    DEFF Research Database (Denmark)

    Cuoco, Alessandro; Sellerholm, A.; Conrad, J.

    2011-01-01

    We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope (Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds...... of the detector are taken into account by convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin...

  14. A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    OpenAIRE

    Cabras, G.; De Angelis, A.; De Lotto, B.; De Maria, M. M.; De Sabata, F.; Mansutti, O.; Frailis, M.; Persic, M.; Bigongiari, C.; Doro, M.; Mariotti, M.; Peruzzo, L.; Saggion, A.; Scalzotto, V.; Paoletti, R.

    2008-01-01

    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained wit...

  15. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-02-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  16. Simulating Terrestrial Gamma-ray Flashes using SWORD (Invited)

    Science.gov (United States)

    Gwon, C.; Grove, J.; Dwyer, J. R.; Mattson, K.; Polaski, D.; Jackson, L.

    2013-12-01

    We report on simulations of the relativistic feedback discharges involved with the production of terrestrial gamma-ray flashes (TGFs). The simulations were conducted using Geant4 using the SoftWare for the Optimization of Radiation Detectors (SWORD) framework. SWORD provides a graphical interface for setting up simulations in select high-energy radiation transport engines. Using Geant4, we determine avalanche length, the energy spectrum of the electrons and gamma-rays as they leave the field region, and the feedback factor describing the degree to which the production of energetic particles is self-sustaining. We validate our simulations against previous work in order to determine the reliability of our results. This work is funded by the Office of Naval Research.

  17. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  18. On the omnipresent background gamma radiation of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Banjanac, R.; Maletić, D.; Joković, D., E-mail: yokovic@ipb.ac.rs; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m{sup 2}s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m{sup 2}s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the “skyshine radiation”), and to a far less extent to cosmic rays of degraded energy. - Highlights: • We studied the low-energy part of continuous background spectra of germanium detectors. • The study was performed at the ground level and at the shallow underground sites. • The instrumental spectrum is due to radiations of the similar continuous spectrum. • The low-energy radiation is of both terrestrial and cosmic-ray origin. • In our study, we find that this radiation is of predominantly terrestrial origin.

  19. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker, E-mail: cpfrommer@aip.de [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  20. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Science.gov (United States)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  1. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    Science.gov (United States)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  2. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  3. Design and applications of an anticoincidence shielded low background gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Petri, H [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    1997-03-01

    A low background gamma-ray spectrometer has been constructed for measuring artificial and natural radioative isotopes. The design of the spectrometer, its properties and the application to the determination of natural radioactivity of dental ceramics are described. (orig.)

  4. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Le Foulher, F.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Ray, C.; Testa, E.; Testa, M. [Universite de Lyon 1, F-69003 Lyon (France); IN2P3/CNRS, UMR 5822, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne (France); Freud, N.; Letang, J. M. [Laboratoire de Controles Non Destructifs Par Rayonnements Ionisants, INSA-Lyon, F-69621 Villeurbanne cedex (France); Karkar, S. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Plescak, R.; Schardt, D. [Gesellschaft fur Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-07-01

    Monte Carlo simulations based on the Geant4 tool-kit (version 9.1) were performed to study the emission of secondary prompt gamma-rays produced by nuclear reactions during carbon ion-beam therapy. These simulations were performed along with an experimental program and instrumentation developments which aim at designing a prompt gamma-ray device for real-time control of hadron therapy. The objective of the present study is twofold: first, to present the features of the prompt gamma radiation in the case of carbon ion irradiation; secondly, to simulate the experimental setup and to compare measured and simulated counting rates corresponding to various experiments. For each experiment, we found that simulations overestimate prompt gamma-ray detection yields by a factor of 12. Uncertainties in fragmentation cross sections and binary cascade model cannot explain such discrepancies. The so-called 'photon evaporation' model is therefore questionable and its modification is currently in progress. (authors)

  5. Status of the Simbol-X Background Simulation Activities

    Science.gov (United States)

    Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.

    2009-05-01

    The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.

  6. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  7. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  8. Background simulation for the Spherical Proportional Counter and its use for the detection of optical photons

    International Nuclear Information System (INIS)

    Bougamont, E; Colas, P; Dastgheibi-Fard, A; Derre, J; Giomataris, I; Gerbier, G; Gros, M; Magnier, P; Navick, X F; Tsiledakis, G; Salin, P; Savvidis, I; Vergados, J D

    2013-01-01

    The recently developed Spherical Proportional Counter [1] allows to instrument large target masses with good energy resolution and sub-keV energy threshold. The moderate cost of this detector, its simplicity and robustness, makes this technology a promising approach for many domains of physics and applications, like dark matter detection and low energy neutrino searches. Detailed Monte Carlo simulations are essential to evaluate the background level expected at the sub-keV energy regime. The simulated background here, it refers to the contribution of the construction material of the detector and the effect of the environmental gamma radiation. This detector due to its spherical shape could be also served as an optical photon detector provided it is equipped with PMTs, for Double Beta decay and Dark Matter searches. All calculations shown here are obtained using the FLUKA Monte Carlo code

  9. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  10. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  11. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  12. Simulation of COMEDIE Fission Product Plateout Experiment Using GAMMA-FP

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl

    2014-01-01

    FThis phenomenon is particularly important under a VHTR design with vented low pressure confinement (VLPC), because the vent allows the prompt release of fission products accumulated within the primary circuit to environment during an initial blow-down phase after pipe break accidents. In order to analyze the fission product plateout, an numerical model was developed by Yoo et al. and incorporated into the GAMMA-FP code in the past. The GAMMA-FP model was validated against two experiment data, i.e., VAMPYR-1 and OGL, during the development phase. One of the well-known experiments for fission product plateout is the COMEDIE experiment. In this work, the COMEDIE experiment has been simulated using the GAMMA-FP code to investigate the reliability and applicability of the plateout model of GAMMA-FP. The COMEDIE experiment for fission product plateout was simulated using the GAMMA-FP code in this work. A good agreement was achieved between the measured and predicted plateout activities. The existing solution scheme was modified to allow larger time step size for fission product analysis in order to speed-up the computational time. Nevertheless, the modification of the existing numerical model of GAMMA-FP is necessary when a simulation capability of a long duration of plateout period (e.g., 60 years) is targeted

  13. An evaluation of the background introduced from the coded aperture mask in the low energy gamma-ray telescope ZEBRA

    International Nuclear Information System (INIS)

    Butler, R.C.; Caroli, E.; Di Cocco, G.; Maggioli, P.P.; Spizzichino, A.; Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    The background which arises from the presence of a coded aperture mask is evaluated. The major contributions which have been considered here are the interactions with the mask of the isotropic gamma-ray background, a parallel gamma-ray beam, neutrons and the effect of the mask element profile. It is shown that none of these factors conbribute to a significant excess or modulation in the background counting rate over the detection plane. In this way the use of a passive rather than an active coded aperture mask is seen to be suitable for use in a low energy gamma-ray telescope. (orig.)

  14. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  15. Ultralow background germanium gamma-ray spectrometer using superclean materials and cosmic-ray anticoincidence

    International Nuclear Information System (INIS)

    Reeves, J.H.; Hensley, W.K.; Brodzinski, R.L.; Ryge, P.

    1983-10-01

    Efforts to measure the double beta decay of 76 Ge as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma-ray spectrometer with an exceptionally low background. This paper describes the development of this system and how these techniques can be utilized to significantly reduce the background in high resolution photon spectrometers at only a moderate cost

  16. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    Science.gov (United States)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  17. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  18. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    International Nuclear Information System (INIS)

    Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P.

    2008-01-01

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution (η) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10 19.5 eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis

  19. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Inoue, N.; Miyazawa, K. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Vankov, H.P. [Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy, Sofia (Bulgaria)

    2008-01-15

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution ({eta}) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10{sup 19.5}eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis.

  20. MDT Performance in a High Rate Background Environment

    CERN Document Server

    Aleksa, Martin; Hessey, N P; Riegler, W

    1998-01-01

    A Cs137 gamma source with different lead filters in the SPS beam-line X5 has been used to simulate the ATLAS background radiation. This note shows the impact of high background rates on the MDT efficiency and resolution for three kinds of pulse shaping and compares the results with GARFIELD simulations. Furthermore it explains how the performance can be improved by time slewing corrections and double track separation.

  1. Distribution characteristics of natural gamma background levels around the capital city Shillong, Meghalaya (India)

    International Nuclear Information System (INIS)

    Kukreti, B.M.; Sharma, G.K.; Rao, M.S.; Ramabhadraih, T.; Bhaskar Rao, Arjun; Bhuphang, A.

    2012-01-01

    Onsite measurement of natural gamma radiation around the capital city Shillong in Meghalaya, has been carried out using GPS device and environmental survey meter. Each referenced insitu data point was validated at the site by means of simultaneous measurements of radiation levels (at 1.0 mts height) through handheld dosimeters. Collected data points on natural background levels, have been analysed and quantified in the context of preparing reference background levels in the city in order to deal with any radiological emergency that may arise in the public domain. Study reveals Gaussian distributed mean annual gamma dose of 0.77 mSv (n=53) in the range of 0.38 to 1.51 mSv. The study area, bound by the coordinates N (25.50°-25.66°, and E (91.82°-91.96°) indicates few pockets of higher average background levels, particularly towards the eastern side of study area, namely Nongmynsong, NEIGRIMS and Happy Valley. However, from the radiological safety aspects in public domain, all these reported levels are within the safety limits of prevailing environmental background. (author)

  2. Quantitative estimations of the efficiency of stabilization and lowering of background in gamma-spectrometry of environment samples

    International Nuclear Information System (INIS)

    Pop, O.M.; Stets, M.V.; Maslyuk, V.T.

    2015-01-01

    We consider a gamma-spectrometric complex of IEP of the NAS of Ukraine, where a passive multilayer external defense is used (complex has been made in 1989). We have developed and investigated a system of stability and lowering of background in the gamma-spectrometric complex. As metrological coefficients, the efficiency factor of defense are considered, the calculation and analysis of which show that their values are different for different energies of gamma-quanta and gamma-active nuclides

  3. Simulation of off-energy electron background in DELPHI

    CERN Document Server

    Falk, E; Von Holtey, Georg

    1997-01-01

    Monte Carlo simulations of off-energy electron background in the DELPHI luminometer STIC are reported. The study simulates the running conditions at 68 GeV with and without bunch trains. The electrostatic separators, which create the vertical separation bumps for the the bunch trains, cause a high concentration of background in the vertical plane. The simulations are compared to LEP data taken under similar running conditions. A comparison between the simulated running conditions at 68 GeV and those of the new LEP2 beam optics at 80.5 GeV is made. Moreover, the study investigates background components entering STIC elsewhere that through the front of the detector, and a significant portion is found to enter either from the back or from below. Possible improvements of the background situation are also discussed.

  4. Assessment of background gamma radiation and determination of excess lifetime cancer risk in Sabzevar City, Iran in 2014

    Directory of Open Access Journals (Sweden)

    Akbar Eslami

    2016-01-01

    Full Text Available Background: Background gamma radiation levels vary in different locations and depended on many factors such as radiation properties of soil, building materials as well as construction types which human lives on it. People are always exposed to ionizing radiation, which could badly influence their health. The aim of this study was to evaluate the background gamma-ray dose rate and the estimated annual effective dose equivalent and determination of excess lifetime cancer risk in Sabzevar City, Iran. Methods: The aim of this cross-sectional study was to determine the dose rate of background gamma radiation in outdoor an indoor areas, 26 stations were selected using the map of the Sabzevar City. The amount of gamma radiation was measured at 4 months (September to January in 2014 year. The dosimeter used in this study was a survey meter, that is designed for monitoring radiation of x, gamma and beta rays. Results: The obtained results show that there are significant differences between the indoor and outdoor exposures (P> 0.05. We did not observe significant differences between the time of sampling and sampling locations, (P<0.05. The minimum and maximum values of dose rate were found 66±20 nSvh-1 and 198±28 nSvh-1. The annual effective dose for Sabzevar residents was estimated to be 0.85 mSv and also the amount of excess lifetime cancer risk was estimated 3.39×10-3. Conclusion: According to the results, the excess lifetime cancer risk and the annual effective dose for the Sabzavar City residents due to the background gamma radiation was higher than the global average (0.5 mSv. The epidemiological studies have been proposed to evaluate the risk of chronic diseases associated with natural radiation exposure among residents.

  5. Influence of climatological and meteorological events on the Cuban environmental gamma background

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Caveda Ramos, Celia; Ramos Viltre, Emma O.; Dominguez Garcia, Adriel; Alonso Abad, Dolores

    2008-01-01

    Full text: A network of environmental radiological surveillance can appropriately respond in case of any radiological anomaly, due to the suitable methodology employed, the equipment used, the automatized detection systems and the data processing. But it is also important to know how the measurements of the different radiological indicators vary with the action of any atmospheric phenomenon. In this work, an analysis of the effects produced on the environmental gamma background in Cuba when acting climatological and meteorological events, has been achieved. Events, such as seasons of severe precipitation, dry seasons, winter and summer, hurricanes and high and low pressures are studied. The measurements were carried out with a gamma probe which is equipped with two Geiger Muller detectors and a temperature sensor. This probe is located at the height of 3.5 m and is exposed to the direct sun rays. We have built hypothesis for explaining some behaviors related to meteorological events, such as hurricanes. However, our theories are not conclusive, since the data obtained from the presence of this kind of phenomena next to the sites of interest was very poor. In this work, we have given explanation to the fluctuation of the measurements achieved of the environmental gamma background, based on the occurrence of some meteorological and climatological events. All this was possible due to a previous study about the influence of the diurnal variation of the temperature over the measurements of the gamma dose rate. On the other hand, the results obtained and the study of the influence of another environmental parameters, will contribute to the alarm levels setting for this radiological indicator according to the season which the measurements are achieved in. (author)

  6. Systematic Assessment of Neutron and Gamma Backgrounds Relevant to Operational Modeling and Detection Technology Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ayaz-Maierhafer, Birsen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.

  7. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    Energy Technology Data Exchange (ETDEWEB)

    Cutshall, N H; Larsen, I L [Oak Ridge National Lab., TN (USA)

    1980-12-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented.

  8. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  9. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  10. Measurement of gamma natural background radiation at Chamaraja Nagar, Karnataka state, India

    International Nuclear Information System (INIS)

    Nagaraju, K.M.; Chandrashekara, M.S.; Paramesh, L.

    2012-01-01

    The radioactive elements and their radiation are ubiquitous in the environment. The Influence of radiation on living organisms is imminent and very important to study. The ocean, the mountains, the air, and our food all expose us to small amounts of natural background radiation. Cosmic rays from outer space are another large contributor of natural background radiation. Much of the earth's natural background radiation is in the form of gamma radiation, a part of which comes from outer space. Some part of cosmic ray is filtered out by the presence of earth's atmosphere, so there are natural controls for the amount of radiation that people receive. The amount of radiation received by an individual depends on altitude, latitude type of building and the building construction materials. In the present study, measurements of natural background radiation were made in the temples, schools, dwellings, and hill stations in Chamaraja Nagar area, Karnataka state, India by using environmental dosimeter technique. The results show that, absorbed dose rate of background radiations at inside schools varies from 93.96 to 120.93 nGyh -1 with a standard deviation of 10.62 nGyh -1 and outside schools it varies from 60.9 to 113.1 nGyh -1 with a standard deviation of 15.1 nGyh -1 . In temples, the absorbed dose rate varies from 104.4 to 244.91 nGyh - 1 with a standard deviation of 48.34 nGyh -1 and outside the temples it varies from 87.9 to 176.61 nGyh -1 with a standard deviation of 30.896 nGyh -1 . The absorbed dose rate of background radiations at dwellings in indoor varies from 94.0 to 139.2 nGyh -1 with a standard deviation of 16.6 nGyh -1 and in outdoor it varies from 60.9 to 118.32 nGyh -1 with a standard deviation of 19.41 nGyh -1 . The measurements were also carried out in dwellings on hill stations in Chamaraja Nagar district. Indoor gamma dose rate varies from 103.53 to 236.64 nGyh -1 with a standard deviation of 59.8 nGyh -1 and outdoor gamma dose rate varies from 78.3 to 119

  11. The Study of Radiation of Gamma-Ray Background at Sedimentology Laboratorium, P3TIR, BATAN, Using Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lubis, Ali Arman; Aliyanta, Barokah; Darman

    2002-01-01

    The measurement of background radiation of gamma-ray has been done at Sedimentology Laboratory, SDAL building, P3TIR, BATAN using gamma spectrometer. The measurement was done without shielding with the range of energy between 50 keV and 1500 keV. The identified radiations are coming from environmental radionuclide and man-made radionuclide as well with 32 energy peaks. The environmental radionuclides are from Uranium series, Thorium series, and 4 0 K having dose rate of 12.510 ± O.980, 36.408 ± 3.243, 9.455 ±O.016 n Sv/day, respectively, whilst man-made radionuclide is 6 O C o having dose rate of O.136 ±O.078 n Sv/day

  12. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.

    1980-01-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented. (orig.)

  13. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  14. Simulating 60 Co gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson M.; Rela, Paulo R.

    2000-01-01

    The use of Cadgamma, a software dedicated to simulate 60 Co gamma irradiation systems, can lead to an optimized process and simulating, in a few hours, many configurations setups for the irradiation elements. The software can also simulate changes in the path of the product and the influence of any steady body like the support of the product support and source shoulders. These simulations minimize the number of dose mapping tests in industrial applications and allow the study of unusual setups. Cadgamma was developed at IPEN to simulate it is multipurpose 60 Co irradiation system, under construction and planned to be operating by the second half of 2001. The software was used on project stage and will help to optimize the irradiation process for each product to be treated. (author)

  15. Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Globus, Noemie; Piran, Tsvi [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Allard, Denis; Parizot, Etienne [Laboratoire Astroparticule et Cosmologie, Université Paris Diderot/CNRS, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)

    2017-04-20

    GeV–TeV gamma-rays and PeV–EeV neutrino backgrounds provide a unique window on the nature of the ultra-high-energy cosmic rays (UHECRs). We discuss the implications of the recent Fermi -LAT data regarding the extragalactic gamma-ray background and related estimates of the contribution of point sources as well as IceCube neutrino data on the origin of the UHECRs. We calculate the diffuse flux of cosmogenic γ -rays and neutrinos produced by the UHECRs and derive constraints on the possible cosmological evolution of UHECR sources. In particular, we show that the mixed-composition scenario considered in Globus et al., which is in agreement with both (i) Auger measurements of the energy spectrum and composition up to the highest energies and (ii) the ankle-like feature in the light component detected by KASCADE-Grande, is compatible with both the Fermi -LAT measurements and with current IceCube limits. We also discuss the possibility for future experiments to detect associated cosmogenic neutrinos and further constrain the UHECR models, including possible subdominant UHECR proton sources.

  16. Gamma-ray spectroscopy measurements and simulations for uranium mining

    Science.gov (United States)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  17. Geant4 simulation of a 3D high resolution gamma camera

    International Nuclear Information System (INIS)

    Akhdar, H.; Kezzar, K.; Aksouh, F.; Assemi, N.; AlGhamdi, S.; AlGarawi, M.; Gerl, J.

    2015-01-01

    The aim of this work is to develop a 3D gamma camera with high position resolution and sensitivity relying on both distance/absorption and Compton scattering techniques and without using any passive collimation. The proposed gamma camera is simulated in order to predict its performance using the full benefit of Geant4 features that allow the construction of the needed geometry of the detectors, have full control of the incident gamma particles and study the response of the detector in order to test the suggested geometries. Three different geometries are simulated and each configuration is tested with three different scintillation materials (LaBr3, LYSO and CeBr3)

  18. Simulation of Experimental Background using FLUKA

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed

    1999-05-11

    In November 1997, Experiment T423 began acquiring data with the intentions of understanding the energy spectra of high-energy neutrons generated in the interaction of electrons with lead. The following describes a series of FLUKA simulations studying (1) particle yields in the absence of all background; (2) the background caused from scattering in the room; (3) the effects of the thick lead shielding which surrounded the detector; (4) the sources of neutron background created in this lead shielding; and (5) the ratio of the total background to the ideal yield. In each case, particular attention is paid to the neutron yield.

  19. Inclusive Search for the Higgs Boson in the $H \\to \\gamma\\gamma$ Channel

    CERN Document Server

    Pieri, Marco; Fisk, Ian; Letts, James; Litvin, V; Branson, James G

    2006-01-01

    We have carried out a detailed study of the inclusive search for the Higgs boson in the H->gamma gamma channel with the CMS detector at LHC. The analysis is based on full Monte Carlo simulation. Though for the moment we have only simulated data to work with, we have designed an analysis that can determine the background from real data and will thus only depend on signal Monte Carlo when data will be available. This largely reduces the systematic error and, together with the excellent energy resolution of the CMS electromagnetic calorimeter, enables a search that would otherwise be very difficult because of the large amount of expected background. We have studied both a standard cut-based search and a more optimized analysis that takes advantage of the wide range of signal/background expectations as function of the possible selection cuts. Since discovery in this channel is expected to take one or more years of LHC running, such optimized analyses should be studied to minimize the time to discovery and to assu...

  20. Distinguishing 'Higgs' spin hypotheses using $\\gamma \\gamma$ and $W W^*$ decays

    CERN Document Server

    Ellis, John; Hwang, Dae Sung; Sanz, Veronica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into gamma gamma, ZZ* and WW*, but its spin and parity, J^P, remain a mystery, with J^P = 0^+ and 2^+ being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of gg to X to gamma gamma decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: ~ 3 sigma if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and ~ 6 sigma if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2^+ particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for X to WW* using PYTHIA and De...

  1. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M

    2008-01-01

    The majority of gamma-ray emission from galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population and show that features in the power spectrum can be used to infer the presence of substructure. The shape of the power spectrum is largely unaffected by the subhalo radial distribution and mass function, and for many scenarios I find that a measurement of the angular power spectrum by Fermi will be able to constrain the abundance of substructure. An anti-biased subhalo radial distribution is shown to produce emission that differs significantly in intensity and large-scale angular dependence from that of a subhalo distribution which traces the smooth dark matter halo, potentially impacting the detectability of the dark matter signal for a variety of targets and methods

  2. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Siegal-Gaskins, Jennifer M, E-mail: jsg@kicp.uchicago.edu [Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States)

    2008-10-15

    The majority of gamma-ray emission from galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population and show that features in the power spectrum can be used to infer the presence of substructure. The shape of the power spectrum is largely unaffected by the subhalo radial distribution and mass function, and for many scenarios I find that a measurement of the angular power spectrum by Fermi will be able to constrain the abundance of substructure. An anti-biased subhalo radial distribution is shown to produce emission that differs significantly in intensity and large-scale angular dependence from that of a subhalo distribution which traces the smooth dark matter halo, potentially impacting the detectability of the dark matter signal for a variety of targets and methods.

  3. Dark matter implications of Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background

    International Nuclear Information System (INIS)

    Gómez-Vargas, G.A.; Cuoco, A.; Linden, T.; Sánchez-Conde, M.A.; Siegal-Gaskins, J.M.; Delahaye, T.; Fornasa, M.; Komatsu, E.

    2014-01-01

    The detailed origin of the diffuse gamma-ray background is still unknown. However, the contribution of unresolved sources is expected to induce small-scale anisotropies in this emission, which may provide a way to identify and constrain the properties of its contributors. Recent studies have predicted the contributions to the angular power spectrum (APS) from extragalactic and galactic dark matter (DM) annihilation or decay. The Fermi-LAT collaboration reported detection of angular power with a significance larger than 3σ in the energy range from 1 GeV to 10 GeV on 22 months of data (Ackermann et al., 2012 [2]). For these preliminary results the already published Fermi-LAT APS measurements (Ackermann et al., 2012 [2]) are compared to the accurate predictions for DM anisotropies from state-of-the-art cosmological simulations as presented in Fornasa et al. (2013) [1] to derive constraints on different DM candidates

  4. Dark matter implications of Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Vargas, G.A., E-mail: germanarturo.gomez@uam.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Istituto Nazionale di Fisica Nucleare, Sez. Roma Tor Vergata, Roma (Italy); Cuoco, A. [The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Linden, T. [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Sánchez-Conde, M.A. [SLAC National Accelerator Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA 94025 (United States); Siegal-Gaskins, J.M. [California Institute of Technology, Pasadena, CA 91125 (United States); Delahaye, T. [LAPTh, Universit e de Savoie, CNRS, 9 chemin de Bellevue, BP110, F-74941 Annecy-le-Vieux Cedex (France); Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Universit e Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Fornasa, M. [School of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham (United Kingdom); Komatsu, E. [Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching (Germany); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Texas Cosmology Center and the Department of Astronomy, The University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); and others

    2014-04-01

    The detailed origin of the diffuse gamma-ray background is still unknown. However, the contribution of unresolved sources is expected to induce small-scale anisotropies in this emission, which may provide a way to identify and constrain the properties of its contributors. Recent studies have predicted the contributions to the angular power spectrum (APS) from extragalactic and galactic dark matter (DM) annihilation or decay. The Fermi-LAT collaboration reported detection of angular power with a significance larger than 3σ in the energy range from 1 GeV to 10 GeV on 22 months of data (Ackermann et al., 2012 [2]). For these preliminary results the already published Fermi-LAT APS measurements (Ackermann et al., 2012 [2]) are compared to the accurate predictions for DM anisotropies from state-of-the-art cosmological simulations as presented in Fornasa et al. (2013) [1] to derive constraints on different DM candidates.

  5. Monte Carlo simulation for the design of industrial gamma-ray transmission tomography

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Kwon, Taekyong; Cho, Gyuseong

    2011-01-01

    The Monte Carlo simulation and experiment were carried out for a large-scale industrial gamma ray tomographic scanning geometry. The geometry of the tomographic system has a moving source with 16 stationary detectors. This geometry is advantageous for the diagnosis of a large-scale industrial plant. The simulation data was carried out for the phantom with 32 views, 16 detectors, and a different energy bin. The simulation data was processed to be used for image reconstruction. Image reconstruction was performed by a Diagonally-Scaled Gradient-Ascent algorithm for simulation data. Experiments were conducted in a 78 cm diameter column filled with polypropylene grains. Sixteen 0.5-inch-thick and 1 inch long NaI(Tl) cylindrical detectors, and 20 mCi of 137 Cs radioactive source were used. The experimental results were compared to the simulation data. The experimental results were similar to Monte Carlo simulation results. This result showed that the Monte Carlo simulation is useful for predicting the result of the industrial gamma tomographic scan method And it can also give a solution for designing the industrial gamma tomography system and preparing the field experiment. (author)

  6. BGSUB and BGFIX: FORTRAN programs to correct Ge(Li) gamma-ray spectra for photopeaks from radionuclides in background

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.

    1980-03-01

    Two FORTRAN programs which provide correction and error analysis for background photopeak contributions to low-level gamma-ray spectra are discussed. A peak-by-peak background subtraction approach is used instead of channel-by-channel correction. The accuracy of corrected results near background levels is substantially improved over uncorrected values

  7. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  8. On estimating the background of remote sensing gamma-ray spectroscopic data

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Meng-Hua, E-mail: mhzhu@must.edu.mo

    2016-10-01

    In this paper, we considered the inverse count accumulation process of gamma-ray spectrum and derived an iterative filtering method to estimate the background of noisy spectroscopic data for the remote sensing observations of planetary surface. Compared with the SNIP method, the proposed method avoids the calculation of the average FWHM of the whole spectrum or the peak regions, which is an important parameter for the SNIP method. The synthetic and experimental spectra are used to validate the derived method. The results show that the proposed method can estimate the background efficiently, especially for the spectroscopic data with Compton continuum. In addition, by combining the proposed method and the SNIP method, the average FWHM can be determined easily, which can be used to validate the characteristics of detector.

  9. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    CERN Document Server

    Barlow, Roger J; Kozanecki, Witold; Majewski, Stephanie; Roudeau, Patrick; Stocchi, Achille

    2005-01-01

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using a modified version ofthe DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full programme of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modelling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

  10. Guaranteed Unresolved Point Source Emission and the Gamma-ray Background

    International Nuclear Information System (INIS)

    Pavlidou, Vasiliki; Siegal-Gaskins, Jennifer M.; Brown, Carolyn; Fields, Brian D.; Olinto, Angela V.

    2007-01-01

    The large majority of EGRET point sources remain without an identified low-energy counterpart, and a large fraction of these sources are most likely extragalactic. Whatever the nature of the extragalactic EGRET unidentified sources, faint unresolved objects of the same class must have a contribution to the diffuse extragalactic gamma-ray background (EGRB). Understanding this component of the EGRB, along with other guaranteed contributions from known sources (blazars and normal galaxies), is essential if we are to use this emission to constrain exotic high-energy physics. Here, we follow an empirical approach to estimate whether the contribution of unresolved unidentified sources to the EGRB is likely to be important. Additionally, we discuss how upcoming GLAST observations of EGRET unidentified sources, their fainter counterparts, and the Galactic and extragalactic diffuse backgrounds, will shed light on the nature of the EGRET unidentified sources even without any positional association of such sources with low-energy counterparts

  11. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    OpenAIRE

    Maier, G.; Collaboration, for the AGIS

    2009-01-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gammaray emmission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collect...

  12. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    Directory of Open Access Journals (Sweden)

    Angelov Christo

    2016-03-01

    Full Text Available Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW station Moussala BEO (2925 m a.s.l., 42°10’45’’ N, 23°35’07’’ E. Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  13. Comparison of penumbra regions produced by ancient Gamma knife model C and Gamma ART 6000 using Monte Carlo MCNP6 simulation.

    Science.gov (United States)

    Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali

    2018-07-01

    The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Search Technique for Weak and Long-Duration Gamma-Ray Bursts from Background Model Residuals

    Science.gov (United States)

    Skelton, R. T.; Mahoney, W. A.

    1993-01-01

    We report on a planned search technique for Gamma-Ray Bursts too weak to trigger the on-board threshold. The technique is to search residuals from a physically based background model used for analysis of point sources by the Earth occultation method.

  15. BC404 scintillators as gamma locators studied via Geant4 simulations

    Science.gov (United States)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  16. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  17. Benchmarking of the simulation of the ATLAS HaLL background

    International Nuclear Information System (INIS)

    Vincke, H.

    2000-01-01

    The LHC, mainly to be used as a proton-proton collider, providing collisions at energies of 14 TeV, will be operational in the year 2005. ATLAS, one of the LHC experiments, will provide high accuracy measurements concerning these p-p collisions. In these collisions also a high particle background is produced. This background was already calculated with the Monte Carlo simulation program FLUKA. Unfortunately, the prediction concerning this background rate is only understood within an uncertainty level of five. The main contribution of this factor can be seen as limited knowledge concerning the ability of FLUKA to simulate these kinds of scenarios. In order to reduce the uncertainty, benchmarking simulations of experiments similar to the ATLAS background situation were performed. The comparison of the simulations with the experiments proves to which extent FLUKA is able to provide reliable results concerning the ATLAS background situation. In order to perform this benchmark, an iron construction was irradiated by a hadron beam. The primary particles had ATLAS equivalent energies. Behind the iron structure, the remnants of the shower processes are measured and simulated. The simulation procedure and its encouraging results, including the comparison with the measured numbers, are presented and discussed in this work. (author)

  18. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  19. Gamma background irradiation. Standards and reality

    International Nuclear Information System (INIS)

    Miloslavov, V.

    1998-01-01

    The systematic deviation of the results of measuring the power of air dose absorbed from the natural gamma background radiation in Bulgaria is inadmissibly large and variable. This in turn augments the dispersion of results as well as the mean value relative to worldwide data, to an implausible level, hardly attributable to the variegated geographical relief of the country. Thus in practice local anthropogenic increases hardly lend themselves to detection and demonstration. In the Radiation Protection Standards (RPS-92) in effect in Bulgaria, and in other documents concerning the same radiation factors as well, the maximum allowable limits for the population as a whole are clearly specified on the basis of worldwide expertise along this line. As a rule these limits are being exceeded by the actually measured values, and for this reason the cited documents contain a clause stipulating that these limits do not refer to the natural radiation background and therefore the latter may be virtually ignored. Thus the basic risk factor for the population goes beyond control at levels commensurable with the officially established limits, its twofold increase inclusive. The maximum allowable limit becomes undefinable. Bearing in mind the fact that in compliance with the cited RPS-92 elimination of the technogenic ionizing radiation sources incorporated in the environment prior to 1992 is 'freezed', it is evident that exposure of the population to anthropogenic radiation becomes legally allowable in a much wider range than the one specified by world legislators. One may anticipate radiation induced health noxae for the population directly or by anthropogenic radiation stress on biocenosis. A relatively large part of the population is susceptible to the effect of low radiation doses. Presumably this contingent will augment as a result of eventual fluctuations. The casual relationship which is difficult to establish should be given due consideration in the analysis of the causes

  20. Measurement of background gamma radioactivity level in Rize and its towns

    International Nuclear Information System (INIS)

    Keser, R.; Dizman, S.; Goeruer, F. K.; Okumusoglu, N. T.

    2006-01-01

    Naturally occurring primordial radionuclides are present in various degrees in all media in the environment, including the human body itself. Only the radionuclides with half-lives comparable to the age of the earth, and their decay products and radioisotopes such as 1 37Cs, 9 0Sr from man made sources such as Chernobyl accident and nuclear tests are present in the environment. The irradiation of the human body from external sources is mainly by gamma radiation from radionuclides in the 2 38U and 2 32Th series such as 2 14 Pb, 2 28Ac and from 4 0K and 1 37Cs. The aim of this study was to measure background γ-ray activities and distributions of natural radionuclides in selected regions in Rize, such as Iyidere, Derepazari, Cayeli, Pazar, Ardesen, Findikli towns which are on the coast of Black Sea and from inland towns Ikizdere, Kalkandere, Camlihemsin and Hemsin. The geographical distribution of natural radionuclides 2 14Bi , 2 28Ac 4 0K and 1 37Cs their γ-ray activities and respective annual effective dose rates were determined using a high performance hand-held Canberra Inspector 1000 spectrometer for all of regions at various times with a week period. Surface gamma measurements (cps) and dose rate measurements show different values at different regions. The outdoor terrestrial gamma annual effective doses in air at 1 m above ground fluctuates between 0.16 to 0.55 mSv/y with an average of 0.38 mSv/y . The gamma dose rate in air due to natural radionuclides measured in Rize district in the present study have been found to be lower than the global average 0.48 mSv/y

  1. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  2. Comparison of background gamma-ray spectra between Los Alamos, New Mexico and Austin, Texas

    International Nuclear Information System (INIS)

    Horne, S.; Jackman, K.R.; Landsberger, S.

    2013-01-01

    Background counts in gamma-ray spectrometry are caused by a variety of sources. Among these are naturally occurring radioactive materials (NORM) in the environment, interactions from cosmic radiation, and contamination within the laboratory. High-purity germanium detectors were used to acquire long background spectra in Los Alamos, NM (elevation ∼7,300 feet) and Austin, TX (elevation ∼500 feet). This difference in elevation has a sizeable effect on background spectra due to cosmic interactions, such as (n,n') and (n,γ). Los Alamos also has a fairly high NORM concentration in the soil relative to Austin, and this gives way to various spectral interferences. When analyzing nuclear forensics samples, these background sources can have non-trivial effects on detection limits of low-level fission products. By accurately determining the influence that elevation and environment have on background spectra, interferences within various laboratory environments can be more accurately characterized. (author)

  3. Gamma ray observatory dynamics simulator in Ada (GRODY)

    International Nuclear Information System (INIS)

    1990-09-01

    This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects

  4. Assessment of background gamma radiation levels around Tummalapalle uranium mining and processing facility, Andhra Pradesh

    International Nuclear Information System (INIS)

    Rana, B.K.; Dhumale, M.R.; Molla, Samim; Rao, K.B.; Jha, S.K.; Tripathi, R.M.; Sahu, S.K.

    2018-01-01

    Natural environmental radioactivity and the associated external exposure due to gamma radiation depend primarily on the geological and geographical conditions, and appear at different levels in the soil of each region in the world. The dose received by the population in a region comprises of (i) external gamma radiation dose due to cosmic rays and primordial radionuclides; (ii) inhalation dose due to radon, thoron and their progeny, and (iii) ingestion dose due to the intake of radionuclides through the consumption of food, milk, water, etc. In this study, background gamma radiation level around Tummalapalle uranium mining and processing site was estimated by using radiation survey meter and deploying environmental TLDs. The generated data can be served as baseline for this area for future comparison for prolonged operation of the plant, for the upcoming adjacent projects and during decommissioning phase of the mine, mill and tailings pond

  5. Conditioning the gamma spectrometer for activity measurement at very high background

    OpenAIRE

    Yan, Weihua; Zhang, Liguo; Zhang, Zhao; Xiao, Zhigang

    2013-01-01

    The application of a high purity germanium (HPGe) gamma spectrometer in determining the fuel element burnup in a future reactor is studied. The HPGe detector is exposed by a Co60 source with varying irradiation rate from 10 kcps to 150 kcps to simulate the input counting rate in real reactor environment. A Cs137 and a Eu152 source are positioned at given distances to generate certain event rate in the detector with the former being proposed as a labeling nuclide to measure the burnup of fuel ...

  6. Manual for the Jet Event and Background Simulation Library

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Angerami, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    Jets are the collimated streams of particles resulting from hard scattering in the initial state of high-energy collisions. In heavy-ion collisions, jets interact with the quark-gluon plasma (QGP) before freezeout, providing a probe into the internal structure and properties of the QGP. In order to study jets, background must be subtracted from the measured event, potentially introducing a bias. We aim to understand and quantify this subtraction bias. PYTHIA, a library to simulate pure jet events, is used to simulate a model for a signature with one pure jet (a photon) and one quenched jet, where all quenched particle momenta are reduced by a user-de ned constant fraction. Background for the event is simulated using multiplicity values generated by the TRENTO initial state model of heavy-ion collisions fed into a thermal model consisting of a 3-dimensional Boltzmann distribution for particle types and momenta. Data from the simulated events is used to train a statistical model, which computes a posterior distribution of the quench factor for a data set. The model was tested rst on pure jet events and then on full events including the background. This model will allow for a quantitative determination of biases induced by various methods of background subtraction.

  7. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han

    2015-01-01

    The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)

  8. Monte Carlo simulations for the optimisation of low-background Ge detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Hakenmueller, Janina; Heusser, Gerd; Maneschg, Werner; Schreiner, Jochen; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert; Weber, Marc; Westernmann, Jonas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi L' Aquila (Italy)

    2015-07-01

    Monte Carlo simulations for the low-background Ge spectrometer Giove at the underground laboratory of MPI-K, Heidelberg, are presented. In order to reduce the cosmogenic background at the present shallow depth (15 m w.e.) the shielding of the spectrometer includes an active muon veto and a passive shielding (lead and borated PE layers). The achieved background suppression is comparable to Ge spectrometers operated in much greater depth. The geometry of the detector and the shielding were implemented using the Geant4-based toolkit MaGe. The simulations were successfully optimised by determining the correct diode position and active volume. With the help of the validated Monte Carlo simulation the contribution of the single components to the overall background can be examined. This includes a comparison between simulated results and measurements with different fillings of the sample chamber. Having reproduced the measured detector background in the simulation provides the possibility to improve the background by reverse engineering of the passive and active shield layers in the simulation.

  9. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  10. PC based simulation of gamma camera for training of operating and maintenance staff

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2000-01-01

    Gamma camera- a sophisticated imaging system is used for functional assessment of biological subsystems/organs in nuclear medicine. The radioactive tracer attached to the native substance is injected into the patient. The distribution of radioactivity in the patient is imaged by the gamma camera. This report describes a PC based package for simulation of gamma cameras and effect of malfunctioning of its subsystems on images of different phantoms

  11. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  12. Numerical method for IR background and clutter simulation

    Science.gov (United States)

    Quaranta, Carlo; Daniele, Gina; Balzarotti, Giorgio

    1997-06-01

    The paper describes a fast and accurate algorithm of IR background noise and clutter generation for application in scene simulations. The process is based on the hypothesis that background might be modeled as a statistical process where amplitude of signal obeys to the Gaussian distribution rule and zones of the same scene meet a correlation function with exponential form. The algorithm allows to provide an accurate mathematical approximation of the model and also an excellent fidelity with reality, that appears from a comparison with images from IR sensors. The proposed method shows advantages with respect to methods based on the filtering of white noise in time or frequency domain as it requires a limited number of computation and, furthermore, it is more accurate than the quasi random processes. The background generation starts from a reticule of few points and by means of growing rules the process is extended to the whole scene of required dimension and resolution. The statistical property of the model are properly maintained in the simulation process. The paper gives specific attention to the mathematical aspects of the algorithm and provides a number of simulations and comparisons with real scenes.

  13. Background {sup 99m}Tc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon; Kim, Bom Sahn [Ewha Womans University, Department of Nuclear Medicine, Yangchun-Ku, Seoul (Korea, Republic of); Kim, Yemi [Ewha Womans University, Clinical Research Institute and Department of Conservative Dentistry, Seoul (Korea, Republic of); Lee, Jee Eun [Ewha Womans University, Department of Radiology, Seoul (Korea, Republic of)

    2015-01-15

    This study investigated factors that could affect background uptake of {sup 99m}Tc- methoxyisobutylisonitrile (MIBI) on normal breast by breast-specific gamma imaging (BSGI). In addition, the impact of background {sup 99m}Tc-MIBI uptake on the diagnostic performance of BSGI was further investigated. One hundred forty-five women with unilateral breast cancer who underwent BSGI, MRI, and mammography were retrospectively enrolled. Background uptake on BSGI was evaluated qualitatively and quantitatively. Patients were classified into non-dense and dense breast groups according to mammographic breast density. Background parenchymal enhancement (BPE) was rated according to BI-RADS classification. The relationship of age, menopausal status, mammographic breast density, and BPE with background {sup 99m}Tc-MIBI uptake was analyzed. Heterogeneous texture and high background uptake ratio on BSGI were significantly correlated with younger age (p < 0.001, respectively), premenopausal status (p < 0.001 and p = 0.003), dense breast (p < 0.001, respectively), and marked BPE (p < 0.001, respectively). On multivariate analysis, only BPE remained a significant factor for background MIBI uptake (p < 0.001).There was a significant reduction in positive predictive value (p = 0.024 and p = 0.002) as background MIBI uptake and BPE grade increased. BPE on MRI was the most important factor for background MIBI uptake on BSGI. High background MIBI uptake or marked BPE can diminish the diagnostic performance of BSGI. (orig.)

  14. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  15. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun Tai [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-05-15

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results.

  16. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Yong Kyun; Chung, Hyun Tai

    2016-01-01

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results

  17. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    Energy Technology Data Exchange (ETDEWEB)

    Horn, O M

    2007-12-21

    to determine the veto efficiency. Finally, the remaining background rate of muon-induced bolometer hits after applying the veto condition is approximately {gamma}{sub bg} simulations of the EDELWEISS-II veto system corresponds to (99.94{+-}0.01{sup +0.06}{sub -0.1})%. This translates to a potential reduction of the muon-induced background in the order of R {approx} O(10{sup 3}). As a result of this work, the sensitivity of the EDELWEISS-II experiment is in principle not limited by muoninduced background down to a WIMP-nucleon cross section in the range of 10{sup -10} pb. (orig.)

  18. The angular power spectrum of the diffuse gamma-ray background as a probe of Galactic dark matter substructure

    OpenAIRE

    Siegal-Gaskins, Jennifer M.

    2009-01-01

    Dark matter annihilation in Galactic substructure produces diffuse gamma-ray emission of remarkably constant intensity across the sky, and in general this signal dominates over the smooth halo signal at angles greater than a few tens of degrees from the Galactic Center. The large-scale isotropy of the emission from substructure suggests that it may be difficult to extract this Galactic dark matter signal from the extragalactic gamma-ray background. I show that dark matter substructure induces...

  19. Geographically determined dependencies in the value of the constant natural radiation gamma-background

    International Nuclear Information System (INIS)

    Miloslavov, V.

    2001-01-01

    The problem of the assessment of the influence of natural gamma background changes on the population is discussed. It is considered that the populations in different geographic regions have adapted by evolution mechanisms to the respective unchanged (without human activities) radiation background. The background limits for each area form the 'radiation comfortable zone' which varies very much for the different geographic areas. Leaving the 'comfortable zone' leads to a triggering of adaptive mechanisms in the population including the natural selection in order to reach an equilibrium. Thus, the radiation impact exceeding the 'comfortable zone' is expected to cause harm for a part of the population which is preliminarily burden or uncapable to adapt. From this point of view the increased morbidity due to radiation factor in those cases remains hidden. As a conclusion it is pointed out that the proposed increase of the annual dose for the population might result with harmful consequences for the whole human population

  20. Interpretation of the radioactive background observed in the OSO-7 gamma ray monitor

    International Nuclear Information System (INIS)

    Dyer, C.S.

    1975-01-01

    Application of a spallation activation calculation to the OSO-7 gamma-ray monitor background shows that major line features and about 30% of the continuum can be understood as activation of the central detector crystal by trapped protons. Weaker line features arise from activation of materials unshielded by the anticoincidence cup, while the remaining continuum and annihilation line would seem to come largely continuum and annihilation line would seem to come largely from electron-photon cascades originating in the spacecraft. (orig.) [de

  1. Hydrodynamic Simulation of the Cosmological X-Ray Background

    Science.gov (United States)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  2. Anisotropy of the cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro; Komatsu, Eiichiro

    2006-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. Since dark matter particles are weakly interacting, annihilation can happen only in high density regions such as dark matter halos. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles--their mass and annihilation cross section, as well as the cosmological evolution of dark matter halos. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We develop the formalism based on a halo model approach to analytically calculate the three-dimensional power spectrum of dark matter clumping, which determines the power spectrum of annihilation signals. We show that the expected sensitivity of future gamma-ray detectors such as the Gamma Ray Large Area Space Telescope (GLAST) should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity of CGB in GeV region. On the other hand, if dark matter has a relatively small mass, on the order of 20 MeV, and accounts for most of the CGB in MeV region, then the future Advanced Compton Telescope (ACT) should be able to measure the angular power spectrum in MeV region. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars and supernovae, whose intensity is linearly proportional to

  3. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  4. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sum, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified.

  5. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sum, G. M.

    2016-01-01

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified

  6. Calculation of the correlation coefficients between the numbers of counts (peak areas and backgrounds) obtained from gamma-ray spectra

    International Nuclear Information System (INIS)

    Korun, M.; Vodenik, B.; Zorko, B.

    2016-01-01

    Two simple methods for calculating the correlations between peaks appearing in gamma-ray spectra are described. We show how the areas are correlated when the peaks do not overlap, but the spectral regions used for the calculation of the background below the peaks do. When the peaks overlap, the correlation can be stronger than in the case of the non-overlapping peaks. The methods presented are simplified to the extent of allowing their implementation with manual calculations. They are intended for practitioners as additional tools to be used when the correlations between the areas of the peaks in the gamma-ray spectra are to be calculated. Also, the correlation coefficient between the number of counts in the peak and the number of counts in the continuous background below the peak is derived. - Highlights: • The correlation coefficients between areas of closely spaced peaks are assessed. • For isolated peaks the correlation arises from the common continuous background. • If peaks overlap the correlation coefficient depends on how much they overlap. • If peaks overlap also the background height affects the correlation coefficient. • The correlation coefficient between the peak area and its background is −1.

  7. Use of a low-background and anti-Compton HpGe gamma-spectrometer in analyses of environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Qiong, Su; Yamin, Gao [Ministry of Public Health, Beijing, BJ (China). Lab. of Industrial Hygiene

    1989-12-01

    The results of application of a HpGe gamma-spectrometer in the analyses of enviromental samples are reported. The spectrometer has very low background and good property of Compton suppression. By comparison between the gamma-spectra with and without anti-coincidence shield for the same samples, the advantage in analysing environmental samples became apparent. In the analyses of carp samples, the ratio of specific activities of {sup 226}Ra in the flesh and bone of the carp was 1 to 35, which is basically in agreement with the ratio of the accumulation factors 1:37, as reported in the literature. Thus the spectrometer would play an important role in the research of the transfer of radionuclides of low activity in the environment. The method of gamma-ray data processing is also described.

  8. Use of a low-background and anti-Compton HpGe gamma-spectrometer in analyses of environmental samples

    International Nuclear Information System (INIS)

    Su Qiong; Gao Yamin

    1989-01-01

    The results of application of a HpGe gamma-spectrometer in the analyses of enviromental samples are reported. The spectrometer has very low background and good property of Compton suppression. By comparison between the gamma-spectra with and without anti-coincidence shield for the same samples, the advantage in analysing environmental samples became apparent. In the analyses of carp samples, the ratio of specific activities of 226 Ra in the flesh and bone of the carp was 1 to 35, which is basically in agreement with the ratio of the accumulation factors 1:37, as reported in the literature. Thus the spectrometer would play an important role in the research of the transfer of radionuclides of low activity in the environment. The method of gamma-ray data processing is also described

  9. Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: A closer look

    International Nuclear Information System (INIS)

    Cuoco, A.; Sellerholm, A.; Conrad, J.; Hannestad, S.

    2011-01-01

    We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope (Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds and use a realistic representation of the Fermi LAT. We implement an analysis pipeline which simulates Fermi LAT data sets starting from model maps of the Galactic foregrounds, the Fermi-resolved point sources, the extragalactic diffuse emission and the signal from DM annihilation. The effects of the detector are taken into account by convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin and of Galactic origin (which can be generated through annihilation in the Milky Way substructures) as opposed to a background of anisotropies generated by sources of astrophysical origin, blazars for example. We find that with statistics from 5 yr of observation, Fermi is sensitive to a DM contribution at the level of 1–10 per cent of the measured IGRB depending on the DM mass m χ and annihilation mode. In terms of the thermally averaged cross-section <σAv>, this corresponds to ~10 –25 cm 3 s –1 , i.e. slightly above the typical expectations for a thermal relic, for low values of the DM mass m χ ≲ 100 GeV. As a result, the anisotropy method for DM searches has a sensitivity comparable to the usual methods based only on the energy spectrum and thus constitutes an independent and complementary piece of information in the DM puzzle.

  10. GEM gas detectors for soft X-ray imaging in fusion devices with neutron–gamma background

    Energy Technology Data Exchange (ETDEWEB)

    Pacella, Danilo, E-mail: danilo.pacella@enea.it [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Romano, Afra; Gabellieri, Lori [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Murtas, Fabrizio [Istituto Nazionale di Fisica Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Mazon, Didier [Association EURATOM-CEA, CEA Cadarache, DSM/IRFM, 13108 St. Paul Lez Durance Cedex (France)

    2013-08-21

    A triple gas electron multiplier (GEM) detector has been built and characterized in a collaboration between ENEA, INFN and CEA to develop a soft X-ray imaging diagnostic for magnetic fusion plasmas. It has an active area of 5×5 cm{sup 2}, 128 pixels and electronics in counting mode. Since burning plasma experiments will have a very large background of radiation, this prototype has been tested with contemporary X-ray, neutron and gamma irradiation, to study the detection efficiencies, and the discrimination capabilities. The detector has been preliminarily characterized under DD neutron irradiation (2.45 MeV) up to 2.2×10{sup 6} n/s on the detector active area, showing a detection efficiency of about 10{sup −4}, while the detection efficiency of X-rays is more than three orders of magnitude higher. The detector has been also tested under DT neutron flux (14 MeV) up to 2.8×10{sup 8} n/s on the whole detector, with a detection efficiency of about 10{sup −5}. The calibration of the γ-rays detection has been done by means of a source of {sup 60}Co (gamma rays of energy 1.17 MeV and 1.33 MeV) and the detection efficiency was found of the order of 10{sup −4}. Thanks to the adjustable gain of the detector and the discrimination threshold of the electronics, it is possible to minimize the sensitivity to neutrons and gamma, and discriminate the X-ray signals even with very high radiative background.

  11. Two Dimensional Verification of the Dose Distribution of Gamma Knife Model C using Monte Carlo Simulation with a Virtual Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.

  12. Low background gamma ray spectrometer using the anticoincidence shield technique at KAERI

    International Nuclear Information System (INIS)

    Byun, Jong In; Choi, Yun Ho; Kwak, Seung Im; Hwang, Han Yull; Chung, Kun Ho; Choi, Geun Sik; Park, Doo Won; Lee, Chang Woo

    2002-01-01

    We develop a ultra-low background gamma ray spectrometer, using active and passive shielding technique at the same time. Cosmic ray induced background is suppressed by means of active shield devices consisting of plastic scintillating plates of 50 mm thick and anti-coincidence electronic system. The shield is made of 150 mm thick walls of very low activity lead, especially 20 mm with activity of -1 and 0.36 s -1 with and without active shield, respectively, on the regions from 50 keV to 3 MeV. The detection efficiency curve has been precisely measured for regions from 80 keV to 2 MeV with a 10 3 ml marinelli beaker sample, made with calibrated mixed-sources consists of 109 Cd, 57 Co, 139 Ce, 203 Hg, 113 Sn, 85 Sr, 137 Cs, 60 Co and 88 Y. The virtues of the method are demonstrated by applying on experiment that requires the lowest detection limit

  13. Simulation on a limited angle beam gamma ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  14. Monte Carlo simulation of the Leksell Gamma Knife: I. Source modelling and calculations in homogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)]. E-mail: vmoskvin@iupui.edu; DesRosiers, Colleen; Papiez, Lech; Timmerman, Robert; Randall, Marcus; DesRosiers, Paul [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2002-06-21

    The Monte Carlo code PENELOPE has been used to simulate photon flux from the Leksell Gamma Knife, a precision method for treating intracranial lesions. Radiation from a single {sup 60}Co assembly traversing the collimator system was simulated, and phase space distributions at the output surface of the helmet for photons and electrons were calculated. The characteristics describing the emitted final beam were used to build a two-stage Monte Carlo simulation of irradiation of a target. A dose field inside a standard spherical polystyrene phantom, usually used for Gamma Knife dosimetry, has been computed and compared with experimental results, with calculations performed by other authors with the use of the EGS4 Monte Carlo code, and data provided by the treatment planning system Gamma Plan. Good agreement was found between these data and results of simulations in homogeneous media. Owing to this established accuracy, PENELOPE is suitable for simulating problems relevant to stereotactic radiosurgery. (author)

  15. Study of the background neutron and gamma components of the ββ(0ν) decay in the NEMO2 prototype detector. Consequences for the NEMO3 detector

    International Nuclear Information System (INIS)

    Marquet, Christine

    1999-01-01

    Neutrinoless double beta decay ββ(0ν) is a test of physics beyond the Standard Model by involving the existence of a massive Majorana neutrino (ν = ν-bar). To try to observe such a process with a sensitivity of 0.1 eV on the neutrino effective mass ( ν >), NEMO collaboration build the NEMO3 detector, able to measure half-lives greater than 10 24 years, corresponding to a few detected events per year. For that, it is necessary to know and master all background sources. This work was first dedicated to the study of external (to the double beta source) background with crossing electrons recorded with NEMO2 prototype detector and then to the simulation of this background in NEMO3 detector. Comparison between NEMO2 data and results of gamma and neutron simulations for different shieldings, with and without neutron source, has allowed to determine background contributions of radon, thoron, 208 Tl contaminations in materials, photon flux produced in laboratory and neutrons. This study, which has required improvements in the MICAP neutron simulation code by developing a photon generator, proved that radiative capture of fast neutrons thermalized in the detector was the source of events in the energy domain of the ββ(0ν) signal. In order to reach the required sensitivity on ν > mass, it has been shown that both a neutron shielding and magnetic field are necessary for NEMO3 detector. (author) [fr

  16. Application of simulated standard spectra in natural radioactivity measurements using gamma spectrometry

    International Nuclear Information System (INIS)

    Narayani, K.; Pant, A.D.; Bhosle, Nitin; Anilkumar, S.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Gamma ray spectrometry is one of the well known analytical techniques for environmental radioactivity measurements. Gamma spectrometer based on NaI(Tl) scintillation detectors is very popular since it offers high efficiency, low cost and case in handling. The poor energy resolution of the NaI(TI) detector is the major disadvantage making tile analysis of complex gamma ray spectra difficult. Least square method or the full spectrum analysis method is widely used for the analysis of complex spectra from scintillation detectors. The main requirement of this method is that the individual standard spectra of all nuclides expected in the complex spectrum in the same measurement geometry must be available. It is not always possible and feasible to have all the standards of nuclides in the desired geometry. A methodology based on the use of simulated standard spectra generated by Monte Carlo technique was proposed for analysis of complex spectra of nuclides. In the present work, for the analysis of 238 U, 233 Th and 40 K in soil samples, the same methodology was applied by using the simulated standard spectra in soil matrix. The details of the simulation method and results analysis of 238 U, 232 Th and 40 K in environmental samples are discussed in this paper

  17. Monte Carlo simulation of determining porosity by using dual gamma detectors

    International Nuclear Information System (INIS)

    Zhang Feng; Liu Juntao; Yu Huawei; Yuan Chao; Jia Yan

    2013-01-01

    Current formation elements spectroscopy logging technology utilize 241 Am-Be neutron source and single BGO detector to determine elements contents. It plays an important role in mineral analysis and lithology identification of unconventional oil and gas exploration, but information measured is relatively ld. Measured system based on 241 Am-Be neutron and dual detectors can be developed to realize the measurement of elements content as well as determine neutron gamma porosity by using ratio of gamma count between near and far detectors. Calculation model is built by Monte Carlo method to study neutron gamma porosity logging response with different spacing and shields. And it is concluded that measuring neutron gamma have high counts and good statistical property contrasted with measuring thermal neutron, but the sensitivity of porosity decrease. Sensitivity of porosity will increase as the spacing of dual detector increases. Spacing of far and near detectors should be around 62 cm and 35 cm respectively. Gamma counts decrease and neutron gamma porosity sensitivity increase when shield is fixed between neutron and detector. The length of main shield should be greater than 10 cm and associated shielding is about 5 cm. By Monte Carlo Simulation study, the result provides technical support for determining porosity in formation elements spectroscopy logging using 241 Am-Be neutron and gamma detectors. (authors)

  18. Simulators of tray distillation columns as tools for interpreting gamma-ray scan profile signal

    International Nuclear Information System (INIS)

    Offei-Mensah, P.S.; Gbadago, J.K.; Dagadu, C.P.K.; Danso, K.A.

    2008-01-01

    Simulators of tray distillation columns were used to provide technical guidelines for interpreting signals from gamma ray scans used for analysing malfunctions in distillation columns. The transmitted radiation intensities at 0.05 m intervals were determined from top to bottom of simulators of tray distillation columns exposed to 20 mCi of '1'3'7 Cs. Signals generated from the simulators were identical with the experimental signals obtained from the stabilizer column of the crude oil distillation unit at the Tema Oil Refinery Ghana Limited. Changes in the signal level were observed with changes in diameter, type of material (gasoline, air, debris, steel) and orientation of scan line. The analysis provided accurate interpretation of gamma scan profiles. (au)

  19. Monte-Carlo background simulations of present and future detectors in x-ray astronomy

    Science.gov (United States)

    Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.

  20. Monte Carlo simulations towards semi-quantitative prompt gamma activation imaging

    International Nuclear Information System (INIS)

    Kis, Zoltan; Belgya, Tamas; Szentmiklosi, Laszlo

    2011-01-01

    Numerous non-destructive techniques utilize neutron attenuation, scattering or capture to gain morphological, structural or elemental information about the material under study. However, few attempts have been made so far to use neutron-induced gamma radiation for 3D element mapping. The first ever facility using direct scanning for element imaging was set up at the Budapest Research Reactor. It was shown that the position-sensitive prompt-gamma detection (PGAI) enables us to determine the spatial distribution of major elements. Iterative Monte Carlo simulation technique has also been developed to provide not only qualitative but also semi-quantitative element distribution of a simple object.

  1. Simultaneous and separate, low background counting of beta rays and gamma rays using the phoswich principle

    International Nuclear Information System (INIS)

    Mayhugh, M.R.; Utts, B.K.; Shoffner, B.M.

    1978-01-01

    A phoswich constructed using thin calcium fluoride optically coupled to a thicker sodium iodide crystal and operated with pulse shape analysis equipment can be used as an efficient low background counting assembly. Low background in the beta ray counting channel is achieved by judicious choice of pure materials in the assembly and by operating the analysis equipment so as to reject background events which occur simultaneously in the sodium iodide crystal. Careful survey of construction materials and methods has resulted in reducing beta ray counting background to 0.6 c/min for a 2-inch diameter assembly. The radioactivity of typical building materials will be discussed. A pulse shape analyzer has been constructed which provides separately adjusted time windows and separate output information for the beta ray and gamma ray channels. The dual channel capability combined with the low beta ray background reduces the sample counting time significantly for typical laboratory samples. (author)

  2. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  3. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  4. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  5. Assessment of genetically significant doses to the Sofia population from natural gamma background

    International Nuclear Information System (INIS)

    Vasilev, G.; Khristova, M.

    1977-01-01

    Genetically significant dose to the population of Sofia city was assessed within a program covering larger urban communities in the country. Measurements were made of gamma background exposure rates in the gonadal region. Gonad doses were estimated using a screening factor of 0.73. Based on statistical data for total number of inhabitants and number of people of reproductive age, and on the mean annual gonad doses derived, calculations were made of genetically significant dose to the Sofia population. Base-line data were thus provided for an assessment of extra radiation dose resulting from occupational radiation exposure. (author)

  6. Simultaneous determination of exponential background and Gaussian peak functions in gamma ray scintillation spectrometers by maximum likelihood technique

    International Nuclear Information System (INIS)

    Eisler, P.; Youl, S.; Lwin, T.; Nelson, G.

    1983-01-01

    Simultaneous fitting of peaks and background functions from gamma-ray spectrometry using multichannel pulse height analysis is considered. The specific case of Gaussian peak and exponential background is treated in detail with respect to simultaneous estimation of both functions by using a technique which incorporates maximum likelihood method as well as a graphical method. Theoretical expressions for the standard errors of the estimates are also obtained. The technique is demonstrated for two experimental data sets. (orig.)

  7. On background radiation gradients – the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-01-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients. -- Highlights: • We present a simple method to account for gradients in the natural background radiation. • Gradients in the natural radiation background can be modelled at the ground level using AGS data. • The number of false positives due to background gradients can be reduced by using airborne data

  8. Gamma irradiation of cultural artifacts for disinfection using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Choi, Jong-il; Yoon, Minchul; Kim, Dongho

    2012-01-01

    In this study, it has been investigated the disinfection of Korean cultural artifacts by gamma irradiation, simulating the absorbed dose distribution on the object with the Monte Carlo methodology. Fungal contamination was identified on two traditional Korean agricultural tools, Hongdukkae and Holtae, which had been stored in a museum. Nine primary species were identified from these items: Bjerkandera adusta, Dothideomycetes sp., Penicillium sp., Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp., Entrophospora sp., Aspergillus sydowii, and Corynascus sepedonium. However, these fungi were completely inactivated by gamma irradiation at an absorbed dose of 20 kGy on the front side. Monte Carlo N Particle Transport Code was used to simulate the doses applied to these cultural artifacts, and the measured dose distributions were well predicted by the simulations. These results show that irradiation is effective for the disinfection of cultural artifacts and that dose distribution can be predicted with Monte Carlo simulations, allowing the optimization of the radiation treatment. - Highlights: ► Radiation was applied for the disinfection of Korean cultural artifacts. ► Fungi on the artifacts were completely inactivated by the irradiation. ► Monte Carlo N Particle Transport Code was used to predict the dose distribution. ► This study is applicable for the preservation of cultural artifacts by irradiation.

  9. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit

    Science.gov (United States)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas

    2018-05-01

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

  10. Gamma sensitivity of pressurized drift tubes

    International Nuclear Information System (INIS)

    Baranov, S.A.; Bojko, I.R.; Shelkov, G.A.; Ignatenko, M.A.

    1995-01-01

    Using a set of commonly used radioactive sources, the efficiency of pressurized drift tubes for gammas with energy from 5.9 keV up to 1.3 MeV has been measured. The tube was made of aluminium and filled with Ar, 15%CO 2 and 2.5%iC 4 H 10 gas mixture at 3 atm. The measured efficiency is compared with the results of the calculations in the frame of our simple model as well as with that of the Monte Carlo simulation using GEANT code. The results of our calculations are in agreement with experimental data, while GEANT simulation tends to give lower efficiency in the energy range of 200 keV γ <1300 keV. The average efficiency of the tube in the field of ATLAS gamma background is about 0.45%. 8 refs., 7 figs., 1 tab

  11. The use of difference spectra with a filtered rolling average background in mobile gamma spectrometry measurements

    International Nuclear Information System (INIS)

    Cresswell, A.J.; Sanderson, D.C.W.

    2009-01-01

    The use of difference spectra, with a filtering of a rolling average background, as a variation of the more common rainbow plots to aid in the visual identification of radiation anomalies in mobile gamma spectrometry systems is presented. This method requires minimal assumptions about the radiation environment, and is not computationally intensive. Some case studies are presented to illustrate the method. It is shown that difference spectra produced in this manner can improve signal to background, estimate shielding or mass depth using scattered spectral components, and locate point sources. This approach could be a useful addition to the methods available for locating point sources and mapping dispersed activity in real time. Further possible developments of the procedure utilising more intelligent filters and spatial averaging of the background are identified.

  12. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation

    International Nuclear Information System (INIS)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-01-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y

  13. Manual for the Jet Event and Background Simulation Library(JEBSimLib)

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, Ron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Angerami, Aaron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    Jets are the collimated streams of particles resulting from hard scattering in the initial state of high-energy collisions. In heavy-ion collisions, jets interact with the quark-gluon plasma (QGP) before freezeout, providing a probe into the internal structure and properties of the QGP. In order to study jets, background must be subtracted from the measured event, potentially introducing a bias. We aim to understand and quantify this subtraction bias. PYTHIA, a library to simulate pure jet events, is used to simulate a model for a signature with one pure jet (a photon) and one quenched jet, where all quenched particle momenta are reduced by a user-de ned constant fraction. Background for the event is simulated using multiplicity values generated by the TRENTO initial state model of heavy-ion collisions fed into a thermal model consisting of a 3-dimensional Boltzmann distribution for particle types and momenta. Data from the simulated events is used to train a statistical model, which computes a posterior distribution of the quench factor for a data set. The model was tested rst on pure jet events and then on full events including the background. This model will allow for a quantitative determination of biases induced by various methods of background subtraction.

  14. AGATA gamma-ray tracking simulations and data analysis working group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The purpose of this meeting was to review the present state of the AGATA project (Advanced GAmma Tracking Array). The following issues were dealt with: -) detectors and preamplifiers, -) ancillary detectors, -) tracking, -) physics simulations and key experiments, -) in-beam tests, -) data acquisition, -) data processing: front end electronics, and -) infrastructure. This document gathers only the slides of the presentations.

  15. AGATA gamma-ray tracking simulations and data analysis working group

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of this meeting was to review the present state of the AGATA project (Advanced GAmma Tracking Array). The following issues were dealt with: -) detectors and preamplifiers, -) ancillary detectors, -) tracking, -) physics simulations and key experiments, -) in-beam tests, -) data acquisition, -) data processing: front end electronics, and -) infrastructure. This document gathers only the slides of the presentations

  16. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  17. Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling

    International Nuclear Information System (INIS)

    Yuan Chao; Zhou Cancan; Zhang Feng; Chen Zhi

    2014-01-01

    Monte Carlo simulation is one of the most important numerical simulation methods in nuclear logging. Formation models can be conveniently built with MCNP code, which provides a simple and effective approach for fundamental study of nuclear logging. Monte Carlo method is employed to set up formation models under logging while drilling condition, and the characteristic of azimuthal gamma imaging is simulated. The results present that the azimuthal gamma imaging shows a sinusoidal curve features. The imaging can be used to accurately calculate the relative dip angle of borehole and thickness of radioactive formation. The larger relative dip angle of borehole and the thicker radioactive formation lead to the larger height of the sinusoidal curve in the imaging. The borehole size has no affect for the calculation of the relative dip angle, but largely affects the determination of formation thickness. The standoff of logging tool has great influence for the calculation of the relative dip angle and formation thickness. If the gamma ray counts meet the demand of counting statistics in nuclear logging, the effect of borehole fluid on the imaging can be ignored. (authors)

  18. Simulation of multiple scattering background in heavy ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Li, M.M.; O'Connor, D.J.

    1999-01-01

    With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace quantities of heavy-atom impurities on Si surfaces, it is necessary to quantify the multiple scattering contribution to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering background features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: (1) a single ultra-thin (free standing) Au film of 10 A thickness, (2) a 10 A Au film on a 50 A Si surface, (3) a 10 A Au film on an Si substrate (10 000 A), and (4) a thick target (10 000 A) of pure Si. The ratio of the signal from the Au thin layer to the background due to multiple scattering has been derived by fitting the simulation results. From the simulation results, it is found that the Au film contributes to the background which the Si plays a role in developing due to the ion's multiple scattering in the substrate. Such a background is generated neither by only the Au thin layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering in the Au layer and subsequently several small angle scatterings in the substrate. This study allows an appropriate choice of incident beam species and energy range when the HIBS is utilized to analyse low level impurities in Si wafers

  19. The GEANT4 simulation study of the characteristic γ-ray spectrum of TNT under soil induced by DT neutron

    International Nuclear Information System (INIS)

    Qin Xue; Han Jifeng; Yang Chaowen

    2014-01-01

    The characteristic γ-ray spectrum of TNT under soil induced by DT neutron is measured based on the PFTNA demining system. GEANT4 Monte Carlo simulation toolkit is used to simulate the whole experimental procedure. The simulative spectrum is compared with the experimental spectrum. The result shows that they are mainly consistent. It is for the first time to analyze the spectrum by Monte Carlo simulation, the share of the background sources such as neutron, gamma are obtained, the contribution that the experimental apparatus such as shielding, detector sleeve, moderator make to the background is analysed. The study found that the effective gamma signal (from soil and TNT) is only 29% of the full-spectrum signal, and the background signal is more than 68% of the full-spectrum signal, which is mainly produced in the shielding and the detector sleeve. The simulation result shows that by gradually improving the shielding and the cadmium of the detector sleeve, the share of the effective gamma signal can increase to 36% and the background signal can fell 7% eventually. (authors)

  20. Development of a dose simulation software for gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson Minoru

    2000-01-01

    The use of high temperature, thermal and chemical treatment are among the used sterilization process of food and many products. The ionizing radiation came as another option, it has being used for many purposes and it became available due to the technological development in the second half of the 20 th century. Together with sterilization, many uses of the ionizing radiation were developed, such as applications on health, industrial products and waste recycling, food irradiation, vulcanizing, polymerization and gems color enhancing. The 60 Co gamma stands out among the used radiation sources on commercial facilities. lt is used to optimize this process with many dose mapping tests. The objective of this work is to develop a software to simulate the doses in 60 Co gamma irradiation systems. lt can be used to optimize a process on the project stage of a facility and to make viability studies for new applications in installations already set up. The validation of this software was done comparing the simulation results with the dosimetry data of an operating irradiation plant. The flexibility of the software was verified with extra dosimetry tests performed in another sterilization facility. (author)

  1. Simulation of space protons influence on silicon semiconductor devices using gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Zhukov, Y.N.; Zinchenko, V.F.; Ulimov, V.N.

    1999-01-01

    In this study the authors focus on the problems of simulating the space proton energy spectra under laboratory gamma-neutron radiation tests of semiconductor devices (SD). A correct simulation of radiation effects implies to take into account and evaluate substantial differences in the processes of formation of primary defects in SD in space environment and under laboratory testing. These differences concern: 1) displacement defects, 2) ionization defects and 3) intensity of radiation. The study shows that: - the energy dependence of nonionizing energy loss (NIEL) is quite universal to predict the degradation of SD parameters associated to displacement defects, and - MOS devices that are sensitive to ionization defects indicated the same variation of parameters under conditions of equality of ionization density generated by protons and gamma radiations. (A.C.)

  2. Gamma-ray background induced in a double Ge (Li) spectrometer at ballon altitudes in the hemisphere

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Braga, J.; Jardim, J.O.D.; Vedrenne, G.

    1986-02-01

    A double coaxil Ge(li) spetrometer has been flown for the first time in December, from the Southern Hemisphere and the induced background at ceiling in the diodes was studied. During the flight, different anti-coincidence modes were operated to estimate the gamma-ray lines. The results of 511 Kev line show that the fluxes detected by the upper diode are in good agreement with previous measurements, and indicate a probable contamination of the lower diode. (Author) [pt

  3. Design and environmental applications of an ultra-low-background, high-efficiency intrinsic Ge gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1981-04-01

    A coincidence shielded intrinsic Ge gamma-ray spectrometer incorporating a 25% efficient, high resolution coaxial diode inside a 30 cm diameter NaI(Tl) shield is described. System design eliminates the major cause of background and minimizes cosmic-ray created background events through the use of electronic means. The system provides a peak-to-Compton ratio of greater than 1000 to 1 for 137 Cs and high sensitivity for both low and high level radionuclide measurements. At 3 MeV the background is 0.000058 counts per minute per keV. At 1 MeV it is 0.00048 counts per minute per keV, and at 0.5 MeV it is 0.0045 counts per minute per keV. Traces of primordial radionuclides create background events such as at 2.614 MeV (0.016 counts per minute total peak area), at 2.448 MeV (0.0058 counts per minute per total peak area), and at 2.204 MeV (0.023 counts per minute per total peak area). The system is discussed with respect to its background design, methods to improve its design, and its application to measurements of neutron activated and environmental materials problems

  4. THE ORIGIN OF THE COSMIC GAMMA-RAY BACKGROUND IN THE MeV RANGE

    International Nuclear Information System (INIS)

    Ruiz-Lapuente, Pilar; The, Lih-Sin; Hartmann, Dieter H.; Ajello, Marco; Canal, Ramon; Röpke, Friedrich K.; Ohlmann, Sebastian T.; Hillebrandt, Wolfgang

    2016-01-01

    There has been much debate about the origin of the diffuse γ-ray background in the MeV range. At lower energies, AGNs and Seyfert galaxies can explain the background, but not above ≃0.3 MeV. Beyond ∼10 MeV blazars appear to account for the flux observed. That leaves an unexplained gap for which different candidates have been proposed, including annihilations of WIMPS. One candidate is Type Ia supernovae (SNe Ia). Early studies concluded that they were able to account for the γ-ray background in the gap, while later work attributed a significantly lower contribution to them. All those estimates were based on SN Ia explosion models that did not reflect the full 3D hydrodynamics of SN Ia explosions. In addition, new measurements obtained since 2010 have provided new, direct estimates of high-z SN Ia rates beyond z ∼ 2. We take into account these new advances to see the predicted contribution to the gamma-ray background. We use here a wide variety of explosion models and a plethora of new measurements of SN Ia rates. SNe Ia still fall short of the observed background. Only for a fit, which would imply ∼150% systematic error in detecting SN Ia events, do the theoretical predictions approach the observed fluxes. This fit is, however, at odds at the highest redshifts with recent SN Ia rate estimates. Other astrophysical sources such as flat-spectrum radio quasars do match the observed flux levels in the MeV regime, while SNe Ia make up to 30%–50% of the observed flux

  5. THE ORIGIN OF THE COSMIC GAMMA-RAY BACKGROUND IN THE MeV RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Lapuente, Pilar [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, c/. Serrano 121, E-28006, Madrid (Spain); The, Lih-Sin; Hartmann, Dieter H.; Ajello, Marco [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Canal, Ramon [Institut de Ciències del Cosmos (UB-IEEC), c/. Martí i Franqués 1, E-08028, Barcelona (Spain); Röpke, Friedrich K.; Ohlmann, Sebastian T. [Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074, Würzburg (Germany); Hillebrandt, Wolfgang [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei München (Germany)

    2016-04-01

    There has been much debate about the origin of the diffuse γ-ray background in the MeV range. At lower energies, AGNs and Seyfert galaxies can explain the background, but not above ≃0.3 MeV. Beyond ∼10 MeV blazars appear to account for the flux observed. That leaves an unexplained gap for which different candidates have been proposed, including annihilations of WIMPS. One candidate is Type Ia supernovae (SNe Ia). Early studies concluded that they were able to account for the γ-ray background in the gap, while later work attributed a significantly lower contribution to them. All those estimates were based on SN Ia explosion models that did not reflect the full 3D hydrodynamics of SN Ia explosions. In addition, new measurements obtained since 2010 have provided new, direct estimates of high-z SN Ia rates beyond z ∼ 2. We take into account these new advances to see the predicted contribution to the gamma-ray background. We use here a wide variety of explosion models and a plethora of new measurements of SN Ia rates. SNe Ia still fall short of the observed background. Only for a fit, which would imply ∼150% systematic error in detecting SN Ia events, do the theoretical predictions approach the observed fluxes. This fit is, however, at odds at the highest redshifts with recent SN Ia rate estimates. Other astrophysical sources such as flat-spectrum radio quasars do match the observed flux levels in the MeV regime, while SNe Ia make up to 30%–50% of the observed flux.

  6. Using the computer simulation methods for the PHOS gamma spectrometer in the ALICE design. Pt. 1. Simulation of the base module response on a high-energy gamma quantum

    International Nuclear Information System (INIS)

    Antonenko, V.G.; Blau, D.S.

    2006-01-01

    After all lead tungstate crystals have been fabricated and transferred for assembling of the gamma-spectrometer PHOS in frame of ALICE experiment on the Large Hadron Collider a simulation was performed of the light collection in single scintillation module taking into account realistic properties of entire crystal party [ru

  7. A new computationally-efficient computer program for simulating spectral gamma-ray logs

    International Nuclear Information System (INIS)

    Conaway, J.G.

    1995-01-01

    Several techniques to improve the accuracy of radionuclide concentration estimates as a function of depth from gamma-ray logs have appeared in the literature. Much of that work was driven by interest in uranium as an economic mineral. More recently, the problem of mapping and monitoring artificial gamma-emitting contaminants in the ground has rekindled interest in improving the accuracy of radioelement concentration estimates from gamma-ray logs. We are looking at new approaches to accomplishing such improvements. The first step in this effort has been to develop a new computational model of a spectral gamma-ray logging sonde in a borehole environment. The model supports attenuation in any combination of materials arranged in 2-D cylindrical geometry, including any combination of attenuating materials in the borehole, formation, and logging sonde. The model can also handle any distribution of sources in the formation. The model considers unscattered radiation only, as represented by the background-corrected area under a given spectral photopeak as a function of depth. Benchmark calculations using the standard Monte Carlo model MCNP show excellent agreement with total gamma flux estimates with a computation time of about 0.01% of the time required for the MCNP calculations. This model lacks the flexibility of MCNP, although for this application a great deal can be accomplished without that flexibility

  8. Constraints on decaying dark matter from the extragalactic gamma-ray background

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2015-02-01

    If dark matter is unstable and the mass is within GeV-TeV regime, its decays produce high-energy photons that give contribution to the extragalactic gamma-ray background (EGRB). We constrain dark matter decay by analyzing the 50-month EGRB data measured with Fermi satellite, for different decay channels motivated with several supersymmetric scenarios featuring R-parity violation. We adopt the latest astrophysical models for various source classes such as active galactic nuclei and star-forming galaxies, and take associated uncertainties properly into account. The lower limits for the lifetime are very stringent for a wide range of dark matter mass, excluding the lifetime shorter than 10 28 s for mass between a few hundred GeV and ∝1TeV, e.g., for b anti b decay channel. Furthermore, most dark matter models that explain the anomalous positron excess are also excluded. These constraints are robust, being little dependent on astrophysical uncertainties, unlike other probes such as Galactic positrons or anti-protons.

  9. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    Science.gov (United States)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  10. Monte Carlo simulation of {beta}-{gamma} coincidence system using plastic scintillators in 4{pi} geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M.S. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)], E-mail: msdias@ipen.br; Piuvezam-Filho, H. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Baccarelli, A.M. [Departamento de Fisica-PUC/SP-Rua Marques de Paranagua 111, 01303-050 Sao Paulo, SP (Brazil); Takeda, M.N. [Universidade Santo Amaro, UNISA-Rua Prof. Eneas da Siqueira Neto 340, 04829-300 Sao Paulo, SP (Brazil); Koskinas, M.F. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2007-09-21

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4{pi}{beta}(PS)-{gamma} coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4{pi} geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to {sup 60}Co and {sup 133}Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4{pi}{beta}(PC)-{gamma} coincidence system.

  11. Laboratory tests on neutron shields for gamma-ray detectors in space

    CERN Document Server

    Hong, J; Hailey, C J

    2000-01-01

    Shields capable of suppressing neutron-induced background in new classes of gamma-ray detectors such as CdZnTe are becoming important for a variety of reasons. These include a high cross section for neutron interactions in new classes of detector materials as well as the inefficient vetoing of neutron-induced background in conventional active shields. We have previously demonstrated through Monte-Carlo simulations how our new approach, supershields, is superior to the monolithic, bi-atomic neutron shields which have been developed in the past. We report here on the first prototype models for supershields based on boron and hydrogen. We verify the performance of these supershields through laboratory experiments. These experimental results, as well as measurements of conventional monolithic neutron shields, are shown to be consistent with Monte-Carlo simulations. We discuss the implications of this experiment for designs of supershields in general and their application to future hard X-ray/gamma-ray experiments...

  12. Radon-222 related influence on ambient gamma dose.

    Science.gov (United States)

    Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D

    2018-04-03

    Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma-ray backgrounds

    International Nuclear Information System (INIS)

    Letter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually have emerged from an earlier stage at zroughly-equal4 in which they are the thermal X-ray sources responsible for most of the comic X-ray background (CXB). We pursue the conjecture that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx.10 8 years these central black holes are spun up to a ''canonical'' Kerr equilibriuim state (a/M = 0.998) and shown how they can lead to spectral evolution involving nonthermal emission extending to gamma-rays, at the expense of reduced thermal disk radiation. A superposition of sources in the precursor stage can thereby account for that major portion of the CXB remaining after the contributions of usual AGN are considered, while a superposition of AGN sources at z<1 can account for the gamima-ray background. Extensive X-ray measurements carried out with the HEAO 1 and HEAO 2 missions, as well as gamma-ray and optical data, are shown to compare favorably with principal features of this model. Several further observational tests are suggested for establishing the validity of this scenario for AGN spectral evolution

  14. The simulation of an imaging gamma-ray Compton backscattering device using GEANT4

    International Nuclear Information System (INIS)

    Flechas, D.; Cristancho, F.; Sarmiento, L.G.; Fajardo, E.

    2014-01-01

    A gamma-backscattering imaging device dubbed Compton Camera, developed at GSI (Darmstadt, Germany) and modified and studied at the Nuclear Physics Group of the National University of Colombia in Bogota, uses the back-to-back emission of two gamma rays in the positron annihilation to construct a bidimensional image that represents the distribution of matter in the field-of-view of the camera. This imaging capability can be used in a host of different situations, for example, to identify and study deposition and structural defects, and to help locating concealed objects, to name just two cases. In order to increase the understanding of the response of the Compton Camera and, in particular, its image formation process, and to assist in the data analysis, a simulation of the camera was developed using the GEANT4 simulation toolkit. In this work, the images resulting from different experimental conditions are shown. The simulated images and their comparison with the experimental ones already suggest methods to improve the present experimental device. (author)

  15. Development of an airborne gamma radiation system for snow surveys

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, A E [EG and G, Inc., Las Vegas, NV (USA)

    1979-01-01

    An airborne gamma-snow survey system requires detailed design to obtain maximum precision and accuracy. The use of NaI(Te) gamma detectors with a full gamma energy spectrum pulse height analyzer together with a small computer provide a self-contained and flexible system. The dual detector method determines atmospheric radon perturbations in the detection system. Detailed calibration experiments must be performed to determine twenty parameters that describe the physical nature of the system. Multiple high altitude and lake flights are used to obtain background components. Simulation pads, loaded with varying concentrations of /sup 40/K, /sup 232/Th and /sup 23/..gamma..U yield photopeak stripping coefficients and basic system sensitivity. Multiple altitude flights over land lines provide air attenuation coefficients which may converted to water attenuation coefficients.

  16. Measuring the energies and multiplicities of prompt gamma-ray emissions from neutron-induced fission of $^{235}$U using the STEFF spectrometer

    CERN Document Server

    AUTHOR|(CDS)2093036; Smith, Alastair Gavin; Wright, Tobias James

    Following a NEA high priority nuclear data request, an experimental campaign to measure the prompt $\\gamma$-ray emissions from $^{235}$U has been performed. This has used the STEFF spectrometer at the new Experimental Area 2 (EAR2) within the neutron timeof-flight facility (n_TOF), a white neutron source facility at CERN with energies from thermal to approximately 1 GeV. Prior to the experimental campaign, STEFF has been optimised for the environment of EAR2. The experimental hall features a high background $\\gamma$-ray rate, due to the nature of the spallation neutron source. Thus an investigation into reduction of the background $\\gamma$-ray rate, encountered by the NaI(Tl) detector array of STEFF, has been carried out. This has been via simulations using the simulation package FLUKA. Various materials and shielding geometries have been investigated but the effects determined to be insufficient in reducing the background rate by a meaningful amount. The NaI(Tl) detectors have been modified to improve their ...

  17. A simulation study on the dose distribution for a single beam of the gamma knife

    International Nuclear Information System (INIS)

    Chen, Chin-cheng; Jiang, Shiang-Huei; Lee, Chung-chi; Shiau, Cheng-Ying

    2000-01-01

    The purpose of this study is to evaluate the impact of the tissue heterogeneity on the dose distribution for a single beam of the gamma knife. The EGS4 Monte Carlo code was used to simulate both depth and radial profiles of the radiation dose in homogeneous and heterogeneous phantoms, respectively. The results are compared with the dose distribution calculated using the mathematical model of Gamma Plan, the treatment planning system of the gamma knife. The skull and sinus heterogeneity were simulated by a Teflon shell and an air shell, respectively. It was found that the tissue heterogeneity caused significant perturbation on the absolute depth dose at the focus as well as on the depth-dose distribution near the phantom surface and/or at the interface but little effect on the radial dose distribution. The effect of the beam aperture on the depth-dose distribution was also investigated in this study. (author)

  18. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    OpenAIRE

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{...

  19. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    International Nuclear Information System (INIS)

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-01-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)

  20. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki

    2017-01-26

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverberation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is related to the difficult question of analyzing the statistics of a sum of Gamma- Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose robust importance sampling schemes that efficiently evaluates the outage probability of diversity receivers over Gamma-Gamma fading channels. The proposed estimators satisfy the well-known bounded relative error criterion for both maximum ratio combining and equal gain combining cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  1. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte

    2013-01-01

    and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of similar to 10 m(2) at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment...... is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design...... an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than...

  2. Visual gamma-ray analysis. VIPF program (WINDOW 95)

    International Nuclear Information System (INIS)

    Yamada, S.

    1998-01-01

    VIsual Peak Fitting (VIPF) program for the analysis of gamma radiation peaks from Ge detectors which works on WINDOWS 95 as an operating system has been developed. Gamma-ray peaks are simulated as Gauss function with 1st- or 2nd-order polynomial function for the background spectrum. Any function can be further added to for parameter fitting. The VIPF program can be obtained through internet by down-loading: http://w3.rri.kyoto-u.ac.jp/~yamada. Details of the program procedure, explanation of the fitting function to be used and peak search routine, and manuals of the code are given. (Ohno, S.)

  3. Gamma knife simulation using the MCNP4C code and the zubal phantom and comparison with experimental data

    International Nuclear Information System (INIS)

    Gholami, S.; Kamali Asl, A.; Aghamiri, M.; Allahverdi, M.

    2010-01-01

    Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  4. Gamma Knife Simulation Using the MCNP4C Code and the Zubal Phantom and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    Somayeh Gholami

    2010-06-01

    Full Text Available Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  5. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2009-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  6. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2008-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  7. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  8. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  9. Z+$\\gamma$ differential cross section measurements and the digital timing calibration of the level-1 calorimeter trigger cluster processor system in ATLAS.

    CERN Document Server

    Lilley, Joseph

    2011-01-01

    This thesis investigates the reconstruction of $Z(\\rightarrow ee)\\gamma$ events with the ATLAS detector at the LHC. The capabilities of the detector are explored for the initial run scenario with a proton-proton centre of mass collision energy of $\\sqrt{s}$ = 7TeV, and an integrated luminosity of $\\mathcal{L} = 1,fb^{-1}$. Monte Carlo simulations are used to predict the expected precision of a differential cross-section measurement for initial state radiation $Z+\\gamma$ events, both with respect to the transverse momentum of the photon, $p_{T}(\\gamma)$, and the three body $ee\\gamma$ invariant mass. A bin-by-bin correction is used to account for the signal selection efficiency and purity, and to correct the measured (simulated) distribution back to the theoretical prediction. The main backgrounds are found to be from the final state radiation $Z+\\gamma$ process, and from jets faking photons in $Z \\rightarrow ee$ events. The possible QCD multijet background is studied using a fake-rate method, and found to be ...

  10. Investigation of background processes in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (IKP) (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino experiment aims to probe the mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of m{sub ν}=200 meV/c{sup 2} (90% C.L.). In order to determine the neutrino mass, the energy spectrum of electrons from the tritium β-decay is analyzed by a high-resolution electrostatic spectrometer which is based on the MAC-E filter principle. To keep the influence of the spectrometer background on the neutrino mass sensitivity small, KATRIN aims for a background level of 0.01 cps. For the investigation of different background components such as cosmic muons, external gamma radiation and the radioactive decay of isotopes in the volume of the spectrometer or on its surface, a series of dedicated measurements were performed with a combined system of main spectrometer and detector. This talk presents the results of measurements focusing on the secondary electron production at the inner surface of the spectrometer and compare them with electro-magnetic electron tracking simulations performed with the KATRIN developed simulation software KASSIOPEIA.

  11. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  12. Measuring gamma at LHCb with an Atwood-Dunietz-Soni Method

    CERN Document Server

    Patel, M

    2006-01-01

    The selection efficiencies and backgrounds for the two-body Atwood-Dunietz-Soni modes B+- -> D0bar/D0 K+-, where the D0bar/D0 decays to Kpi, KK or pipi, are determined from studies with LHCb's full GEANT based Monte Carlo simulation. These are used with a toy Monte Carlo, and assumptions about the D0bar/D0 -> Kpipipi decay modes, to estimate the precision with which LHCb will be able to measure the CKM angle gamma. For the majority of values of the unknown strong phases in the relevant D0bar/D0 decays, the fits to the toy Monte Carlo data converge and return the input values. Depending on the values of these phases, the precision on gamma from a nominal year of data (2fb-1 integrated luminosity) is in the range 2-6 degrees without the background, and 5-13 degrees with the considered background. In the latter case the background estimate is statistically limited and has a large uncertainty.

  13. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki

    2016-06-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion, a well-desired property characterizing the robustness of importance sampling schemes, for both identically and non-identically independent distributed cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  14. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki; Ben Rached, Nadhir; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2016-01-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion, a well-desired property characterizing the robustness of importance sampling schemes, for both identically and non-identically independent distributed cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  15. The radiation field in the New Gamma Irradiation Facility GIF++ at CERN

    CERN Document Server

    Pfeiffer, Dorothea

    2017-09-11

    The high-luminosity LHC (HL-LHC) upgrade is setting now a new challenge for particle detector technologies. The increase in luminosity will produce a particle background in the gas-based muon detectors that is ten times higher than under conditions at the LHC. The detailed knowledge of the detector performance in the presence of such a high background is crucial for an optimized design and efficient operation after the HL-LHC upgrade. A precise understanding of possible aging effects of detector materials and gases is of extreme importance. To cope with these challenging requirements, a new Gamma Irradiation Facility (GIF++) was designed and built at the CERN SPS North Area as successor of the Gamma Irradiation Facility (GIF) during the Long Shutdown 1 (LS1) period. It features an intense source of 662 keV photons with adjustable intensity, to simulate continuous background over large areas, and, combined with a high energy muon beam, to measure detector performance in the presence of the background. The new ...

  16. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  17. Utilizing experimentally derived multi-channel gamma-ray spectra for the analysis of airborne data

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1982-01-01

    Gamma-ray spectra derived from measurements on radioactive concrete calibration pads using plywood sheets to simulate the attenuation effect of air have been successfully tested on airbone data. Cesium-137 at 662 keV, from atomic weapons tests was found to contribute significantly to the airborne spectrum. By fitting the experimental spectra, above the cesium energy, to airborne data, significant increases in accuracy were obtained for the measurement of uranium and thorium, compared to the standard 3-window method. By including a cesium spectrum is the analysis of gamma-ray data from a survey carried out in Saskatchewan, it was found that background radiation due to atmospheric bismuth-214 could be measured more reliably than by using a constant over-water background. Similar results were obtained by monitoring low energy lead-214 gamma-rays at 352 keV

  18. Simulation of scintillating fiber gamma ray detectors for medical imaging

    International Nuclear Information System (INIS)

    Chaney, R.C.; Fenyves, E.J.; Antich, P.P.

    1990-01-01

    This paper reports on plastic scintillating fibers which have been shown to be effective for high spatial and time resolution of gamma rays. They may be expected to significantly improve the resolution of current medical imaging systems such as PET and SPECT. Monte Carlo simulation of imaging systems using these detectors, provides a means to optimize their performance in this application, as well as demonstrate their resolution and efficiency. Monte Carlo results are presented for PET and SPECT systems constructed using these detectors

  19. THE DETECTABILITY OF DARK MATTER ANNIHILATION WITH FERMI USING THE ANISOTROPY ENERGY SPECTRUM OF THE GAMMA-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Hensley, Brandon S.; Pavlidou, Vasiliki; Siegal-Gaskins, Jennifer M.

    2010-01-01

    The energy dependence of the anisotropy (the anisotropy energy spectrum) of the large-scale diffuse gamma-ray background can reveal the presence of multiple source populations. Annihilating dark matter in the substructure of the Milky Way halo could give rise to a modulation in the anisotropy energy spectrum of the diffuse gamma-ray emission measured by Fermi, enabling the detection of a dark matter signal. We determine the detectability of a dark-matter-induced modulation for scenarios in which unresolved blazars are the primary contributor to the measured emission above ∼1 GeV and find that in some scenarios pair-annihilation cross sections on the order of the value expected for thermal relic dark matter can produce a detectable feature. We anticipate that the sensitivity of this technique to specific dark matter models could be improved by tailored likelihood analysis methods.

  20. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    Science.gov (United States)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  1. Development of prompt gamma measurement system for in vivo proton beam range verification

    International Nuclear Information System (INIS)

    Min, Chul Hee

    2011-02-01

    entire energy range, it is from calcium. Second, to verify the relationship between the proton dose distribution and the prompt gamma distribution, the present study developed a proof-of-principle measurement system (the PGS system) employing a scanning process. The first-time experimental study verified not only that prompt gammas can be measured during treatment, but also that their distribution has a clear relationship with the proton dose distribution for therapeutic proton beams. Third, for the clinical application, a small array-type prompt gamma measurement system for use without the problematic scanning process was designed, and its optimal dimensions for effective reduction of background gammas were determined (by Monte Carlo simulations): 3-mm scintillation thickness: 2-mm slit width: 2-mm septal thickness: 150-mm slit length. To accelerate the simulations, the present study employed the parameterized source term that improved the calculation speed by a factor of 300. Finally, the performance of the array-type measurement system for clinical applications was evaluated with the test measurement system composed of a multislit collimation system, a CsI(Tl) scintillation detector, and a precise motion system. To quantitatively determine the location of the distal dose edge from the prompt gamma distribution, a methodology based on a sigmoidal curve fitting is here proposed, and this methodology proves that the distal dose edge could be accurately determined within about 4 mm for therapeutic proton beams. Additionally, the phantom effect on the prompt gamma distribution and the analysis of background gammas are studied by Monte Carlo simulations

  2. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    Science.gov (United States)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  3. Distinguishing 'Higgs' spin hypotheses using {gamma}{gamma} and WW{sup *} decays

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Physics Department, London (United Kingdom); CERN, TH Division, Physics Department, Geneva (Switzerland); Fok, Ricky [York University, Department of Physics and Astronomy, Toronto, ON (Canada); Hwang, Dae Sung [Sejong University, Department of Physics, Seoul (Korea, Republic of); Sanz, Veronica [CERN, TH Division, Physics Department, Geneva (Switzerland); York University, Department of Physics and Astronomy, Toronto, ON (Canada); You, Tevong [King' s College London, Theoretical Particle Physics and Cosmology Group, Physics Department, London (United Kingdom)

    2013-07-15

    The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into {gamma}{gamma}, ZZ{sup *} and WW{sup *}, but its spin and parity, J{sup P}, remain a mystery, with J{sup P} = 0{sup +} and 2{sup +} being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of gg {yields} X {yields} {gamma}{gamma} decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: {proportional_to}3 {sigma} if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and {proportional_to}6 {sigma} if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2{sup +} particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for X {yields} WW{sup *} using PYTHIA and Delphes, and show that their efficiencies in the case of a spin-2 particle with graviton-like couplings are a factor {approx_equal} 1.9 smaller than in the spin-0 case. On the other hand, the ratio of X{sub 2{sup +}} {yields} WW{sup *} and ZZ{sup *} branching ratios is larger than that in the 0{sup +} case by a factor {approx_equal} 1.3. We find that the current ATLAS and CMS results for X {yields} WW{sup *} and X {yields} ZZ{sup *} decays are compatible with custodial symmetry under both the spin-0 and -2 hypotheses, and that the data expected to become available during 2012 are unlikely to discriminate significantly between these possibilities. (orig.)

  4. GRODY - GAMMA RAY OBSERVATORY DYNAMICS SIMULATOR IN ADA

    Science.gov (United States)

    Stark, M.

    1994-01-01

    Analysts use a dynamics simulator to test the attitude control system algorithms used by a satellite. The simulator must simulate the hardware, dynamics, and environment of the particular spacecraft and provide user services which enable the analyst to conduct experiments. Researchers at Goddard's Flight Dynamics Division developed GRODY alongside GROSS (GSC-13147), a FORTRAN simulator which performs the same functions, in a case study to assess the feasibility and effectiveness of the Ada programming language for flight dynamics software development. They used popular object-oriented design techniques to link the simulator's design with its function. GRODY is designed for analysts familiar with spacecraft attitude analysis. The program supports maneuver planning as well as analytical testing and evaluation of the attitude determination and control system used on board the Gamma Ray Observatory (GRO) satellite. GRODY simulates the GRO on-board computer and Control Processor Electronics. The analyst/user sets up and controls the simulation. GRODY allows the analyst to check and update parameter values and ground commands, obtain simulation status displays, interrupt the simulation, analyze previous runs, and obtain printed output of simulation runs. The video terminal screen display allows visibility of command sequences, full-screen display and modification of parameters using input fields, and verification of all input data. Data input available for modification includes alignment and performance parameters for all attitude hardware, simulation control parameters which determine simulation scheduling and simulator output, initial conditions, and on-board computer commands. GRODY generates eight types of output: simulation results data set, analysis report, parameter report, simulation report, status display, plots, diagnostic output (which helps the user trace any problems that have occurred during a simulation), and a permanent log of all runs and errors. The

  5. Quantitative comparison between experimental and simulated gamma-ray spectra induced by 14 MeV tagged neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); El Kanawati, W.; Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Sannie, G. [CEA, LIST, Saclay, F-91191 Gif-sur-Yvette (France)

    2012-07-15

    Fast neutron interrogation with the associated particle technique can be used to identify explosives in cargo containers (EURITRACK FP6 project) and unexploded ordnance on the seabed (UNCOSS FP7 project), by detecting gamma radiations induced by 14 MeV neutrons produced in the {sup 2}H({sup 3}H,{alpha})n reaction. The origin of the gamma rays can be determined in 3D by the detection of the alpha particle, which provides the direction of the opposite neutron and its time-of-flight. Gamma spectroscopy provides the relative counts of carbon, nitrogen, and oxygen, which are converted to chemical fractions to differentiate explosives from other organic substances. To this aim, Monte Carlo calculations are used to take into account neutron moderation and gamma attenuation in cargo materials or seawater. This paper presents an experimental verification that C, N, and O counts are correctly reproduced by numerical simulation. A quantitative comparison is also reported for silicon, iron, lead, and aluminium. - Highlights: Black-Right-Pointing-Pointer Gamma-ray spectra produced by 14 MeV neutrons in C, N, O, Si, Al, Fe, and Pb elements. Black-Right-Pointing-Pointer Quantitative comparison with MCNPX simulations using the ENDF/B-VII.0 library. Black-Right-Pointing-Pointer C, N, and O counts correctly reproduced and chemical proportions recovered using calculation. Black-Right-Pointing-Pointer Application to the detection of explosives or illicit drugs in cargo containers.

  6. Research on cloud background infrared radiation simulation based on fractal and statistical data

    Science.gov (United States)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  7. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  8. Evaluation of the Next Generation Gamma Imager

    International Nuclear Information System (INIS)

    Amgarou, Khalil; Timi, Tebug; Blanc de Lanaute, Nicolas; Patoz, Audrey; Talent, Philippe; Menaa, Nabil; Carrel, Frederick; Schoepff, Vincent; Lemaire, Hermine; Gmar, Mehdi; Abou Khalil, Roger; Dogny, Stephane; Varet, Thierry

    2013-06-01

    Towards the end of their life-cycle, nuclear facilities are generally associated with high levels of radiation exposure. The implementation of the ALARA principle requires limiting the radiation exposure of the operating people during the different tasks of maintenance, decontamination and decommissioning. Canberra's latest involvement in the provision of nuclear measurement solutions has led, in the framework of a partnership agreement with CEA LIST, to the development of a new generation gamma imager. The latter, which is designed for an accurate localization of radioactive hotspots, consists of a pixilated chip hybridized to a 1 mm thick CdTe substrate to record photon pulses and a coded mask aperture allowing for background noise subtraction by means of a technique called mask/anti-mask procedure. This greatly contributes to the reduced size and weight of the gamma imager as gamma shielding around the detector is less required. The spatial radioactivity map is automatically superimposed onto a pre-recorded photographic (visible) image of the scene of interest. In an effort to evaluate the performances of the new gamma imager, several experimental tests have been performed on a industrial prototype to investigate its detection response, including gamma imaging sensitivity and angular resolutions, over a wide energy range (at least from 59 keV to 1330 keV). The impact of the background noise was also evaluated together with some future features like energy discrimination and parallax correction. This paper presents and discusses the main results obtained in the above experimental study. A comparison with Monte Carlo simulations using the MCNP code is provided as well. (authors)

  9. Study of proton beam induced gamma background in metallic backings

    CERN Document Server

    Gyuerky, G; Somorjai, E

    2003-01-01

    A low mass star burns H in the center via the pp chain. The central temperature (and the density) increases and the H-burning switches from the pp-chain to the more efficient CNO-burning. The escape of the star from the Main Sequence is powered by the onset of the CNO burning, whose bottleneck is the sup 1 sup 4 N(p,gamma) sup 1 sup 5 O reaction. Thus direct measurements of the sup 1 sup 4 N(p,gamma) sup 1 sup 5 O reaction at very low energies are needed. (R.P.)

  10. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  11. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  12. Data-driven Simulations of Magnetic Connectivity in Behind-the-Limb Gamma-ray Flares and Associated Coronal Mass Ejections

    Science.gov (United States)

    Jin, M.; Petrosian, V.; Liu, W.; Nitta, N.; Omodei, N.; Rubio da Costa, F.; Effenberger, F.; Li, G.; Pesce-Rollins, M.

    2017-12-01

    Recent Fermi detection of high-energy gamma-ray emission from the behind-the-limb (BTL) solar flares pose a puzzle on the particle acceleration and transport mechanisms in such events. Due to the large separation between the flare site and the location of gamma-ray emission, it is believed that the associated coronal mass ejections (CMEs) play an important role in accelerating and subsequently transporting particles back to the Sun to produce obseved gamma-rays. We explore this scenario by simulating the CME associated with a well-observed flare on 2014 September 1 about 40 degrees behind the east solar limb and by comparing the simulation and observational results. We utilize a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model) to track the dynamical evolution of the global magnetic field during the event and investigate the magnetic connectivity between the CME/CME-driven shock and the Fermi emission region. Moreover, we derive the time-varying shock parameters (e.g., compression ratio, Alfven Mach number, and ThetaBN) over the area that is magnetically connected to the visible solar disk where Fermi gamma-ray emission originates. Our simulation shows that the visible solar disk develops connections both to the flare site and to the CME-driven shock during the eruption, which indicate that the CME's interaction with the global solar corona is critical for understanding such Fermi BTL events and gamma-ray flares in general. We discuss the causes and implications of Fermi BTL events, in the framework of a potential shift of paradigm on particle acceleration in solar flares/CMEs.

  13. Prompt gamma-ray imaging for small animals

    Science.gov (United States)

    Xu, Libai

    codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  14. Natural indoor gamma background in an urban environment of Southern Poland

    International Nuclear Information System (INIS)

    Koperski, J.

    1984-01-01

    A regional survey of indoor exposure to natural gamma background from terrestrial sources was performed in the urban environment of six administrative provinces of Southern Poland. 1351 dwelling houses at 144 localities were monitored using of LiF:Mg,Ti thermoluminescence dosemeters. The dose rates observed indoors were between 32 and 185 nGy.h -1 and were strongly dependent on the types of building materials used in the dwellings monitored. The highest mean provincial values were found in slag and fly-ash dwellings (77-123 nGy.h -1 ), while in wooden dwellings these values were the lowest (42-51 nGy.h -1 ). Intermediate values occurred in clay brick dwellings (57-102 nGy.h -1 ), in dwellings of mixed, wooden-brick construction (60-79 nGy,h -1 ) and in dwellings made of gravel-sand prefabricates (52-68 nGy.h -1 ). The calculated mean annual per capita effective dose equivalent rates ranged between 0.2 mSv.y -1 , for the inhabitants of wooden houses, and 0.6 mSv.y -1 for those living in houses made of coal by-product prefabricates. (author)

  15. PID controller simulator software for DC motor of gamma scanning

    International Nuclear Information System (INIS)

    Arjoni Amir

    2008-01-01

    Mostly PID controller (Proportional-Integral-Derivative) has been used in industry. For certain applications, it can be used as a Proportional (P) model only, or as a Proportional-Integral (PI) model. The aim of this paper is to design a PID controller simulator software for DC motor which is used in gamma scanning system. A DC motor is described as a plant of SISO (Single Input Single Output) which is used for pulling down the load (detector + casing) and gamma radiation source (Co-60 + container) by using sling cable. A DC motor consist of an armature and a rotor, the equivalent circuit of DC motor is shown in a transfer function equation between output parameter (angular speed DC motor) and input parameter (voltage of DC motor). Methods used for the process of PID controller design is to arrange the PID controller parameter (Kc, Ti, Td) so that there are more PID controller transfer function model which are able to control angular speed of DC motor in stable condition, as design criteria requirement is needed. Design criteria requirement for control system are the settling time < 3 second, overshoot < 5%, rise time = 0.25 second, steady state gain = 1 and peak time < 3 second with step response reference 1 rad/second. The result of simulation gives several models of PID controller in function transfer equation which is similar with design criteria requirement in a equation of function transfer of order 2 for numerator and order 1 for denominator. (author)

  16. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  17. Teaching about Natural Background Radiation

    Science.gov (United States)

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  18. Simulation approach to coincidence summing in {gamma}-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dziri, S., E-mail: samir.dziri@iphc.cnrs.fr [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Nourreddine, A.; Sellam, A.; Pape, A.; Baussan, E. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    2012-07-15

    Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain {gamma}-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities. - Highlights: Black-Right-Pointing-Pointer Coincidence summing occurs when the solid angle is increased. Black-Right-Pointing-Pointer The loss of counts gives rise to an approximative efficiency curves, this means a wrong quantitative data. Black-Right-Pointing-Pointer To overcome this problem we need mono-energetic source, otherwise, the MCNPX simulation allows by comparison with the experiment data to get the coincidence summing correction factors. Black-Right-Pointing-Pointer By multiplying these factors by the approximative efficiency, we obtain the accurate efficiency.

  19. Inactivation by gamma irradiation of animal viruses in simulated laboratory effluent

    International Nuclear Information System (INIS)

    Thomas, F.C.; Ouwerkerk, T.; McKercher, P.

    1982-01-01

    Several animal viruses were treated with gamma radiation from a 60 Co source under conditions which might be found in effluent from an animal disease laboratory. Swine vesicular disease virus, vesicular stomatitis virus, and blue-tongue virus were irradiated in tissues from experimentally infected animals. Pseudorabies virus, fowl plague virus, swine vesicular disease virus, and vesicular stomatitis virus were irradiated in liquid animal feces. All were tested in animals and in vitro. The D 10 values, that is, the doses required to reduce infectivity by 1 log 10 , were not apparently different from those expected from predictions based on other data and theoretical considerations. The existence of the viruses in pieces of tissues or in liquid feces made no differences in the efficacy of the gamma radiation for inactivating them. Under the ''worst case'' conditions (most protective for virus) simulated in this study, no infectious agents would survive 4.0 Mrads

  20. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  1. Presence of neutrons in the low-level background environment estimated by the analysis of the 595.8 keV gamma peak

    Energy Technology Data Exchange (ETDEWEB)

    Anđelić, Brankica; Knežević, David; Jovančević, Nikola; Krmar, Miodrag; Petrović, Jovana; Toth, Arpad; Medić, Žarko; Hansman, Jan

    2017-04-21

    In order to explore possible improvements of the existing techniques developed to estimate the neutron fluence in low-background Ge-spectroscopy systems, gamma spectra were collected by a HPGe detector in the presence of the {sup 252}Cf spontaneous fission neutron source. The spectra were taken with and without a Cd envelope on the detector dipstick, with different thicknesses of plastic used to slow down neutrons. We have analyzed the complex 595.8 keV gamma peak, as well as several more gamma peaks following the neutron interactions in the detector itself and surroundings materials. The investigation shows that some changes of the initial neutron spectra can be monitored by the analysis of the 595.8 keV gamma peak. We have found good agreement in the intensity changes between the long-tail component of the 595.8 keV and the 691 keV gamma peak ({sup 72}Ge(n,n′){sup 72}Ge reaction), usually used for the estimation of the fast neutron fluence. Results also suggest that the thermal neutrons can have a stronger influence on creation of the Gaussian-like part of 595.8 keV peak, than on the 139 keV one following {sup 74}Ge(n,γ){sup 75m}Ge reaction and used in the standard methods (Škoro et al., 1992) [8] for determination of the thermal neutron flux.

  2. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system

    International Nuclear Information System (INIS)

    Sonder, E.; Ahmed, A.B.

    1991-12-01

    A value for ''average background radiation'' of 0.75 mR/week has been determined from a total of 1680 thermoluminescent dosimeters (TLD's) exposed in 70 houses for periods up to one year. The distribution of results indicates a rather large variation among houses, with a few locations exhibiting backgrounds double the general average. Some discrepancies in the short-term background accumulation of TLD's have been explained as being due to light leakage through the dosimeter cases. In addition the lower limit of detection (L D ) for deep and shallow dose equivalents has been determined for these dosimeters. The L D for occupational exposure depends strongly on the time a dosimeter is exposed to background radiation in the field. The L D can vary from a low of 2.4 mrem for high energy gamma rays when the background accumulation period is less than a few weeks to values as high as 66 mrem for uranium beta particles when background has been allowed to accumulate for more than 21 weeks

  3. An Analysis on Some Factors Which Affect the Energy Resolution of a Low-background Anti-compton HPGe Gamma-ray Spectrometer

    International Nuclear Information System (INIS)

    Zhou Chunlin; Dai Junjie; Lei Junniu; Zhang Jiaoyu

    2009-01-01

    This paper describes the basic construction and performing theory of a set of low-background anti-compton high purity germanium gamma-ray spectrometer. On the basis of experiments, some factors which affect the energy resolution of the system are discussed. The optimum parameters configuration for the system is presented and it provides a decision-making ground for purchasing, installation and alignment of analogous system. (authors)

  4. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  5. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  6. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  7. Signal and background considerations for the MRSt on the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Wink, C. W., E-mail: cwink@mit.edu; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States); Bionta, R.; Khater, H. Y. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5–10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50–100 times.

  8. Signal and background considerations for the MRSt on the National Ignition Facility (NIF).

    Science.gov (United States)

    Wink, C W; Frenje, J A; Hilsabeck, T J; Bionta, R; Khater, H Y; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times.

  9. Discuss the technology for decrease the detection limit of NaI(Tl) gamma spectrometer

    International Nuclear Information System (INIS)

    Guo Xiaobin; Qu Guopu; Liu Zhiying; Wang Hongyan; Wang Lieming

    2011-01-01

    The radioelement species is complex and quantity is few after nuclear explosion, thus it is hard to tell the difference when using the Nal (TI) Gamma spectrometer detection due to several kinds of the peak of nuclide overlapped in the scattering region. So there is a high demand for spectrometer stability, energy resolution, solution spectrum and minimum detective activity. The paper analysed the influenced factors to Nal (TI) Gamma spectrometer and the measures of detection limit decrease by experiments and MCNP simulation, which proposed the methods to reduce background through shielding in order to improve minimum detective activity. The experiment shows that choosing reasonable shielding can reduce the background effectively and improve the spectrometer low level radioactive detect ability. (authors)

  10. A gamma beam profile imager for ELI-NP Gamma Beam System

    Science.gov (United States)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  11. Analysis of gamma-background measurements in the North Bulgaria made in the period 30 May - 3 Jun 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miloslavov, V; Stoilova, S [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    1996-12-31

    Air dose rates from gamma-background radiation has been measured in 42 residential areas in the North Bulgaria. Counting rate data obtained by stationary and portable equipment have been compared. It is concluded that calibration in portable conditions leads to a high standard deviation in the measurements. Calibration with different control sources yields different results although the counting rate does not change. The average air dose rate in different locations is within the range 7.7 - 21.9 {mu}R/h. 5 refs., 4 tabs.

  12. Simulation study on unfolding methods for diagnostic X-rays and mixed gamma rays

    International Nuclear Information System (INIS)

    Hashimoto, Makoto; Ohtaka, Masahiko; Ara, Kuniaki; Kanno, Ikuo; Imamura, Ryo; Mikami, Kenta; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    A photon detector operating in current mode that can sense X-ray energy distribution has been reported. This detector consists of a row of several segment detectors. The energy distribution is derived using an unfolding technique. In this paper, comparisons of the unfolding techniques among error reduction, spectrum surveillance, and neural network methods are discussed through simulation studies on the detection of diagnostic X-rays and gamma rays emitted by a mixture of 137 Cs and 60 Co. For diagnostic X-ray measurement, the spectrum surveillance and neural network methods appeared promising, while the error reduction method yielded poor results. However, in the case of measuring mixtures of gamma rays, the error reduction method was both sufficient and effective. (author)

  13. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  14. The Monte Carlo simulation of the neutron-induced prompt gamma ray spectroscopy of the CW abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Yang Zhongping; Zhan Wenzhong

    2003-01-01

    This paper introduced the principle of identifying the chemical weapon abandoned by Japan by neutron-induced prompt gamma ray. Using the MCNP-4C Monte Carlo program, this paper simulated and analyzed the neutron-induced prompt gamma ray spectroscopy of chemical weapon abandoned by Japan, whereby supply important datum and reference for the aftertime deeper research and disposal of Japan-abandoned chemical weapon. (authors)

  15. Localization of the gamma-radiation sources using the gamma-visor

    Directory of Open Access Journals (Sweden)

    Ivanov Kirill E.

    2008-01-01

    Full Text Available The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures allowed localizing the new gamma-source.

  16. Localization of the gamma-radiation sources using the gamma-visor

    International Nuclear Information System (INIS)

    Ivanov, K. E.; Ponomaryev-Stepnoi, N. N.; Stepennov, B. S.; Teterin, Y. A.; Teterin, A. Y.; Kharitonov, V. V.

    2008-01-01

    The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures al lowed localizing the new gamma-source. (author)

  17. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Kilic, Can, E-mail: kev@umd.edu, E-mail: apr@umd.edu, E-mail: zchacko@umd.edu, E-mail: kilic@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2010-11-01

    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded.

  18. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum

    International Nuclear Information System (INIS)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can

    2010-01-01

    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded

  19. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  20. Recording {gamma} spectrometer with elimination of compton background; Spectrographe {gamma} enregistreur avec elimination du bruit de fond compton

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This instrument, derived from the recording {gamma} spectrograph, gives better definition of photoelectric peaks by elimination of pulses caused by {gamma} photons incompletely absorbed in the scintillator (Compton effect). This system uses an original method devised by Peirson: the spectrum, devoid of photoelectric peak, supplied by a detector equipped with an anthracene scintillator, is cut off from the spectrum provided by a conventional detector equipped with a Nal (T1) scintillator. The regulation of the mechanical system, detector support and source allows the detection yields to be adjusted. The electronic system is identical in presentation with that of the recording spectrograph. (author) [French] Cet appareil derive du spectrographe {gamma} enregistreur permet d'obtenir une meilleure definition des pics photoelectriques, par elimination des impulsions provenant des photons {gamma} incompletement absorbes dans le scintillateur (effet Compton). Cet ensemble met en oeuvre une methode originale due a Peirson: le spectre, depourvu de pic photoelectrique, fourni par un detecteur, equipe avec un scintillateur d'anthracene, est retranche du spectre donne par un detecteur classique, equipe avec un scintillateur de NaI (T1). Le reglage de l'ensemble mecanique, support des detecteurs et de la source, permet d'ajuster les rendements de detection. L'ensemble electronique se presente sous un aspect identique a celui du spectrographe enregistreur. (auteur)

  1. Measurement of planetary surface composition by gamma-ray and neutron spectrometry - Preparatory studies for Mars and for the Moon by numerical simulations

    International Nuclear Information System (INIS)

    Gasnault, O.

    1999-01-01

    Gamma-ray and neutron spectrometry sets up a powerful tool of geological and geochemical characterization of planetary surfaces. This method allows to tackle some critical planet science questions: crustal and mantle compositions; ices; volcanism; alteration processes... Most of the neutrons and gamma photons result from the interactions of galactic cosmic rays with matter. The first chapter introduces the physics of these nuclear interactions in planetary soils and in detectors. Our work aims at optimizing the observations by specifying instrumental performances, and by highlighting relations between soil composition and neutron fluxes. Numerical simulations using the GEANT code from CERN support our analysis. The second chapter estimates the performances of the Germanium gamma-ray spectrometer for MARS SURVEYOR 2001. The result of simulations is compared to calibration measurements; then performances are calculated in flight configuration. The background at Mars is estimated to about 160 c/s. The instrument offers a fine sensitivity to: Fe, Mg, K, Si, Th, Cl and O. It will also be possible to measure U, Ti, H, C, S, Ca and Al. The emission lobes at the surface are calculated too. These measurements shall permit a better understanding of the Martian surface. The last chapter deals with fast neutrons [500 keV; 10 MeV] emitted by the Moon. The strong influence of oxygen is underlined. As observed by LUNAR PROSPECTOR, the integrated flux shows a pronounced dependence with regolith content in iron and titanium, allowing the mapping. The influence of the other chemical elements is quantified. A simple mathematical formula is suggested to estimate the integrated neutron flux according to soil composition. At last, a study of hydrogen effects on fast neutron flux is carried out; we examine the possibilities to quantify its abundance in the soil by this method. (author)

  2. Upgrade of the muon veto and current status of the Dortmund low background HPGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, Claus; Kroeninger, Kevin; Neddermann, Till; Nitsch, Christian; Quante, Thomas [TU Dortmund, Physik EIV, D-44221 Dortmund (Germany)

    2015-07-01

    The Dortmund Low Background HPGe Facility (DLB) is a germanium facility with heavy shielding located above ground. It's primary task is to provide material screening support for the COBRA experiment which was built to search for neutrinoless double beta decay. Germanium detectors used for low background gamma spectroscopy are usually operated under either a fairly low overburden (O(1m) water equivalent (mwe)) or high overburden, e.g. in specialised underground laboratories (O(>100 mwe)). In between, only a few facilities exist, such as the DLB. The artificial overburden of 10 mwe already shields the weak component of cosmic rays. The lead castle with a state-of-the-art neutron shielding as well as the active anti-cosmics veto detector enable low background gamma spectrometry with the advantage of good accessibility on the university campus. Throughout the last years improvements have been made especially on the cosmics veto and the MC simulation leading to an remarkable low integral background counting rate (40-2700 keV) of about 2.5228(52) counts/kg/min. The talk summarises the completed tasks and presents the current status.

  3. Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics; Ton Duc Thang Univ., Ho Chi Minh City (Viet Nam). Div. of Nuclear Physics; Loan, T.T.H.; Nhon, M.V.; Tao, C.V. [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Engineering Physics

    2014-06-15

    This paper describes a new system that has the ability to reduce background components to apply for environmental studies. This system uses gamma spectrometry with semi-empirical self-absorption correction and practical method for routine measurements of the mass activity radionuclides at low energy such as {sup 210}Pb (46.5 keV), {sup 234}Th (63.3 keV) and {sup 226}Ra (186.2 keV). The reliability and precision of proficiency test must pass for final scores all the analytical determinations of received ''acceptable'' for all radionuclides. Our work shows an experiment developed for the calculation of self-absorption correction in that case that the sample's chemical composition is unknown.

  4. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-01-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  5. Cosmical sources of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, B [Warsaw Univ. (Poland)

    1974-01-01

    A brief historical outline of the X-ray and ..gamma..-ray astronomies is given first, then a summary of the recent status of X-ray astronomy follows. Further chapters include information on ..gamma..-ray sources in the solar system, in our Galaxy, and beyond it. In discussing linear gamma spectra attention is paid to the possibility of studying explosive nucleo-synthesis by observation of gamma lines from supernova remnants, etc. Questions of the isotropic gamma background are discussed at the end of the survey.

  6. Optimization of a neural network model for signal-to-background prediction in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dragovic, S.; Onjia, A. . E-mail address of corresponding author: sdragovic@inep.co.yu; Dragovic, S.)

    2005-01-01

    The artificial neural network (ANN) model was optimized for the prediction of signal-to-background (SBR) ratio as a function of the measurement time in gamma-ray spectrometry. The network parameters: learning rate (α), momentum (μ), number of epochs (E) and number of nodes in hidden layer (N) were optimized simultaneously employing variable-size simplex method. The most accurate model with the root mean square (RMS) error of 0.073 was obtained using ANN with online backpropagation randomized (OBPR) algorithm with α = 0.27, μ 0.36, E = 14800 and N = 9. Most of the predicted and experimental SBR values for the eight radionuclides ( 226 Ra, 214 Bi, 235 U, 40 K, 232 Th, 134 Cs, 137 Cs and 7 Be), studied in this work, reasonably agreed to within 15 %, which was satisfactory accuracy. (author)

  7. Application of Nonnegative Tensor Factorization for neutron-gamma discrimination of Monte Carlo simulated fission chamber’s output signals

    Directory of Open Access Journals (Sweden)

    Mounia Laassiri

    Full Text Available For efficient exploitation of research reactors, it is important to discern neutron flux distribution inside the reactor with the best possible precision. For this reason, fission and ionization chambers are used to measure the neutron field. In these arrays, the sequences of the neutron interaction points in the fission chamber can correctly be identified in order to obtain true neutron energies emitted by nuclei of interest. However, together with the neutrons, gamma-rays are also emitted from nuclei and thereby affect neutron spectra. The originality of this study consists in the application of tensor based blind source separation methods to extract independent components from signals recorded at the fission chamber preamplifier’s output. The objective is to achieve software neutron-gamma discrimination using Nonnegative Tensor Factorization tools. For reasons of nuclear safety, we first simulate the neutron flux inside the TRIGA Mark II Reactor using Monte Carlo methods under Geant4 platform linked to Garfield++. Geant4 simulations allow the fission chamber construction whereas linking the model to Garfield++ permits to simulate drift parameters from the ionization of the filling gas, which is not possible otherwise. Keywords: Fission chamber (FC, Geant4, Garfield++, Neutron-gamma discrimination, Nonnegative Tensor Factorization (NTF

  8. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  9. Background current of radioisotope manometer

    International Nuclear Information System (INIS)

    Vydrik, A.A.

    1987-01-01

    The technique for calculating the main component of the background current of radioisotopic monometers, current from direct collision of ionizing particles and a collector, is described. The reasons for appearance of background photoelectron current are clarified. The most effective way of eliminating background current components is collector protection from the source by a screen made of material with a high gamma-quanta absorption coefficient, such as lead, for example

  10. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  11. Berkeley Low Background Counting Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Sensitive low background assay detectors and sample analysis are available for non-destructive direct gamma-ray assay of samples. Neutron activation analysis is also...

  12. MCNPX simulations of the research gamma irradiator at CTEx

    International Nuclear Information System (INIS)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G.; Silva, Ademir X.

    2011-01-01

    An accurate knowledge of the dose rate distribution inside an irradiating facility is needed in order to ensure safety and guarantee efficient treatment of materials by exposure to ionizing radiation, since insufficient doses may not produce the desired effects whereas exceeding ones can compromise the properties of the irradiated items. Described in this work, are Monte Carlo simulations of the cavity-type research irradiating facility at Centro Tecnologico do Exercito performed by using the MCNPX radiation transport code. The calculations were intended to provide a better understanding of the measured dose rate distributions produced by a 42-kCi cesium- 137 source, also modeling unmapped regions of interest, either inside or outside the irradiation chambers, such as in experimental channels, or next to the moveable door and across unmapped regions of the chambers, in order to investigate scattering and attenuation of the fluxes and softening of the gamma spectrum and to predict dose rates in case of an accidental opening of the shielded door with the source out of its shielded cask. Results from calculations have been compared to measurements performed with chemical dosimeters. Comparative analyses have consistently shown a very good agreement between calculated and measured relative dose rate distributions and provided an improved knowledge on the gamma ray environment produced by the irradiator. (author)

  13. MCNPX simulations of the research gamma irradiator at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    An accurate knowledge of the dose rate distribution inside an irradiating facility is needed in order to ensure safety and guarantee efficient treatment of materials by exposure to ionizing radiation, since insufficient doses may not produce the desired effects whereas exceeding ones can compromise the properties of the irradiated items. Described in this work, are Monte Carlo simulations of the cavity-type research irradiating facility at Centro Tecnologico do Exercito performed by using the MCNPX radiation transport code. The calculations were intended to provide a better understanding of the measured dose rate distributions produced by a 42-kCi cesium- 137 source, also modeling unmapped regions of interest, either inside or outside the irradiation chambers, such as in experimental channels, or next to the moveable door and across unmapped regions of the chambers, in order to investigate scattering and attenuation of the fluxes and softening of the gamma spectrum and to predict dose rates in case of an accidental opening of the shielded door with the source out of its shielded cask. Results from calculations have been compared to measurements performed with chemical dosimeters. Comparative analyses have consistently shown a very good agreement between calculated and measured relative dose rate distributions and provided an improved knowledge on the gamma ray environment produced by the irradiator. (author)

  14. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E.M.; Andreani, C.; Senesi, R.

    2009-01-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  15. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Science.gov (United States)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  16. Background gamma radiation monitoring of three clusters of villages surrounding Mohuldih, Banduhurang and Bagjata villages, the proposed uranium mining areas in Singhbhum, Jharkhand

    International Nuclear Information System (INIS)

    Chougaonkar, M.P.; Puranik, V.D.; Singh, Prashant

    2008-01-01

    Generation of power is a fundamental catalyst to the social and economic development of a country. India needs more power in order to have a strong industrial base and for infrastructure development. With this in view, there has been an emphasis on nuclear power as an alternative source in the field of electricity generation as the nuclear power can be an effective tool in reducing stress on the environment. The Singhbhum district in the state of Jharkhand in India has been known to have deposits of uranium and uranium mines like Jaduguda, Narwapahar, Bhatin etc have been operating in the region. With the increased requirement of electricity and hence suitable fuel, few more sites are proposed to mine uranium in the region. The sites proposed are near the villages of Mohuldih, Banduhurang and Bagjata and are proposed to be open cast mines. These areas of Singhbhum are not economically advanced areas. By and large, the population is poor and there are existing problems like malnutrition and poor health. The activities of mining and the associated developments in the region are expected to improve the economic condition of the residents either through direct employment in the mining facilities, or by indirect gains due to infrastructural developments in the region. In order to assess the impact of the mining operations on the environment and the population as well, it is necessary that the pre-operational survey be carried out in the regions in question. As is the practice, a complete pre-operational survey of the physical, chemical and environmental parameters has been carried out in the region. Background gamma radiation survey was also carried out, using the thermo luminescent dosimetry technique, to obtain the preoperational levels prevalent in the regions. This paper gives the results of the baseline background gamma radiation survey in the region. It was observed that the general gamma background levels of the areas, as measured using TLDs, was 1.36 ± 0.41 m

  17. Identification of simulated microcalcifications in white noise and mammographic backgrounds

    International Nuclear Information System (INIS)

    Reiser, Ingrid; Nishikawa, Robert M.

    2006-01-01

    This work investigates human performance in discriminating between differently shaped simulated microcalcifications embedded in white noise or mammographic backgrounds. Human performance was determined through two alternative forced-choice (2-AFC) experiments. The signals used were computer-generated simple shapes that were designed such that they had equal signal energy. This assured equal detectability. For experiments involving mammographic backgrounds, signals were blurred to account for the imaging system modulation transfer function (MTF). White noise backgrounds were computer generated; anatomic background patches were extracted from normal mammograms. We compared human performance levels as a function of signal energy in the expected difference template. In the discrimination task, the expected difference template is the difference between the two signals shown. In white noise backgrounds, human performance in the discrimination task was degraded compared to the detection task. In mammographic backgrounds, human performance in the discrimination task exceeded that of the detection task. This indicates that human observers do not follow the optimum decision strategy of correlating the expected signal template with the image. Human observer performance was qualitatively reproduced by non-prewhitening with eye filter (NPWE) model observer calculations, in which spatial uncertainty was explicitly included by shifting the locations of the expected difference templates. The results indicate that human strategy in the discrimination task may be to match individual signal templates with the image individually, rather than to perform template matching between the expected difference template and the image

  18. Simulating cosmic microwave background maps in multiconnected spaces

    International Nuclear Information System (INIS)

    Riazuelo, Alain; Uzan, Jean-Philippe; Lehoucq, Roland; Weeks, Jeffrey

    2004-01-01

    This paper describes the computation of cosmic microwave background (CMB) anisotropies in a universe with multiconnected spatial sections and focuses on the implementation of the topology in standard CMB computer codes. The key ingredient is the computation of the eigenmodes of the Laplacian with boundary conditions compatible with multiconnected space topology. The correlators of the coefficients of the decomposition of the temperature fluctuation in spherical harmonics are computed and examples are given for spatially flat spaces and one family of spherical spaces, namely, the lens spaces. Under the hypothesis of Gaussian initial conditions, these correlators encode all the topological information of the CMB and suffice to simulate CMB maps

  19. Energy spectrum of extragalactic gamma-ray sources

    Science.gov (United States)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  20. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  1. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  2. Impact of image noise on gamma index calculation

    International Nuclear Information System (INIS)

    Chen, M; Mo, X; Parnell, D; Olivera, G; Galmarini, D; Lu, W

    2014-01-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  3. Impact of Image Noise on Gamma Index Calculation

    Science.gov (United States)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  4. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.

    2010-01-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

  5. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.

    Science.gov (United States)

    Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado

    2010-03-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Study of the heterogeneities effect in the dose distributions of Leksell Gamma Knife (R), through Monte Carlo simulation

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Al-Dweri, F.M.O.; Lallena R, A.M.

    2005-01-01

    In this work they are studied, by means of Monte Carlo simulation, the effects that take place in the dose profiles that are obtained with the Leksell Gamma Knife (R), when they are kept in account heterogeneities. The considered heterogeneities simulate the skull and the spaces of air that are in the head, like they can be the nasal breasts or the auditory conduits. The calculations were made using the Monte Carlo Penelope simulation code (v. 2003). The geometry of each one of the 201 sources that this instrument is composed, as well as of the corresponding channels of collimation of the Gamma Knife (R), it was described by means of a simplified model of geometry that has been recently studied. The obtained results when they are kept in mind the heterogeneities they present non worthless differences regarding those obtained when those are not considered. These differences are maximum in the proximities of the interfaces among different materials. (Author)

  7. Interpreting the gamma statistic in phylogenetic diversification rate studies: a rate decrease does not necessarily indicate an early burst.

    Directory of Open Access Journals (Sweden)

    James A Fordyce

    Full Text Available BACKGROUND: Phylogenetic hypotheses are increasingly being used to elucidate historical patterns of diversification rate-variation. Hypothesis testing is often conducted by comparing the observed vector of branching times to a null, pure-birth expectation. A popular method for inferring a decrease in speciation rate, which might suggest an early burst of diversification followed by a decrease in diversification rate is the gamma statistic. METHODOLOGY: Using simulations under varying conditions, I examine the sensitivity of gamma to the distribution of the most recent branching times. Using an exploratory data analysis tool for lineages through time plots, tree deviation, I identified trees with a significant gamma statistic that do not appear to have the characteristic early accumulation of lineages consistent with an early, rapid rate of cladogenesis. I further investigated the sensitivity of the gamma statistic to recent diversification by examining the consequences of failing to simulate the full time interval following the most recent cladogenic event. The power of gamma to detect rate decrease at varying times was assessed for simulated trees with an initial high rate of diversification followed by a relatively low rate. CONCLUSIONS: The gamma statistic is extraordinarily sensitive to recent diversification rates, and does not necessarily detect early bursts of diversification. This was true for trees of various sizes and completeness of taxon sampling. The gamma statistic had greater power to detect recent diversification rate decreases compared to early bursts of diversification. Caution should be exercised when interpreting the gamma statistic as an indication of early, rapid diversification.

  8. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Javad Mortazavi

    2017-04-01

    Full Text Available Background: Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. Objective: To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium, Staphylococcus aureus, and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Methods: Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. Results: The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6 mm; it was 14.7 (SD 0.6 mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Conclusion: Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  9. Simulation of single-event energy-deposition spreading in a hybrid pixellated detector for gamma imaging

    CERN Document Server

    Manach, E

    2002-01-01

    In the framework of the Medipix2 Collaboration, a new photon-counting chip is being developed made of a 256x256 array of 55 mu m-side square pixels. Although the chip was primarily developed for semiconductor X-ray imagers, we think that this type of device could be used in applications such as decommissioning of nuclear facilities where typical sources have gamma-ray energies in the range of a few hundred keV. In order to enhance the detection efficiency in this energy range, we envisage connecting the Medipix2 chip to a CdTe or CdZnTe substrate (at least 1 mm thick). The small pixel size, the thickness of the Cd(Zn)Te substrate and the high photon energy motivate us to estimate first the spatial energy spreading following a photon interaction inside the detector. Estimations were made using the MCNP Monte Carlo package by simulating the individual energy distribution for each primary photon interaction. As an illustration of our results, simulating a 660 keV gamma source, we found that there are two pixels ...

  10. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  11. Design and Performance of Soft Gamma-ray Detector for NeXT Mission

    Science.gov (United States)

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5×10-7 counts/s/cm2/keV; the silicon layers are required to improve the performance at a lower energy band (development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  12. Diffuse Cosmic Infrared Background Radiation

    Science.gov (United States)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  13. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  14. Extragalactic background light from hierarchical galaxy formation. Gamma-ray attenuation up to the epoch of cosmic reionization and the first stars

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; Inoue, Susumu [Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Univ. of Tokyo (Japan). Inst. for Cosmic Ray Research; Kobayashi, Masakazu A. R. [Ehime Univ., Matsuyama (Japan). Research Center for Space and Cosmic Evolution; Makiya, Ryu [Kyoto Univ. (Japan). Dept. of Astronomy; Niino, Yuu [National Astronomical Observatory of Japan, Mitaka (Tokyo). Optical and Infrared Astronomy Division; Totani, Tomonori [Kyoto Univ. (Japan). Dept. of Astronomy

    2013-04-26

    Here, we present a new model of the extragalactic background light (EBL) and corresponding γγ opacity for intergalactic gamma-ray absorption from z = 0 up to z = 10, based on a semi-analytical model of hierarchical galaxy formation that reproduces key observed properties of galaxies at various redshifts. Including the potential contribution from Population III stars and following the cosmic reionization history in a simplified way, the model is also broadly consistent with available data concerning reionization, particularly the Thomson scattering optical depth constraints from Wilkinson Microwave Anisotropy Probe (WMAP). In comparison with previous EBL studies up to z ~ 3-5, our predicted γγ opacity is in general agreement for observed gamma-ray energy below 400/(1 + z) GeV, whereas it is a factor of ~2 lower above this energy because of a correspondingly lower cosmic star formation rate, even though the observed ultraviolet (UV) luminosity is well reproduced by virtue of our improved treatment of dust obscuration and direct estimation of star formation rate. Moreover, the horizon energy at which the gamma-ray opacity is unity does not evolve strongly beyond z ~ 4 and approaches ~20 GeV. The contribution of Population III stars is a minor fraction of the EBL at z = 0, and is also difficult to distinguish through gamma-ray absorption in high-z objects, even at the highest levels allowed by the WMAP constraints. Nevertheless, the attenuation due to Population II stars should be observable in high-z gamma-ray sources by telescopes such as Fermi or the Cherenkov Telescope Array and provide a valuable probe of the evolving EBL in the rest-frame UV. Our detailed results of our model are publicly available in numerical form at http://www.slac.stanford.edu/~yinoue/Download.html.

  15. A continuum approach to combined $\\gamma/\\gamma'$ evolution and dislocation plasticity in Nickel-based superalloys

    OpenAIRE

    Wu, Ronghai; Zaiser, Michael; Sandfeld, Stefan

    2017-01-01

    Creep in single crystal Nickel-based superalloys has been a topic of interest since decades, and nowadays simulations are more and more able to complement experiments. In these alloys, the $\\gamma/\\gamma'$ phase microstructure co-evolves with the system of dislocations under load, and understanding the mutual interactions is essential for understanding the resulting creep properties. Predictive modeling thus requires multiphysics frameworks capable of modeling and simulating both the phase an...

  16. Optimization of Gamma Knife treatment planning via guided evolutionary simulated annealing

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Dean, David; Metzger, Andrew; Sibata, Claudio

    2001-01-01

    We present a method for generating optimized Gamma Knife trade mark sign (Elekta, Stockholm, Sweden) radiosurgery treatment plans. This semiautomatic method produces a highly conformal shot packing plan for the irradiation of an intracranial tumor. We simulate optimal treatment planning criteria with a probability function that is linked to every voxel in a volumetric (MR or CT) region of interest. This sigmoidal P + parameter models the requirement of conformality (i.e., tumor ablation and normal tissue sparing). After determination of initial radiosurgery treatment parameters, a guided evolutionary simulated annealing (GESA) algorithm is used to find the optimal size, position, and weight for each shot. The three-dimensional GESA algorithm searches the shot parameter space more thoroughly than is possible during manual shot packing and provides one plan that is suitable to the treatment criteria of the attending neurosurgeon and radiation oncologist. The result is a more conformal plan, which also reduces redundancy, and saves treatment administration time

  17. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    Science.gov (United States)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  18. Simulated progress in double-beta decay

    International Nuclear Information System (INIS)

    Miley, H.S.; Arthur, R.J.; Avignone, F.T.

    1993-09-01

    A Monte Carlo code has been developed to accurately simulate double-beta decay measurements. Coincident gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete 100 Mo nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra obtained in the Homestake gold mine in Lead, SD, for the purpose of extremely sensitive materials assay for the construction of new, large, enriched germanium detectors. Assays as low as 9 μBq/g of 210 Pb in lead shielding were obtained

  19. DECIPHERING CONTRIBUTIONS TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM 2 GeV TO 2 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Necib, Lina; Safdi, Benjamin R. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-12-01

    Astrophysical sources outside the Milky Way, such as active galactic nuclei and star-forming galaxies, leave their imprint on the gamma-ray sky as nearly isotropic emission referred to as the extragalactic gamma-ray background (EGB). While the brightest of these sources may be individually resolved, their fainter counterparts contribute diffusely. In this work, we use a recently developed analysis method, called the Non-Poissonian Template Fit, on up to 93 months of publicly available data from the Fermi Large Area Telescope to determine the properties of the point sources (PSs) that comprise the EGB. This analysis takes advantage of photon-count statistics to probe the aggregate properties of these source populations below the sensitivity threshold of published catalogs. We measure the source-count distributions and PS intensities, as a function of energy, from ∼2 GeV to 2 TeV. We find that the EGB is dominated by PSs, likely blazars, in all seven energy sub-bins considered. These results have implications for the interpretation of IceCube’s PeV neutrinos, which may originate from sources that contribute to the non-blazar component of the EGB. Additionally, we comment on implications for future TeV observatories such as the Cherenkov Telescope Array. We provide sky maps showing locations most likely to contain these new sources at both low (≲50 GeV) and high (≳50 GeV) energies for use in future observations and cross-correlation studies.

  20. DECIPHERING CONTRIBUTIONS TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM 2 GeV TO 2 TeV

    International Nuclear Information System (INIS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Necib, Lina; Safdi, Benjamin R.

    2016-01-01

    Astrophysical sources outside the Milky Way, such as active galactic nuclei and star-forming galaxies, leave their imprint on the gamma-ray sky as nearly isotropic emission referred to as the extragalactic gamma-ray background (EGB). While the brightest of these sources may be individually resolved, their fainter counterparts contribute diffusely. In this work, we use a recently developed analysis method, called the Non-Poissonian Template Fit, on up to 93 months of publicly available data from the Fermi Large Area Telescope to determine the properties of the point sources (PSs) that comprise the EGB. This analysis takes advantage of photon-count statistics to probe the aggregate properties of these source populations below the sensitivity threshold of published catalogs. We measure the source-count distributions and PS intensities, as a function of energy, from ∼2 GeV to 2 TeV. We find that the EGB is dominated by PSs, likely blazars, in all seven energy sub-bins considered. These results have implications for the interpretation of IceCube’s PeV neutrinos, which may originate from sources that contribute to the non-blazar component of the EGB. Additionally, we comment on implications for future TeV observatories such as the Cherenkov Telescope Array. We provide sky maps showing locations most likely to contain these new sources at both low (≲50 GeV) and high (≳50 GeV) energies for use in future observations and cross-correlation studies.

  1. Background study for the pn-CCD detector of CERN Axion Solar Telescope

    CERN Document Server

    Cebrián, S; Kuster, M.; Beltran, B.; Gomez, H.; Hartmann, R.; Irastorza, I. G.; Kotthaus, R.; Luzon, G.; Morales, J.; Ruz, J.; Struder, L.; Villar, J. A.

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) s...

  2. MONTE CARLO RADIATION TRANSFER SIMULATIONS OF PHOTOSPHERIC EMISSION IN LONG-DURATION GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States)

    2016-10-01

    We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.

  3. Study of radionuclide and element characterization of Angola marine sediment using low background gamma spectrometry and instrumental neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Teixeira, M.C.P.; Vuong Huu Tan; Truong Y; Ho Manh Dung; Le Nhu Sieu; Cao Dong Vu; Nguyen Thanh Binh

    2007-01-01

    The concentrations of radionuclides and chemical elements in Angola marine sediment samples were determined by using low background gamma (LBG) spectrometry and instrumental neutron activation analysis (INAA). The combination of radionuclide and elemental concentration values yielded synergy in the validation of analytical data and identification of sediment sources modeled by multivariate factor analysis. Varimax rotation factor analysis based on the elemental concentrations revealed five sources contributed to the sediment composition, i.e. crustal, sea-salt, industrial, coal-related and Se-related sources. (author)

  4. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  5. Characterization, propagation, and simulation of sources and backgrounds; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Watkins, Wendell R.; Clement, Dieter

    The present conference discusses the design of IR imaging radiometers, IR clutter measurements of marine backgrounds, a global evaluation of thermal IR countermeasures, the estimation of scene-correlation lengths, the dimension and lacunarity measurement of IR images using Hilbert scanning, modeling the time-dependent obscuration in simulated imaging of dust and smoke clouds, and the thermal and radiometric modeling of terrain backgrounds. Also discussed are the simulation of partially obscured scenes using the 'radiosity' method, dynamic sea-image generation, atmospheric propagation effects on pattern recognition by neural networks, a thermal model for real-time textured IR background simulation, and interferometric measurements of a high velocity mixing/shear layer. (No individual items are abstracted in this volume)

  6. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1983-01-01

    The invention provides a method for determining the characteristics of earth formations surrounding a well borehole comprising the steps of: repetitively irradiating the earth formations surrounding the well bore with relatively short duration pulses of high energy neutrons; detecting during each pulse of high energy neutrons, gamma radiation due to the inelastic scattering of neutrons by materials comprising the earth formations surrounding the borehole and providing information representative thereof; detecting immediately following each such pulse of high energy neutrons, background gamma radiation due to thermal neutron capture and providing information representative thereof; and correcting the inelastic gamma representative information to compensate for said background representative information

  7. Development of CANDLES low background HPGe detector and half-life measurement of 180Tam

    Science.gov (United States)

    Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.

    2018-01-01

    A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.

  8. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  9. On the maximum and minimum of two modified Gamma-Gamma variates with applications

    KAUST Repository

    Al-Quwaiee, Hessa

    2014-04-01

    In this work, we derive the statistical characteristics of the maximum and the minimum of two modified1 Gamma-Gamma variates in closed-form in terms of Meijer\\'s G-function and the extended generalized bivariate Meijer\\'s G-function. Then, we rely on these new results to present the performance analysis of (i) a dual-branch free-space optical selection combining diversity undergoing independent but not necessarily identically distributed Gamma-Gamma fading under the impact of pointing errors and of (ii) a dual-hop free-space optical relay transmission system. Computer-based Monte-Carlo simulations verify our new analytical results.

  10. Neutron stimulated emission computed tomography: Background corrections

    International Nuclear Information System (INIS)

    Floyd, Carey E.; Sharma, Amy C.; Bender, Janelle E.; Kapadia, Anuj J.; Xia, Jessie Q.; Harrawood, Brian P.; Tourassi, Georgia D.; Lo, Joseph Y.; Kiser, Matthew R.; Crowell, Alexander S.; Pedroni, Ronald S.; Macri, Robert A.; Tajima, Shigeyuki; Howell, Calvin R.

    2007-01-01

    Neutron stimulated emission computed tomography (NSECT) is an imaging technique that provides an in-vivo tomographic spectroscopic image of the distribution of elements in a body. To achieve this, a neutron beam illuminates the body. Nuclei in the body along the path of the beam are stimulated by inelastic scattering of the neutrons in the beam and emit characteristic gamma photons whose unique energy identifies the element. The emitted gammas are collected in a spectrometer and form a projection intensity for each spectral line at the projection orientation of the neutron beam. Rotating and translating either the body or the beam will allow a tomographic projection set to be acquired. Images are reconstructed to represent the spatial distribution of elements in the body. Critical to this process is the appropriate removal of background gamma events from the spectrum. Here we demonstrate the equivalence of two background correction techniques and discuss the appropriate application of each

  11. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  12. Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons

    Science.gov (United States)

    Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki

    2016-08-01

    Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.

  13. Detector Background Reduction by Passive and Active Shielding

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Slivka, J.; Todorovic, N.

    2013-01-01

    The operational problems of the gamma ray spectrometer shielded passively with 12 cm of lead and actively by five 0.5 m × 0.5 m × 0.05 m plastic veto shields are described. The active shielding effect from both environmental gamma ray, cosmic muons and neutrons was investigated. For anticoincidence gating wide range of scintillator pulses, corresponding to the energy range of 150 keV-75 MeV, were used. With the optimal set up the integral background, for the energy region of 50 - 3000 keV, of 0.31 c/s was achieved. The detector mass related background was 0.345 c/(kg s). The 511 keV annihilation line was reduced by the factor of 7 by the anticoincidence gate. It is shown that the plastic shields increase the neutron capture gamma line intensities due to neutron termalization.(author)

  14. Gamma-Gompertz life expectancy at birth

    OpenAIRE

    Trifon I. Missov

    2013-01-01

    BACKGROUND The gamma-Gompertz multiplicative frailty model is the most common parametric modelapplied to human mortality data at adult and old ages. The resulting life expectancy hasbeen calculated so far only numerically. OBJECTIVE Properties of the gamma-Gompertz distribution have not been thoroughly studied. The focusof the paper is to shed light onto its first moment or, demographically speaking, characterizelife expectancy resulting from a gamma-Gompertz force of mortality. The paperprov...

  15. Performance simulation and structure design of Binode CdZnTe gamma-ray detector

    International Nuclear Information System (INIS)

    Niu Libo; Li Yulan; Fu Jianqiang; Jiang Hao; Zhang Lan; He Bin; Li Yuanjing

    2014-01-01

    A new electrode structure CdZnTe (Cadmium Zinc Telluride) detector named Binode CdZnTe has been pro- posed in this paper. Together with the softwares of MAXWELL, GEANT4, and ROOT, the charge collection process and its gamma spectrum of the detector have been simulated and the detector structure has been optimized. In order to improve its performance further, Compton scattering effect correction has been used. The simulation results demonstrate that with refined design and Compton scattering effect correction, Binode CdZnTe detectors is capable of achieving 3.92% FWHM at 122 keV, and 1.27% FWHM at 662 keV. Com- pared with other single-polarity (electron-only) detector configurations, Binode CdZnTe detector offers a cost effective and simple structure alternative with comparable energy resolution. (authors)

  16. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  17. Hyperspectral imaging simulation of object under sea-sky background

    Science.gov (United States)

    Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui

    2016-10-01

    Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.

  18. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  19. Development of a cosmic veto gamma-spectrometer

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.

    2012-01-01

    Cosmic radiation contributes significantly towards the background radiation measured by a gamma-spectrometer. A novel cosmic veto gamma-spectrometer has been developed that provides a mean background reduction of 54.5%. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident muon interactions within an HPGe gamma-spectrometer. The instrument is easily configurable and provides improved sensitivity for radionuclides indicative of nuclear weapons tests and reactor incidents, including 140 Ba, 95 Zr, 99 Mo, 141 Ce, 147 Nd, 131 I, 134 Cs and 137 Cs. This has been demonstrated for Comprehensive Nuclear-Test-Ban Treaty applications to obtain the required 140 Ba MDA of 24 mBq within 2 days counting. Analysis of an air filter sample collected during the Fukushima incident indicates improved sensitivity compared to conventional gamma-spectrometers. (author)

  20. Multiple hard interactions in $\\gamma\\gamma$ and $\\gamma$p physics at LEP and HERA

    CERN Document Server

    Butterworth, J.M.; Seymour, M.H.; Storrow, J.K.; Walker, R.

    1995-01-01

    At e^+e^- and ep colliders, the large fluxes of almost on-shell photons accompanying the lepton beams lead to the photoproduction of jets. As the centre-of-mass energy is increased, regions of smaller x in the parton densities are explored and these are regions of high parton density. As a result, the probability for more than one hard partonic scattering occurring in a single \\gamma \\gamma or \\gamma p collision can become significant. This effect has been simulated using an eikonal prescription combined with the HERWIG Monte Carlo program. The possible effects of multiple hard interactions on event shapes and jet cross sections have been studied in this framework at a range of energies relevant to HERA and LEPII. The results indicate that the effects could be significant.

  1. Interferon gamma, interferon-gamma-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection

    DEFF Research Database (Denmark)

    Petrucci, Roberta; Abu Amer, Nabil; Gurgel, Ricardo Queiroz

    2008-01-01

    BACKGROUND: Children in contact with adults with pulmonary tuberculosis (TB) are at risk for infection and disease progression, and chemoprophylaxis may reduce this risk. The identification of infection is based on the tuberculin skin test (TST) and interferon-gamma (INF-gamma) release assays...

  2. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    Science.gov (United States)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  3. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator

    International Nuclear Information System (INIS)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O.

    2010-09-01

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  4. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  5. Simulations of a spectral gamma-ray logging tool response to a surface source distribution on the borehole wall

    International Nuclear Information System (INIS)

    Wilson, R.D.; Conaway, J.G.

    1991-01-01

    We have developed Monte Carlo and discrete ordinates simulation models for the large-detector spectral gamma-ray (SGR) logging tool in use at the Nevada Test Site. Application of the simulation models produced spectra for source layers on the borehole wall, either from potassium-bearing mudcakes or from plate-out of radon daughter products. Simulations show that the shape and magnitude of gamma-ray spectra from sources distributed on the borehole wall depend on radial position with in the air-filled borehole as well as on hole diameter. No such dependence is observed for sources uniformly distributed in the formation. In addition, sources on the borehole wall produce anisotropic angular fluxes at the higher scattered energies and at the source energy. These differences in borehole effects and in angular flux are important to the process of correcting SGR logs for the presence of potassium mudcakes; they also suggest a technique for distinguishing between spectral contributions from formation sources and sources on the borehole wall. These results imply the existence of a standoff effect not present for spectra measured in air-filled boreholes from formation sources. 5 refs., 11 figs

  6. A new method for studying the transport of gamma photons in various geological materials by combining the SSNTD technique with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Merzouki, A.; Bourzik, W.; Sfairi, T.

    2000-01-01

    The gamma dose rate due to the uranium and thorium series as well as the potassium 40 nuclei represents a large fraction of the total dose rate from the natural background. Natural gamma-activities of rock and soil samples collected from volcanic areas have been determined using gamma-ray spectrometry. The corresponding gamma dose rates in air have been measured by means of thermoluminescence (TL) dosimeters. Annual absorbed gamma dose rates have been evaluated in different soil samples belonging to an archaeological site by using experimental and calculational methods. Uranium and thorium contents in different geological samples have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption and transmission coefficients of the gamma photons emitted by the uranium and thorium families as well as the potassium 40 isotope for evaluating the gamma dose rate in the considered geological samples. Transport of gamma-photons across parallelepipedic blocks of the geological materials studied has been investigated. Gamma dose rates have been evaluated in the atmosphere of different geological deposits. (author)

  7. Interferon gamma, interferon-gamma-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection

    DEFF Research Database (Denmark)

    Petrucci, Roberta; Abu Amer, Nabil; Gurgel, Ricardo Queiroz

    2008-01-01

    BACKGROUND: Children in contact with adults with pulmonary tuberculosis (TB) are at risk for infection and disease progression, and chemoprophylaxis may reduce this risk. The identification of infection is based on the tuberculin skin test (TST) and interferon-gamma (INF-gamma) release assays. Ot...

  8. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  9. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  10. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  11. Influence of plasma background including neutrals on scrape-off layer filaments using 3D simulations

    Directory of Open Access Journals (Sweden)

    D. Schwörer

    2017-08-01

    Full Text Available This paper investigates the effect of the plasma background, including neutrals in a self-consistent way, on filaments in the scrape-off layer (SOL of fusion devices. A strong dependency of filament motion on background density and temperature is observed. The radial filament motion shows an increase in velocity with decreasing background density and increasing background temperature. In the simulations presented here, three neutral-filament interaction models have been compared, one with a static neutral background, one with no interaction between filaments and neutrals, and one co-evolving the neutrals self consistently with the filaments. With the background conditions employed here, which do not show detachment, there are no significant effects of neutrals on filaments, as by the time the filament reaches maximum velocity, the neutral density has not changed significantly.

  12. Thermoluminescence of simulated interstellar matter after gamma-ray irradiation. Forsterite, enstatite and carbonates

    Science.gov (United States)

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-08-01

    Interstellar matter is known to be strongly irradiated by cosmic radiation and several types of cosmic ray particles. Simulated interstellar matter, such as synthesized forsterite (Mg2SiO4), enstatite (MgSiO3) and magnesite (MgCO3), has been irradiated with 60Co gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of the Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is 1017nf /cm2). After irradiation, samples are stored in liquid nitrogen for several months to allow the decay of induced radioactivity. We measured the luminescence spectra of the gamma ray irradiated samples during warming to 370 K using a spectrophotometer. For the forsterite and magnesite, the spectra exhibit a rather intense peak at about 645-655 nm and 660 nm respectively, whereas luminescence scarcely appeared in the natural olivine sample. The spectra of forsterite is very similar to the ERE of the Red Rectangle.

  13. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  14. γγ background of the Drell-Yan process

    International Nuclear Information System (INIS)

    Carimalo, C.; Kessler, P.; Parisi, J.

    1978-01-01

    Considering lepton pair production in nucleon-nucleon or nucleon-nucleus collisions, the mechanism of gamma-gamma materialization is compared with that of quark-antiquark annihilation (Drell-Yan process). The computed predictions show that, whereas the gamma-gamma background of the Drell-Yan process should be at most a few percent in present accelerator experiments, it might become more important for future proton-proton colliding beams of superhigh energies (such as in the ISABELLE project). Several different models of quark-parton distribution functions were used both to compute the Drell-Yan cross-section and to define the inelastic structure functions involved in the gamma-gamma effect; the latter was shown, however, to be relatively model-independent. Finally, the accuracy of the simplified procedure (double equivalent-photon method) applied to the gamma-gamma process was checked, using some data computed through a more precise method by Chen et al. It was shown that errors involved in the calculations should be less than 50%, which is of the order of model fluctuations

  15. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E; Chang, Philip; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E {approx}> 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities {approx}> 10{sup 42} erg s{sup -1}) plasma beam instabilities, specifically the 'oblique' instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z {approx} 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above {approx}10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  16. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  17. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma......, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important...... for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed...

  18. A new possibility of separate the natural and industrial components of the ambient radiation background

    International Nuclear Information System (INIS)

    Purghel, L.; Valcov, N.; Celarel, A.

    1997-01-01

    The ambient radiation background, sometimes considered as a gamma-ray background, is actually composed by a natural radiation field and an industrial radiation field, produced by nuclear facilities. This work presents a possibility to separate and to measure simultaneously both components by using the statistical discrimination method. As the statistical discrimination method is able to measure mixed radiation fields, characterized by essentially different statistical factors k = σ 2 / I (I - the mean value and σ 2 - the variance of the ionization current), this basic assumption of the method is checked, for the natural background and the gamma-ray checked, for natural background and the gamma-ray fields. The obtained value of the ratio k B / k γ = 9 has confirmed the validity of the statistical discrimination method as well as the assumption of a small contribution of the gamma-ray field to the ambient radiation background. Some estimations of the statistical uncertainties, associated with the measurement of two components of the ambient background field have been made. For a 10 liters, atmospheric pressure air - filled ionization chamber (or its equivalent, i.e. 2 liters, 5 atmospheres air -filled chamber) and a 30 s integration time constant, the minimum detectable absorbed dose rate of gamma-rays, for a 0.1 μ Gy / h natural background absorbed dose rate, is equal to 0.02 μ Gy / h. The statistical relative uncertainty of measurement for a 0.5 μ Gy / h absorbed dose rate gamma-ray field, corresponding to the admissible value of the equivalent dose rate of 0.6 μ Sv / h, for non-professional population is about 4 %. (authors)

  19. THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT SIMULATIONS OF LONG-DURATION GAMMA-RAY BURST JETS INSIDE MASSIVE PROGENITOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Camara, D.; Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Begelman, Mitchell C., E-mail: dlopezc@ncsu.edu [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)

    2013-04-10

    We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gamma-ray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.

  20. Study of the $K^{\\pm} \\rightarrow \\pi^{\\pm} \\gamma \\gamma$ decay by the NA62 experiment

    CERN Document Server

    INSPIRE-00100355; Romano, A.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P.L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrie, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; Di, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retiere, F.

    2014-05-01

    A study of the dynamics of the rare decay $K^\\pm\\to\\pi^\\pm\\gamma\\gamma$ has been performed on a sample of 232 decay candidates, with an estimated background of $17.4\\pm1.1$ events, collected by the NA62 experiment at CERN in 2007. The results are combined with those from a measurement conducted by the NA48/2 collaboration at CERN. The combined model-independent branching ratio in the kinematic range $z=(m_{\\gamma\\gamma}/m_K)^2>0.2$ is ${\\cal B}_{\\rm MI}(z>0.2) = (0.965 \\pm 0.063) \\times 10^{-6}$, and the combined branching ratio in the full kinematic range assuming a Chiral Perturbation Theory description is ${\\cal B}(K_{\\pi\\gamma\\gamma}) = (1.003 \\pm 0.056) \\times 10^{-6}$. A detailed comparison of the results with the previous measurements is performed.

  1. The development of simulation and atmospheric shower reconstruction tools for the study of future Cherenkov Imaging telescopes

    International Nuclear Information System (INIS)

    Sajjad, S.

    2007-09-01

    The future of ground based gamma-ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. The design of IACT systems and the optimisation of their parameters requires an understanding of the atmospheric showers as well as dedicated tools for the simulation of telescope systems and the evaluation of their performance. The first part of this dissertation deals with atmospheric showers, the various properties of the Cherenkov light they emit and their simulation. The second part presents the tools we have developed for the simulation of imaging atmospheric Cherenkov telescopes and the characteristics of the shower images obtained by them. The third part of this thesis contains a presentation of the tools developed for the reconstruction of the source position in the sky, core position on the ground and energy of the gamma-rays as well as ideas for gamma-hadron separation. In the end, we use these tools to study two large arrays of telescopes at two altitudes and evaluate their performance for gamma-ray detection. (author)

  2. A distribution-free test for anomalous gamma-ray spectra

    International Nuclear Information System (INIS)

    Chan, Kung-sik; Li, Jinzheng; Eichinger, William; Bai, Er-Wei

    2014-01-01

    Gamma-ray spectra are increasingly acquired in monitoring cross-border traffic, or in an area search for lost or orphan special nuclear material (SNM). The signal in such data is generally weak, resulting in poorly resolved spectra, thereby making it hard to detect the presence of SNM. We develop a new test for detecting anomalous spectra by characterizing the complete shape change in a spectrum from background radiation; the proposed method may serve as a tripwire for routine screening for SNM. We show that, with increasing detection time, the limiting distribution of the test is given by some functional of the Brownian bridge. The efficacy of the proposed method is illustrated by simulations. - Highlights: • We develop a new non-parametric test for detecting anomalous gamma-ray spectra. • The proposed test has good empirical power for detecting weak signals. • It can serve as an effective tripwire for invoking more thorough scrutiny of the source

  3. Low level GAMMA0 spectrometry by beta-gamma coincidence

    International Nuclear Information System (INIS)

    Grigorescu, E.L.; Luca, A.; Razdolescu, A.C.; Ivan, C.

    1999-01-01

    Low level gamma spectrometry has a wide application, especially in environmental monitoring. Two variants, based on a beta-gamma coincidence technique, were studied. The equipment was composed of a beta detector and a Ge(Li) gamma detector (6% - relative efficiency), with the associated electronics. The gamma rays are recorded by the multichannel analyzer (4096 channels) only if the associated beta particles, which precede the gamma transitions, are registered in coincidence. Two types of beta detectors were used: plastic and liquid scintillators. In both cases, an external lead shield of 5 cm thick was used. The integral gamma background (50-1700 KeV) was reduced about 85 and 50 times, respectively. The corresponding MDA (Minimum Detectable Activity) values decreased about 1.5 and (3-7) times, respectively. The 2π sr plastic beta detector was placed on top the Ge(Li). The sample was inserted between the two detectors. The measurement time was 10 4 s. A 4π sr detector, built of the same material, was also studied, but it proved to be less advantageous because the background was reduced only 16 times; for a MDA reduction similar with that of the 2π sr variant, a longer measurement was needed (3.10 4 s). The other type of beta detector used, was a liquid scintillator. The dissolving of the samples in scintillator ensures a 4π sr measurement geometry. The vials with scintillator (10 ml volume) were placed on top the Ge(Li) and visualised by the photocathode of a phototube. This setup was surrounded by an enclosure which prevent the light penetration. The measurement time was 10 4 s. The only difficulty encountered in this low level measurement method is the accurate determination of the beta efficiency. A limitation is the possibility to measure only small mass samples. These variants are more simple and cheaper than others, previously studied. The advantage of the method is obvious when, instead of low MDA values, shorter measurement times are preferred. The

  4. Prospects of squark and slepton searches at a gamma-gamma collider

    International Nuclear Information System (INIS)

    Choudhury, Debajyoti; Datta, Anindya

    2001-01-01

    We examine the prospects of detecting sfermions at a gamma-gamma collider. Once produced, a slepton can decay into a pair of quarks (jets) through R-parity violating interactions. Similarly, a squark may decay into a lepton-quark pair. Analyzing the corresponding Standard Model backgrounds, namely 4-jet and dilepton plus dijet final states respectively, we show that the sfermion can be detected almost right upto the kinematic limit and its mass determined to a fair degree of accuracy. Similar statements also hold for nonsupersymmetric leptoquarks and diquarks

  5. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran.

    Science.gov (United States)

    Mortazavi, Seyed Mohammad Javad; Zarei, Samira; Taheri, Mohammad; Tajbakhsh, Saeed; Mortazavi, Seyed Alireza; Ranjbar, Sahar; Momeni, Fatemeh; Masoomi, Samaneh; Ansari, Leila; Movahedi, Mohammad Mehdi; Taeb, Shahram; Zarei, Sina; Haghani, Masood

    2017-04-01

    Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium ( S. typhimurium ), Staphylococcus aureus , and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6) mm; it was 14.7 (SD 0.6) mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  6. POISONING WITH GAMMA-HYDROXYBUTYRATE, GAMMA-BUTYROLACTONE AND 1.4-BUTANDIOL

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2002-09-01

    Full Text Available Background. Gamma-hydroxybutyrate (GHB is a popular recreational drug. GHB overdose typically presents with decreased level of consciousness, miosis, bradycardia, respiratory depression and death. Typically, combativeness, confusion and vomiting occur once the patient begins to recover. Gamma-butyrolactone (GBL and 1.4-butandiol (1.4-BD are the prodrugs of GHB and have similar clinical presentation. We present the case of GHB poisoning in Ljubljana.Conclusions. Physicians should suspect GHB poisoning in young ravers who present with CNS depression. Treatment is symptomatic. There is no specific antidote. Gastric lavage is not beneficial but activated charcoal is recommended.

  7. GammaLog Playback 1.0 - mobile gamma ray spectrometry software

    International Nuclear Information System (INIS)

    Watson, R.J.; Smethurst, M.A.

    2011-01-01

    The Geological Survey of Norway (NGU) operates a mobile gamma ray spectrometer system which can be used in nuclear emergency situations to determine the location and type of orphan sources, or the extent and type of fallout contamination. The system consists of a 20 litre (16 litre downward and 4 litre upward looking) RSX-5 NaI detector and spectrometer, and can be mounted in fixed wing aircraft, helicopters, or vans/cars as appropriate. NGU has developed its own data acquisition and analysis software for this system. GammaLog (Smethurst 2005) controls the acquisition, display, and storage of data from the spectrometer, and performs real-time data analysis including estimation of dose rates and fallout concentrations, and separation of geological and anthropogenic components of the signal. The latter is particularly important where the geological radioisotope signal varies strongly from one place to another, and makes it easier to locate and identify anthropogenic sources which might otherwise be difficult to separate from the geological background signal. A modified version of GammaLog has been developed, GammaLog Playback, which allows the replay of previously acquired GammaLog datasets, while performing similar processing and display as the GammaLog acquisition software. This allows datasets to be reviewed and compared in the field or during post-survey analysis to help plan subsequent measurement strategies.(Au)

  8. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  9. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  10. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    International Nuclear Information System (INIS)

    Horn, O.M.

    2007-01-01

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides (α,n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied to

  11. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  12. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  13. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  14. Energy–angle correlation of neutrons and gamma-rays emitted from an HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, G., E-mail: gennady@purdue.edu; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy–angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy–angle variables are only weakly correlated.

  15. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  17. Effects of background radiation

    International Nuclear Information System (INIS)

    Knox, E.G.; Stewart, A.M.; Gilman, E.A.; Kneale, G.W.

    1987-01-01

    The primary objective of this investigation is to measure the relationship between exposure to different levels of background gamma radiation in different parts of the country, and different Relative Risks for leukaemias and cancers in children. The investigation is linked to an earlier analysis of the effects of prenatal medical x-rays upon leukaemia and cancer risk; the prior hypothesis on which the background-study was based, is derived from the earlier results. In a third analysis, the authors attempted to measure varying potency of medical x-rays delivered at different stages of gestation and the results supply a link between the other two estimates. (author)

  18. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    Science.gov (United States)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  19. Measurement of Background Gamma Radiation Levels at Two ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: An in-situ measurement of the background radiation level was carried out at the vicinity of three ... Soil contains small quantities of radioactive elements along with their progeny. .... assessment for soil samples from Kestanbol.

  20. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  2. Generating Correlated Gamma Sequences for Sea-Clutter Simulation

    Science.gov (United States)

    2012-03-01

    generation of correlated Gamma random fields via SIRP theory is examined in [Conte et al. 1991, Armstrong & Griffiths 1991]. In these papers , the Gamma...2 〉2 + |〈x[n]x∗[n+ k]〉|2 . (4) Because 〈 |x|2 〉2 = z̄2 and |〈x[n]x∗[n+ k]〉|2 ≥ 0, this results in 〈z[n]z[n+ k]〉 ≥ z̄2 if the real- isation of z[n] is...linear map- ping. In a practical situation, a process with a given auto-covariance function would be specified. It is shown that by using an

  3. A new measurement of the $K^{\\pm} \\rightarrow \\pi^{\\pm} \\gamma \\gamma$ decay at the NA48/2 experiment

    CERN Document Server

    Batley, J.R.; Lazzeroni, C.; Munday, D.J.; Slater, M.W.; Wotton, S.A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Balev, S.; Frabetti, P.L.; Gersabeck, E.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Yu.; Stoynev, S.; Zinchenko, A.; Monnier, E.; Swallow, E.; Winston, R.; Rubin, P.; Walker, A.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.; Bizzeti, A.; Lenti, M.; Veltri, M.; Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.; Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales Morales, C.; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.; Coward, D.; Dabrowski, A.; Fonseca Martin, T.; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M.D.; Cenci, P.; Pepe, M.; Petrucci, M.C.; Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.; Cerri, C.; Fantechi, R.; Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.; Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Bloch-Devaux, B.; Cheshkov, C.; Cheze, J.B.; De Beer, M.; Derre, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.; Holder, M.; Ziolkowski, M.; Biino, C.; Cartiglia, N.; Marchetto, F.; Bifani, S.; Clemencic, M.; Goy Lopez, S.; Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.

    2014-01-01

    The NA48/2 experiment at CERN collected two data samples with minimum bias trigger conditions in 2003 and 2004. A measurement of the rate and dynamic properties of the rare decay $K^\\pm\\to\\pi^\\pm\\gamma\\gamma$ from these data sets based on 149 decay candidates with an estimated background of $15.5\\pm0.7$ events is reported. The model-independent branching ratio in the kinematic range $z=(m_{\\gamma\\gamma}/m_K)^2>0.2$ is measured to be ${\\cal B}_{\\rm MI}(z>0.2) = (0.877 \\pm 0.089) \\times 10^{-6}$, and the branching ratio in the full kinematic range assuming a particular Chiral Perturbation Theory description to be ${\\cal B}(K_{\\pi\\gamma\\gamma}) = (0.910 \\pm 0.075) \\times 10^{-6}$.

  4. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    Science.gov (United States)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  5. Environmental gamma radiation monitoring at Visakhapatnam using thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Swarnkar, M.; Sahu, S.K.; Takale, R.A.; Shetty, P.G.; Pundit, G.G.; Puranik, V.D.

    2012-01-01

    The gamma rays are the most significant part of environmental dose due to its large range and deep penetrating power. The environmental gamma radiation is mainly originated from two sources natural radiation and artificially produced radiation. The natural radiation dose arises from the cosmic radiation (galactic and solar) and from the Earth (terrestrial) surface. In the last few decades there is a growing concern all over the world about radiation and their exposure to population. Thus it is necessary to conduct radiological environmental surveillance. The radiation survey data are useful to establish the natural background gamma radiation levels. Extensive gamma radiation survey was carried out around the surroundings of Vishakhapatnam using Thermoluminescence Dosimeters (TLDs). The CaSO 4 :(0.2 mole %) Dy Teflon TLD discs, specifically designed for environmental gamma radiation monitoring purpose were used. These TLD badge are having very high TL sensitivity, a negligible fading rate and a stable TL response. TLDs were deployed on quarterly basis for two years to obtain the cumulative gamma background radiation levels in the study area. The radiological survey was also carried out by using a calibrated radiation survey meter. The annual dose rates were computed from quarterly values actually found and normalised to 365 days. The environmental gamma radiation levels around Vishakhapatnam were found to be in the range of 0.79 mGy/y to 1.86 mGy/y. It is clearly seen from the results that location to location there is a large variation in external gamma radiation levels. During the cycle of the TLD survey, spot readings of the background radiation levels were taken, both while placing the TLDs and while removing them. The instantaneous dose rates measured using survey meter, are also following the large variation as found in TLDs. It varies between 110 nGy/hr to 210 nGy/hr. (author)

  6. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.

    Science.gov (United States)

    Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M

    2016-12-01

    This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. GEANT4 simulation of the neutron background of the C$_6$D$_6$ set-up for capture studies at n_TOF

    CERN Document Server

    Žugec, P.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-05-09

    The neutron sensitivity of the C$_6$D$_6$ detector setup used at n_TOF for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a $^\\mathrm{nat}$C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured $^\\mathrm{nat}$C yield has been discovered, which prevents the use of $^\\mathrm{nat}$C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron backg...

  8. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy. Final report

    International Nuclear Information System (INIS)

    Yearian, M.R.

    1990-08-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements

  9. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  10. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    International Nuclear Information System (INIS)

    Nunez, P.; Klemola, S.; Nielsen, Sven P.; Palsson, S.E.; Israelson, C.

    2010-03-01

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  11. GammaSem Proceedings - A Nordic seminar for users of gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, P. (ed.) (Institute for Energy Technology (IFE) (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority (STUK) (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (IS)); Israelson, C. (National Institute of Radiation Protection (Denmark))

    2010-03-15

    The project GammaSem was proposed to provide a forum for discussions and sharing of information on practical issues concerning gamma spectrometry and to establish a network of users of gamma spectrometry in the Nordic countries, thereby strengthening the collaboration and improving all participants' competence in practical gamma spectrometry. The seminars' focus was practical challenges met by the users themselves, rather than theoretical matters. Scientists and users of gamma spectrometry from all five Nordic countries were invited to the seminar, as well as scientist from the Baltic countries. A total of 75 people participated; representing 34 different universities, commercial companies, research institutes and also all Nordic authorities. During the seminar several key issues for follow-up were identified and working groups for addressing the identified problems were established. The working groups were: 1) Uncertainties and detections of limits 2) True summing coincidence 3) Monte Carlo simulations and efficiency transfer 4) Absorption (density corrections and geometries) 5) Mobile gamma spectrometry systems 6) Nuclear forensics (on special samples and special parts of the spectra). The identified topics will form the basis for the agenda of the next seminar in 2010. There, the different working groups will be invited to present their ideas/solutions to the relevant problems. (author)

  12. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke [Graduate School of Medical Sciences, Kyushu University (Japan); Arimura, Hidetaka [Faculty of Medical Sciences, Kyushu University (Japan); Oku, Yoshifumi [Kagoshima University Hospital (Japan); Yoshiura, Takashi [Graduate School of Diagnostic Radiotherapy, Kagoshima University (Japan)

    2016-06-15

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids. Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.

  13. The implementation of quality controls of gamma camera functioning and simulation of tomography techniques by Gate and GEANT4

    International Nuclear Information System (INIS)

    Ben Ameur, Narjes

    2011-01-01

    The reliability of medical devices is directly linked to the services quality offered to the patient. For this reason, quality control tests should be regularly conducted in every nuclear medicine service according to international norms. Our approach consists on realizing different quality control tests recommended by the Nema norm on a gamma-camera in order to evaluate its performance. The obtained data allowed us to study the different physical phenomena happening during a SPECT exam. It also allowed us to identify those affecting the image quality based on the simulation programmes: GEANT 4 and Gate. The obtained results of the quality control showed that the Gamma-camera has a high performance in terms of spatial resolution, linearity, uniformity and rotational center. The establishment of a model for a gamma-camera Symbia E (Siemens) using a Gate platform confirms the reliability of this platform in the conception and the optimization of the detectors.

  14. Multispectral Terrain Background Simulation Techniques For Use In Airborne Sensor Evaluation

    Science.gov (United States)

    Weinberg, Michael; Wohlers, Ronald; Conant, John; Powers, Edward

    1988-08-01

    A background simulation code developed at Aerodyne Research, Inc., called AERIE is designed to reflect the major sources of clutter that are of concern to staring and scanning sensors of the type being considered for various airborne threat warning (both aircraft and missiles) sensors. The code is a first principles model that could be used to produce a consistent image of the terrain for various spectral bands, i.e., provide the proper scene correlation both spectrally and spatially. The code utilizes both topographic and cultural features to model terrain, typically from DMA data, with a statistical overlay of the critical underlying surface properties (reflectance, emittance, and thermal factors) to simulate the resulting texture in the scene. Strong solar scattering from water surfaces is included with allowance for wind driven surface roughness. Clouds can be superimposed on the scene using physical cloud models and an analytical representation of the reflectivity obtained from scattering off spherical particles. The scene generator is augmented by collateral codes that allow for the generation of images at finer resolution. These codes provide interpolation of the basic DMA databases using fractal procedures that preserve the high frequency power spectral density behavior of the original scene. Scenes are presented illustrating variations in altitude, radiance, resolution, material, thermal factors, and emissivities. The basic models utilized for simulation of the various scene components and various "engineering level" approximations are incorporated to reduce the computational complexity of the simulation.

  15. Multisite stochastic simulation of daily precipitation from copula modeling with a gamma marginal distribution

    Science.gov (United States)

    Lee, Taesam

    2018-05-01

    Multisite stochastic simulations of daily precipitation have been widely employed in hydrologic analyses for climate change assessment and agricultural model inputs. Recently, a copula model with a gamma marginal distribution has become one of the common approaches for simulating precipitation at multiple sites. Here, we tested the correlation structure of the copula modeling. The results indicate that there is a significant underestimation of the correlation in the simulated data compared to the observed data. Therefore, we proposed an indirect method for estimating the cross-correlations when simulating precipitation at multiple stations. We used the full relationship between the correlation of the observed data and the normally transformed data. Although this indirect method offers certain improvements in preserving the cross-correlations between sites in the original domain, the method was not reliable in application. Therefore, we further improved a simulation-based method (SBM) that was developed to model the multisite precipitation occurrence. The SBM preserved well the cross-correlations of the original domain. The SBM method provides around 0.2 better cross-correlation than the direct method and around 0.1 degree better than the indirect method. The three models were applied to the stations in the Nakdong River basin, and the SBM was the best alternative for reproducing the historical cross-correlation. The direct method significantly underestimates the correlations among the observed data, and the indirect method appeared to be unreliable.

  16. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  17. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can be proce...

  18. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    Science.gov (United States)

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  19. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  20. Development of ultrahigh energy resolution gamma spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Drury, O.B.; Velazquez, M.; Dreyer, J.G.; Friedrich, S.

    2009-01-01

    We are developing superconducting ultrahigh resolution gamma-detectors for non-destructive analysis (NDA) of nuclear materials, and specifically for spent fuel characterization in nuclear safeguards. The detectors offer an energy resolution below 100 eV FWHM at 100 keV, and can therefore significantly increase the precision of NDA at low energies where line overlap affects the errors of the measurement when using germanium detectors. They also increase the peak-to-background ratio and thus improve the detection limits for weak gamma emissions from the fissile Pu and U isotopes at low energy in the presence of an intense Compton background from the fission products in spent fuel. Here we demonstrate high energy resolution and high peak-to-background ratio of our superconducting Gamma detectors, and discuss their relevance for measuring actinides in spent nuclear fuel. (author)

  1. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  2. Sonic profile simulation from the profiles of gamma ray and resistivity in the wells from Campos Basin

    International Nuclear Information System (INIS)

    Leite, Marcos; Carrasquilla, Abel; Silva, Jadir da

    2008-01-01

    The knowledge of the mechanical properties of the rocks is essential in the calculation of the stability of the oil wells and in the elaboration of drilling projects, because they help in the selection of the best equipment for each geologic scene. In these activities, the most important mechanical property is the rock compressibility, which can be calculated from the sonic geophysical log, but this one, not always available in the well data set. In order to minimize this limitation, it was developed, in this work, a methodology to simulate it through an algorithm that utilizes fuzzy logic concepts, using as input data gamma ray and resistivity logs. The basic principle of this methodology is to propose that any geophysical log, including the sonic log, can be considered function of other measured geophysical logs in the same depths. On the other hand, to test the confidence of this approach, it was compared with two others commonly used in the simulation of logs: the linear multiple regression and the neural network back-propagation, showing, our methodology, however, better results. Finally, to validate the method, it was tested using wells from Namorado Oil Field in Campos Basin, which contains gamma ray, sonic and resistivity logs. (author)

  3. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Veres, P.; Dermer, C. D.; Dhuga, K. S. [Department of Physics, George Washington University, Washington, DC 20052 (United States)

    2017-09-20

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs) like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.

  4. Background compensation methodologies for contamination monitoring systems

    International Nuclear Information System (INIS)

    Raman, Anand; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Radiation surveillance program in the various nuclear facilities incorporate contamination monitoring as an important component. Contamination monitoring programs constitute monitoring for alpha and beta contamination of the physical entities associated with the working personnel that include his hands, feet, clothing, shoes as well as the general surface areas in the working environment like floors. All these measurements are fraught with the contribution of the ambient gamma background radiation fields. These inhibit a proper and precise estimation of the contamination concentration being monitored. This paper investigates the efficacy of two methodologies that have been incorporated in two of the contamination monitoring systems developed in the Division. In the first system discussed, a high degree of gamma compensation has been achieved for an uniform exposure of the order of 50 nSv/hr to 100 mSv/hr. In the second system discussed, the degree of gamma compensation achieved is equal to those dictated by the statistical nature of the uncertainties associated with the subtraction of background from the source data. These two methods can be very effectively employed depending on the application requirement. A minimum detection level equivalent to 0.37 Bq/cdm 2 has been achieved in both these cases

  5. Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.J., E-mail: kjthomas@lbl.gov [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley Laboratory, CA 94720 (United States); Norman, E.B. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley Laboratory, CA 94720 (United States); Smith, A.R.; Chan, Y.D. [Nuclear Science Division, Lawrence Berkeley Laboratory, CA 94720 (United States)

    2013-10-01

    An active veto system consisting of plastic scintillation panels was installed outside the Pb shielding of a 115% n-type HPGe detector in an effort to reduce background continuum generated by cosmic ray muons on the surface. The Low Background Facility at the Lawrence Berkeley National Laboratory performs low level assay (generally of primordial U, Th, K) of candidate construction materials for experiments that require a high level of radiopurity. The counting is performed in two facilities: one local surface site and a remote underground site of approximately 600 m.w.e. For the recently installed veto system at the surface location, the top scintillator panel has been in use for nearly 1 year and the full 3π anticoincidence shield was commissioned into normal counting operations in January 2013. The integrated background from 20 to 3600 keV is reduced overall by a factor of 8, where most of the energy spectrum above 100 keV achieves an overall reduction that varies from 8 to 10. A dramatic improvement of peak-to-background across the entire continuum is observed, greatly enhancing low-level peaks that would otherwise be obscured.

  6. Photopeak efficiency response function of an underwater gamma-ray NaI(Tl) detector using MCNP-X

    International Nuclear Information System (INIS)

    Salgado, William L.; Silva, Ademir X.; Salgado, Cesar M.

    2015-01-01

    This work presents a study to calculate the response function of a 1.5″ x 1″ NaI(Tl) scintillation detector when it is used in the marine environment in the energy range from 20 keV to 662 keV. The method takes into account both the scattering of photons in the water and the detection mechanism of the detector. In addition, the calculation of the response function of the whole system is essential for suppressing the background of the measurement and for estimating the concentration of the involved radionuclides, especially given the greater probability of primary gamma photons undergoing multiple scattering events before they interact with the detector. The experimental photopeak efficiency measurements for point sources were compared with the simulated results under the same conditions of the experimental setup to validate the simulation of the detector. Monte Carlo simulations were performed using the MCNP-X code for the investigation of gamma-ray absorption in water in different brines. The energy resolution curve was used to improve the response of the mathematical simulation of the detector. The detector’s simulation was based on information obtained from the gammagraphy technique. Both dimensions and materials were used for the calculation with the MCNP-X code. The photopeak efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment with different salinities was calculated. (author)

  7. Demonstration of the 3D PANTHERE software for the simulation of gamma dose rates for complex nuclear installations; Demonstration du logiciel 3D panthere pour la simulation des debits de doses gamma pour installations nucleaires complexes

    Energy Technology Data Exchange (ETDEWEB)

    Longeot, M.; Dupont, B. [EDFISEPTENITE, 12-14 avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Schumm, A.; Zweers, M. [EDF/R and D/SINETICS, 1 avenue du General de Gaulle, 92141 Clamart Cedex (France); Malvagi, F.; Trama, J.C. [CEA Saclay, SERMA, 91 - Gif-sur-Yvette (France)

    2010-07-01

    The authors present the two successive versions of the PANTHERE simulation software developed by EDF-SEPTEN to determine gamma dose flow rate in complex industrial installations. This software predicts dose rates and thus enables interventions in irradiating environment to be optimized. The authors report the demonstration of the industrial version (PANTHEREv1) and of the currently under development version (PANTHEREv2). They outline the evolutions brought to the first version to develop the second one such as the direct importation of CAD models, ergonomic improvements, etc.

  8. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  9. Radiation transport simulation in gamma irradiator systems using E G S 4 Monte Carlo code and dose mapping calculations based on point kernel technique

    International Nuclear Information System (INIS)

    Raisali, G.R.

    1992-01-01

    A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained

  10. Study of the heterogeneities effect in the dose distributions of Leksell Gamma Knife (R), through Monte Carlo simulation; Estudio del efecto de las heterogeneidades en las distribuciones de dosis del Leksell GammaKnife (R), mediante simulacion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Al-Dweri, F.M.O.; Lallena R, A.M. [Universidad de Granada, Granada (Spain)]. e-mail: elrc@nuclear.inin.mx

    2005-07-01

    In this work they are studied, by means of Monte Carlo simulation, the effects that take place in the dose profiles that are obtained with the Leksell Gamma Knife (R), when they are kept in account heterogeneities. The considered heterogeneities simulate the skull and the spaces of air that are in the head, like they can be the nasal breasts or the auditory conduits. The calculations were made using the Monte Carlo Penelope simulation code (v. 2003). The geometry of each one of the 201 sources that this instrument is composed, as well as of the corresponding channels of collimation of the Gamma Knife (R), it was described by means of a simplified model of geometry that has been recently studied. The obtained results when they are kept in mind the heterogeneities they present non worthless differences regarding those obtained when those are not considered. These differences are maximum in the proximities of the interfaces among different materials. (Author)

  11. Search for the SM Higgs boson in the $\\gamma\\gamma$ + $E_T^{miss}$ channel

    CERN Document Server

    Beauchemin, P H

    2004-01-01

    Standard Model Higgs production in association with $Z$ or $W$ gauge bosons, or with $t\\bar t$ obtains a substantial contribution from events with large missing transverse energy. It is found that the decay channel $h \\to \\gamma\\gamma$ has a significant discovery potential, with large signal to background ratio, when missing transverse energy of $\\sim 66$ GeV is required. Very good reconstruction of $\\Esl_T$ is required, however. A measurement of the rate of this channel should be useful in determining the strength of the Higgs coupling to gauge bosons.

  12. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    Science.gov (United States)

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Background- and simulated leak-noise measurements on ASB-loop, KNK II- and SNR 300-steam generators

    International Nuclear Information System (INIS)

    Voss, J.; Arnaoutis, N.; Foerster, K.; Moellerfeld, H.

    1990-01-01

    During several leak propagation experiments in the ASB sodium loop noise measurements were performed showing the acoustic behaviour of evoluting leaks in a tube bundle section under sodium. Effects like self evolution, secondary leaks and tube ruptures by overheating occurred during these tests and were reflected in the course of acoustic signals. In one of the KNK II steam generators simulated leak noise was detected against background noise throughout the operating power range. Experimental arrangements and results are described. In SNR 300 all of the SGUs are equipped with waveguides and some with accelerometers for background noise measurements. First measurement under isothermal conditions were performed in the past. A gas injection device for acoustic leak simulation is under construction. The design of the experimental acoustic system and first results are presented. (author). 1 ref., 21 figs, 2 tabs

  14. SGR-76 gamma radiation level indicator

    International Nuclear Information System (INIS)

    Chubinskij-Nadezhdin, I.V.

    1978-01-01

    The design of a gamma-radiation level indicator is described; the instrument is part of a mobile radiometric laboratory (MRL). The design of the instrument permits gamma-radiation dose rates recording at 0.2-200 R/hr, and signals on gamma-background levels. The instrument has two separate threshold levels of signalling actuation. The light signalling at the first level is precautionary, and the sound signalling at the second level indicates the necessity of taking a decision as to whether or not the MRL can remain in the gamma-radiation field. Halogenic counters operating in a current mode are used as detectors. The basic error in recording the dose rate amounts to +-25%. Overall dimensions of the instrument 150x280x100 mm; weight less than 2.5 kg

  15. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  16. Measurement of K{sup {+-}}{yields}{pi}{sup {+-}}{gamma}{gamma} decays

    Energy Technology Data Exchange (ETDEWEB)

    Morales Morales, Cristina

    2009-07-21

    The goal of this thesis was an experimental test of an effective theory of strong interactions at low energy, called Chiral Perturbation Theory (ChPT). Weak decays of kaon mesons provide such a test. In particular, K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} decays are interesting because there is no tree-level O(p{sup 2}) contribution in ChPT, and the leading contributions start at O(p{sup 4}). At this order, these decays include one undetermined coupling constant, c. Both the branching ratio and the spectrum shape of K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} decays are sensitive to this parameter. O(p{sup 6}) contributions to K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} ChPT predict a 30-40% increase in the branching ratio. From the measurement of the branching ratio and spectrum shape of K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} decays, it is possible to determine a model dependent value of c and also to examine whether the O(p{sup 6}) corrections are necessary and enough to explain the rate. About 40% of the data collected in the year 2003 by the NA48/2 experiment have been analyzed and 908 K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} candidates with about 8% background contamination have been selected in the region with z=m{sup 2}{sub {gamma}}{sub {gamma}}/m{sub K}{sup 2}{>=}0.2. Using 5,750,121 selected K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} decays as normalization channel, a model independent differential branching ratio of K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma} has been measured to be: BR(K{sup {+-}} {yields} {pi}{sup {+-}}{gamma}{gamma}, z{>=}0.2)=(1.018{+-}0.038{sub stat}{+-}0.039{sub syst}{+-}0.004{sub ext}).10{sup -6}. From the fit to the O(p{sup 6}) ChPT prediction of the measured branching ratio and the shape of the z-spectrum, a value of c=1.54{+-}0.15{sub stat}{+-}0.18{sub syst} has been extracted. Using the measured c value and the O(p{sup 6}) ChPT prediction, the branching ratio for z=m{sup 2}{sub

  17. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  18. Natural indoor gamma background in Coonoor environment of South India

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikand, N.; Raghunath, V.M.

    2002-01-01

    Indoor natural radiation dose existing in dwellings of Coonoor have been estimated using thermoluminescent dosimeters. TLDs are displayed in indoors and are replaced after three-month period. The seasonal averages of the dose rate and the annual effective dose equivalent are calculated from the measured results. Geographical and seasonal variations as well as the differences between indoor to outdoor dose rates have also been studied. Very good correlation exists between the indoor dose rates measured by LTD and environmental radiation dosimeter with correlation coefficient of 0.91. The annual effective dose equivalent to the Coonoor population due to indoor gamma radiation was estimated to be 970 μSv/y for the period of 1997-1998. (author)

  19. Investigation of background radiation and associated anomalies in Rifle, Colorado

    International Nuclear Information System (INIS)

    Smuin, D.R.; Wilson, M.J.; Crutcher, J.W.

    1988-02-01

    In addition to examining anomalies and establishing the background gamma exposure rate range, the study presents a formula to convert thousand counts per minute (kcpm) from a gamma scintillator to microroentgen per hour (μRh) for the Rifle region. Also, a method is presented to identify contaminated areas containing excess 226 Ra, by using a GR-410 gamma spectrometer. This method is suggested to be applied to all property surveys in the Rifle area. The Wasatch Formation, which outcrops extensively in the Rifle area, was found to have a major influence on the background radiation. Varying potassium concentrations and naturally occurring uranium in this rock unit reveal varying gamma exposure rates. Examining RaTh ratios from laboratory analysis of soil samples or use of RaTh ratios from GR-410 gamma spectrometer readings on site allows discrimination between mill related contamination and naturally occuring radioactivity. Radioactive coal clinkers were found used as fill material throughout the Rifle region and have been determined to be a product of the mill and subject to remediation. Finally, windblown mill tailings contamination is addressed in some detail. Mill tailings redistributed from the Rifle uranium mill tailings piles by prevailing winds were detected extensively on vicinity properties in Rifle. Some radioactive components of the windblown tailings were found to have leached into the subsurface soil. The combination of Wasatch Formation, radioactive coal clinkers, and windblown tailings accounts for many of the anomalous gamma exposure rates observed by the radiological survey teams. 11 refs., 10 figs., 3 tabs

  20. Background observations on the SMM high energy monitor at energies greater than 10 MeV

    Science.gov (United States)

    Forrest, D. J.

    1989-01-01

    The background rate in any gamma ray detector on a spacecraft in near-earth orbit is strongly influenced by the primary cosmic ray flux at the spacecraft's position. Although the direct counting of the primary cosmic rays can be rejected by anticoincident shields, secondary production cannot be. Secondary production of gamma rays and neutrons in the instrument, the spacecraft, and the earth's atmospheric are recorded as background. A 30 day data base of 65.5 second records has been used to show that some of the background rates observed on the Gamma Ray Spectrometer can be ordered to a precision on the order of 1 percent This ordering is done with only two parameters, namely the cosmic ray vertical cutoff rigidity and the instrument's pointing angle with respect to the earth's center. This result sets limits on any instrumental instability and also on any temporal or spatial changes in the background radiation field.

  1. Semi-quantitative and simulation analyses of effects of {gamma} rays on determination of calibration factors of PET scanners with point-like {sup 22}Na sources

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tomoyuki [School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373 (Japan); Sato, Yasushi [National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568 (Japan); Oda, Keiichi [Tokyo Metropolitan Institute of Gerontology, 1-1, Nakamachi, Itabashi, Tokyo, 173-0022 (Japan); Wada, Yasuhiro [RIKEN Center for Molecular Imaging Science, 6-7-3, Minamimachi, Minatoshima, Chuo, Kobe, Hyogo, 650-0047 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba, 263-8555 (Japan); Yamada, Takahiro, E-mail: hasegawa@kitasato-u.ac.jp [Japan Radioisotope Association, 2-28-45, Komagome, Bunkyo-ku, Tokyo, 113-8941 (Japan)

    2011-09-21

    The uncertainty of radioactivity concentrations measured with positron emission tomography (PET) scanners ultimately depends on the uncertainty of the calibration factors. A new practical calibration scheme using point-like {sup 22}Na radioactive sources has been developed. The purpose of this study is to theoretically investigate the effects of the associated 1.275 MeV {gamma} rays on the calibration factors. The physical processes affecting the coincidence data were categorized in order to derive approximate semi-quantitative formulae. Assuming the design parameters of some typical commercial PET scanners, the effects of the {gamma} rays as relative deviations in the calibration factors were evaluated by semi-quantitative formulae and a Monte Carlo simulation. The relative deviations in the calibration factors were less than 4%, depending on the details of the PET scanners. The event losses due to rejecting multiple coincidence events of scattered {gamma} rays had the strongest effect. The results from the semi-quantitative formulae and the Monte Carlo simulation were consistent and were useful in understanding the underlying mechanisms. The deviations are considered small enough to correct on the basis of precise Monte Carlo simulation. This study thus offers an important theoretical basis for the validity of the calibration method using point-like {sup 22}Na radioactive sources.

  2. Gamma-ray detector guidance of breast cancer therapy

    Science.gov (United States)

    Ravi, Ananth

    2009-12-01

    Breast cancer is the most common form of cancer in women. Over 75% of breast cancer patients are eligible for breast conserving therapy. Breast conserving therapy involves a lumpectomy to excise the gross tumour, followed by adjuvant radiation therapy to eradicate residual microscopic disease. Recent advances in the understanding of breast cancer biology and recurrence have presented the opportunity to improve breast conserving therapy techniques. This thesis has explored the potential of gamma-ray detecting technology to improve guidance of both surgical and adjuvant radiation therapy aspects of breast conserving therapy. The task of accurately excising the gross tumour during breast conserving surgery (BCS) is challenging, due to the limited guidance currently available to surgeons. Radioimmuno guided surgery (RIGS) has been investigated to determine its potential to delineate the gross tumour intraoperatively. The effects of varying a set of user controllable parameters on the ability of RIGS to detect and delineate model breast tumours was determined. The parameters studied were: Radioisotope, blood activity concentration, collimator height and energy threshold. The most sensitive combination of parameters was determined to be an 111Indium labelled radiopharmaceutical with a gamma-ray detecting probe collimated to a height of 5 mm and an energy threshold at the Compton backscatter peak. Using these parameters it was found that, for the breast tumour model used, the minimum tumour-to-background ratio required to delineate the tumour edge accurately was 5.2+/-0.4 at a blood activity concentration of 5 kBq/ml. Permanent breast seed implantation (PBSI) is a form of accelerated partial breast irradiation that dramatically reduces the treatment burden of adjuvant radiation therapy on patients. Unfortunately, it is currently difficult to localize the implanted brachytherapy seeds, making it difficult to perform a correction in the event that seeds have been misplaced

  3. Fermi LAT Search for Dark Matter in Gamma-Ray Lines and the Inclusive Photon Spectrum

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Barbiellini, G.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. We give cross section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.

  4. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  5. Tangential channel for nuclear gamma-resonance spectroscopy in thermal neutron capture

    International Nuclear Information System (INIS)

    Belogurov, V.N.; Bondars, H.Ya.; Lapenas, A.A.; Reznikov, R.S.; Senkov, P.E.

    1979-01-01

    Design of a tangential reactor channel which has been made to replace the radial one in the pulsed research reactor IRT-2000 is described. It allows to use the same hole in biological reactor schielding. Characteristics of neutron and gamma-background spectra at the excit of the channel are given and compared with analogous characteristics of the radial one. The gamma background in the tangential channel is lower than in the radial channel. The gamma spectra in the Gd 155 (n, γ)Gd 156 , Gd 157 (n, γ)Gd 158 , Er 167 (n, γ)Er 168 and Hf 177 (n, γ)Hf 178 reactions show that the application of X-ray detection units BDR with the tangential channel allows to carry out the gamma spectrometry of gamma quanta emitted in the thermal neutron capture by both high and low neutron capture cross section nuclei (e.g., Gdsup(157, 155) and Er 167 , Hf 177 , respectively)

  6. Observation of radioactive background in the OSO-7 gamma ray monitor

    International Nuclear Information System (INIS)

    Dunphy, P.P.; Forrest, D.J.; Chupp, E.L.; Dyer, C.S.

    1975-01-01

    The counting rate, covering the energy range 0.3-10 MeV, during a sixteen month period (October 1971-December 1972) was considerably higher than expected from balloon data. Dyer et al. have shown the importance of activation in satellites for diffuse gamma flux measurements. The OSO-7 spectra exhibit strong, complex line structure, especially between 400 keV and 900 keV, and several identifications can be made consistent with the model of Dyer et al. We present here the spectral structure and time variations. (orig./WB) [de

  7. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  8. GEANT4 simulation of the neutron background of the C{sub 6}D{sub 6} set-up for capture studies at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Žugec, P., E-mail: pzugec@phy.hr [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Colonna, N. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bosnar, D. [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V.; Brugger, M.; Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calviño, F. [Universitat Politecnica de Catalunya, Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Carrapiço, C. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Cerutti, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); and others

    2014-10-01

    The neutron sensitivity of the C{sub 6}D{sub 6} detector setup used at n{sub T}OF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n{sub T}OF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a {sup nat}C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured {sup nat}C yield has been discovered, which prevents the use of {sup nat}C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.

  9. Gamma-Gompertz life expectancy at birth

    Directory of Open Access Journals (Sweden)

    Trifon I. Missov

    2013-02-01

    Full Text Available BACKGROUND The gamma-Gompertz multiplicative frailty model is the most common parametric modelapplied to human mortality data at adult and old ages. The resulting life expectancy hasbeen calculated so far only numerically. OBJECTIVE Properties of the gamma-Gompertz distribution have not been thoroughly studied. The focusof the paper is to shed light onto its first moment or, demographically speaking, characterizelife expectancy resulting from a gamma-Gompertz force of mortality. The paperprovides an exact formula for gamma-Gompertz life expectancy at birth and a simplerhigh-accuracy approximation that can be used in practice for computational convenience.In addition, the article compares actual (life-table to model-based (gamma-Gompertzlife expectancy to assess on aggregate how many years of life expectancy are not captured(or overestimated by the gamma-Gompertz mortality mechanism. COMMENTS A closed-form expression for gamma-Gomeprtz life expectancy at birth contains a special(the hypergeometric function. It aids assessing the impact of gamma-Gompertz parameterson life expectancy values. The paper shows that a high-accuracy approximation canbe constructed by assuming an integer value for the shape parameter of the gamma distribution.A historical comparison between model-based and actual life expectancy forSwedish females reveals a gap that is decreasing to around 2 years from 1950 onwards.Looking at remaining life expectancies at ages 30 and 50, we see this gap almost disappearing.

  10. Compton suppression gamma-counting: The effect of count rate

    Science.gov (United States)

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  11. Feasibility study of performing high precision gamma spectroscopy of {lambda}{lambda} hypernuclei in the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Lorente, Alicia

    2010-09-30

    hyperfragments {sup 4}{sub {lambda}}H and {sup 9}{sub {lambda}}Be, have been well identified. For the background handling a method based on time measurement has also been implemented. However, the percentage of tagged events related to the production of {xi}{sup -}+ anti {xi} pairs, varies between 20% and 30% of the total number of produced events of this type. As a consequence, further considerations have to be made to increase the tagging efficiency by a factor of 2. The contribution of the background reactions to the radiation damage on the germanium detectors has also been studied within the simulation. Additionally, a test to check the degradation of the energy resolution of the germanium detectors in the presence of a magnetic field has also been performed. No significant degradation of the energy resolution or in the electronics was observed. A correlation between rise time and the pulse shape has been used to correct the measured energy. Based on the present results, one can say that the performance of {gamma} spectroscopy of double {lambda} hypernuclei at the anti PANDA experiment seems feasible. A further improvement of the statistics is needed for the background rejection studies. Moreover, a more realistic layout of the hypernuclear detectors has been suggested using the results of these studies to accomplish a better balance between the physical and the technical requirements. (orig.)

  12. Background radiation measurements at 400 meter underground for dark matter search study

    International Nuclear Information System (INIS)

    Kim, T. Y.; Kim, H. J.; Lee, Y. C.; Won, E.; Kim, S. K.; Kim, Y. D.; So, W. Y.

    1999-01-01

    Recently we have performed measurements of background radiation, which is crucial for any dark matter search experiments. We measured muons, neutrons, and gamma backgrounds at approximately 400 meter underground tunnel in the electric generating facility located about 120 km east of Seoul. We believe this may be the first measurement at this depth in Korea. The muon flux measured with triple coincidence between 3 scintillating plates was reduced by a factor of 10 4 compared with the flux at ground level as expected at this depth. The unshielded gamma background measured with 15% relative efficiency germanium detector was rather high due to the surrounding rocks. Shielded with 15 cm normal lead and 2.5 cm electrode copper gave about 0.5 counts/second. (author)

  13. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    International Nuclear Information System (INIS)

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs

  14. Characterization, propagation, and simulation of sources and backgrounds II; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    Science.gov (United States)

    Clement, Dieter; Watkins, Wendell R.

    Consideration is given to a characterization of the environmental influence on targets, backgrounds, camouflage, and clutter; modeling of physically based dynamics of scene radiation and its propagation; and the relatively sophisticated real-time simulations/simulators for system observer display and testing of some of these dynamic and varied scene changes. Particular attention is given to the hardware-in-the-loop infrared projector technology, a strategic scene generation model, a comparison of night sky spectral radiance measurements with MODTRAN and LOWTRAN 7 predictions, spatiotemporal models for the simulation of infrared backgrounds, computer-based evaluation of camouflage, dual-band infrared polarization measurements of sun glint from the sea surface, an electron gun IR scenario simulator, relaxation processes of vibrationally excited species in the mesosphere and thermosphere, a fiber-optic-based device for the investigation of aerooptic effects, and luminous intensity measurements of sources using a new detector-based illuminance scale. (For individual items see A93-28623 to A93-28625)

  15. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    International Nuclear Information System (INIS)

    Zhang, Guoqing

    2011-01-01

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  16. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing

    2011-12-22

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  17. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  18. Search for a Higgs boson decaying into $\\gamma^*\\gamma\\to\\ell\\ell\\gamma$ with low dilepton mass in pp collisions at $\\sqrt{s} =$ 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Aly, Reham; Aly, Shereen; El-khateeb, Esraa; Lotfy, Ahmad; Mohamed, Amr; Radi, Amr; Salama, Elsayed; Ali, Ahmed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Kumar, Arun; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sudhakar, Katta; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Bacchetta, Nicola; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Dughera, Giovanni; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Ryu, Min Sang; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Myagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Du Pree, Tristan; Dupont, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chang, Chiu-ping; Chen, Kuan-Hsin; Doan, Thi Hien; Ferro, Cristina; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Dozen, Candan; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Thomas, Laurent; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Whitbeck, Andrew; Yang, Fan; Yin, Hang; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Bhopatkar, Vallary; Hohlmann, Marcus; Kalakhety, Himali; Mareskas-palcek, Darren; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Nash, Kevin; Osherson, Marc; Swartz, Morris; Xiao, Meng; Xin, Yongjie; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Demortier, Luc; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Montalvo, Roy; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Christian, Allison; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-02-10

    A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ($\\ell\\ell\\gamma$). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range $ 120 < m_{\\ell\\ell\\gamma} < 150$ GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay $\\mathrm{H} \\to \\gamma^* \\gamma \\to \\ell \\ell \\gamma$, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with $m_{\\mathrm{H}} =$ 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 7.7 (6.4$^{+3.1}_{-2.0}$) times the standard model prediction. Additionally, an upper limit at 9...

  19. Search for solar axion emission from $^7$Li and D(p,$\\gamma)^3$He nuclear decays with the CAST $\\gamma$-ray calorimeter

    CERN Document Server

    Andriamonje, S.; Autiero, D.; Barth, K.; Belov, A.; Beltran, B.; Brauninger, H.; Carmona, J.M.; Cebrian, S.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hasinoff, M.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovcic, K.; Kang, D.; Konigsmann, K.; Kotthaus, R.; Krcmar, M.; Kousouris, K.; Kuster, M.; Lakic, B.; Lasseur, C.; Liolios, A.; Ljubicic, A.; Lutz, G.; Luzon, G.; Miller, D.W.; Morales, J.; Ortiz, A.; Papaevangelou, T.; Placci, A.; Raffelt, G.; Riege, H.; Rodriguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Serpico, P.; Stewart, L.; Vieira, J.D.; Villar, J.; Vogel, J.; Walckiers, L.; Zioutas, K.

    2010-01-01

    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.

  20. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    Science.gov (United States)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  1. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    International Nuclear Information System (INIS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Senesi, R.; Burca, G.; Kockelmann, W.; Minniti, T.

    2017-01-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ  spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  2. Performance of BICM-based QAM-SIM OWC over gamma-gamma turbulence channels

    KAUST Repository

    Malik, Muhammad Talha

    2015-05-01

    We derive a series expression for the pair-wise error probability (PEP) of bit interleaved coded modulation (BICM)-based subcarrier intensity modulation (SIM) optical wireless communication (OWC) system employing M^{2}-ary quadrature amplitude modulation ( M^{2} -QAM) over the Gamma-Gamma turbulence channels. Using this expression, we develop an upper bound (UB) to predict the bit-error rate performance of such system. Simulation results are presented to verify the analytical results. We also develop an asymptotic UB which reveals that the diversity order depends on the smaller channel parameter and the free distance of the convolutional code. © 1997-2012 IEEE.

  3. Interleukin-4 (IL-4) and Interferon-Gamma (IFN-gamma) in pregnant ...

    African Journals Online (AJOL)

    Background and Objective:- To assess if gestational factors affect the resistance of C57BL/6 mice to L. major infection, this study determined the levels of IL-4 and IFN-gamma in popliteal lymph node cells of pregnant C57BL/6 mice infected with L. major at 16 hours, 5 days-, 10 days- and 15 days- post plug by PCR, ELISA ...

  4. Levels of naturally occurring gamma radiation measured in British homes and their prediction in particular residences

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, G.M. [University of Oxford, Cancer Epidemiology Unit, Oxford (United Kingdom); Wakeford, R. [University of Manchester, Centre for Occupational and Environmental Health, Institute of Population Health, Manchester (United Kingdom); Athanson, M. [University of Oxford, Bodleian Library, Oxford (United Kingdom); Vincent, T.J. [University of Oxford, Childhood Cancer Research Group, Oxford (United Kingdom); Carter, E.J. [University of Worcester, Earth Heritage Trust, Geological Records Centre, Henwick Grove, Worcester (United Kingdom); McColl, N.P. [Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon (United Kingdom); Little, M.P. [National Cancer Institute, DHHS, NIH, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD (United States)

    2016-03-15

    Gamma radiation from natural sources (including directly ionising cosmic rays) is an important component of background radiation. In the present paper, indoor measurements of naturally occurring gamma rays that were undertaken as part of the UK Childhood Cancer Study are summarised, and it is shown that these are broadly compatible with an earlier UK National Survey. The distribution of indoor gamma-ray dose rates in Great Britain is approximately normal with mean 96 nGy/h and standard deviation 23 nGy/h. Directly ionising cosmic rays contribute about one-third of the total. The expanded dataset allows a more detailed description than previously of indoor gamma-ray exposures and in particular their geographical variation. Various strategies for predicting indoor natural background gamma-ray dose rates were explored. In the first of these, a geostatistical model was fitted, which assumes an underlying geologically determined spatial variation, superimposed on which is a Gaussian stochastic process with Matern correlation structure that models the observed tendency of dose rates in neighbouring houses to correlate. In the second approach, a number of dose-rate interpolation measures were first derived, based on averages over geologically or administratively defined areas or using distance-weighted averages of measurements at nearest-neighbour points. Linear regression was then used to derive an optimal linear combination of these interpolation measures. The predictive performances of the two models were compared via cross-validation, using a randomly selected 70 % of the data to fit the models and the remaining 30 % to test them. The mean square error (MSE) of the linear-regression model was lower than that of the Gaussian-Matern model (MSE 378 and 411, respectively). The predictive performance of the two candidate models was also evaluated via simulation; the OLS model performs significantly better than the Gaussian-Matern model. (orig.)

  5. Levels of naturally occurring gamma radiation measured in British homes and their prediction in particular residences

    International Nuclear Information System (INIS)

    Kendall, G.M.; Wakeford, R.; Athanson, M.; Vincent, T.J.; Carter, E.J.; McColl, N.P.; Little, M.P.

    2016-01-01

    Gamma radiation from natural sources (including directly ionising cosmic rays) is an important component of background radiation. In the present paper, indoor measurements of naturally occurring gamma rays that were undertaken as part of the UK Childhood Cancer Study are summarised, and it is shown that these are broadly compatible with an earlier UK National Survey. The distribution of indoor gamma-ray dose rates in Great Britain is approximately normal with mean 96 nGy/h and standard deviation 23 nGy/h. Directly ionising cosmic rays contribute about one-third of the total. The expanded dataset allows a more detailed description than previously of indoor gamma-ray exposures and in particular their geographical variation. Various strategies for predicting indoor natural background gamma-ray dose rates were explored. In the first of these, a geostatistical model was fitted, which assumes an underlying geologically determined spatial variation, superimposed on which is a Gaussian stochastic process with Matern correlation structure that models the observed tendency of dose rates in neighbouring houses to correlate. In the second approach, a number of dose-rate interpolation measures were first derived, based on averages over geologically or administratively defined areas or using distance-weighted averages of measurements at nearest-neighbour points. Linear regression was then used to derive an optimal linear combination of these interpolation measures. The predictive performances of the two models were compared via cross-validation, using a randomly selected 70 % of the data to fit the models and the remaining 30 % to test them. The mean square error (MSE) of the linear-regression model was lower than that of the Gaussian-Matern model (MSE 378 and 411, respectively). The predictive performance of the two candidate models was also evaluated via simulation; the OLS model performs significantly better than the Gaussian-Matern model. (orig.)

  6. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  7. IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS

    International Nuclear Information System (INIS)

    Elsner, Franz; Wandelt, Benjamin D.

    2009-01-01

    We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background (CMB) radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.

  8. MEGA: A Low-Background Radiation Detector

    International Nuclear Information System (INIS)

    Kazkaz, Kareem; Aalseth, Craig E.; Hossbach, Todd W.; Gehman, Victor M.; Kephart, Jeremy; Miley, Harry S.

    2004-01-01

    The multiple-element gamma assay (MEGA) is a low-background detector designed to support environmental monitoring and national security applications. MEGA also demonstrates technology needed or Majorana, a next generation neutrino mass experiment. It will also exploit multicoincidence signatures to identify specific radioactive isotopes. MEGA is expected to begin testing in late 2003 for eventual installation at the Waste Isolation Plant, Carlsbad, NM

  9. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  10. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  11. New Theoretical Estimates of the Contribution of Unresolved Star-Forming Galaxies to the Extragalactic Gamma-Ray Background (EGB) as Measured by EGRET and the Fermi-LAT

    Science.gov (United States)

    Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  12. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity

    International Nuclear Information System (INIS)

    Nordemann, D.

    1966-01-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [fr

  13. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  14. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  15. Development of a Gamma Spectrometer using a Large NaI Scintillator and SiPMs

    International Nuclear Information System (INIS)

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon and others

    2014-01-01

    A typical scintillation gamma spectrometer is composed of a NaI(Tl) scintillation crystal and a PM tube. From last years, a Silicon Photomultiplier (SiPM) is being developed and expanding its application area as a substitute of PM tube due to its advantages like low operating voltage, small volume, and cheap production cost, MR compatibility. This approach could make gamma spectrometer smaller, cheaper, easier to use, and these advantage are quite suitable to original purpose of scintillation gamma spectrometer. Gamma spectrometry and gamma spectrometer is used to analyze gamma source in nuclear science, geochemistry, and astrophysics. In this research, gamma spectrometer which uses SiPMs instead of PM tube is proposed. The proposed gamma spectrometer has advantages of low cost, small volume, low operation voltage; but it has disadvantages of performances. To reduce this loss in performances, a light guide of effective structure is required. (Material, reflection type, tapering angle) For design of the light guide, DETECT simulation was performed. And through DETECT simulation, the characteristics of light guide could be prospected. Actual light guide was manufactured on the basis of this simulation result. Using the light guide, gamma spectrometer system was composed and tested. In the test result, gamma spectrometer using SiPM shows degraded energy resolution. The reason of this degradation is being analyzed and the test system is under modification

  16. Phase-field simulation of microstructure evolution in Ni-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki; Murata, Yoshinori; Morinaga, Masahiko [Nagoya Univ. (Japan). Dept. of Materials, Physics and Energy Engineering; Koyama, Toshiyuki [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    The morphological evolution of the ({gamma} + {gamma}') microstructure in Ni-based superalloys is investigated by a series of phase-field simulations. In the simulation for simple aging heat treatment, the effect of elastic constant inhomogeneity between the {gamma} and {gamma}' phases is investigated. The elastic anisotropy or the shear modulus is changed independently in the simulation. The variation of the anisotropy affects the morphology, particle size distribution and coarsening kinetics of the {gamma}' phase, whereas the variation of the shear modulus does not affect them. In the simulation for high temperature creep, formation and collapse of the rafted structure are reproduced under the assumption that the creep strain in the {gamma} matrix increases with creep time. This morphological evolution is related to the change in the energetically stable morphology of the {gamma}' phase with increasing the creep strain. (orig.)

  17. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  18. X and gamma ray backgroud observations in Antarctic

    International Nuclear Information System (INIS)

    Jayanthi, U.B.

    1988-01-01

    Atmospheric X amd gamma rays are products of complex electromagnetic interation between charged particles and atmospheric constituents. The latitudinal dependence of the cosmic rays secondaries, auroral and South Atlantic Anomaly phenomena produce flux variations, especially the later temporal flux variations. We propose to discuss these variations in relevance to balloon flight observations of X and gamma ray atmospheric background at polar latitudes. (author) [pt

  19. Gamma detection: an unusual application for surface barrier detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fichtenbaum de Iacub, S; Matatagui, E

    1983-02-01

    The silicon surface barrier detectors (SBD), may be ideal devices to be used in dose indicators for the monitoring of gamma radiations; the SBD working as a cavity sensor. The measurement consists in counting the number of pulses that exceeds a certain level of discrimination, this number being proportional to the absorbed dose. The spectral distribution of the pulses gives an idea of the existing photon field's energy. Characteristic spectra obtained with different gamma and X-ray sources are described and analyzed, and tests are carried out by using different sensitive volumes of the detector in order to determine significant parameters for a gamma-monitor system. The results from the measurements indicate: a) high sensitivity of the system with SBD (high density of material); b) low background: enviromental backgrounds are reliably registered (approx. 10 R/h); c) minimum detectable energies of the order of 60 keV; d) possibility to determine high exposure rates (approx. 100 R/h); e) for emitters of low Z, the result is approximately independent from the gamma energy. These results suggest the possibility of constructing fixed and portable systems, appropriate for gamma monitoring, which utilize SBD as sensors; these devices are adequate for working at enviroment temperatures, being compact, reliable, with low polarization voltages, and of relatively low cost.

  20. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  1. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    -ray peaks, for a fixed cosmic ray flux and a regolith composition approximating that expected. These peak count rates must be matched to the corresponding GRS peak count rates to determine abundances and normalized to a proxy for the cosmic ray flux (such as the charge-reset rate of the GRS shield). The background subtraction for neutron-generated gamma-ray peaks for elements that are also present in the spacecraft, such as Fe, Ti, Al, and Mg, is complicated by a background increase due to neutrons from the planet interacting with the spacecraft at low altitude. We are presently using simple formulas involving planet-subtended solid angle and proxies for neutron flux at the spacecraft to correct for this background increase. There is no background subtraction for elements not present at significant levels in the spacecraft, such as Ca, S, and Cl. Improvements in normalization and count statistics will enable determination of abundances for more elements.

  2. Calculation of background effects on the VESUVIO eV neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6 Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given

  3. Calculation of background effects on the VESUVIO eV neutron spectrometer

    Science.gov (United States)

    Mayers, J.

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given.

  4. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  5. Development of Educational Simulation on Spectrum of HPGe Detector and Implementation of Education Program

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Ji, Y. J.; Lee, M. O.; Lee, S. Y.; Jun, Y. K.

    2005-12-01

    In this development, characteristics of Aptec, Genie2000(Canberra Co, USA), GammaVision(Ortec Co, USA) which are usually used in Korea radioactive measure laboratory, such as peak search, peak fitting, central area position and area calculation, spectrum correction and method for radioactive calculation are included. And radioactive source geometry, absorption of sample itself, methods for correcting coincidence summing effect is developed and the result effected on spectrum analysis teaching material. Developed simulation HPGe detector spectrum are spectrum for correction, spectrum for correcting radio source-detection duration geometry, sample spectrum which need self absorption correction of radio source, peak search spectrum for optimizing peak search offset setting and background spectrum. These spectrum are made similar to real spectrum by processing peak and background which were measured from mix standard volume radio source. Spectrum analysis teaching material is developed more focus on practical thing than theoretical thing, simulation spectrum must be used in spectrum analysis practise. Optimal method for spectrum analysis condition, spectrum correction, Geometry correction and background spectrum analysis are included in teaching material and also ANSI N42 recommended 'Spectrum analysis program test' procedure is included too. Aptec, Genie2000, Gamma Vision software manuals are included in appendix. In order to check the text of developed simulation on spectrum of HPGe detector, in 2004 and 2005, these was implemented in the other regular course as a course for superviser of the handling with RI. And the text and practical procedure were reviewed through the course and were revised

  6. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua; Gong Jian; Liu Xiaoya

    2006-01-01

    In the investigation of radiation fingerprint comparison, it is found out that some of the popular gamma spectra analysis software have shortcomings, which decrease the radiation fingerprint comparison precision. So a new analysis software is developed for solving the problems. In order to display the advantage of developed program, some typical simulative warhead gamma spectra are analyzed respectively by present software and GAMMAVISION and GENNIE2000. Present software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  7. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints

    NARCIS (Netherlands)

    Zandanel, F.; Tamborra, I.; Gabici, S.; Ando, S.

    2015-01-01

    Cosmic-ray protons accumulate for cosmological times in clusters of galaxies because their typical radiative and diffusive escape times are longer than the Hubble time. Their hadronic interactions with protons of the intra-cluster medium generate secondary electrons, gamma rays, and neutrinos. In

  8. SU-E-T-563: Multi-Fraction Stereotactic Radiosurgery with Extend System of Gamma Knife: Treatment Verification Using Indigenously Designed Patient Simulating Multipurpose Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, R; Kale, S; Gopishankar, N; Rath, G; Julka, P; Agarwal, D; Singh, M; Garg, A; Kumar, P; Thulkar, S; Sharma, B [All India Institute of Medical Sciences, New Delhi (India)

    2015-06-15

    Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum head cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic

  9. Interference in the $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ On-Shell Rate and the Higgs Boson Total Width

    OpenAIRE

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-01-01

    We consider interference between the Higgs signal and QCD background in $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on th...

  10. Monte Carlo simulation of the Leksell Gamma KnifeTM: II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Moskvin, Vadim; Timmerman, Robert; DesRosiers, Colleen; Randall, Marcus; DesRosiers, Paul; Dittmer, Phil; Papiez, Lech

    2004-01-01

    The absence of electronic equilibrium in the vicinity of bone-tissue or air-tissue heterogeneity in the head can misrepresent deposited dose with treatment planning algorithms that assume all treatment volume as homogeneous media. In this paper, Monte Carlo simulation (PENELOPE) and measurements with a specially designed heterogeneous phantom were applied to investigate the effect of air-tissue and bone-tissue heterogeneity on dose perturbation with the Leksell Gamma Knife TM . The dose fall-off near the air-tissue interface caused by secondary electron disequilibrium leads to overestimation of dose by the vendor supplied treatment planning software (GammaPlan TM ) at up to 4 mm from an interface. The dose delivered to the target area away from an air-tissue interface may be underestimated by up to 7% by GammaPlan TM due to overestimation of attenuation of photon beams passing through air cavities. While the underdosing near the air-tissue interface cannot be eliminated with any plug pattern, the overdosage due to under-attenuation of the photon beams in air cavities can be eliminated by plugging the sources whose beams intersect the air cavity. Little perturbation was observed next to bone-tissue interfaces. Monte Carlo results were confirmed by measurements. This study shows that the employed Monte Carlo treatment planning is more accurate for precise dosimetry of stereotactic radiosurgery with the Leksell Gamma Knife TM for targets in the vicinity of air-filled cavities

  11. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    Science.gov (United States)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  12. Spectral observations of atmospheric #betta#-ray background

    International Nuclear Information System (INIS)

    Jayanthi, U.B.; Blanco, F.G.; Aguiar, O.D. de; Jardim, J.O.D.; Benson, J.L.; Martin, I.M.; Rao, K.R.

    1981-05-01

    Based on the results of two balloon flights, made at Sao Jose dos Campos and at Juazeiro do Norte in Brazil, using omnidirectional gamma ray detectors, the different aspects of atmospheric gamma rays at equatorial latitudes in the energy interval of 0.3 to 4.5 MeV are investigated. The energy loss spectrum in this energy band is found no consist of a continuum and a photo peak at 0.51 MeV in agreement with previous observations. A discussion of the spectral nature of this background and the observed lower intensities of both the continuum and the 0.51 MeV line with reference to observations at other latitudes is presented. (Author) [pt

  13. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  14. Monitoring of Natural Soil Radioactivity with Portable Gamma-Ray Spectrometers

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Løvborg, Leif; Kirkegaard, Peter

    1979-01-01

    Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background measureme......Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background...... measurements at sea were carried out in order to estimate the non-terrestrial contributions to the instrument readings. Counts recorded in the three high-energy windows of the spectrometers were converted into radiometrically equivalent concentrations of thorium, uranium, and potassium in the ground. Large....... The theoretical exposure rates deducible from the experimental radioelement concentrations at the field sites were in good agreement both with the ionization-chamber readings (corrected for cosmic-ray background) and with the exposure rates measured by total gamma-ray counting. From this and other results...

  15. Design of a software for gamma detector efficiency

    International Nuclear Information System (INIS)

    Lopez, G.

    2011-01-01

    Gamma spectroscopy with highly-pure-germanium detector is one of the most used method for qualitative and quantitative analysis of samples. Nevertheless Gamma spectroscopy results require to be corrected, first for taking into account the self-shielding effect that represents the absorption of the photons by the sample itself and secondly for correcting the fact that 2 photons emitted simultaneously with energy E 1 and E 2 are likely to be simultaneously detected and then counted as a single photon with an energy E 1 +E 2 . This effect is called gamma-gamma coincidence. A software has been designed to simulate both effect and produce correcting factors in the case of cylindrical geometries. This software has been validated on Americium 241 for the self-shielding effect and on Cesium 134 for gamma-gamma coincidence. (A.C.)

  16. Dose rate determinations in the Portuguese Gamma Irradiation Facility: Monte Carlo simulations and measurements

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Ferro de Carvalho, A.

    2000-01-01

    A simulation study of the Portuguese Gamma Irradiation Facility, UTR, has been carried out using the MCNP code. The work focused on the optimisation of the dose distribution inside the irradiation cell, dose calculations inside irradiated samples and dose calculations in critical points for protection purposes. Calculations were carried out at points inside and outside the irradiation cell, where different behaviour was expected (distance from the source, radiation absorption and scattering in irradiator structure and walls). The contributions from source, irradiator structure, sample material, carriers, walls, ceiling and floor to the photon spectra and air kerma at those points are reported and discussed. Air kerma measurements were also carried out using an ionisation chamber. Good agreement was found between experimental and calculated air kermas. (author)

  17. The Study on Radioactive Nuclide Distributions within a Fuel Rod by Tomographic Gamma Scanning Method

    International Nuclear Information System (INIS)

    Quanhu, Zhang; Lee, H. K.; Hong, K. P.; Choo, Y. S.; Kim, D. S.

    2005-06-01

    Based on the specified need of the IMEF, the feasibility of Tomographic Gamma Scanning (TGS) technique has been investigated for its potential for non-destructive gamma scanning measurements of irradiated fuel rods. TGS technique has been developed for determining some radioactive isotopes' distributions of a fuel rod in hot cell. The results obtained from the simulation model extracting from real gamma scanning experimental condition in this work by new developed computer simulation codes confirmed that the gamma emission TGS technique has potential for determination of radioactive isotopes' distributions of a fuel rod. In order to verify the simulation codes, we have designed several computation schemes for both 3 by 3 and 10 by 10 fuel rod model under present situation at M1 hot cell in IMEF. The results which relative errors are less than 10% show that we have simulated and implemented determination of radioactive isotopes' distributions on simulated fuel rod by TGS technique successfully

  18. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  19. Investigation of gamma spectra analysis

    International Nuclear Information System (INIS)

    Wu Huailong; Liu Suping; Hao Fanhua

    2006-12-01

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  20. Verification of Gamma-ray Sensitivity for BF3 Neutron Detection System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Cho, Jin Bok; Lyou, Seok Jean

    2016-01-01

    The BF3(Boron Tri-Fluorides) gas filled neutron detector(hereafter BF3 Detector) is commonly used for nuclear reactor’s startup channel due to its relatively high neutron efficiency and good discrimination against gamma-ray backgrounds. In order to measure how much this gamma-ray will affect on BF3 neutron detector performance in view of gamma noise discrimination, Multi-Channel Analyzer(MCA) is utilized for spectrum based signal analysis. The pre-test of BF3 Detector should be performed in an area where the ionization does not exceed 2.5 micro Gy/Hr(Ref.1). In this paper, the discrimination level (Voltage Unit) is verified by experimentally measurement if that discrimination level is acceptable within the criteria or not before installation. The maximum discrimination level, so called LLD, is determined by experimentally measurement. This BF3 Detector (LND20372) is insensitive under 540 micro Gy/Hr of gamma ray and 0.3V of LLD could cut off a background and gamma induced signal in a laboratory. MCA could be a convenient tool for spectrum analysis of signals that induced from gamma ray and a time saving tool rather than oscilloscope investigation due to its function to integrate all input signals at a sudden duration

  1. Simulation of a multi-detector gamma camera for validation protocols of quantification the activity from SPECT images

    International Nuclear Information System (INIS)

    Lozano Sanchez, A.; Calderon Marin, C.; Gonzalez Gonzalez, J.

    2015-01-01

    The main sources that decreasing accuracy in the estimation of internal absorbed dose has been identified in the methods for the quantification of cumulated activity from scintigraphic imaging, likes the corrections required by the physical and instrumental phenomena related to the formation of those images. The results of the simulation of a dual detector gamma camera E.cam SIEMENS using the Monte Carlo code SIMIND to obtain tomographic SPECT projections are presented here. SIMIND will allow dealing with the contribution of physical interactions and instrumental effects during simulations. Energy resolution, spatial resolution and sensitivity planar were determined with real and simulated systems. The relative differences did not exceed 10%. Energy spectra simulated under different conditions (source in air and water) with the inclusion of interactions in the collimator and phantom were compared. The tomographic sensitivity of a volumetric phantom containing radioactive solutions of 99m Tc and 131 I were determined from real and simulated SPECT images. Two processing protocols were considered: with scatter correction ( 99m Tc dual energy window method and 131 I were calculated after corrections. The results, expressed in terms of the differences relative to the well-know activity value in the phantom inserts improves when attenuation and scattering corrections are applied, obtaining good agreement between the results for real and simulated systems. (Author)

  2. Simulation of photofission experiments at the ELI-NP facility

    International Nuclear Information System (INIS)

    Constantin, P.; Balabanski, D.L.; Cuong, P.V.

    2016-01-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  3. Simulation of photofission experiments at the ELI-NP facility

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, P., E-mail: paul.constantin@eli-np.ro [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Balabanski, D.L. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Cuong, P.V. [Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2016-04-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  4. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  5. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Sanusi, M.S.M.; Ramli, A.T.; Gabdo, H.T.; Garba, N.N.; Heryanshah, A.; Wagiran, H.; Said, M.N.

    2014-01-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h −1 to 500 nGy h −1 . The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h −1 . This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h −1 (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. - Highlights: • A methodology is presented to reduce terrestrial gamma dose rate field survey. • Geological background of acid intrusive of granitic type has the highest dose rates. • The mean dose rate is 2 times higher than the world average. • Isodose map of terrestrial gamma radiation for Selangor, Kuala Lumpur and Putrajaya was produced

  6. On the sum of Gamma-Gamma variates with application to the fast outage probability evaluation over fading channels

    KAUST Repository

    Ben Issaid, Chaouki

    2017-04-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  7. On the sum of Gamma-Gamma variates with application to the fast outage probability evaluation over fading channels

    KAUST Repository

    Ben Issaid, Chaouki; Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2017-01-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  8. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  9. Analysis of a gamma-ray spectrum by using a standard spectrum

    International Nuclear Information System (INIS)

    Tasaka, Kanji

    1975-06-01

    The standard spectrum method has been extended to take into account the energy dependence of a standard spectrum. The method analyses the observed gamma-ray spectrum by the least-square method, using an interpolated standard spectrum for expressing the line shape and a linear function for the background continuum. The interpolated standard spectrum is defined for each fitting interval by interpolating several standard spectra, which are derived directly from the observed spectra of single photopeaks each corresponding to the incident monochromatic gamma-rays by subtracting the background and smoothing the data. (author)

  10. An improved segmented gamma scanning for radioactive waste drums

    International Nuclear Information System (INIS)

    Liu Cheng; Wang Dezhong; Bai Yunfei; Qian Nan

    2010-01-01

    In this paper, the equivalent radius of radioactive sources in each segment is determined by analyzing the different responses of the two identical detectors, and an improved segmented gamma scanning is used to assay waste drums containing mainly organic materials, and proved by an established simulation model. The simulated radioactivity distributions in homogenous waste drum and an experimental heterogeneous waste drum were compared with those of traditional segmented gamma scanning. The results show that our method is good in performance and can be used for analyzing the waste drums. (authors)

  11. Gamma detection: an unusual application for surface barrier detectors

    International Nuclear Information System (INIS)

    Fichtenbaum de Iacub, Silvana; Matatagui, Emilio

    1983-01-01

    The silicon surface barrier detectors (SBD), may be ideal devices to be used in dose indicators for the monitoring of gamma radiations; the SBD working as a cavity sensor. The measurement consists in counting the number of pulses that exceeds a certain level of discrimination, this number being proportional to the absorbed dose. The spectral distribution of the pulses gives an idea of the existing photons field's energy. Characteristic spectra obtained with different gamma-and X ray sources are described and analyzed, and tests are carried out by using different sensitive volumes of the detector in order to determine significant parameters for a gamma-monitor system. The results from the measurements indicate: a) high sensitivity of the system with SBD (high density of material); b) low background: enviromental backgrounds are reliably registered (approx. 10μ R/h); c) minimum detectable energies of the order of 60 keV; d) possibility to determine high exposure rates (approx. 100 R/h); e) for emitters of low Z, the result is approximately independent from the gamma energy. These results suggest the possibility of constructing fixed and portable systems, appropriate for gamma monitoring, which utilize SBD as sensors; these devices are adequate for working at enviroment temperatures, being compact, reliable, with low polarization voltages, and of relatively low cost. (M.E.L.) [es

  12. Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, S. [CEA, Centre d' Etudes Nucleaires de Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Benoit, A. [Centre de Recherche sur les Tres Basses Temperatures, SPM-CNRS, BP 166, 38042 Grenoble (France); Berge, L. [Centre de Spectroscopie Nucleaire et de Spectroscopie de Masse, UMR8609 IN2P3-CNRS, Univ. Paris Sud, bat 108, 91405 Orsay Campus (France)] (and others)

    2007-05-15

    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localization of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase. (authors)

  13. Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, S. [CEA, Centre d' Etudes Nucleaires de Saclay, DSM/DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Benoit, A. [Centre de Recherche sur les Tres Basses Temperatures, SPM-CNRS, BP 166, 38042 Grenoble (France); Berge, L. [Centre de Spectroscopie Nucleaire et de Spectroscopie de Masse, UMR 8609 IN2P3-CNRS, Univ. Paris Sud, bat 108, 91405 Orsay Campus (France)] (and others)

    2006-10-15

    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localisation of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase. (authors)

  14. Scaling images using their background ratio. An application in statistical comparisons of images

    International Nuclear Information System (INIS)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-01-01

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases

  15. Scaling images using their background ratio. An application in statistical comparisons of images.

    Science.gov (United States)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-06-07

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  16. Simulating Metabolite Basis Sets for in vivo MRS Quantification; Incorporating details of the PRESS Pulse Sequence by means of the GAMMA C++ library

    NARCIS (Netherlands)

    Van der Veen, J.W.; Van Ormondt, D.; De Beer, R.

    2012-01-01

    In this work we report on generating/using simulated metabolite basis sets for the quantification of in vivo MRS signals, assuming that they have been acquired by using the PRESS pulse sequence. To that end we have employed the classes and functions of the GAMMA C++ library. By using several

  17. Demonstration of the 3D PANTHERE software for the simulation of gamma dose rates for complex nuclear installations

    International Nuclear Information System (INIS)

    Longeot, M.; Dupont, B.; Schumm, A.; Zweers, M.; Malvagi, F.; Trama, J.C.

    2010-01-01

    The authors present the two successive versions of the PANTHERE simulation software developed by EDF-SEPTEN to determine gamma dose flow rate in complex industrial installations. This software predicts dose rates and thus enables interventions in irradiating environment to be optimized. The authors report the demonstration of the industrial version (PANTHEREv1) and of the currently under development version (PANTHEREv2). They outline the evolutions brought to the first version to develop the second one such as the direct importation of CAD models, ergonomic improvements, etc.

  18. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    López-Cámara, D. [CONACYT—Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510, México (Mexico); Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States); Morsony, Brian J., E-mail: diego@astro.unam.mx [Department of Astronomy, University of Maryland, 4296 Stadium Drive, College Park, MD 20742-2421 (United States)

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected by the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.

  19. Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1–9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ∼3–4°. An angular resolution of ∼3–4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate

  20. Measurements of the background noise gamma at the Modane underground laboratory

    International Nuclear Information System (INIS)

    Morales, A.; Morales, J.; Nunez-Lagos, R.; Villar, J.A.

    1985-01-01

    Experimental measurements of the background have been performed at the Modane underground laboratory, in the Frejus tunnel, in order to locate here a neutrinoless double beta decay on 76 Ge experiment. The background reduction relative to the sea level laboratory at Bordeaux is studied, as well as the intrinsic radiactivity the INa and F 2 Ba scintillators to be selected as a 4 coincidence crown for the experiment. (author)